CINXE.COM

second-countable space in nLab

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> second-countable space in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="index,follow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> second-countable space </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/18067/#Item_1" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:svg="http://www.w3.org/2000/svg" xml:lang="en" lang="en"> <head><meta http-equiv="Content-type" content="application/xhtml+xml;charset=utf-8" /><title>Second-countable spaces</title></head> <body> <div class="rightHandSide"> <div class="toc clickDown" tabindex="0"> <h3 id="context">Context</h3> <h4 id="topology">Topology</h4> <div class="hide"><div> <p><strong><a class="existingWikiWord" href="/nlab/show/topology">topology</a></strong> (<a class="existingWikiWord" href="/nlab/show/point-set+topology">point-set topology</a>, <a class="existingWikiWord" href="/nlab/show/point-free+topology">point-free topology</a>)</p> <p>see also <em><a class="existingWikiWord" href="/nlab/show/differential+topology">differential topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/algebraic+topology">algebraic topology</a></em>, <em><a class="existingWikiWord" href="/nlab/show/functional+analysis">functional analysis</a></em> and <em><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological</a> <a class="existingWikiWord" href="/nlab/show/homotopy+theory">homotopy theory</a></em></p> <p><a class="existingWikiWord" href="/nlab/show/Introduction+to+Topology">Introduction</a></p> <p><strong>Basic concepts</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subset">open subset</a>, <a class="existingWikiWord" href="/nlab/show/closed+subset">closed subset</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood">neighbourhood</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>, <a class="existingWikiWord" href="/nlab/show/locale">locale</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/base+for+the+topology">base for the topology</a>, <a class="existingWikiWord" href="/nlab/show/neighbourhood+base">neighbourhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/finer+topology">finer/coarser topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+closure">closure</a>, <a class="existingWikiWord" href="/nlab/show/topological+interior">interior</a>, <a class="existingWikiWord" href="/nlab/show/topological+boundary">boundary</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separation+axiom">separation</a>, <a class="existingWikiWord" href="/nlab/show/sober+topological+space">sobriety</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+function">continuous function</a>, <a class="existingWikiWord" href="/nlab/show/homeomorphism">homeomorphism</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/uniformly+continuous+function">uniformly continuous function</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+embedding">embedding</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+map">open map</a>, <a class="existingWikiWord" href="/nlab/show/closed+map">closed map</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequence">sequence</a>, <a class="existingWikiWord" href="/nlab/show/net">net</a>, <a class="existingWikiWord" href="/nlab/show/sub-net">sub-net</a>, <a class="existingWikiWord" href="/nlab/show/filter">filter</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/convergence">convergence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/category">category</a><a class="existingWikiWord" href="/nlab/show/Top">Top</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/convenient+category+of+topological+spaces">convenient category of topological spaces</a></li> </ul> </li> </ul> <p><strong><a href="Top#UniversalConstructions">Universal constructions</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/initial+topology">initial topology</a>, <a class="existingWikiWord" href="/nlab/show/final+topology">final topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/subspace">subspace</a>, <a class="existingWikiWord" href="/nlab/show/quotient+space">quotient space</a>,</p> </li> <li> <p>fiber space, <a class="existingWikiWord" href="/nlab/show/space+attachment">space attachment</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/product+space">product space</a>, <a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cylinder">mapping cylinder</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocylinder">mapping cocylinder</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+cone">mapping cone</a>, <a class="existingWikiWord" href="/nlab/show/mapping+cocone">mapping cocone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+telescope">mapping telescope</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/colimits+of+normal+spaces">colimits of normal spaces</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/stuff%2C+structure%2C+property">Extra stuff, structure, properties</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/nice+topological+space">nice topological space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>, <a class="existingWikiWord" href="/nlab/show/metrisable+space">metrisable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Kolmogorov+space">Kolmogorov space</a>, <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff space</a>, <a class="existingWikiWord" href="/nlab/show/regular+space">regular space</a>, <a class="existingWikiWord" href="/nlab/show/normal+space">normal space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sober+space">sober space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+space">compact space</a>, <a class="existingWikiWord" href="/nlab/show/proper+map">proper map</a></p> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+topological+space">sequentially compact</a>, <a class="existingWikiWord" href="/nlab/show/countably+compact+topological+space">countably compact</a>, <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, <a class="existingWikiWord" href="/nlab/show/sigma-compact+topological+space">sigma-compact</a>, <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a>, <a class="existingWikiWord" href="/nlab/show/countably+paracompact+topological+space">countably paracompact</a>, <a class="existingWikiWord" href="/nlab/show/strongly+compact+topological+space">strongly compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compactly+generated+space">compactly generated space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable space</a>, <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/contractible+space">contractible space</a>, <a class="existingWikiWord" href="/nlab/show/locally+contractible+space">locally contractible space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/connected+space">connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+connected+space">locally connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/simply-connected+space">simply-connected space</a>, <a class="existingWikiWord" href="/nlab/show/locally+simply-connected+space">locally simply-connected space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cell+complex">cell complex</a>, <a class="existingWikiWord" href="/nlab/show/CW-complex">CW-complex</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/pointed+topological+space">pointed space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+space">topological vector space</a>, <a class="existingWikiWord" href="/nlab/show/Banach+space">Banach space</a>, <a class="existingWikiWord" href="/nlab/show/Hilbert+space">Hilbert space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+group">topological group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+vector+bundle">topological vector bundle</a>, <a class="existingWikiWord" href="/nlab/show/topological+K-theory">topological K-theory</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></p> </li> </ul> <p><strong>Examples</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/empty+space">empty space</a>, <a class="existingWikiWord" href="/nlab/show/point+space">point space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/discrete+space">discrete space</a>, <a class="existingWikiWord" href="/nlab/show/codiscrete+space">codiscrete space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Sierpinski+space">Sierpinski space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/order+topology">order topology</a>, <a class="existingWikiWord" href="/nlab/show/specialization+topology">specialization topology</a>, <a class="existingWikiWord" href="/nlab/show/Scott+topology">Scott topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/real+line">real line</a>, <a class="existingWikiWord" href="/nlab/show/plane">plane</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/cylinder">cylinder</a>, <a class="existingWikiWord" href="/nlab/show/cone">cone</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sphere">sphere</a>, <a class="existingWikiWord" href="/nlab/show/ball">ball</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/circle">circle</a>, <a class="existingWikiWord" href="/nlab/show/torus">torus</a>, <a class="existingWikiWord" href="/nlab/show/annulus">annulus</a>, <a class="existingWikiWord" href="/nlab/show/Moebius+strip">Moebius strip</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/polytope">polytope</a>, <a class="existingWikiWord" href="/nlab/show/polyhedron">polyhedron</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/projective+space">projective space</a> (<a class="existingWikiWord" href="/nlab/show/real+projective+space">real</a>, <a class="existingWikiWord" href="/nlab/show/complex+projective+space">complex</a>)</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classifying+space">classifying space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/configuration+space+%28mathematics%29">configuration space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/path">path</a>, <a class="existingWikiWord" href="/nlab/show/loop">loop</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/mapping+spaces">mapping spaces</a>: <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a>, <a class="existingWikiWord" href="/nlab/show/topology+of+uniform+convergence">topology of uniform convergence</a></p> <ul> <li><a class="existingWikiWord" href="/nlab/show/loop+space">loop space</a>, <a class="existingWikiWord" href="/nlab/show/path+space">path space</a></li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Zariski+topology">Zariski topology</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Cantor+space">Cantor space</a>, <a class="existingWikiWord" href="/nlab/show/Mandelbrot+space">Mandelbrot space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Peano+curve">Peano curve</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/line+with+two+origins">line with two origins</a>, <a class="existingWikiWord" href="/nlab/show/long+line">long line</a>, <a class="existingWikiWord" href="/nlab/show/Sorgenfrey+line">Sorgenfrey line</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/K-topology">K-topology</a>, <a class="existingWikiWord" href="/nlab/show/Dowker+space">Dowker space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Warsaw+circle">Warsaw circle</a>, <a class="existingWikiWord" href="/nlab/show/Hawaiian+earring+space">Hawaiian earring space</a></p> </li> </ul> <p><strong>Basic statements</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Hausdorff+spaces+are+sober">Hausdorff spaces are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/schemes+are+sober">schemes are sober</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+images+of+compact+spaces+are+compact">continuous images of compact spaces are compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+subspaces+of+compact+Hausdorff+spaces+are+equivalently+compact+subspaces">closed subspaces of compact Hausdorff spaces are equivalently compact subspaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/open+subspaces+of+compact+Hausdorff+spaces+are+locally+compact">open subspaces of compact Hausdorff spaces are locally compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/quotient+projections+out+of+compact+Hausdorff+spaces+are+closed+precisely+if+the+codomain+is+Hausdorff">quotient projections out of compact Hausdorff spaces are closed precisely if the codomain is Hausdorff</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Lebesgue+number+lemma">Lebesgue number lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+equivalently+compact+metric+spaces">sequentially compact metric spaces are equivalently compact metric spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/compact+spaces+equivalently+have+converging+subnet+of+every+net">compact spaces equivalently have converging subnet of every net</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequentially+compact+metric+spaces+are+totally+bounded">sequentially compact metric spaces are totally bounded</a></p> </li> </ul> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/continuous+metric+space+valued+function+on+compact+metric+space+is+uniformly+continuous">continuous metric space valued function on compact metric space is uniformly continuous</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+are+normal">paracompact Hausdorff spaces are normal</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+Hausdorff+spaces+equivalently+admit+subordinate+partitions+of+unity">paracompact Hausdorff spaces equivalently admit subordinate partitions of unity</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/closed+injections+are+embeddings">closed injections are embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/proper+maps+to+locally+compact+spaces+are+closed">proper maps to locally compact spaces are closed</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/injective+proper+maps+to+locally+compact+spaces+are+equivalently+the+closed+embeddings">injective proper maps to locally compact spaces are equivalently the closed embeddings</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+sigma-compact+spaces+are+paracompact">locally compact and sigma-compact spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/CW-complexes+are+paracompact+Hausdorff+spaces">CW-complexes are paracompact Hausdorff spaces</a></p> </li> </ul> <p><strong>Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Urysohn%27s+lemma">Urysohn's lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tietze+extension+theorem">Tietze extension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Tychonoff+theorem">Tychonoff theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/tube+lemma">tube lemma</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Michael%27s+theorem">Michael's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Brouwer%27s+fixed+point+theorem">Brouwer's fixed point theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+invariance+of+dimension">topological invariance of dimension</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Jordan+curve+theorem">Jordan curve theorem</a></p> </li> </ul> <p><strong>Analysis Theorems</strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/Heine-Borel+theorem">Heine-Borel theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/intermediate+value+theorem">intermediate value theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/extreme+value+theorem">extreme value theorem</a></p> </li> </ul> <p><strong><a class="existingWikiWord" href="/nlab/show/topological+homotopy+theory">topological homotopy theory</a></strong></p> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/left+homotopy">left homotopy</a>, <a class="existingWikiWord" href="/nlab/show/right+homotopy">right homotopy</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+equivalence">homotopy equivalence</a>, <a class="existingWikiWord" href="/nlab/show/deformation+retract">deformation retract</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+group">fundamental group</a>, <a class="existingWikiWord" href="/nlab/show/covering+space">covering space</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/fundamental+theorem+of+covering+spaces">fundamental theorem of covering spaces</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+group">homotopy group</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weak+homotopy+equivalence">weak homotopy equivalence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Whitehead%27s+theorem">Whitehead's theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Freudenthal+suspension+theorem">Freudenthal suspension theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/nerve+theorem">nerve theorem</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/homotopy+extension+property">homotopy extension property</a>, <a class="existingWikiWord" href="/nlab/show/Hurewicz+cofibration">Hurewicz cofibration</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/topological+cofiber+sequence">cofiber sequence</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Str%C3%B8m+model+category">Strøm model category</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/classical+model+structure+on+topological+spaces">classical model structure on topological spaces</a></p> </li> </ul> </div></div> </div> </div> <h1 id="secondcountable_spaces">Second-countable spaces</h1> <div class='maruku_toc'> <ul> <li><a href='#idea'>Idea</a></li> <li><a href='#definitions'>Definitions</a></li> <li><a href='#generalisations'>Generalisations</a></li> <li><a href='#examples'>Examples</a></li> <li><a href='#properties'>Properties</a></li> <li><a href='#related_countability_properties'>Related countability properties</a></li> <ul> <li><a href='#properties'>Properties</a></li> <li><a href='#implications'>Implications</a></li> </ul> </ul> </div> <h2 id="idea">Idea</h2> <p>A <a class="existingWikiWord" href="/nlab/show/space">space</a> (such as a <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a>) is <em>second-countable</em> if, in a certain sense, there is only a <a class="existingWikiWord" href="/nlab/show/countable+set">countable</a> amount of information globally in its topology. (Change ‘globally’ to ‘locally’ to get a <a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable space</a>.)</p> <h2 id="definitions">Definitions</h2> <div class="num_defn" id="SecondContablTopologicalSpace"> <h6 id="definition">Definition</h6> <p><strong>(second-countable topological space)</strong></p> <p>A <a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a> is <strong>second-countable</strong> if it has a <a class="existingWikiWord" href="/nlab/show/base+for+a+topology">base for its topology</a> consisting of a <a class="existingWikiWord" href="/nlab/show/countable+set">countable set</a> of <a class="existingWikiWord" href="/nlab/show/subsets">subsets</a>.</p> </div> <div class="num_defn"> <h6 id="definition_2">Definition</h6> <p>A <a class="existingWikiWord" href="/nlab/show/locale">locale</a> is <strong>second-countable</strong> if there is a <a class="existingWikiWord" href="/nlab/show/countable+set">countable set</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/open+subspaces">open subspaces</a> (elements of the <a class="existingWikiWord" href="/nlab/show/frame+of+opens">frame of opens</a>) such that every open <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>G</mi></mrow><annotation encoding="application/x-tex">G</annotation></semantics></math> is a <a class="existingWikiWord" href="/nlab/show/join">join</a> of some <a class="existingWikiWord" href="/nlab/show/subset">subset</a> of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>. That is, we have</p> <div class="maruku-equation"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" class="maruku-mathml"><semantics><mrow><mi>G</mi><mo>=</mo><mo lspace="thinmathspace" rspace="thinmathspace">⋁</mo><mo stretchy="false">{</mo><mi>U</mi><mo lspace="verythinmathspace">:</mo><mi>B</mi><mspace width="thickmathspace"></mspace><mo stretchy="false">|</mo><mspace width="thickmathspace"></mspace><mi>U</mi><mo>⊆</mo><mi>G</mi><mo stretchy="false">}</mo><mo>.</mo></mrow><annotation encoding="application/x-tex"> G = \bigvee \{ U\colon B \;|\; U \subseteq G \} .</annotation></semantics></math></div></div> <h2 id="generalisations">Generalisations</h2> <p>The <strong>weight</strong> of a space is the <a class="existingWikiWord" href="/nlab/show/minimum">minimum</a> of the <a class="existingWikiWord" href="/nlab/show/cardinalities">cardinalities</a> of the possible bases <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>B</mi></mrow><annotation encoding="application/x-tex">B</annotation></semantics></math>. We are implicitly using the <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a> here, to suppose that this set of cardinalities (which really is a <a class="existingWikiWord" href="/nlab/show/small+set">small set</a> because bounded above by the number of open subspaces, and <a class="existingWikiWord" href="/nlab/show/inhabited+set">inhabited</a> by this number as well) has a minimum. But without Choice, we can still consider this collection of cardinalities.</p> <p>Then a second-countable space is simply one with a countable weight.</p> <h2 id="examples">Examples</h2> <div class="num_example" id="SecondCountableEuclideanSpace"> <h6 id="example">Example</h6> <p><strong>(<a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> is second-countable)</strong></p> <p>Let <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow><annotation encoding="application/x-tex">n \in \mathbb{N}</annotation></semantics></math>. Consider the <a class="existingWikiWord" href="/nlab/show/Euclidean+space">Euclidean space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> with its <a class="existingWikiWord" href="/nlab/show/Euclidean+norm">Euclidean</a> <a class="existingWikiWord" href="/nlab/show/metric+topology">metric topology</a>. Then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">\mathbb{R}^n</annotation></semantics></math> is second countable.</p> <p>A <a class="existingWikiWord" href="/nlab/show/countable+set">countable set</a> of <a class="existingWikiWord" href="/nlab/show/topological+base">base open subsets</a> is given by the <a class="existingWikiWord" href="/nlab/show/open+balls">open balls</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msubsup><mi>B</mi> <mi>x</mi> <mo>∘</mo></msubsup><mo stretchy="false">(</mo><mi>ϵ</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">B^\circ_x(\epsilon)</annotation></semantics></math> of <a class="existingWikiWord" href="/nlab/show/rational+number">rational</a> <a class="existingWikiWord" href="/nlab/show/radius">radius</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>ϵ</mi><mo>∈</mo><msub><mi>ℚ</mi> <mrow><mo>≥</mo><mn>0</mn></mrow></msub><mo>⊂</mo><msub><mi>ℝ</mi> <mrow><mo>≥</mo><mn>0</mn></mrow></msub></mrow><annotation encoding="application/x-tex">\epsilon \in \mathbb{Q}_{\geq 0} \subset \mathbb{R}_{\geq 0}</annotation></semantics></math> and centered at points with <a class="existingWikiWord" href="/nlab/show/rational+number">rational</a> <a class="existingWikiWord" href="/nlab/show/coordinates">coordinates</a>: <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><msup><mi>ℚ</mi> <mi>n</mi></msup><mo>⊂</mo><msup><mi>ℝ</mi> <mi>n</mi></msup></mrow><annotation encoding="application/x-tex">x \in \mathbb{Q}^n \subset \mathbb{R}^n</annotation></semantics></math>.</p> </div> <div class="num_example"> <h6 id="example_2">Example</h6> <p>A <a class="existingWikiWord" href="/nlab/show/compact+space">compact</a> <a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a> is second-countable.</p> </div> <div class="num_example"> <h6 id="example_3">Example</h6> <p>A <a class="existingWikiWord" href="/nlab/show/separable+space">separable</a> <a class="existingWikiWord" href="/nlab/show/metric+space">metric space</a>, e.g., a <a class="existingWikiWord" href="/nlab/show/Polish+space">Polish space</a>, is second-countable.</p> </div> <div class="num_remark"> <h6 id="remark">Remark</h6> <p>It is <em>not</em> true that separable <a class="existingWikiWord" href="/nlab/show/first-countable+spaces">first-countable spaces</a> are second-countable; a counterexample is the <a class="existingWikiWord" href="/nlab/show/real+line">real line</a> equipped with the half-open or lower limit topology that has as basis the collection of half-open intervals <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy="false">)</mo></mrow><annotation encoding="application/x-tex">[a, b)</annotation></semantics></math>.</p> </div> <div class="num_example"> <h6 id="example_4">Example</h6> <p>A <a class="existingWikiWord" href="/nlab/show/Hausdorff+space">Hausdorff</a> <a class="existingWikiWord" href="/nlab/show/locally+Euclidean+space">locally Euclidean space</a> is second-countable precisely it is <a class="existingWikiWord" href="/nlab/show/paracompact+space">paracompact</a> and has a <a class="existingWikiWord" href="/nlab/show/countable+set">countable set</a> of <a class="existingWikiWord" href="/nlab/show/connected+components">connected components</a>. In this case it is called a <em><a class="existingWikiWord" href="/nlab/show/topological+manifold">topological manifold</a></em>.</p> <p>See at <em><a class="existingWikiWord" href="/nlab/show/topological+space">topological space</a></em> <a href="#RegularityConditionsForTopologicalManifoldsComparison">this prop.</a>.</p> </div> <div class="num_example"> <h6 id="example_5">Example</h6> <p>A <a class="existingWikiWord" href="/nlab/show/countable+set">countable</a> <a class="existingWikiWord" href="/nlab/show/coproduct">coproduct</a> (<a class="existingWikiWord" href="/nlab/show/disjoint+union+space">disjoint union space</a>) of second-countable spaces is second-countable.</p> <p>Countable <a class="existingWikiWord" href="/nlab/show/products">products</a> (<a class="existingWikiWord" href="/nlab/show/product+topological+spaces">product topological spaces</a>) of second-countable spaces are second-countable.</p> <p><a class="existingWikiWord" href="/nlab/show/subspace">Subspaces</a> of second-countable spaces are second-countable.</p> </div> <div class="num_exampl"> <h6 id="example_6">Example</h6> <p>If <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is second-countable and there is an <a class="existingWikiWord" href="/nlab/show/open+map">open</a> <a class="existingWikiWord" href="/nlab/show/surjection">surjection</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>f</mi><mo lspace="verythinmathspace">:</mo><mi>X</mi><mo>→</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">f \colon X \to Y</annotation></semantics></math>, then <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>Y</mi></mrow><annotation encoding="application/x-tex">Y</annotation></semantics></math> is second-countable.</p> </div> <div class="num_example"> <h6 id="example_7">Example</h6> <p>For second-countable <a class="existingWikiWord" href="/nlab/show/separation+axiom">T_3</a> spaces <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi><mo>,</mo><mi>Y</mi></mrow><annotation encoding="application/x-tex">X, Y</annotation></semantics></math>, if <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is <a class="existingWikiWord" href="/nlab/show/locally+compact+topological+space">locally compact</a>, then the <a class="existingWikiWord" href="/nlab/show/mapping+space">mapping space</a> <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msup><mi>Y</mi> <mi>X</mi></msup></mrow><annotation encoding="application/x-tex">Y^X</annotation></semantics></math> with the <a class="existingWikiWord" href="/nlab/show/compact-open+topology">compact-open topology</a> is second-countable.</p> <p>Cf. <a class="existingWikiWord" href="/nlab/show/Urysohn+metrization+theorem">Urysohn metrization theorem</a> and <a class="existingWikiWord" href="/nlab/show/Polish+space">Polish space</a>. I (<a class="existingWikiWord" href="/nlab/show/Todd+Trimble">Todd Trimble</a>) am uncertain to what extent the <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><msub><mi>T</mi> <mn>3</mn></msub></mrow><annotation encoding="application/x-tex">T_3</annotation></semantics></math> assumption can be removed.</p> </div> <h2 id="properties">Properties</h2> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+regular+spaces+are+paracompact">second-countable regular spaces are paracompact</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/locally+compact+and+second-countable+spaces+are+sigma-compact">locally compact and second-countable spaces are sigma-compact</a></p> </li> </ul> <h2 id="related_countability_properties">Related countability properties</h2> <div> <svg xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg" width="678.574pt" height="203.568pt" viewBox="0 0 678.574 203.568" version="1.1"> <defs> <g> <symbol overflow="visible" id="454609461-glyph0-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-1"> <path style="stroke:none;" d="M 5.734375 -2.109375 C 5.734375 -2.71875 5.421875 -3.078125 4.6875 -3.078125 C 4.125 -3.078125 3.75 -2.78125 3.5625 -2.421875 C 3.421875 -2.921875 3.046875 -3.078125 2.546875 -3.078125 C 1.96875 -3.078125 1.609375 -2.765625 1.40625 -2.390625 L 1.40625 -3.078125 L 0.375 -3 L 0.375 -2.75 C 0.84375 -2.75 0.90625 -2.703125 0.90625 -2.359375 L 0.90625 -0.546875 C 0.90625 -0.25 0.828125 -0.25 0.375 -0.25 L 0.375 0 C 0.390625 0 0.875 -0.03125 1.171875 -0.03125 C 1.421875 -0.03125 1.90625 0 1.96875 0 L 1.96875 -0.25 C 1.515625 -0.25 1.453125 -0.25 1.453125 -0.546875 L 1.453125 -1.8125 C 1.453125 -2.53125 2.03125 -2.875 2.484375 -2.875 C 2.96875 -2.875 3.03125 -2.5 3.03125 -2.140625 L 3.03125 -0.546875 C 3.03125 -0.25 2.96875 -0.25 2.515625 -0.25 L 2.515625 0 C 2.53125 0 3.015625 -0.03125 3.3125 -0.03125 C 3.5625 -0.03125 4.046875 0 4.109375 0 L 4.109375 -0.25 C 3.65625 -0.25 3.59375 -0.25 3.59375 -0.546875 L 3.59375 -1.8125 C 3.59375 -2.53125 4.171875 -2.875 4.625 -2.875 C 5.109375 -2.875 5.171875 -2.5 5.171875 -2.140625 L 5.171875 -0.546875 C 5.171875 -0.25 5.109375 -0.25 4.65625 -0.25 L 4.65625 0 C 4.671875 0 5.15625 -0.03125 5.453125 -0.03125 C 5.703125 -0.03125 6.1875 0 6.25 0 L 6.25 -0.25 C 5.796875 -0.25 5.734375 -0.25 5.734375 -0.546875 Z M 5.734375 -2.109375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-2"> <path style="stroke:none;" d="M 3.0625 -1.59375 C 3.21875 -1.59375 3.265625 -1.59375 3.265625 -1.734375 C 3.265625 -2.359375 2.921875 -3.109375 1.875 -3.109375 C 0.96875 -3.109375 0.265625 -2.390625 0.265625 -1.53125 C 0.265625 -0.640625 1.046875 0.0625 1.96875 0.0625 C 2.90625 0.0625 3.265625 -0.6875 3.265625 -0.84375 C 3.265625 -0.859375 3.25 -0.9375 3.140625 -0.9375 C 3.046875 -0.9375 3.03125 -0.890625 3.015625 -0.828125 C 2.796875 -0.265625 2.265625 -0.15625 2.015625 -0.15625 C 1.6875 -0.15625 1.375 -0.296875 1.171875 -0.5625 C 0.90625 -0.890625 0.90625 -1.3125 0.90625 -1.59375 Z M 0.90625 -1.765625 C 0.984375 -2.75 1.609375 -2.90625 1.875 -2.90625 C 2.734375 -2.90625 2.765625 -1.9375 2.78125 -1.765625 Z M 0.90625 -1.765625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-3"> <path style="stroke:none;" d="M 1.40625 -2.75 L 2.484375 -2.75 L 2.484375 -3 L 1.40625 -3 L 1.40625 -4.28125 L 1.15625 -4.28125 C 1.15625 -3.65625 0.875 -2.96875 0.203125 -2.953125 L 0.203125 -2.75 L 0.84375 -2.75 L 0.84375 -0.875 C 0.84375 -0.09375 1.4375 0.0625 1.828125 0.0625 C 2.296875 0.0625 2.609375 -0.328125 2.609375 -0.875 L 2.609375 -1.265625 L 2.375 -1.265625 L 2.375 -0.890625 C 2.375 -0.40625 2.15625 -0.15625 1.875 -0.15625 C 1.40625 -0.15625 1.40625 -0.734375 1.40625 -0.859375 Z M 1.40625 -2.75 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-4"> <path style="stroke:none;" d="M 1.390625 -1.59375 C 1.390625 -2.171875 1.65625 -2.875 2.328125 -2.875 C 2.265625 -2.828125 2.203125 -2.734375 2.203125 -2.625 C 2.203125 -2.390625 2.390625 -2.3125 2.515625 -2.3125 C 2.6875 -2.3125 2.84375 -2.421875 2.84375 -2.625 C 2.84375 -2.859375 2.609375 -3.078125 2.28125 -3.078125 C 1.9375 -3.078125 1.546875 -2.859375 1.34375 -2.328125 L 1.34375 -3.078125 L 0.34375 -3 L 0.34375 -2.75 C 0.8125 -2.75 0.859375 -2.703125 0.859375 -2.359375 L 0.859375 -0.546875 C 0.859375 -0.25 0.796875 -0.25 0.34375 -0.25 L 0.34375 0 C 0.375 0 0.84375 -0.03125 1.140625 -0.03125 C 1.4375 -0.03125 1.734375 -0.015625 2.046875 0 L 2.046875 -0.25 L 1.90625 -0.25 C 1.390625 -0.25 1.390625 -0.328125 1.390625 -0.5625 Z M 1.390625 -1.59375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-5"> <path style="stroke:none;" d="M 1.46875 -4.296875 C 1.46875 -4.5 1.296875 -4.703125 1.0625 -4.703125 C 0.859375 -4.703125 0.671875 -4.53125 0.671875 -4.296875 C 0.671875 -4.046875 0.875 -3.890625 1.0625 -3.890625 C 1.296875 -3.890625 1.46875 -4.0625 1.46875 -4.296875 Z M 0.40625 -3 L 0.40625 -2.75 C 0.84375 -2.75 0.90625 -2.703125 0.90625 -2.359375 L 0.90625 -0.546875 C 0.90625 -0.25 0.84375 -0.25 0.390625 -0.25 L 0.390625 0 C 0.40625 0 0.890625 -0.03125 1.171875 -0.03125 C 1.421875 -0.03125 1.671875 -0.015625 1.90625 0 L 1.90625 -0.25 C 1.5 -0.25 1.4375 -0.25 1.4375 -0.546875 L 1.4375 -3.078125 Z M 0.40625 -3 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-6"> <path style="stroke:none;" d="M 2.640625 -2.921875 C 2.640625 -3.046875 2.640625 -3.109375 2.546875 -3.109375 C 2.515625 -3.109375 2.5 -3.109375 2.40625 -3.03125 C 2.390625 -3.015625 2.328125 -2.953125 2.28125 -2.921875 C 2.0625 -3.0625 1.8125 -3.109375 1.546875 -3.109375 C 0.546875 -3.109375 0.3125 -2.578125 0.3125 -2.234375 C 0.3125 -2.015625 0.40625 -1.828125 0.578125 -1.6875 C 0.84375 -1.46875 1.109375 -1.421875 1.546875 -1.34375 C 1.890625 -1.28125 2.453125 -1.1875 2.453125 -0.71875 C 2.453125 -0.453125 2.265625 -0.125 1.59375 -0.125 C 0.921875 -0.125 0.6875 -0.5625 0.5625 -1.03125 C 0.53125 -1.125 0.53125 -1.15625 0.4375 -1.15625 C 0.3125 -1.15625 0.3125 -1.109375 0.3125 -0.96875 L 0.3125 -0.109375 C 0.3125 0 0.3125 0.0625 0.40625 0.0625 C 0.46875 0.0625 0.609375 -0.078125 0.75 -0.234375 C 1.046875 0.0625 1.421875 0.0625 1.59375 0.0625 C 2.5 0.0625 2.84375 -0.421875 2.84375 -0.90625 C 2.84375 -1.171875 2.71875 -1.390625 2.53125 -1.546875 C 2.265625 -1.796875 1.953125 -1.859375 1.703125 -1.890625 C 1.15625 -2 0.703125 -2.078125 0.703125 -2.453125 C 0.703125 -2.671875 0.890625 -2.9375 1.546875 -2.9375 C 2.359375 -2.9375 2.390625 -2.375 2.40625 -2.171875 C 2.40625 -2.09375 2.5 -2.09375 2.515625 -2.09375 C 2.640625 -2.09375 2.640625 -2.140625 2.640625 -2.28125 Z M 2.640625 -2.921875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-7"> <path style="stroke:none;" d="M 3.109375 -1.875 C 3.109375 -2.234375 3.109375 -2.5 2.78125 -2.765625 C 2.5 -3 2.171875 -3.109375 1.75 -3.109375 C 1.09375 -3.109375 0.625 -2.859375 0.625 -2.4375 C 0.625 -2.203125 0.78125 -2.09375 0.96875 -2.09375 C 1.15625 -2.09375 1.296875 -2.234375 1.296875 -2.421875 C 1.296875 -2.53125 1.234375 -2.6875 1.046875 -2.734375 C 1.296875 -2.90625 1.703125 -2.90625 1.734375 -2.90625 C 2.125 -2.90625 2.5625 -2.65625 2.5625 -2.0625 L 2.5625 -1.859375 C 2.171875 -1.84375 1.71875 -1.8125 1.203125 -1.625 C 0.578125 -1.40625 0.390625 -1.015625 0.390625 -0.703125 C 0.390625 -0.109375 1.109375 0.0625 1.609375 0.0625 C 2.15625 0.0625 2.484375 -0.25 2.640625 -0.515625 C 2.65625 -0.234375 2.84375 0.03125 3.171875 0.03125 C 3.1875 0.03125 3.859375 0.03125 3.859375 -0.625 L 3.859375 -1.015625 L 3.625 -1.015625 L 3.625 -0.640625 C 3.625 -0.5625 3.625 -0.234375 3.359375 -0.234375 C 3.109375 -0.234375 3.109375 -0.5625 3.109375 -0.640625 Z M 2.5625 -0.984375 C 2.5625 -0.3125 1.96875 -0.125 1.65625 -0.125 C 1.296875 -0.125 0.96875 -0.359375 0.96875 -0.703125 C 0.96875 -1.09375 1.296875 -1.625 2.5625 -1.671875 Z M 2.5625 -0.984375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-8"> <path style="stroke:none;" d="M 1.390625 -4.84375 L 0.34375 -4.765625 L 0.34375 -4.515625 C 0.8125 -4.515625 0.859375 -4.453125 0.859375 -4.109375 L 0.859375 0 L 1.09375 0 L 1.34375 -0.421875 C 1.609375 -0.078125 2 0.0625 2.359375 0.0625 C 3.28125 0.0625 4.0625 -0.625 4.0625 -1.5 C 4.0625 -2.359375 3.359375 -3.078125 2.4375 -3.078125 C 2.015625 -3.078125 1.640625 -2.90625 1.390625 -2.65625 Z M 1.421875 -2.328125 C 1.609375 -2.65625 1.984375 -2.875 2.40625 -2.875 C 2.796875 -2.875 3.078125 -2.65625 3.21875 -2.453125 C 3.359375 -2.25 3.4375 -1.96875 3.4375 -1.515625 C 3.4375 -1.359375 3.4375 -0.828125 3.15625 -0.5 C 2.875 -0.1875 2.53125 -0.125 2.328125 -0.125 C 1.765625 -0.125 1.484375 -0.5625 1.421875 -0.703125 Z M 1.421875 -2.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-9"> <path style="stroke:none;" d="M 1.4375 -4.84375 L 0.390625 -4.765625 L 0.390625 -4.515625 C 0.859375 -4.515625 0.90625 -4.453125 0.90625 -4.125 L 0.90625 -0.546875 C 0.90625 -0.25 0.84375 -0.25 0.390625 -0.25 L 0.390625 0 C 0.40625 0 0.890625 -0.03125 1.171875 -0.03125 C 1.4375 -0.03125 1.6875 -0.015625 1.953125 0 L 1.953125 -0.25 C 1.5 -0.25 1.4375 -0.25 1.4375 -0.546875 Z M 1.4375 -4.84375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-10"> <path style="stroke:none;" d="M 2.1875 -1.265625 L 2.1875 -1.734375 L 0.140625 -1.734375 L 0.140625 -1.265625 Z M 2.1875 -1.265625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-11"> <path style="stroke:none;" d="M 3.6875 -1.484375 C 3.6875 -2.359375 2.9375 -3.109375 1.984375 -3.109375 C 1.015625 -3.109375 0.265625 -2.359375 0.265625 -1.484375 C 0.265625 -0.625 1.03125 0.0625 1.984375 0.0625 C 2.921875 0.0625 3.6875 -0.625 3.6875 -1.484375 Z M 1.984375 -0.15625 C 1.71875 -0.15625 1.34375 -0.234375 1.109375 -0.578125 C 0.921875 -0.859375 0.90625 -1.21875 0.90625 -1.546875 C 0.90625 -1.84375 0.90625 -2.265625 1.15625 -2.5625 C 1.328125 -2.765625 1.625 -2.90625 1.984375 -2.90625 C 2.390625 -2.90625 2.6875 -2.71875 2.84375 -2.5 C 3.03125 -2.234375 3.046875 -1.875 3.046875 -1.546875 C 3.046875 -1.21875 3.03125 -0.84375 2.828125 -0.5625 C 2.640625 -0.296875 2.328125 -0.15625 1.984375 -0.15625 Z M 1.984375 -0.15625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-12"> <path style="stroke:none;" d="M 2.703125 -2.78125 C 2.578125 -2.71875 2.515625 -2.609375 2.515625 -2.46875 C 2.515625 -2.28125 2.640625 -2.140625 2.84375 -2.140625 C 3.03125 -2.140625 3.171875 -2.265625 3.171875 -2.484375 C 3.171875 -3.109375 2.203125 -3.109375 2.015625 -3.109375 C 0.96875 -3.109375 0.328125 -2.3125 0.328125 -1.5 C 0.328125 -0.625 1.0625 0.0625 1.984375 0.0625 C 3.015625 0.0625 3.265625 -0.75 3.265625 -0.84375 C 3.265625 -0.921875 3.171875 -0.921875 3.140625 -0.921875 C 3.046875 -0.921875 3.046875 -0.90625 3.015625 -0.796875 C 2.859375 -0.375 2.484375 -0.15625 2.0625 -0.15625 C 1.578125 -0.15625 0.953125 -0.515625 0.953125 -1.515625 C 0.953125 -2.390625 1.390625 -2.890625 2.03125 -2.890625 C 2.125 -2.890625 2.453125 -2.890625 2.703125 -2.78125 Z M 2.703125 -2.78125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-13"> <path style="stroke:none;" d="M 3.296875 -2.328125 C 3.484375 -2.75 3.84375 -2.75 3.953125 -2.75 L 3.953125 -3 C 3.765625 -2.984375 3.625 -2.96875 3.421875 -2.96875 C 3.234375 -2.96875 2.984375 -2.984375 2.796875 -3 L 2.796875 -2.75 C 3.03125 -2.734375 3.078125 -2.59375 3.078125 -2.484375 C 3.078125 -2.40625 3.046875 -2.34375 3.015625 -2.265625 L 2.25 -0.625 L 1.390625 -2.453125 C 1.359375 -2.5 1.34375 -2.546875 1.34375 -2.59375 C 1.34375 -2.75 1.578125 -2.75 1.703125 -2.75 L 1.703125 -3 C 1.59375 -3 1.09375 -2.96875 0.90625 -2.96875 C 0.6875 -2.96875 0.421875 -2.984375 0.21875 -3 L 0.21875 -2.75 C 0.609375 -2.75 0.6875 -2.734375 0.78125 -2.515625 L 1.953125 0 C 1.890625 0.140625 1.828125 0.265625 1.765625 0.40625 C 1.609375 0.75 1.390625 1.21875 0.90625 1.21875 C 0.734375 1.21875 0.6875 1.1875 0.609375 1.140625 C 0.625 1.140625 0.8125 1.078125 0.8125 0.84375 C 0.8125 0.671875 0.6875 0.546875 0.515625 0.546875 C 0.328125 0.546875 0.203125 0.671875 0.203125 0.84375 C 0.203125 1.171875 0.53125 1.421875 0.90625 1.421875 C 1.5 1.421875 1.84375 0.796875 1.9375 0.59375 Z M 3.296875 -2.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-14"> <path style="stroke:none;" d="M 2.71875 -3.03125 C 2.640625 -3.015625 2.609375 -3.015625 2.59375 -3.015625 C 2.578125 -3 2.5625 -3 2.46875 -3 L 1.359375 -3 L 1.359375 -3.765625 C 1.359375 -4.453125 2.078125 -4.703125 2.5625 -4.703125 C 2.796875 -4.703125 3.03125 -4.65625 3.21875 -4.515625 C 2.96875 -4.453125 2.9375 -4.265625 2.9375 -4.1875 C 2.9375 -3.96875 3.109375 -3.84375 3.28125 -3.84375 C 3.40625 -3.84375 3.625 -3.921875 3.625 -4.1875 C 3.625 -4.578125 3.234375 -4.90625 2.578125 -4.90625 C 1.859375 -4.90625 0.859375 -4.578125 0.859375 -3.765625 L 0.859375 -3 L 0.265625 -3 L 0.265625 -2.75 L 0.859375 -2.75 L 0.859375 -0.546875 C 0.859375 -0.25 0.796875 -0.25 0.34375 -0.25 L 0.34375 0 C 0.359375 0 0.84375 -0.03125 1.125 -0.03125 C 1.390625 -0.03125 1.640625 -0.015625 1.90625 0 L 1.90625 -0.25 C 1.453125 -0.25 1.390625 -0.25 1.390625 -0.546875 L 1.390625 -2.75 L 2.78125 -2.75 C 3.0625 -2.75 3.109375 -2.6875 3.109375 -2.375 L 3.109375 -0.546875 C 3.109375 -0.25 3.046875 -0.25 2.59375 -0.25 L 2.59375 0 C 2.609375 0 3.09375 -0.03125 3.375 -0.03125 C 3.640625 -0.03125 3.890625 -0.015625 4.15625 0 L 4.15625 -0.25 C 3.703125 -0.25 3.640625 -0.25 3.640625 -0.546875 L 3.640625 -3.09375 Z M 2.71875 -3.03125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-15"> <path style="stroke:none;" d="M 3.59375 -2.109375 C 3.59375 -2.71875 3.296875 -3.078125 2.546875 -3.078125 C 1.96875 -3.078125 1.609375 -2.765625 1.40625 -2.390625 L 1.40625 -3.078125 L 0.375 -3 L 0.375 -2.75 C 0.84375 -2.75 0.90625 -2.703125 0.90625 -2.359375 L 0.90625 -0.546875 C 0.90625 -0.25 0.828125 -0.25 0.375 -0.25 L 0.375 0 C 0.390625 0 0.875 -0.03125 1.171875 -0.03125 C 1.421875 -0.03125 1.90625 0 1.96875 0 L 1.96875 -0.25 C 1.515625 -0.25 1.453125 -0.25 1.453125 -0.546875 L 1.453125 -1.8125 C 1.453125 -2.53125 2.03125 -2.875 2.484375 -2.875 C 2.96875 -2.875 3.03125 -2.5 3.03125 -2.140625 L 3.03125 -0.546875 C 3.03125 -0.25 2.96875 -0.25 2.515625 -0.25 L 2.515625 0 C 2.53125 0 3.015625 -0.03125 3.3125 -0.03125 C 3.5625 -0.03125 4.046875 0 4.109375 0 L 4.109375 -0.25 C 3.65625 -0.25 3.59375 -0.25 3.59375 -0.546875 Z M 3.59375 -2.109375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-16"> <path style="stroke:none;" d="M 1 -1.234375 C 1.109375 -1.171875 1.359375 -1.03125 1.765625 -1.03125 C 2.484375 -1.03125 3 -1.5 3 -2.046875 C 3 -2.328125 2.875 -2.53125 2.703125 -2.71875 C 3.03125 -2.9375 3.296875 -2.953125 3.421875 -2.953125 C 3.390625 -2.921875 3.359375 -2.890625 3.359375 -2.78125 C 3.359375 -2.640625 3.453125 -2.5625 3.578125 -2.5625 C 3.671875 -2.5625 3.796875 -2.625 3.796875 -2.78125 C 3.796875 -2.953125 3.671875 -3.140625 3.390625 -3.140625 C 3.28125 -3.140625 2.90625 -3.125 2.578125 -2.828125 C 2.375 -2.96875 2.078125 -3.078125 1.765625 -3.078125 C 1.046875 -3.078125 0.53125 -2.59375 0.53125 -2.046875 C 0.53125 -1.78125 0.671875 -1.53125 0.859375 -1.34375 C 0.8125 -1.28125 0.65625 -1.046875 0.65625 -0.78125 C 0.65625 -0.6875 0.671875 -0.359375 0.953125 -0.15625 C 0.640625 -0.0625 0.265625 0.171875 0.265625 0.53125 C 0.265625 1.046875 1.03125 1.421875 1.984375 1.421875 C 2.859375 1.421875 3.6875 1.078125 3.6875 0.515625 C 3.6875 0.3125 3.609375 -0.0625 3.21875 -0.265625 C 2.8125 -0.484375 2.390625 -0.484375 1.71875 -0.484375 C 1.5625 -0.484375 1.3125 -0.484375 1.265625 -0.5 C 1.03125 -0.546875 0.90625 -0.75 0.90625 -0.953125 C 0.90625 -1.125 0.96875 -1.1875 1 -1.234375 Z M 1.765625 -1.234375 C 1.09375 -1.234375 1.09375 -1.90625 1.09375 -2.046875 C 1.09375 -2.15625 1.09375 -2.4375 1.21875 -2.625 C 1.328125 -2.734375 1.515625 -2.859375 1.765625 -2.859375 C 2.453125 -2.859375 2.453125 -2.1875 2.453125 -2.046875 C 2.453125 -1.9375 2.453125 -1.65625 2.3125 -1.484375 C 2.203125 -1.359375 2.015625 -1.234375 1.765625 -1.234375 Z M 1.765625 -0.015625 C 2.390625 -0.015625 3.265625 -0.015625 3.265625 0.53125 C 3.265625 0.90625 2.703125 1.21875 1.984375 1.21875 C 1.25 1.21875 0.703125 0.890625 0.703125 0.53125 C 0.703125 0.28125 0.921875 -0.015625 1.359375 -0.015625 Z M 1.765625 -0.015625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-17"> <path style="stroke:none;" d="M 2.515625 -3 L 2.515625 -2.75 C 2.984375 -2.75 3.03125 -2.703125 3.03125 -2.359375 L 3.03125 -1.15625 C 3.03125 -0.546875 2.640625 -0.125 2.109375 -0.125 C 1.484375 -0.125 1.453125 -0.421875 1.453125 -0.78125 L 1.453125 -3.078125 L 0.375 -3 L 0.375 -2.75 C 0.90625 -2.75 0.90625 -2.71875 0.90625 -2.109375 L 0.90625 -1.0625 C 0.90625 -0.578125 0.90625 0.0625 2.0625 0.0625 C 2.21875 0.0625 2.71875 0.0625 3.0625 -0.515625 L 3.0625 0.0625 L 4.109375 0 L 4.109375 -0.25 C 3.640625 -0.25 3.59375 -0.296875 3.59375 -0.640625 L 3.59375 -3.078125 Z M 2.515625 -3 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-18"> <path style="stroke:none;" d="M 5.1875 -4.703125 L 0.484375 -4.703125 L 0.328125 -3.109375 L 0.578125 -3.109375 C 0.671875 -4.3125 0.875 -4.453125 1.9375 -4.453125 C 2.078125 -4.453125 2.28125 -4.453125 2.359375 -4.453125 C 2.515625 -4.421875 2.515625 -4.34375 2.515625 -4.1875 L 2.515625 -0.578125 C 2.515625 -0.34375 2.515625 -0.25 1.78125 -0.25 L 1.484375 -0.25 L 1.484375 0 C 1.828125 -0.03125 2.484375 -0.03125 2.84375 -0.03125 C 3.203125 -0.03125 3.84375 -0.03125 4.1875 0 L 4.1875 -0.25 L 3.890625 -0.25 C 3.171875 -0.25 3.171875 -0.34375 3.171875 -0.578125 L 3.171875 -4.1875 C 3.171875 -4.34375 3.171875 -4.421875 3.328125 -4.453125 C 3.390625 -4.453125 3.59375 -4.453125 3.734375 -4.453125 C 4.125 -4.453125 4.421875 -4.453125 4.671875 -4.328125 C 4.984375 -4.125 5.03125 -3.6875 5.03125 -3.65625 L 5.09375 -3.109375 L 5.34375 -3.109375 Z M 5.1875 -4.703125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-19"> <path style="stroke:none;" d="M 4.875 -2.328125 C 5.015625 -2.671875 5.25 -2.75 5.46875 -2.75 L 5.46875 -3 C 5.28125 -2.984375 5.15625 -2.96875 4.96875 -2.96875 C 4.75 -2.96875 4.484375 -2.984375 4.28125 -3 L 4.28125 -2.75 C 4.515625 -2.75 4.640625 -2.609375 4.640625 -2.453125 C 4.640625 -2.390625 4.640625 -2.375 4.59375 -2.28125 L 3.921875 -0.546875 L 3.171875 -2.453125 C 3.15625 -2.484375 3.140625 -2.53125 3.140625 -2.578125 C 3.140625 -2.734375 3.3125 -2.75 3.515625 -2.75 L 3.515625 -3 C 3.265625 -2.984375 3.015625 -2.96875 2.765625 -2.96875 C 2.5625 -2.96875 2.34375 -2.984375 2.140625 -3 L 2.140625 -2.75 C 2.3125 -2.75 2.453125 -2.75 2.546875 -2.703125 C 2.640625 -2.625 2.703125 -2.390625 2.703125 -2.390625 C 2.703125 -2.375 2.6875 -2.328125 2.671875 -2.3125 L 2.015625 -0.640625 L 1.3125 -2.453125 C 1.28125 -2.546875 1.28125 -2.546875 1.28125 -2.578125 C 1.28125 -2.75 1.53125 -2.75 1.65625 -2.75 L 1.65625 -3 C 1.640625 -3 1.140625 -2.96875 0.859375 -2.96875 C 0.640625 -2.96875 0.421875 -2.984375 0.203125 -3 L 0.203125 -2.75 C 0.484375 -2.75 0.640625 -2.75 0.703125 -2.546875 L 1.671875 -0.09375 C 1.71875 0.015625 1.734375 0.0625 1.875 0.0625 C 2 0.0625 2.015625 0.015625 2.046875 -0.078125 L 2.84375 -2.0625 L 3.609375 -0.09375 C 3.65625 0 3.671875 0.0625 3.8125 0.0625 C 3.9375 0.0625 3.953125 0.015625 4 -0.09375 Z M 4.875 -2.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-20"> <path style="stroke:none;" d="M 2.25 -1.890625 C 3.109375 -2.546875 3.34375 -2.734375 3.8125 -2.75 L 3.8125 -3 C 3.671875 -2.984375 3.484375 -2.96875 3.34375 -2.96875 C 3.0625 -2.96875 2.78125 -2.984375 2.515625 -3 L 2.515625 -2.75 C 2.59375 -2.734375 2.640625 -2.6875 2.640625 -2.625 C 2.640625 -2.515625 2.5 -2.390625 2.421875 -2.328125 L 1.390625 -1.53125 L 1.390625 -4.84375 L 0.34375 -4.765625 L 0.34375 -4.515625 C 0.8125 -4.515625 0.859375 -4.453125 0.859375 -4.125 L 0.859375 -0.546875 C 0.859375 -0.25 0.796875 -0.25 0.34375 -0.25 L 0.34375 0 C 0.59375 -0.015625 0.859375 -0.03125 1.109375 -0.03125 C 1.375 -0.03125 1.625 -0.015625 1.890625 0 L 1.890625 -0.25 C 1.4375 -0.25 1.359375 -0.25 1.359375 -0.546875 L 1.359375 -1.21875 L 1.875 -1.609375 L 2.625 -0.65625 C 2.703125 -0.578125 2.78125 -0.46875 2.78125 -0.375 C 2.78125 -0.265625 2.65625 -0.25 2.59375 -0.25 L 2.59375 0 C 2.6875 0 3.171875 -0.03125 3.375 -0.03125 C 3.578125 -0.03125 3.78125 -0.015625 3.984375 0 L 3.984375 -0.25 C 3.734375 -0.25 3.578125 -0.265625 3.375 -0.515625 Z M 2.25 -1.890625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-21"> <path style="stroke:none;" d="M 4.53125 -1.828125 L 4.296875 -1.828125 C 4.21875 -1.15625 4.125 -0.25 2.796875 -0.25 L 2.109375 -0.25 C 1.78125 -0.25 1.765625 -0.3125 1.765625 -0.515625 L 1.765625 -4.1875 C 1.765625 -4.421875 1.765625 -4.515625 2.421875 -4.515625 L 2.671875 -4.515625 L 2.671875 -4.765625 C 2.515625 -4.75 1.625 -4.734375 1.453125 -4.734375 C 1.1875 -4.734375 0.390625 -4.765625 0.390625 -4.765625 L 0.390625 -4.515625 L 0.5625 -4.515625 C 1.09375 -4.515625 1.109375 -4.4375 1.109375 -4.1875 L 1.109375 -0.5625 C 1.109375 -0.328125 1.09375 -0.25 0.5625 -0.25 L 0.390625 -0.25 L 0.390625 0 L 4.328125 0 Z M 4.53125 -1.828125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-22"> <path style="stroke:none;" d="M 2.484375 -4.765625 L 2.484375 -4.515625 C 2.953125 -4.515625 3 -4.453125 3 -4.125 L 3 -2.671875 C 2.75 -2.921875 2.40625 -3.078125 2.03125 -3.078125 C 1.09375 -3.078125 0.328125 -2.375 0.328125 -1.5 C 0.328125 -0.625 1.0625 0.0625 1.9375 0.0625 C 2.515625 0.0625 2.859375 -0.234375 2.96875 -0.359375 L 2.96875 0.0625 L 4.046875 0 L 4.046875 -0.25 C 3.578125 -0.25 3.53125 -0.296875 3.53125 -0.640625 L 3.53125 -4.84375 Z M 2.96875 -0.734375 C 2.796875 -0.40625 2.4375 -0.125 1.984375 -0.125 C 1.59375 -0.125 1.3125 -0.359375 1.171875 -0.5625 C 1.03125 -0.765625 0.953125 -1.046875 0.953125 -1.484375 C 0.953125 -1.65625 0.953125 -2.171875 1.234375 -2.5 C 1.515625 -2.8125 1.859375 -2.875 2.0625 -2.875 C 2.390625 -2.875 2.703125 -2.71875 2.890625 -2.46875 C 2.96875 -2.359375 2.96875 -2.359375 2.96875 -2.21875 Z M 2.96875 -0.734375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-23"> <path style="stroke:none;" d="M 1.609375 -4.328125 C 1.609375 -4.53125 1.4375 -4.703125 1.234375 -4.703125 C 1.03125 -4.703125 0.859375 -4.53125 0.859375 -4.328125 C 0.859375 -4.109375 1.03125 -3.9375 1.234375 -3.9375 C 1.4375 -3.9375 1.609375 -4.109375 1.609375 -4.328125 Z M 3.09375 -4.328125 C 3.09375 -4.53125 2.921875 -4.703125 2.71875 -4.703125 C 2.515625 -4.703125 2.34375 -4.53125 2.34375 -4.328125 C 2.34375 -4.109375 2.515625 -3.9375 2.71875 -3.9375 C 2.921875 -3.9375 3.09375 -4.109375 3.09375 -4.328125 Z M 3.09375 -4.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-24"> <path style="stroke:none;" d="M 1.4375 -2.75 L 2.3125 -2.75 L 2.3125 -3 L 1.40625 -3 L 1.40625 -3.78125 C 1.40625 -4.421875 1.78125 -4.703125 2.078125 -4.703125 C 2.140625 -4.703125 2.21875 -4.703125 2.28125 -4.671875 C 2.1875 -4.625 2.125 -4.515625 2.125 -4.390625 C 2.125 -4.203125 2.265625 -4.078125 2.453125 -4.078125 C 2.640625 -4.078125 2.78125 -4.203125 2.78125 -4.390625 C 2.78125 -4.703125 2.46875 -4.90625 2.09375 -4.90625 C 1.546875 -4.90625 0.90625 -4.515625 0.90625 -3.78125 L 0.90625 -3 L 0.3125 -3 L 0.3125 -2.75 L 0.90625 -2.75 L 0.90625 -0.546875 C 0.90625 -0.25 0.84375 -0.25 0.390625 -0.25 L 0.390625 0 C 0.421875 0 0.90625 -0.03125 1.1875 -0.03125 C 1.484375 -0.03125 1.796875 -0.015625 2.09375 0 L 2.09375 -0.25 L 1.953125 -0.25 C 1.4375 -0.25 1.4375 -0.328125 1.4375 -0.5625 Z M 1.4375 -2.75 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-25"> <path style="stroke:none;" d="M 5.1875 -4.71875 C 5.1875 -4.84375 5.1875 -4.90625 5.09375 -4.90625 C 5.0625 -4.90625 5.03125 -4.90625 4.96875 -4.8125 L 4.59375 -4.28125 C 4.3125 -4.578125 3.828125 -4.90625 3.15625 -4.90625 C 1.6875 -4.90625 0.484375 -3.765625 0.484375 -2.390625 C 0.484375 -0.96875 1.71875 0.140625 3.15625 0.140625 C 4.390625 0.140625 5.1875 -0.78125 5.1875 -1.625 C 5.1875 -1.703125 5.171875 -1.765625 5.0625 -1.765625 C 5.03125 -1.765625 4.953125 -1.765625 4.953125 -1.671875 C 4.890625 -0.546875 3.9375 -0.109375 3.25 -0.109375 C 2.515625 -0.109375 1.234375 -0.5625 1.234375 -2.375 C 1.234375 -4.265625 2.578125 -4.640625 3.234375 -4.640625 C 3.9375 -4.640625 4.75 -4.1875 4.9375 -2.984375 C 4.953125 -2.90625 5.015625 -2.90625 5.0625 -2.90625 C 5.1875 -2.90625 5.1875 -2.953125 5.1875 -3.09375 Z M 5.1875 -4.71875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-26"> <path style="stroke:none;" d="M 1.9375 1.09375 C 1.484375 1.09375 1.421875 1.09375 1.421875 0.796875 L 1.421875 -0.328125 C 1.453125 -0.296875 1.78125 0.0625 2.359375 0.0625 C 3.28125 0.0625 4.0625 -0.625 4.0625 -1.5 C 4.0625 -2.359375 3.359375 -3.078125 2.46875 -3.078125 C 2.078125 -3.078125 1.671875 -2.921875 1.390625 -2.640625 L 1.390625 -3.078125 L 0.34375 -3 L 0.34375 -2.75 C 0.828125 -2.75 0.859375 -2.703125 0.859375 -2.421875 L 0.859375 0.796875 C 0.859375 1.09375 0.796875 1.09375 0.34375 1.09375 L 0.34375 1.359375 C 0.359375 1.359375 0.84375 1.328125 1.140625 1.328125 C 1.390625 1.328125 1.875 1.34375 1.9375 1.359375 Z M 1.421875 -2.328125 C 1.625 -2.671875 2.03125 -2.84375 2.390625 -2.84375 C 2.984375 -2.84375 3.4375 -2.234375 3.4375 -1.5 C 3.4375 -0.703125 2.90625 -0.125 2.328125 -0.125 C 1.703125 -0.125 1.4375 -0.65625 1.421875 -0.703125 Z M 1.421875 -2.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-27"> <path style="stroke:none;" d="M 3.125 -4.8125 C 3.09375 -4.921875 3.0625 -4.96875 2.9375 -4.96875 C 2.796875 -4.96875 2.78125 -4.921875 2.734375 -4.8125 L 1.125 -0.734375 C 1.0625 -0.5625 0.9375 -0.25 0.3125 -0.25 L 0.3125 0 C 0.546875 -0.015625 0.796875 -0.03125 1.03125 -0.03125 C 1.3125 -0.03125 1.828125 0 1.875 0 L 1.875 -0.25 C 1.5625 -0.25 1.359375 -0.390625 1.359375 -0.578125 C 1.359375 -0.640625 1.375 -0.65625 1.40625 -0.71875 L 1.734375 -1.578125 L 3.71875 -1.578125 L 4.125 -0.5625 C 4.125 -0.53125 4.15625 -0.484375 4.15625 -0.453125 C 4.15625 -0.25 3.78125 -0.25 3.59375 -0.25 L 3.59375 0 C 3.9375 -0.015625 4.390625 -0.03125 4.625 -0.03125 C 4.953125 -0.03125 5.484375 0 5.546875 0 L 5.546875 -0.25 L 5.421875 -0.25 C 4.953125 -0.25 4.90625 -0.328125 4.828125 -0.515625 Z M 2.71875 -4.09375 L 3.609375 -1.828125 L 1.828125 -1.828125 Z M 2.71875 -4.09375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-28"> <path style="stroke:none;" d="M 1.8125 -4.65625 C 1.734375 -4.75 1.734375 -4.765625 1.59375 -4.765625 L 0.390625 -4.765625 L 0.390625 -4.515625 L 0.59375 -4.515625 C 0.90625 -4.515625 1.078125 -4.46875 1.109375 -4.46875 L 1.109375 -0.75 C 1.109375 -0.5625 1.109375 -0.25 0.390625 -0.25 L 0.390625 0 C 0.671875 -0.015625 0.953125 -0.03125 1.234375 -0.03125 C 1.53125 -0.03125 1.8125 -0.015625 2.09375 0 L 2.09375 -0.25 C 1.375 -0.25 1.375 -0.5625 1.375 -0.75 L 1.375 -4.265625 L 4.46875 -0.109375 C 4.53125 0 4.546875 0 4.625 0 C 4.765625 0 4.765625 -0.0625 4.765625 -0.1875 L 4.765625 -4 C 4.765625 -4.1875 4.765625 -4.515625 5.484375 -4.515625 L 5.484375 -4.765625 C 5.1875 -4.734375 4.90625 -4.734375 4.625 -4.734375 C 4.34375 -4.734375 4.0625 -4.734375 3.78125 -4.765625 L 3.78125 -4.515625 C 4.5 -4.515625 4.5 -4.1875 4.5 -4 L 4.5 -1.046875 Z M 1.8125 -4.65625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-29"> <path style="stroke:none;" d="M 1.734375 -2.90625 C 1.125 -3.046875 0.9375 -3.484375 0.9375 -3.78125 C 0.9375 -4.234375 1.359375 -4.671875 2 -4.671875 C 2.9375 -4.671875 3.34375 -4.046875 3.453125 -3.3125 C 3.46875 -3.21875 3.46875 -3.171875 3.578125 -3.171875 C 3.6875 -3.171875 3.6875 -3.21875 3.6875 -3.359375 L 3.6875 -4.71875 C 3.6875 -4.84375 3.6875 -4.90625 3.59375 -4.90625 C 3.546875 -4.90625 3.53125 -4.875 3.484375 -4.796875 L 3.21875 -4.40625 C 2.765625 -4.875 2.1875 -4.90625 2 -4.90625 C 1.109375 -4.90625 0.484375 -4.265625 0.484375 -3.5625 C 0.484375 -3.171875 0.65625 -2.875 0.90625 -2.640625 C 1.1875 -2.375 1.421875 -2.328125 2.171875 -2.15625 C 2.8125 -2.015625 2.953125 -1.984375 3.15625 -1.796875 C 3.3125 -1.625 3.453125 -1.40625 3.453125 -1.09375 C 3.453125 -0.609375 3.046875 -0.109375 2.390625 -0.109375 C 1.703125 -0.109375 0.78125 -0.375 0.71875 -1.421875 C 0.71875 -1.546875 0.71875 -1.578125 0.609375 -1.578125 C 0.484375 -1.578125 0.484375 -1.53125 0.484375 -1.390625 L 0.484375 -0.046875 C 0.484375 0.078125 0.484375 0.140625 0.578125 0.140625 C 0.640625 0.140625 0.65625 0.125 0.703125 0.0625 C 0.765625 -0.03125 0.90625 -0.25 0.953125 -0.34375 C 1.390625 0.046875 1.9375 0.140625 2.390625 0.140625 C 3.296875 0.140625 3.90625 -0.546875 3.90625 -1.296875 C 3.90625 -1.921875 3.46875 -2.515625 2.765625 -2.671875 Z M 1.734375 -2.90625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-30"> <path style="stroke:none;" d="M 3.296875 -2.328125 C 3.5 -2.75 3.84375 -2.75 3.953125 -2.75 L 3.953125 -3 C 3.78125 -2.984375 3.609375 -2.96875 3.421875 -2.96875 C 3.234375 -2.96875 2.984375 -2.984375 2.796875 -3 L 2.796875 -2.75 C 3.09375 -2.734375 3.09375 -2.515625 3.09375 -2.484375 C 3.09375 -2.453125 3.078125 -2.390625 3.03125 -2.28125 L 2.25 -0.5625 L 1.375 -2.453125 C 1.375 -2.46875 1.34375 -2.546875 1.34375 -2.59375 C 1.34375 -2.75 1.578125 -2.75 1.6875 -2.75 L 1.6875 -3 C 1.671875 -3 1.1875 -2.96875 0.90625 -2.96875 C 0.6875 -2.96875 0.421875 -2.984375 0.21875 -3 L 0.21875 -2.75 C 0.59375 -2.75 0.6875 -2.734375 0.78125 -2.5 L 1.890625 -0.078125 C 1.921875 0 1.96875 0.0625 2.078125 0.0625 C 2.21875 0.0625 2.25 0 2.28125 -0.0625 Z M 3.296875 -2.328125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-31"> <path style="stroke:none;" d="M 3.078125 -2.765625 C 3.125 -2.828125 3.140625 -2.84375 3.140625 -2.890625 C 3.140625 -3 3.046875 -3 2.9375 -3 L 0.453125 -3 L 0.375 -1.84375 L 0.609375 -1.84375 C 0.65625 -2.578125 0.828125 -2.8125 1.609375 -2.8125 L 2.4375 -2.8125 L 0.328125 -0.265625 C 0.265625 -0.1875 0.265625 -0.15625 0.265625 -0.125 C 0.265625 0 0.34375 0 0.46875 0 L 3.03125 0 L 3.15625 -1.359375 L 2.921875 -1.359375 C 2.84375 -0.53125 2.703125 -0.21875 1.828125 -0.21875 L 0.96875 -0.21875 Z M 3.078125 -2.765625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-32"> <path style="stroke:none;" d="M 3.59375 -2.109375 C 3.59375 -2.71875 3.296875 -3.078125 2.546875 -3.078125 C 1.921875 -3.078125 1.578125 -2.703125 1.421875 -2.4375 L 1.421875 -4.84375 L 0.375 -4.765625 L 0.375 -4.515625 C 0.84375 -4.515625 0.90625 -4.453125 0.90625 -4.125 L 0.90625 -0.546875 C 0.90625 -0.25 0.828125 -0.25 0.375 -0.25 L 0.375 0 C 0.390625 0 0.875 -0.03125 1.171875 -0.03125 C 1.421875 -0.03125 1.90625 0 1.96875 0 L 1.96875 -0.25 C 1.515625 -0.25 1.453125 -0.25 1.453125 -0.546875 L 1.453125 -1.8125 C 1.453125 -2.53125 2.03125 -2.875 2.484375 -2.875 C 2.96875 -2.875 3.03125 -2.5 3.03125 -2.140625 L 3.03125 -0.546875 C 3.03125 -0.25 2.96875 -0.25 2.515625 -0.25 L 2.515625 0 C 2.53125 0 3.015625 -0.03125 3.3125 -0.03125 C 3.5625 -0.03125 4.046875 0 4.109375 0 L 4.109375 -0.25 C 3.65625 -0.25 3.59375 -0.25 3.59375 -0.546875 Z M 3.59375 -2.109375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph0-33"> <path style="stroke:none;" d="M 1.53125 -0.390625 C 1.53125 -0.640625 1.328125 -0.796875 1.125 -0.796875 C 0.890625 -0.796875 0.71875 -0.609375 0.71875 -0.40625 C 0.71875 -0.15625 0.921875 0 1.125 0 C 1.359375 0 1.53125 -0.1875 1.53125 -0.390625 Z M 1.53125 -0.390625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph1-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph1-1"> <path style="stroke:none;" d="M 4.078125 -2.53125 C 4.1875 -2.53125 4.265625 -2.53125 4.328125 -2.578125 C 4.421875 -2.65625 4.453125 -2.765625 4.453125 -2.8125 C 4.453125 -3 4.265625 -3 4.140625 -3 L 2.359375 -3 C 1.25 -3 0.40625 -1.90625 0.40625 -1.0625 C 0.40625 -0.421875 0.890625 0.0625 1.609375 0.0625 C 2.484375 0.0625 3.484375 -0.71875 3.484375 -1.796875 C 3.484375 -1.90625 3.484375 -2.21875 3.28125 -2.53125 Z M 1.609375 -0.125 C 1.234375 -0.125 0.921875 -0.375 0.921875 -0.875 C 0.921875 -1.078125 1.046875 -2.53125 2.25 -2.53125 C 2.59375 -2.53125 2.96875 -2.390625 2.96875 -1.875 C 2.96875 -1.734375 2.90625 -1.109375 2.5625 -0.640625 C 2.265625 -0.265625 1.875 -0.125 1.609375 -0.125 Z M 1.609375 -0.125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph1-2"> <path style="stroke:none;" d="M 3.875 -2.65625 L 4.53125 -3.328125 C 5.421875 -4.203125 5.703125 -4.46875 6.328125 -4.515625 C 6.421875 -4.515625 6.5 -4.515625 6.5 -4.65625 C 6.5 -4.734375 6.421875 -4.765625 6.40625 -4.765625 C 6.203125 -4.765625 5.953125 -4.734375 5.75 -4.734375 C 5.5625 -4.734375 5.125 -4.765625 4.9375 -4.765625 C 4.890625 -4.765625 4.796875 -4.734375 4.796875 -4.609375 C 4.796875 -4.59375 4.796875 -4.515625 4.90625 -4.515625 C 4.96875 -4.5 5.140625 -4.484375 5.140625 -4.328125 C 5.140625 -4.234375 5.03125 -4.125 4.96875 -4.046875 C 4.90625 -4 4.03125 -3.140625 3.765625 -2.875 L 3.0625 -4.234375 C 3.046875 -4.265625 3.03125 -4.3125 3.03125 -4.328125 C 3.03125 -4.390625 3.15625 -4.5 3.40625 -4.515625 C 3.453125 -4.515625 3.546875 -4.515625 3.546875 -4.65625 C 3.546875 -4.671875 3.546875 -4.765625 3.421875 -4.765625 C 3.28125 -4.765625 3.109375 -4.734375 2.96875 -4.734375 C 2.8125 -4.734375 2.65625 -4.734375 2.515625 -4.734375 C 2.390625 -4.734375 2.21875 -4.734375 2.09375 -4.734375 C 1.984375 -4.75 1.828125 -4.765625 1.71875 -4.765625 C 1.6875 -4.765625 1.578125 -4.765625 1.578125 -4.609375 C 1.578125 -4.515625 1.671875 -4.515625 1.78125 -4.515625 C 2.1875 -4.515625 2.21875 -4.4375 2.28125 -4.296875 L 3.265625 -2.375 L 2.875 -1.984375 C 2.734375 -1.859375 2.40625 -1.546875 2.28125 -1.421875 C 1.4375 -0.578125 1.15625 -0.28125 0.515625 -0.25 C 0.421875 -0.25 0.34375 -0.25 0.34375 -0.09375 C 0.34375 -0.0625 0.375 0 0.453125 0 C 0.640625 0 0.890625 -0.03125 1.09375 -0.03125 C 1.21875 -0.03125 1.390625 -0.03125 1.5 -0.015625 C 1.625 -0.015625 1.78125 0 1.90625 0 C 1.9375 0 2.046875 0 2.046875 -0.140625 C 2.046875 -0.25 1.96875 -0.25 1.921875 -0.25 C 1.859375 -0.265625 1.703125 -0.28125 1.703125 -0.421875 C 1.703125 -0.53125 1.796875 -0.625 1.953125 -0.78125 L 3.359375 -2.171875 L 4.203125 -0.515625 C 4.25 -0.453125 4.25 -0.4375 4.25 -0.421875 C 4.25 -0.390625 4.125 -0.265625 3.875 -0.25 C 3.8125 -0.25 3.734375 -0.25 3.734375 -0.09375 C 3.734375 -0.09375 3.734375 0 3.84375 0 C 4 0 4.171875 -0.015625 4.3125 -0.015625 C 4.453125 -0.015625 4.625 -0.03125 4.765625 -0.03125 C 4.890625 -0.03125 5.046875 -0.03125 5.171875 -0.015625 C 5.296875 -0.015625 5.4375 0 5.546875 0 C 5.59375 0 5.703125 0 5.703125 -0.15625 C 5.703125 -0.25 5.609375 -0.25 5.5 -0.25 C 5.09375 -0.25 5.0625 -0.328125 5 -0.453125 Z M 3.875 -2.65625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph2-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph2-1"> <path style="stroke:none;" d="M 2.859375 -4.03125 C 2.828125 -4.109375 2.78125 -4.1875 2.6875 -4.1875 C 2.578125 -4.1875 2.546875 -4.125 2.5 -4.03125 L 0.578125 -0.15625 C 0.53125 -0.0625 0.53125 -0.0625 0.53125 -0.03125 C 0.53125 0.078125 0.625 0.140625 0.703125 0.140625 C 0.796875 0.140625 0.84375 0.078125 0.90625 -0.03125 L 2.671875 -3.625 L 4.453125 -0.046875 C 4.515625 0.09375 4.546875 0.140625 4.65625 0.140625 C 4.734375 0.140625 4.828125 0.078125 4.828125 -0.03125 C 4.828125 -0.0625 4.828125 -0.0625 4.78125 -0.15625 Z M 2.859375 -4.03125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph3-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph3-1"> <path style="stroke:none;" d="M 2.9375 -0.96875 L 2.71875 -0.96875 C 2.71875 -0.875 2.65625 -0.5625 2.578125 -0.515625 C 2.546875 -0.484375 2.125 -0.484375 2.046875 -0.484375 L 1.078125 -0.484375 C 1.40625 -0.71875 1.765625 -1 2.0625 -1.203125 C 2.515625 -1.515625 2.9375 -1.796875 2.9375 -2.328125 C 2.9375 -2.96875 2.328125 -3.3125 1.625 -3.3125 C 0.953125 -3.3125 0.453125 -2.9375 0.453125 -2.4375 C 0.453125 -2.1875 0.671875 -2.140625 0.75 -2.140625 C 0.875 -2.140625 1.03125 -2.234375 1.03125 -2.4375 C 1.03125 -2.609375 0.90625 -2.71875 0.75 -2.71875 C 0.890625 -2.953125 1.1875 -3.09375 1.515625 -3.09375 C 2 -3.09375 2.40625 -2.8125 2.40625 -2.328125 C 2.40625 -1.90625 2.109375 -1.578125 1.734375 -1.265625 L 0.515625 -0.234375 C 0.46875 -0.1875 0.453125 -0.1875 0.453125 -0.15625 L 0.453125 0 L 2.765625 0 Z M 2.9375 -0.96875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-1"> <path style="stroke:none;" d="M 2.078125 -1.9375 C 2.296875 -1.890625 3.109375 -1.734375 3.109375 -1.015625 C 3.109375 -0.515625 2.765625 -0.109375 1.984375 -0.109375 C 1.140625 -0.109375 0.78125 -0.671875 0.59375 -1.53125 C 0.5625 -1.65625 0.5625 -1.6875 0.453125 -1.6875 C 0.328125 -1.6875 0.328125 -1.625 0.328125 -1.453125 L 0.328125 -0.125 C 0.328125 0.046875 0.328125 0.109375 0.4375 0.109375 C 0.484375 0.109375 0.5 0.09375 0.6875 -0.09375 C 0.703125 -0.109375 0.703125 -0.125 0.890625 -0.3125 C 1.328125 0.09375 1.78125 0.109375 1.984375 0.109375 C 3.125 0.109375 3.59375 -0.5625 3.59375 -1.28125 C 3.59375 -1.796875 3.296875 -2.109375 3.171875 -2.21875 C 2.84375 -2.546875 2.453125 -2.625 2.03125 -2.703125 C 1.46875 -2.8125 0.8125 -2.9375 0.8125 -3.515625 C 0.8125 -3.875 1.0625 -4.28125 1.921875 -4.28125 C 3.015625 -4.28125 3.078125 -3.375 3.09375 -3.078125 C 3.09375 -2.984375 3.1875 -2.984375 3.203125 -2.984375 C 3.34375 -2.984375 3.34375 -3.03125 3.34375 -3.21875 L 3.34375 -4.234375 C 3.34375 -4.390625 3.34375 -4.46875 3.234375 -4.46875 C 3.1875 -4.46875 3.15625 -4.46875 3.03125 -4.34375 C 3 -4.3125 2.90625 -4.21875 2.859375 -4.1875 C 2.484375 -4.46875 2.078125 -4.46875 1.921875 -4.46875 C 0.703125 -4.46875 0.328125 -3.796875 0.328125 -3.234375 C 0.328125 -2.890625 0.484375 -2.609375 0.75 -2.390625 C 1.078125 -2.140625 1.359375 -2.078125 2.078125 -1.9375 Z M 2.078125 -1.9375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-2"> <path style="stroke:none;" d="M 1.109375 -2.515625 C 1.171875 -4 2.015625 -4.25 2.359375 -4.25 C 3.375 -4.25 3.484375 -2.90625 3.484375 -2.515625 Z M 1.109375 -2.296875 L 3.890625 -2.296875 C 4.109375 -2.296875 4.140625 -2.296875 4.140625 -2.515625 C 4.140625 -3.5 3.59375 -4.46875 2.359375 -4.46875 C 1.203125 -4.46875 0.28125 -3.4375 0.28125 -2.1875 C 0.28125 -0.859375 1.328125 0.109375 2.46875 0.109375 C 3.6875 0.109375 4.140625 -1 4.140625 -1.1875 C 4.140625 -1.28125 4.0625 -1.3125 4 -1.3125 C 3.921875 -1.3125 3.890625 -1.25 3.875 -1.171875 C 3.53125 -0.140625 2.625 -0.140625 2.53125 -0.140625 C 2.03125 -0.140625 1.640625 -0.4375 1.40625 -0.8125 C 1.109375 -1.28125 1.109375 -1.9375 1.109375 -2.296875 Z M 1.109375 -2.296875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-3"> <path style="stroke:none;" d="M 1.171875 -2.171875 C 1.171875 -3.796875 1.984375 -4.21875 2.515625 -4.21875 C 2.609375 -4.21875 3.234375 -4.203125 3.578125 -3.84375 C 3.171875 -3.8125 3.109375 -3.515625 3.109375 -3.390625 C 3.109375 -3.125 3.296875 -2.9375 3.5625 -2.9375 C 3.828125 -2.9375 4.03125 -3.09375 4.03125 -3.40625 C 4.03125 -4.078125 3.265625 -4.46875 2.5 -4.46875 C 1.25 -4.46875 0.34375 -3.390625 0.34375 -2.15625 C 0.34375 -0.875 1.328125 0.109375 2.484375 0.109375 C 3.8125 0.109375 4.140625 -1.09375 4.140625 -1.1875 C 4.140625 -1.28125 4.03125 -1.28125 4 -1.28125 C 3.921875 -1.28125 3.890625 -1.25 3.875 -1.1875 C 3.59375 -0.265625 2.9375 -0.140625 2.578125 -0.140625 C 2.046875 -0.140625 1.171875 -0.5625 1.171875 -2.171875 Z M 1.171875 -2.171875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-4"> <path style="stroke:none;" d="M 4.6875 -2.140625 C 4.6875 -3.40625 3.703125 -4.46875 2.5 -4.46875 C 1.25 -4.46875 0.28125 -3.375 0.28125 -2.140625 C 0.28125 -0.84375 1.3125 0.109375 2.484375 0.109375 C 3.6875 0.109375 4.6875 -0.875 4.6875 -2.140625 Z M 2.5 -0.140625 C 2.0625 -0.140625 1.625 -0.34375 1.359375 -0.8125 C 1.109375 -1.25 1.109375 -1.859375 1.109375 -2.21875 C 1.109375 -2.609375 1.109375 -3.140625 1.34375 -3.578125 C 1.609375 -4.03125 2.078125 -4.25 2.484375 -4.25 C 2.921875 -4.25 3.34375 -4.03125 3.609375 -3.59375 C 3.875 -3.171875 3.875 -2.59375 3.875 -2.21875 C 3.875 -1.859375 3.875 -1.3125 3.65625 -0.875 C 3.421875 -0.421875 2.984375 -0.140625 2.5 -0.140625 Z M 2.5 -0.140625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-5"> <path style="stroke:none;" d="M 1.09375 -3.421875 L 1.09375 -0.75 C 1.09375 -0.3125 0.984375 -0.3125 0.3125 -0.3125 L 0.3125 0 C 0.671875 -0.015625 1.171875 -0.03125 1.453125 -0.03125 C 1.703125 -0.03125 2.21875 -0.015625 2.5625 0 L 2.5625 -0.3125 C 1.890625 -0.3125 1.78125 -0.3125 1.78125 -0.75 L 1.78125 -2.59375 C 1.78125 -3.625 2.5 -4.1875 3.125 -4.1875 C 3.765625 -4.1875 3.875 -3.65625 3.875 -3.078125 L 3.875 -0.75 C 3.875 -0.3125 3.765625 -0.3125 3.09375 -0.3125 L 3.09375 0 C 3.4375 -0.015625 3.953125 -0.03125 4.21875 -0.03125 C 4.46875 -0.03125 5 -0.015625 5.328125 0 L 5.328125 -0.3125 C 4.8125 -0.3125 4.5625 -0.3125 4.5625 -0.609375 L 4.5625 -2.515625 C 4.5625 -3.375 4.5625 -3.671875 4.25 -4.03125 C 4.109375 -4.203125 3.78125 -4.40625 3.203125 -4.40625 C 2.46875 -4.40625 2 -3.984375 1.71875 -3.359375 L 1.71875 -4.40625 L 0.3125 -4.296875 L 0.3125 -3.984375 C 1.015625 -3.984375 1.09375 -3.921875 1.09375 -3.421875 Z M 1.09375 -3.421875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-6"> <path style="stroke:none;" d="M 3.78125 -0.546875 L 3.78125 0.109375 L 5.25 0 L 5.25 -0.3125 C 4.5625 -0.3125 4.46875 -0.375 4.46875 -0.875 L 4.46875 -6.921875 L 3.046875 -6.8125 L 3.046875 -6.5 C 3.734375 -6.5 3.8125 -6.4375 3.8125 -5.9375 L 3.8125 -3.78125 C 3.53125 -4.140625 3.09375 -4.40625 2.5625 -4.40625 C 1.390625 -4.40625 0.34375 -3.421875 0.34375 -2.140625 C 0.34375 -0.875 1.3125 0.109375 2.453125 0.109375 C 3.09375 0.109375 3.53125 -0.234375 3.78125 -0.546875 Z M 3.78125 -3.21875 L 3.78125 -1.171875 C 3.78125 -1 3.78125 -0.984375 3.671875 -0.8125 C 3.375 -0.328125 2.9375 -0.109375 2.5 -0.109375 C 2.046875 -0.109375 1.6875 -0.375 1.453125 -0.75 C 1.203125 -1.15625 1.171875 -1.71875 1.171875 -2.140625 C 1.171875 -2.5 1.1875 -3.09375 1.46875 -3.546875 C 1.6875 -3.859375 2.0625 -4.1875 2.609375 -4.1875 C 2.953125 -4.1875 3.375 -4.03125 3.671875 -3.59375 C 3.78125 -3.421875 3.78125 -3.40625 3.78125 -3.21875 Z M 3.78125 -3.21875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-7"> <path style="stroke:none;" d="M 3.890625 -0.78125 L 3.890625 0.109375 L 5.328125 0 L 5.328125 -0.3125 C 4.640625 -0.3125 4.5625 -0.375 4.5625 -0.875 L 4.5625 -4.40625 L 3.09375 -4.296875 L 3.09375 -3.984375 C 3.78125 -3.984375 3.875 -3.921875 3.875 -3.421875 L 3.875 -1.65625 C 3.875 -0.78125 3.390625 -0.109375 2.65625 -0.109375 C 1.828125 -0.109375 1.78125 -0.578125 1.78125 -1.09375 L 1.78125 -4.40625 L 0.3125 -4.296875 L 0.3125 -3.984375 C 1.09375 -3.984375 1.09375 -3.953125 1.09375 -3.078125 L 1.09375 -1.578125 C 1.09375 -0.796875 1.09375 0.109375 2.609375 0.109375 C 3.171875 0.109375 3.609375 -0.171875 3.890625 -0.78125 Z M 3.890625 -0.78125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-8"> <path style="stroke:none;" d="M 1.71875 -3.984375 L 3.15625 -3.984375 L 3.15625 -4.296875 L 1.71875 -4.296875 L 1.71875 -6.125 L 1.46875 -6.125 C 1.46875 -5.3125 1.171875 -4.25 0.1875 -4.203125 L 0.1875 -3.984375 L 1.03125 -3.984375 L 1.03125 -1.234375 C 1.03125 -0.015625 1.96875 0.109375 2.328125 0.109375 C 3.03125 0.109375 3.3125 -0.59375 3.3125 -1.234375 L 3.3125 -1.796875 L 3.0625 -1.796875 L 3.0625 -1.25 C 3.0625 -0.515625 2.765625 -0.140625 2.390625 -0.140625 C 1.71875 -0.140625 1.71875 -1.046875 1.71875 -1.21875 Z M 1.71875 -3.984375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-9"> <path style="stroke:none;" d="M 3.3125 -0.75 C 3.359375 -0.359375 3.625 0.0625 4.09375 0.0625 C 4.3125 0.0625 4.921875 -0.078125 4.921875 -0.890625 L 4.921875 -1.453125 L 4.671875 -1.453125 L 4.671875 -0.890625 C 4.671875 -0.3125 4.421875 -0.25 4.3125 -0.25 C 3.984375 -0.25 3.9375 -0.703125 3.9375 -0.75 L 3.9375 -2.734375 C 3.9375 -3.15625 3.9375 -3.546875 3.578125 -3.921875 C 3.1875 -4.3125 2.6875 -4.46875 2.21875 -4.46875 C 1.390625 -4.46875 0.703125 -4 0.703125 -3.34375 C 0.703125 -3.046875 0.90625 -2.875 1.171875 -2.875 C 1.453125 -2.875 1.625 -3.078125 1.625 -3.328125 C 1.625 -3.453125 1.578125 -3.78125 1.109375 -3.78125 C 1.390625 -4.140625 1.875 -4.25 2.1875 -4.25 C 2.6875 -4.25 3.25 -3.859375 3.25 -2.96875 L 3.25 -2.609375 C 2.734375 -2.578125 2.046875 -2.546875 1.421875 -2.25 C 0.671875 -1.90625 0.421875 -1.390625 0.421875 -0.953125 C 0.421875 -0.140625 1.390625 0.109375 2.015625 0.109375 C 2.671875 0.109375 3.125 -0.296875 3.3125 -0.75 Z M 3.25 -2.390625 L 3.25 -1.390625 C 3.25 -0.453125 2.53125 -0.109375 2.078125 -0.109375 C 1.59375 -0.109375 1.1875 -0.453125 1.1875 -0.953125 C 1.1875 -1.5 1.609375 -2.328125 3.25 -2.390625 Z M 3.25 -2.390625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-10"> <path style="stroke:none;" d="M 1.71875 -3.765625 L 1.71875 -6.921875 L 0.28125 -6.8125 L 0.28125 -6.5 C 0.984375 -6.5 1.0625 -6.4375 1.0625 -5.9375 L 1.0625 0 L 1.3125 0 C 1.3125 -0.015625 1.390625 -0.15625 1.671875 -0.625 C 1.8125 -0.390625 2.234375 0.109375 2.96875 0.109375 C 4.15625 0.109375 5.1875 -0.875 5.1875 -2.15625 C 5.1875 -3.421875 4.21875 -4.40625 3.078125 -4.40625 C 2.296875 -4.40625 1.875 -3.9375 1.71875 -3.765625 Z M 1.75 -1.140625 L 1.75 -3.1875 C 1.75 -3.375 1.75 -3.390625 1.859375 -3.546875 C 2.25 -4.109375 2.796875 -4.1875 3.03125 -4.1875 C 3.484375 -4.1875 3.84375 -3.921875 4.078125 -3.546875 C 4.34375 -3.140625 4.359375 -2.578125 4.359375 -2.15625 C 4.359375 -1.796875 4.34375 -1.203125 4.0625 -0.75 C 3.84375 -0.4375 3.46875 -0.109375 2.9375 -0.109375 C 2.484375 -0.109375 2.125 -0.34375 1.890625 -0.71875 C 1.75 -0.921875 1.75 -0.953125 1.75 -1.140625 Z M 1.75 -1.140625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-11"> <path style="stroke:none;" d="M 1.765625 -6.921875 L 0.328125 -6.8125 L 0.328125 -6.5 C 1.03125 -6.5 1.109375 -6.4375 1.109375 -5.9375 L 1.109375 -0.75 C 1.109375 -0.3125 1 -0.3125 0.328125 -0.3125 L 0.328125 0 C 0.65625 -0.015625 1.1875 -0.03125 1.4375 -0.03125 C 1.6875 -0.03125 2.171875 -0.015625 2.546875 0 L 2.546875 -0.3125 C 1.875 -0.3125 1.765625 -0.3125 1.765625 -0.75 Z M 1.765625 -6.921875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-12"> <path style="stroke:none;" d="M 2.75 -1.859375 L 2.75 -2.4375 L 0.109375 -2.4375 L 0.109375 -1.859375 Z M 2.75 -1.859375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-13"> <path style="stroke:none;" d="M 4.140625 -3.34375 C 4.390625 -3.984375 4.90625 -3.984375 5.0625 -3.984375 L 5.0625 -4.296875 C 4.828125 -4.28125 4.546875 -4.265625 4.3125 -4.265625 C 4.140625 -4.265625 3.671875 -4.28125 3.453125 -4.296875 L 3.453125 -3.984375 C 3.765625 -3.984375 3.921875 -3.8125 3.921875 -3.5625 C 3.921875 -3.453125 3.90625 -3.4375 3.859375 -3.3125 L 2.84375 -0.875 L 1.75 -3.546875 C 1.703125 -3.65625 1.6875 -3.6875 1.6875 -3.734375 C 1.6875 -3.984375 2.046875 -3.984375 2.25 -3.984375 L 2.25 -4.296875 C 1.984375 -4.28125 1.328125 -4.265625 1.15625 -4.265625 C 0.890625 -4.265625 0.484375 -4.28125 0.1875 -4.296875 L 0.1875 -3.984375 C 0.671875 -3.984375 0.859375 -3.984375 1 -3.640625 L 2.5 0 C 2.4375 0.125 2.296875 0.453125 2.25 0.59375 C 2.03125 1.140625 1.75 1.828125 1.109375 1.828125 C 1.0625 1.828125 0.828125 1.828125 0.640625 1.640625 C 0.953125 1.609375 1.03125 1.390625 1.03125 1.21875 C 1.03125 0.96875 0.84375 0.8125 0.609375 0.8125 C 0.40625 0.8125 0.1875 0.9375 0.1875 1.234375 C 0.1875 1.6875 0.609375 2.046875 1.109375 2.046875 C 1.734375 2.046875 2.140625 1.46875 2.375 0.90625 Z M 4.140625 -3.34375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-14"> <path style="stroke:none;" d="M 1.765625 -4.40625 L 0.375 -4.296875 L 0.375 -3.984375 C 1.015625 -3.984375 1.109375 -3.921875 1.109375 -3.4375 L 1.109375 -0.75 C 1.109375 -0.3125 1 -0.3125 0.328125 -0.3125 L 0.328125 0 C 0.640625 -0.015625 1.1875 -0.03125 1.421875 -0.03125 C 1.78125 -0.03125 2.125 -0.015625 2.46875 0 L 2.46875 -0.3125 C 1.796875 -0.3125 1.765625 -0.359375 1.765625 -0.75 Z M 1.796875 -6.140625 C 1.796875 -6.453125 1.5625 -6.671875 1.28125 -6.671875 C 0.96875 -6.671875 0.75 -6.40625 0.75 -6.140625 C 0.75 -5.875 0.96875 -5.609375 1.28125 -5.609375 C 1.5625 -5.609375 1.796875 -5.828125 1.796875 -6.140625 Z M 1.796875 -6.140625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-15"> <path style="stroke:none;" d="M 1.671875 -3.3125 L 1.671875 -4.40625 L 0.28125 -4.296875 L 0.28125 -3.984375 C 0.984375 -3.984375 1.0625 -3.921875 1.0625 -3.421875 L 1.0625 -0.75 C 1.0625 -0.3125 0.953125 -0.3125 0.28125 -0.3125 L 0.28125 0 C 0.671875 -0.015625 1.140625 -0.03125 1.421875 -0.03125 C 1.8125 -0.03125 2.28125 -0.03125 2.6875 0 L 2.6875 -0.3125 L 2.46875 -0.3125 C 1.734375 -0.3125 1.71875 -0.421875 1.71875 -0.78125 L 1.71875 -2.3125 C 1.71875 -3.296875 2.140625 -4.1875 2.890625 -4.1875 C 2.953125 -4.1875 2.984375 -4.1875 3 -4.171875 C 2.96875 -4.171875 2.765625 -4.046875 2.765625 -3.78125 C 2.765625 -3.515625 2.984375 -3.359375 3.203125 -3.359375 C 3.375 -3.359375 3.625 -3.484375 3.625 -3.796875 C 3.625 -4.109375 3.3125 -4.40625 2.890625 -4.40625 C 2.15625 -4.40625 1.796875 -3.734375 1.671875 -3.3125 Z M 1.671875 -3.3125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-16"> <path style="stroke:none;" d="M 3.296875 -3.984375 C 3.75 -3.984375 3.8125 -3.859375 3.8125 -3.453125 L 3.8125 -0.75 C 3.8125 -0.3125 3.703125 -0.3125 3.046875 -0.3125 L 3.046875 0 C 3.375 -0.015625 3.890625 -0.03125 4.140625 -0.03125 C 4.390625 -0.03125 4.890625 -0.015625 5.25 0 L 5.25 -0.3125 C 4.578125 -0.3125 4.46875 -0.3125 4.46875 -0.75 L 4.46875 -4.421875 L 3.21875 -4.328125 C 3.0625 -4.3125 3.046875 -4.3125 3.046875 -4.3125 C 3.015625 -4.296875 3 -4.296875 2.859375 -4.296875 L 1.6875 -4.296875 L 1.6875 -5.421875 C 1.6875 -6.40625 2.546875 -6.8125 3.15625 -6.8125 C 3.453125 -6.8125 3.8125 -6.703125 4.015625 -6.484375 C 3.609375 -6.453125 3.546875 -6.1875 3.546875 -6.015625 C 3.546875 -5.6875 3.8125 -5.5625 4 -5.5625 C 4.234375 -5.5625 4.453125 -5.71875 4.453125 -6.015625 C 4.453125 -6.609375 3.90625 -7.03125 3.171875 -7.03125 C 2.25 -7.03125 1.0625 -6.515625 1.0625 -5.4375 L 1.0625 -4.296875 L 0.265625 -4.296875 L 0.265625 -3.984375 L 1.0625 -3.984375 L 1.0625 -0.75 C 1.0625 -0.3125 0.953125 -0.3125 0.28125 -0.3125 L 0.28125 0 C 0.609375 -0.015625 1.140625 -0.03125 1.390625 -0.03125 C 1.640625 -0.03125 2.125 -0.015625 2.5 0 L 2.5 -0.3125 C 1.828125 -0.3125 1.71875 -0.3125 1.71875 -0.75 L 1.71875 -3.984375 Z M 3.296875 -3.984375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-17"> <path style="stroke:none;" d="M 1.71875 -3.75 L 1.71875 -4.40625 L 0.28125 -4.296875 L 0.28125 -3.984375 C 0.984375 -3.984375 1.0625 -3.921875 1.0625 -3.484375 L 1.0625 1.171875 C 1.0625 1.625 0.953125 1.625 0.28125 1.625 L 0.28125 1.9375 C 0.625 1.921875 1.140625 1.90625 1.390625 1.90625 C 1.671875 1.90625 2.171875 1.921875 2.515625 1.9375 L 2.515625 1.625 C 1.859375 1.625 1.75 1.625 1.75 1.171875 L 1.75 -0.59375 C 1.796875 -0.421875 2.21875 0.109375 2.96875 0.109375 C 4.15625 0.109375 5.1875 -0.875 5.1875 -2.15625 C 5.1875 -3.421875 4.234375 -4.40625 3.109375 -4.40625 C 2.328125 -4.40625 1.90625 -3.96875 1.71875 -3.75 Z M 1.75 -1.140625 L 1.75 -3.359375 C 2.03125 -3.875 2.515625 -4.15625 3.03125 -4.15625 C 3.765625 -4.15625 4.359375 -3.28125 4.359375 -2.15625 C 4.359375 -0.953125 3.671875 -0.109375 2.9375 -0.109375 C 2.53125 -0.109375 2.15625 -0.3125 1.890625 -0.71875 C 1.75 -0.921875 1.75 -0.9375 1.75 -1.140625 Z M 1.75 -1.140625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-18"> <path style="stroke:none;" d="M 5.796875 -2.578125 L 5.546875 -2.578125 C 5.4375 -1.5625 5.296875 -0.3125 3.546875 -0.3125 L 2.734375 -0.3125 C 2.265625 -0.3125 2.25 -0.375 2.25 -0.703125 L 2.25 -6.015625 C 2.25 -6.359375 2.25 -6.5 3.1875 -6.5 L 3.515625 -6.5 L 3.515625 -6.8125 C 3.15625 -6.78125 2.25 -6.78125 1.84375 -6.78125 C 1.453125 -6.78125 0.671875 -6.78125 0.328125 -6.8125 L 0.328125 -6.5 L 0.5625 -6.5 C 1.328125 -6.5 1.359375 -6.390625 1.359375 -6.03125 L 1.359375 -0.78125 C 1.359375 -0.421875 1.328125 -0.3125 0.5625 -0.3125 L 0.328125 -0.3125 L 0.328125 0 L 5.515625 0 Z M 5.796875 -2.578125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-19"> <path style="stroke:none;" d="M 2.03125 -6.171875 C 2.03125 -6.40625 1.828125 -6.671875 1.53125 -6.671875 C 1.25 -6.671875 1.03125 -6.453125 1.03125 -6.171875 C 1.03125 -5.890625 1.25 -5.671875 1.53125 -5.671875 C 1.828125 -5.671875 2.03125 -5.9375 2.03125 -6.171875 Z M 3.953125 -6.171875 C 3.953125 -6.453125 3.734375 -6.671875 3.453125 -6.671875 C 3.15625 -6.671875 2.953125 -6.40625 2.953125 -6.171875 C 2.953125 -5.9375 3.15625 -5.671875 3.453125 -5.671875 C 3.734375 -5.671875 3.953125 -5.890625 3.953125 -6.171875 Z M 3.953125 -6.171875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-20"> <path style="stroke:none;" d="M 1.75 -4.296875 L 1.75 -5.453125 C 1.75 -6.328125 2.21875 -6.8125 2.65625 -6.8125 C 2.6875 -6.8125 2.84375 -6.8125 2.984375 -6.734375 C 2.875 -6.703125 2.6875 -6.5625 2.6875 -6.3125 C 2.6875 -6.09375 2.84375 -5.890625 3.125 -5.890625 C 3.40625 -5.890625 3.5625 -6.09375 3.5625 -6.328125 C 3.5625 -6.703125 3.1875 -7.03125 2.65625 -7.03125 C 1.96875 -7.03125 1.109375 -6.5 1.109375 -5.4375 L 1.109375 -4.296875 L 0.328125 -4.296875 L 0.328125 -3.984375 L 1.109375 -3.984375 L 1.109375 -0.75 C 1.109375 -0.3125 1 -0.3125 0.34375 -0.3125 L 0.34375 0 C 0.734375 -0.015625 1.203125 -0.03125 1.46875 -0.03125 C 1.875 -0.03125 2.34375 -0.03125 2.734375 0 L 2.734375 -0.3125 L 2.53125 -0.3125 C 1.796875 -0.3125 1.78125 -0.421875 1.78125 -0.78125 L 1.78125 -3.984375 L 2.90625 -3.984375 L 2.90625 -4.296875 Z M 1.75 -4.296875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-21"> <path style="stroke:none;" d="M 5.796875 -6.78125 L 0.328125 -6.78125 L 0.328125 -6.46875 L 0.5625 -6.46875 C 1.328125 -6.46875 1.359375 -6.359375 1.359375 -6 L 1.359375 -0.78125 C 1.359375 -0.421875 1.328125 -0.3125 0.5625 -0.3125 L 0.328125 -0.3125 L 0.328125 0 C 0.671875 -0.03125 1.453125 -0.03125 1.84375 -0.03125 C 2.25 -0.03125 3.15625 -0.03125 3.515625 0 L 3.515625 -0.3125 L 3.1875 -0.3125 C 2.25 -0.3125 2.25 -0.4375 2.25 -0.78125 L 2.25 -3.234375 L 3.09375 -3.234375 C 4.0625 -3.234375 4.15625 -2.921875 4.15625 -2.078125 L 4.40625 -2.078125 L 4.40625 -4.71875 L 4.15625 -4.71875 C 4.15625 -3.875 4.0625 -3.546875 3.09375 -3.546875 L 2.25 -3.546875 L 2.25 -6.078125 C 2.25 -6.40625 2.265625 -6.46875 2.734375 -6.46875 L 3.921875 -6.46875 C 5.421875 -6.46875 5.671875 -5.90625 5.828125 -4.53125 L 6.078125 -4.53125 Z M 5.796875 -6.78125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-22"> <path style="stroke:none;" d="M 3.734375 -6.296875 C 3.828125 -6.375 3.90625 -6.484375 3.90625 -6.59375 C 3.90625 -6.78125 3.734375 -6.953125 3.546875 -6.953125 C 3.40625 -6.953125 3.296875 -6.84375 3.25 -6.78125 L 2.046875 -5.265625 L 2.21875 -5.078125 Z M 3.734375 -6.296875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-23"> <path style="stroke:none;" d="M 1.09375 -0.75 C 1.09375 -0.3125 0.984375 -0.3125 0.3125 -0.3125 L 0.3125 0 C 0.671875 -0.015625 1.171875 -0.03125 1.453125 -0.03125 C 1.703125 -0.03125 2.21875 -0.015625 2.5625 0 L 2.5625 -0.3125 C 1.890625 -0.3125 1.78125 -0.3125 1.78125 -0.75 L 1.78125 -2.59375 C 1.78125 -3.625 2.5 -4.1875 3.125 -4.1875 C 3.765625 -4.1875 3.875 -3.65625 3.875 -3.078125 L 3.875 -0.75 C 3.875 -0.3125 3.765625 -0.3125 3.09375 -0.3125 L 3.09375 0 C 3.4375 -0.015625 3.953125 -0.03125 4.21875 -0.03125 C 4.46875 -0.03125 5 -0.015625 5.328125 0 L 5.328125 -0.3125 C 4.8125 -0.3125 4.5625 -0.3125 4.5625 -0.609375 L 4.5625 -2.515625 C 4.5625 -3.375 4.5625 -3.671875 4.25 -4.03125 C 4.109375 -4.203125 3.78125 -4.40625 3.203125 -4.40625 C 2.359375 -4.40625 1.921875 -3.8125 1.75 -3.421875 L 1.75 -6.921875 L 0.3125 -6.8125 L 0.3125 -6.5 C 1.015625 -6.5 1.09375 -6.4375 1.09375 -5.9375 Z M 1.09375 -0.75 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-24"> <path style="stroke:none;" d="M 5.796875 -2.296875 C 5.796875 -0.890625 4.828125 -0.09375 3.890625 -0.09375 C 3.421875 -0.09375 2.25 -0.34375 2.25 -2.234375 L 2.25 -6.03125 C 2.25 -6.390625 2.265625 -6.5 3.03125 -6.5 L 3.265625 -6.5 L 3.265625 -6.8125 C 2.921875 -6.78125 2.1875 -6.78125 1.796875 -6.78125 C 1.421875 -6.78125 0.671875 -6.78125 0.328125 -6.8125 L 0.328125 -6.5 L 0.5625 -6.5 C 1.328125 -6.5 1.359375 -6.390625 1.359375 -6.03125 L 1.359375 -2.265625 C 1.359375 -0.875 2.515625 0.21875 3.875 0.21875 C 5.015625 0.21875 5.90625 -0.703125 6.078125 -1.84375 C 6.109375 -2.046875 6.109375 -2.140625 6.109375 -2.53125 L 6.109375 -5.71875 C 6.109375 -6.046875 6.109375 -6.5 7.140625 -6.5 L 7.140625 -6.8125 C 6.78125 -6.796875 6.296875 -6.78125 5.96875 -6.78125 C 5.609375 -6.78125 5.140625 -6.796875 4.78125 -6.8125 L 4.78125 -6.5 C 5.796875 -6.5 5.796875 -6.03125 5.796875 -5.765625 Z M 5.796875 -2.296875 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-25"> <path style="stroke:none;" d="M 3.78125 -0.609375 L 3.78125 1.171875 C 3.78125 1.625 3.671875 1.625 3.015625 1.625 L 3.015625 1.9375 C 3.34375 1.921875 3.875 1.90625 4.125 1.90625 C 4.390625 1.90625 4.90625 1.921875 5.25 1.9375 L 5.25 1.625 C 4.578125 1.625 4.46875 1.625 4.46875 1.171875 L 4.46875 -4.40625 L 4.25 -4.40625 L 3.875 -3.5 C 3.75 -3.78125 3.34375 -4.40625 2.546875 -4.40625 C 1.390625 -4.40625 0.34375 -3.4375 0.34375 -2.140625 C 0.34375 -0.890625 1.3125 0.109375 2.46875 0.109375 C 3.15625 0.109375 3.5625 -0.3125 3.78125 -0.609375 Z M 3.8125 -2.765625 L 3.8125 -1.359375 C 3.8125 -1.03125 3.640625 -0.75 3.421875 -0.515625 C 3.296875 -0.375 2.96875 -0.109375 2.5 -0.109375 C 1.78125 -0.109375 1.171875 -1 1.171875 -2.140625 C 1.171875 -3.328125 1.859375 -4.15625 2.609375 -4.15625 C 3.40625 -4.15625 3.8125 -3.296875 3.8125 -2.765625 Z M 3.8125 -2.765625 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-26"> <path style="stroke:none;" d="M 6.171875 -3.34375 C 6.34375 -3.84375 6.65625 -3.984375 7.015625 -3.984375 L 7.015625 -4.296875 C 6.78125 -4.28125 6.5 -4.265625 6.28125 -4.265625 C 5.984375 -4.265625 5.546875 -4.28125 5.359375 -4.296875 L 5.359375 -3.984375 C 5.71875 -3.984375 5.9375 -3.796875 5.9375 -3.515625 C 5.9375 -3.453125 5.9375 -3.421875 5.875 -3.296875 L 4.96875 -0.75 L 3.984375 -3.53125 C 3.953125 -3.65625 3.9375 -3.671875 3.9375 -3.71875 C 3.9375 -3.984375 4.328125 -3.984375 4.53125 -3.984375 L 4.53125 -4.296875 C 4.234375 -4.28125 3.734375 -4.265625 3.484375 -4.265625 C 3.1875 -4.265625 2.90625 -4.28125 2.609375 -4.296875 L 2.609375 -3.984375 C 2.96875 -3.984375 3.125 -3.96875 3.234375 -3.84375 C 3.28125 -3.78125 3.390625 -3.484375 3.453125 -3.296875 L 2.609375 -0.875 L 1.65625 -3.53125 C 1.609375 -3.65625 1.609375 -3.671875 1.609375 -3.71875 C 1.609375 -3.984375 2 -3.984375 2.1875 -3.984375 L 2.1875 -4.296875 C 1.890625 -4.28125 1.328125 -4.265625 1.109375 -4.265625 C 1.0625 -4.265625 0.53125 -4.28125 0.171875 -4.296875 L 0.171875 -3.984375 C 0.671875 -3.984375 0.796875 -3.953125 0.921875 -3.640625 L 2.171875 -0.109375 C 2.21875 0.03125 2.25 0.109375 2.375 0.109375 C 2.515625 0.109375 2.53125 0.046875 2.578125 -0.09375 L 3.59375 -2.90625 L 4.609375 -0.078125 C 4.640625 0.03125 4.671875 0.109375 4.8125 0.109375 C 4.9375 0.109375 4.96875 0.015625 5 -0.078125 Z M 6.171875 -3.34375 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-27"> <path style="stroke:none;" d="M 1.0625 -0.75 C 1.0625 -0.3125 0.953125 -0.3125 0.28125 -0.3125 L 0.28125 0 C 0.609375 -0.015625 1.078125 -0.03125 1.359375 -0.03125 C 1.671875 -0.03125 2.0625 -0.015625 2.46875 0 L 2.46875 -0.3125 C 1.796875 -0.3125 1.6875 -0.3125 1.6875 -0.75 L 1.6875 -1.78125 L 2.328125 -2.328125 C 3.09375 -1.28125 3.515625 -0.71875 3.515625 -0.53125 C 3.515625 -0.34375 3.34375 -0.3125 3.15625 -0.3125 L 3.15625 0 C 3.421875 -0.015625 4.015625 -0.03125 4.234375 -0.03125 C 4.515625 -0.03125 4.8125 -0.015625 5.09375 0 L 5.09375 -0.3125 C 4.71875 -0.3125 4.5 -0.3125 4.125 -0.84375 L 2.859375 -2.625 C 2.84375 -2.640625 2.796875 -2.703125 2.796875 -2.734375 C 2.796875 -2.765625 3.515625 -3.375 3.609375 -3.453125 C 4.234375 -3.953125 4.65625 -3.984375 4.859375 -3.984375 L 4.859375 -4.296875 C 4.578125 -4.265625 4.453125 -4.265625 4.171875 -4.265625 C 3.8125 -4.265625 3.1875 -4.28125 3.046875 -4.296875 L 3.046875 -3.984375 C 3.234375 -3.984375 3.34375 -3.875 3.34375 -3.734375 C 3.34375 -3.53125 3.203125 -3.421875 3.125 -3.34375 L 1.71875 -2.140625 L 1.71875 -6.921875 L 0.28125 -6.8125 L 0.28125 -6.5 C 0.984375 -6.5 1.0625 -6.4375 1.0625 -5.9375 Z M 1.0625 -0.75 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph4-28"> <path style="stroke:none;" d="M 2.21875 -1.71875 C 1.34375 -1.71875 1.34375 -2.71875 1.34375 -2.9375 C 1.34375 -3.203125 1.359375 -3.53125 1.5 -3.78125 C 1.578125 -3.890625 1.8125 -4.171875 2.21875 -4.171875 C 3.078125 -4.171875 3.078125 -3.1875 3.078125 -2.953125 C 3.078125 -2.6875 3.078125 -2.359375 2.921875 -2.109375 C 2.84375 -2 2.609375 -1.71875 2.21875 -1.71875 Z M 1.0625 -1.328125 C 1.0625 -1.359375 1.0625 -1.59375 1.21875 -1.796875 C 1.609375 -1.515625 2.03125 -1.484375 2.21875 -1.484375 C 3.140625 -1.484375 3.828125 -2.171875 3.828125 -2.9375 C 3.828125 -3.3125 3.671875 -3.671875 3.421875 -3.90625 C 3.78125 -4.25 4.140625 -4.296875 4.3125 -4.296875 C 4.34375 -4.296875 4.390625 -4.296875 4.421875 -4.28125 C 4.3125 -4.25 4.25 -4.140625 4.25 -4.015625 C 4.25 -3.84375 4.390625 -3.734375 4.546875 -3.734375 C 4.640625 -3.734375 4.828125 -3.796875 4.828125 -4.03125 C 4.828125 -4.203125 4.71875 -4.515625 4.328125 -4.515625 C 4.125 -4.515625 3.6875 -4.453125 3.265625 -4.046875 C 2.84375 -4.375 2.4375 -4.40625 2.21875 -4.40625 C 1.28125 -4.40625 0.59375 -3.71875 0.59375 -2.953125 C 0.59375 -2.515625 0.8125 -2.140625 1.0625 -1.921875 C 0.9375 -1.78125 0.75 -1.453125 0.75 -1.09375 C 0.75 -0.78125 0.890625 -0.40625 1.203125 -0.203125 C 0.59375 -0.046875 0.28125 0.390625 0.28125 0.78125 C 0.28125 1.5 1.265625 2.046875 2.484375 2.046875 C 3.65625 2.046875 4.6875 1.546875 4.6875 0.765625 C 4.6875 0.421875 4.5625 -0.09375 4.046875 -0.375 C 3.515625 -0.640625 2.9375 -0.640625 2.328125 -0.640625 C 2.078125 -0.640625 1.65625 -0.640625 1.578125 -0.65625 C 1.265625 -0.703125 1.0625 -1 1.0625 -1.328125 Z M 2.5 1.828125 C 1.484375 1.828125 0.796875 1.3125 0.796875 0.78125 C 0.796875 0.328125 1.171875 -0.046875 1.609375 -0.0625 L 2.203125 -0.0625 C 3.0625 -0.0625 4.171875 -0.0625 4.171875 0.78125 C 4.171875 1.328125 3.46875 1.828125 2.5 1.828125 Z M 2.5 1.828125 "></path> </symbol> <symbol overflow="visible" id="454609461-glyph5-0"> <path style="stroke:none;" d=""></path> </symbol> <symbol overflow="visible" id="454609461-glyph5-1"> <path style="stroke:none;" d="M 5.15625 -3.71875 C 5.296875 -3.71875 5.65625 -3.71875 5.65625 -4.0625 C 5.65625 -4.296875 5.4375 -4.296875 5.265625 -4.296875 L 2.984375 -4.296875 C 1.484375 -4.296875 0.375 -2.65625 0.375 -1.46875 C 0.375 -0.59375 0.96875 0.109375 1.875 0.109375 C 3.046875 0.109375 4.375 -1.09375 4.375 -2.625 C 4.375 -2.796875 4.375 -3.28125 4.0625 -3.71875 Z M 1.890625 -0.109375 C 1.390625 -0.109375 1 -0.46875 1 -1.1875 C 1 -1.484375 1.109375 -2.296875 1.46875 -2.890625 C 1.890625 -3.578125 2.484375 -3.71875 2.828125 -3.71875 C 3.65625 -3.71875 3.734375 -3.0625 3.734375 -2.75 C 3.734375 -2.28125 3.53125 -1.46875 3.203125 -0.953125 C 2.8125 -0.375 2.265625 -0.109375 1.890625 -0.109375 Z M 1.890625 -0.109375 "></path> </symbol> </g> <clipPath id="clip1"> <path d="M 268 84 L 424 84 L 424 203.566406 L 268 203.566406 Z M 268 84 "></path> </clipPath> <clipPath id="clip2"> <path d="M 279 96 L 412 96 L 412 203.566406 L 279 203.566406 Z M 279 96 "></path> </clipPath> <clipPath id="clip3"> <path d="M 48 82 L 299 82 L 299 203.566406 L 48 203.566406 Z M 48 82 "></path> </clipPath> <clipPath id="clip4"> <path d="M 59 93 L 288 93 L 288 203.566406 L 59 203.566406 Z M 59 93 "></path> </clipPath> <clipPath id="clip5"> <path d="M 48 81 L 304 81 L 304 203.566406 L 48 203.566406 Z M 48 81 "></path> </clipPath> <clipPath id="clip6"> <path d="M 59 92 L 293 92 L 293 203.566406 L 59 203.566406 Z M 59 92 "></path> </clipPath> </defs> <g id="surface1"> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-1" x="385.978" y="18.96"></use> <use xlink:href="#454609461-glyph0-2" x="392.522911" y="18.96"></use> <use xlink:href="#454609461-glyph0-3" x="396.064904" y="18.96"></use> <use xlink:href="#454609461-glyph0-4" x="399.178009" y="18.96"></use> <use xlink:href="#454609461-glyph0-5" x="402.291113" y="18.96"></use> <use xlink:href="#454609461-glyph0-6" x="404.54644" y="18.96"></use> <use xlink:href="#454609461-glyph0-7" x="407.702782" y="18.96"></use> <use xlink:href="#454609461-glyph0-8" x="411.674361" y="18.96"></use> <use xlink:href="#454609461-glyph0-9" x="416.074829" y="18.96"></use> <use xlink:href="#454609461-glyph0-2" x="418.330156" y="18.96"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph1-1" x="500.547" y="14.605"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-10" x="505.414" y="14.605"></use> <use xlink:href="#454609461-glyph0-9" x="508.098216" y="14.605"></use> <use xlink:href="#454609461-glyph0-11" x="510.353543" y="14.605"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-12" x="514.541309" y="14.605"></use> <use xlink:href="#454609461-glyph0-7" x="518.083302" y="14.605"></use> <use xlink:href="#454609461-glyph0-9" x="522.054882" y="14.605"></use> <use xlink:href="#454609461-glyph0-9" x="524.310208" y="14.605"></use> <use xlink:href="#454609461-glyph0-13" x="526.565535" y="14.605"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-14" x="533.436123" y="14.605"></use> <use xlink:href="#454609461-glyph0-15" x="537.946777" y="14.605"></use> <use xlink:href="#454609461-glyph0-5" x="542.347245" y="14.605"></use> <use xlink:href="#454609461-glyph0-3" x="544.602572" y="14.605"></use> <use xlink:href="#454609461-glyph0-2" x="547.715676" y="14.605"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-8" x="497.369" y="21.82"></use> <use xlink:href="#454609461-glyph0-7" x="501.769468" y="21.82"></use> <use xlink:href="#454609461-glyph0-6" x="505.741047" y="21.82"></use> <use xlink:href="#454609461-glyph0-2" x="508.897389" y="21.82"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph2-1" x="512.439" y="21.82"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-4" x="517.808" y="21.82"></use> <use xlink:href="#454609461-glyph0-2" x="520.921104" y="21.82"></use> <use xlink:href="#454609461-glyph0-16" x="524.463097" y="21.82"></use> <use xlink:href="#454609461-glyph0-17" x="528.434676" y="21.82"></use> <use xlink:href="#454609461-glyph0-9" x="532.835144" y="21.82"></use> <use xlink:href="#454609461-glyph0-7" x="535.090471" y="21.82"></use> <use xlink:href="#454609461-glyph0-4" x="539.06205" y="21.82"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph2-1" x="542.175" y="21.82"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-18" x="547.543" y="21.82"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph3-1" x="553.231" y="22.816"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-1" x="148.582" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="152.511249" y="64.286"></use> <use xlink:href="#454609461-glyph4-3" x="156.938629" y="64.286"></use> <use xlink:href="#454609461-glyph4-4" x="161.366008" y="64.286"></use> <use xlink:href="#454609461-glyph4-5" x="166.347308" y="64.286"></use> <use xlink:href="#454609461-glyph4-6" x="171.882529" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="180.735295" y="64.286"></use> <use xlink:href="#454609461-glyph4-4" x="185.162675" y="64.286"></use> <use xlink:href="#454609461-glyph4-7" x="190.143975" y="64.286"></use> <use xlink:href="#454609461-glyph4-5" x="195.679195" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="200.945426" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="204.819881" y="64.286"></use> <use xlink:href="#454609461-glyph4-10" x="209.801181" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="215.336401" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="218.104012" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph5-1" x="355.722" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-12" x="361.772" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="365.092535" y="64.286"></use> <use xlink:href="#454609461-glyph4-4" x="367.860145" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="373.120398" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="377.547777" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="382.529077" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="385.296687" y="64.286"></use> <use xlink:href="#454609461-glyph4-13" x="388.064298" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-6" x="396.640104" y="64.286"></use> <use xlink:href="#454609461-glyph4-14" x="402.175324" y="64.286"></use> <use xlink:href="#454609461-glyph4-1" x="404.942935" y="64.286"></use> <use xlink:href="#454609461-glyph4-3" x="408.872184" y="64.286"></use> <use xlink:href="#454609461-glyph4-15" x="413.299563" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="417.201914" y="64.286"></use> <use xlink:href="#454609461-glyph4-8" x="421.629293" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="425.503748" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-10" x="433.258636" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="438.793857" y="64.286"></use> <use xlink:href="#454609461-glyph4-1" x="443.775157" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="447.704406" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph5-1" x="484.617" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-12" x="490.667" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="493.987535" y="64.286"></use> <use xlink:href="#454609461-glyph4-4" x="496.755145" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="502.015398" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="506.442777" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="511.424077" y="64.286"></use> <use xlink:href="#454609461-glyph4-11" x="514.191687" y="64.286"></use> <use xlink:href="#454609461-glyph4-13" x="516.959298" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-16" x="525.535104" y="64.286"></use> <use xlink:href="#454609461-glyph4-5" x="531.070324" y="64.286"></use> <use xlink:href="#454609461-glyph4-14" x="536.605545" y="64.286"></use> <use xlink:href="#454609461-glyph4-8" x="539.373155" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="543.24761" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-10" x="550.992536" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="556.527756" y="64.286"></use> <use xlink:href="#454609461-glyph4-1" x="561.509056" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="565.438306" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-16" x="607.147" y="64.286"></use> <use xlink:href="#454609461-glyph4-15" x="612.682221" y="64.286"></use> <use xlink:href="#454609461-glyph4-1" x="616.584571" y="64.286"></use> <use xlink:href="#454609461-glyph4-8" x="620.51382" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="627.705821" y="64.286"></use> <use xlink:href="#454609461-glyph4-4" x="632.133201" y="64.286"></use> <use xlink:href="#454609461-glyph4-7" x="637.114501" y="64.286"></use> <use xlink:href="#454609461-glyph4-5" x="642.649721" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="647.915952" y="64.286"></use> <use xlink:href="#454609461-glyph4-9" x="651.790407" y="64.286"></use> <use xlink:href="#454609461-glyph4-10" x="656.771707" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-11" x="662.296965" y="64.286"></use> <use xlink:href="#454609461-glyph4-2" x="665.064575" y="64.286"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-1" x="39.947" y="109.612"></use> <use xlink:href="#454609461-glyph4-2" x="43.876249" y="109.612"></use> <use xlink:href="#454609461-glyph4-17" x="48.303629" y="109.612"></use> <use xlink:href="#454609461-glyph4-9" x="53.838849" y="109.612"></use> <use xlink:href="#454609461-glyph4-15" x="58.820149" y="109.612"></use> <use xlink:href="#454609461-glyph4-9" x="62.7225" y="109.612"></use> <use xlink:href="#454609461-glyph4-10" x="67.7038" y="109.612"></use> <use xlink:href="#454609461-glyph4-11" x="73.23902" y="109.612"></use> <use xlink:href="#454609461-glyph4-2" x="76.006631" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-18" x="271.482" y="109.612"></use> <use xlink:href="#454609461-glyph4-14" x="277.708625" y="109.612"></use> <use xlink:href="#454609461-glyph4-5" x="280.476235" y="109.612"></use> <use xlink:href="#454609461-glyph4-6" x="286.011456" y="109.612"></use> <use xlink:href="#454609461-glyph4-2" x="291.546676" y="109.612"></use> <use xlink:href="#454609461-glyph4-11" x="295.974056" y="109.612"></use> <use xlink:href="#454609461-glyph4-19" x="298.741666" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-4" x="298.741666" y="109.612"></use> <use xlink:href="#454609461-glyph4-20" x="303.722966" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-19" x="372.639" y="105.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-2" x="378.109946" y="105.257"></use> <use xlink:href="#454609461-glyph0-7" x="381.651939" y="105.257"></use> <use xlink:href="#454609461-glyph0-20" x="385.623518" y="105.257"></use> <use xlink:href="#454609461-glyph0-9" x="389.809193" y="105.257"></use> <use xlink:href="#454609461-glyph0-13" x="392.06452" y="105.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-21" x="398.935108" y="105.257"></use> <use xlink:href="#454609461-glyph0-5" x="403.8614" y="105.257"></use> <use xlink:href="#454609461-glyph0-15" x="406.116727" y="105.257"></use> <use xlink:href="#454609461-glyph0-22" x="410.517195" y="105.257"></use> <use xlink:href="#454609461-glyph0-2" x="414.917663" y="105.257"></use> <use xlink:href="#454609461-glyph0-9" x="418.459656" y="105.257"></use> <use xlink:href="#454609461-glyph0-23" x="420.714982" y="105.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-11" x="420.718469" y="105.257"></use> <use xlink:href="#454609461-glyph0-24" x="424.690048" y="105.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph2-1" x="429.842" y="105.257"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph1-1" x="369.693" y="112.472"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-10" x="374.56" y="112.472"></use> <use xlink:href="#454609461-glyph0-9" x="377.244216" y="112.472"></use> <use xlink:href="#454609461-glyph0-11" x="379.499543" y="112.472"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-12" x="383.687309" y="112.472"></use> <use xlink:href="#454609461-glyph0-7" x="387.229302" y="112.472"></use> <use xlink:href="#454609461-glyph0-9" x="391.200882" y="112.472"></use> <use xlink:href="#454609461-glyph0-9" x="393.456208" y="112.472"></use> <use xlink:href="#454609461-glyph0-13" x="395.711535" y="112.472"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-14" x="402.582123" y="112.472"></use> <use xlink:href="#454609461-glyph0-15" x="407.092777" y="112.472"></use> <use xlink:href="#454609461-glyph0-5" x="411.493245" y="112.472"></use> <use xlink:href="#454609461-glyph0-3" x="413.748572" y="112.472"></use> <use xlink:href="#454609461-glyph0-2" x="416.861676" y="112.472"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-8" x="423.088582" y="112.472"></use> <use xlink:href="#454609461-glyph0-7" x="427.48905" y="112.472"></use> <use xlink:href="#454609461-glyph0-6" x="431.460629" y="112.472"></use> <use xlink:href="#454609461-glyph0-2" x="434.616971" y="112.472"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-21" x="602.36" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-15" x="608.036689" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-22" x="611.660087" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-2" x="611.93904" y="109.612"></use> <use xlink:href="#454609461-glyph4-3" x="616.366419" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-23" x="620.514846" y="109.612"></use> <use xlink:href="#454609461-glyph4-2" x="626.050067" y="109.612"></use> <use xlink:href="#454609461-glyph4-8" x="630.477446" y="109.612"></use> <use xlink:href="#454609461-glyph4-12" x="634.351901" y="109.612"></use> <use xlink:href="#454609461-glyph4-24" x="637.672436" y="109.612"></use> <use xlink:href="#454609461-glyph4-15" x="645.144386" y="109.612"></use> <use xlink:href="#454609461-glyph4-13" x="649.046736" y="109.612"></use> <use xlink:href="#454609461-glyph4-1" x="654.304996" y="109.612"></use> <use xlink:href="#454609461-glyph4-4" x="658.234246" y="109.612"></use> <use xlink:href="#454609461-glyph4-23" x="663.215546" y="109.612"></use> <use xlink:href="#454609461-glyph4-5" x="668.750766" y="109.612"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-1" x="616.709" y="154.938"></use> <use xlink:href="#454609461-glyph4-2" x="620.638249" y="154.938"></use> <use xlink:href="#454609461-glyph4-25" x="625.065629" y="154.938"></use> <use xlink:href="#454609461-glyph4-7" x="630.323889" y="154.938"></use> <use xlink:href="#454609461-glyph4-2" x="635.85911" y="154.938"></use> <use xlink:href="#454609461-glyph4-5" x="640.286489" y="154.938"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="645.542757" y="154.938"></use> <use xlink:href="#454609461-glyph4-14" x="649.417212" y="154.938"></use> <use xlink:href="#454609461-glyph4-9" x="652.184822" y="154.938"></use> <use xlink:href="#454609461-glyph4-11" x="657.166122" y="154.938"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="4.289" y="197.985"></use> <use xlink:href="#454609461-glyph4-4" x="8.716379" y="197.985"></use> <use xlink:href="#454609461-glyph4-7" x="13.697679" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="19.2329" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="24.489168" y="197.985"></use> <use xlink:href="#454609461-glyph4-9" x="28.363623" y="197.985"></use> <use xlink:href="#454609461-glyph4-10" x="33.344923" y="197.985"></use> <use xlink:href="#454609461-glyph4-11" x="38.880143" y="197.985"></use> <use xlink:href="#454609461-glyph4-2" x="41.647754" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="49.402642" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-23" x="53.551068" y="197.985"></use> <use xlink:href="#454609461-glyph4-9" x="59.086289" y="197.985"></use> <use xlink:href="#454609461-glyph4-14" x="64.067589" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="66.835199" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="75.687965" y="197.985"></use> <use xlink:href="#454609461-glyph4-4" x="80.115345" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="85.096645" y="197.985"></use> <use xlink:href="#454609461-glyph4-6" x="90.631865" y="197.985"></use> <use xlink:href="#454609461-glyph4-14" x="96.167086" y="197.985"></use> <use xlink:href="#454609461-glyph4-8" x="98.934696" y="197.985"></use> <use xlink:href="#454609461-glyph4-14" x="102.809151" y="197.985"></use> <use xlink:href="#454609461-glyph4-4" x="105.576762" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="110.558062" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-26" x="255.016" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-2" x="261.932037" y="197.985"></use> <use xlink:href="#454609461-glyph4-9" x="266.359416" y="197.985"></use> <use xlink:href="#454609461-glyph4-27" x="271.340716" y="197.985"></use> <use xlink:href="#454609461-glyph4-11" x="276.598977" y="197.985"></use> <use xlink:href="#454609461-glyph4-13" x="279.366587" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-18" x="287.952356" y="197.985"></use> <use xlink:href="#454609461-glyph4-14" x="294.178981" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="296.946591" y="197.985"></use> <use xlink:href="#454609461-glyph4-6" x="302.481811" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-2" x="308.007069" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-11" x="312.444411" y="197.985"></use> <use xlink:href="#454609461-glyph4-19" x="315.212022" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-4" x="315.212022" y="197.985"></use> <use xlink:href="#454609461-glyph4-20" x="320.193322" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-3" x="604.975" y="197.985"></use> <use xlink:href="#454609461-glyph4-4" x="609.402379" y="197.985"></use> <use xlink:href="#454609461-glyph4-7" x="614.383679" y="197.985"></use> <use xlink:href="#454609461-glyph4-5" x="619.9189" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="625.175168" y="197.985"></use> <use xlink:href="#454609461-glyph4-9" x="629.049623" y="197.985"></use> <use xlink:href="#454609461-glyph4-10" x="634.030923" y="197.985"></use> <use xlink:href="#454609461-glyph4-11" x="639.566143" y="197.985"></use> <use xlink:href="#454609461-glyph4-13" x="642.333754" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="650.90956" y="197.985"></use> <use xlink:href="#454609461-glyph4-14" x="654.784015" y="197.985"></use> <use xlink:href="#454609461-glyph4-28" x="657.551625" y="197.985"></use> <use xlink:href="#454609461-glyph4-23" x="662.532925" y="197.985"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph4-8" x="667.799156" y="197.985"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 25.916125 5.744344 L -121.076062 36.267781 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 25.916125 5.744344 L -121.076062 36.267781 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294083 2.557983 C -0.666882 1.206294 1.023733 0.0474964 1.989451 0.00100707 C 1.023667 -0.048124 -0.663778 -1.207131 -1.291892 -2.55652 " transform="matrix(-0.98058,-0.20358,-0.20358,0.98058,218.21274,68.5759)"></path> <g clip-path="url(#clip1)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 50.93175 -12.829875 L -37.685437 -81.040812 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <g clip-path="url(#clip2)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 50.93175 -12.829875 L -37.685437 -81.040812 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294772 2.558213 C -0.666964 1.206566 1.022443 0.0485226 1.987727 0.00225232 C 1.02123 -0.0486705 -0.666008 -1.208101 -1.291758 -2.556538 " transform="matrix(-0.79616,0.6128,0.6128,0.79616,301.6007,185.88169)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 93.349719 8.271688 L 163.4005 34.017781 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 93.349719 8.271688 L 163.4005 34.017781 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292053 2.558985 C -0.663807 1.207136 1.023145 0.0474074 1.989469 -0.000528108 C 1.021487 -0.0474713 -0.667118 -1.20791 -1.292677 -2.559775 " transform="matrix(0.94089,-0.34581,-0.34581,-0.94089,502.68654,70.8242)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -171.259656 36.713094 L -254.165906 6.736531 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -171.259656 36.713094 L -254.165906 6.736531 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.293435 2.557439 C -0.665429 1.205317 1.020972 0.0476683 1.98809 0.00112776 C 1.023489 -0.0487297 -0.665541 -1.206753 -1.294777 -2.556914 " transform="matrix(-0.94089,0.34013,0.34013,0.94089,85.12019,98.10398)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 117.714844 88.015625 L 133.375 88.015625 L 133.375 78.960938 L 117.714844 78.960938 Z M 117.714844 88.015625 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-25" x="119.861" y="85.872"></use> <use xlink:href="#454609461-glyph0-25" x="125.548134" y="85.872"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -139.25575 36.713094 L -71.072156 6.87325 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -139.25575 36.713094 L -71.072156 6.87325 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.295407 2.558293 C -0.665174 1.20554 1.023421 0.0480456 1.989014 -0.00139069 C 1.023653 -0.0496508 -0.664749 -1.205198 -1.293863 -2.556272 " transform="matrix(0.91867,0.40201,0.40201,-0.91867,268.21628,97.96865)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 227.296875 88.015625 L 242.960938 88.015625 L 242.960938 78.960938 L 227.296875 78.960938 Z M 227.296875 88.015625 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-25" x="229.442" y="85.872"></use> <use xlink:href="#454609461-glyph0-25" x="235.129134" y="85.872"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -254.365125 -2.279094 L -74.482312 -2.279094 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -254.365125 -2.279094 L -74.482312 -2.279094 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.293501 2.5587 C -0.664595 1.207138 1.022905 0.0469813 1.987749 0.00010625 C 1.022905 -0.0467687 -0.664595 -1.206925 -1.293501 -2.558487 " transform="matrix(1,0,0,-1,264.80522,107.1212)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-5" x="144.245" y="103.421"></use> <use xlink:href="#454609461-glyph0-24" x="146.500327" y="103.421"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph1-2" x="151.655" y="103.421"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-1" x="161.415" y="103.421"></use> <use xlink:href="#454609461-glyph0-2" x="167.959911" y="103.421"></use> <use xlink:href="#454609461-glyph0-3" x="171.501904" y="103.421"></use> <use xlink:href="#454609461-glyph0-7" x="174.615009" y="103.421"></use> <use xlink:href="#454609461-glyph0-12" x="178.586588" y="103.421"></use> <use xlink:href="#454609461-glyph0-11" x="182.128581" y="103.421"></use> <use xlink:href="#454609461-glyph0-1" x="186.10016" y="103.421"></use> <use xlink:href="#454609461-glyph0-26" x="192.645071" y="103.421"></use> <use xlink:href="#454609461-glyph0-7" x="197.045539" y="103.421"></use> <use xlink:href="#454609461-glyph0-12" x="201.017118" y="103.421"></use> <use xlink:href="#454609461-glyph0-3" x="204.559111" y="103.421"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.162 -8.615031 L -50.162 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -50.162 -8.615031 L -50.162 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292532 2.555898 C -0.667532 1.208241 1.023874 0.048085 1.988718 0.00121 C 1.023874 -0.0495712 -0.667532 -1.205821 -1.292532 -2.557384 " transform="matrix(0,1,1,0,289.12379,185.03472)"></path> <g clip-path="url(#clip3)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -257.669812 -10.552531 L -73.615125 -81.591594 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <g clip-path="url(#clip4)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -257.669812 -10.552531 L -73.615125 -81.591594 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.295251 2.558154 C -0.664438 1.20534 1.023581 0.0474718 1.985911 0.0010366 C 1.023136 -0.0488121 -0.665483 -1.206226 -1.293636 -2.556062 " transform="matrix(0.93478,0.36081,0.36081,-0.93478,265.67058,186.43287)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 213.371094 173.792969 L 229.011719 173.792969 L 229.011719 164.738281 L 213.371094 164.738281 Z M 213.371094 173.792969 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-27" x="215.516" y="171.647"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-25" x="221.180818" y="171.647"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -112.271375 43.049031 L 9.759875 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -112.271375 43.049031 L 9.759875 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292094 2.556249 C -0.667094 1.204686 1.024313 0.0484363 1.989156 0.00156125 C 1.024313 -0.04922 -0.667094 -1.20547 -1.292094 -2.557032 " transform="matrix(1,0,0,-1,349.046,61.79453)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -279.0995 -10.552531 L -279.0995 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -279.0995 -10.552531 L -279.0995 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292542 2.558624 C -0.667542 1.207061 1.023864 0.046905 1.988708 0.00003 C 1.023864 -0.046845 -0.667542 -1.207001 -1.292542 -2.558564 " transform="matrix(0,1,1,0,60.18747,185.03473)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 117.330188 43.049031 L 138.654406 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 117.330188 43.049031 L 138.654406 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294412 2.556249 C -0.665506 1.204686 1.021994 0.0484363 1.986838 0.00156125 C 1.021994 -0.04922 -0.665506 -1.20547 -1.294412 -2.557032 " transform="matrix(1,0,0,-1,477.94285,61.79453)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 235.076281 43.049031 L 261.189563 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 235.076281 43.049031 L 261.189563 43.049031 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294932 2.556249 C -0.666026 1.204686 1.021474 0.0484363 1.986318 0.00156125 C 1.021474 -0.04922 -0.666026 -1.20547 -1.294932 -2.557032 " transform="matrix(1,0,0,-1,600.47462,61.79453)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 36.713094 L 299.037219 8.181844 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 36.713094 L 299.037219 8.181844 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.293413 2.556853 C -0.664506 1.20529 1.022994 0.04904 1.987837 -0.00174125 C 1.022994 -0.0486162 -0.664506 -1.204866 -1.293413 -2.556429 " transform="matrix(0,1,1,0,638.32596,96.6606)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 -10.552531 L 299.037219 -37.146281 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 -10.552531 L 299.037219 -37.146281 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.291938 2.556853 C -0.666938 1.20529 1.024469 0.04904 1.989312 -0.00174125 C 1.024469 -0.0486162 -0.666938 -1.204866 -1.291938 -2.556429 " transform="matrix(0,1,1,0,638.32596,141.98725)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 -55.880656 L 299.037219 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 299.037219 -55.880656 L 299.037219 -80.193156 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292532 2.556853 C -0.667532 1.20529 1.023874 0.04904 1.988718 -0.00174125 C 1.023874 -0.0486162 -0.667532 -1.204866 -1.292532 -2.556429 " transform="matrix(0,1,1,0,638.32596,185.03472)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 64.638781 82.037313 L 64.638781 53.509969 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 64.638781 82.037313 L 64.638781 53.509969 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294848 2.558625 C -0.665941 1.207063 1.021559 0.0469063 1.986402 0.00003125 C 1.021559 -0.0468437 -0.665941 -1.207 -1.294848 -2.558562 " transform="matrix(0,1,1,0,403.92575,51.33391)"></path> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 151.408313 88.37325 L 89.263781 88.37325 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 151.408313 88.37325 L 89.263781 88.37325 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.292436 2.557714 C -0.667436 1.206151 1.02397 0.0499013 1.988814 -0.00088 C 1.02397 -0.047755 -0.667436 -1.207911 -1.292436 -2.559474 " transform="matrix(1,0,0,-1,490.69478,16.46787)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.29428 2.559474 C -0.665374 1.207911 1.022126 0.047755 1.98697 0.00088 C 1.022126 -0.0499013 -0.665374 -1.206151 -1.29428 -2.557714 " transform="matrix(-1,0,0,1,428.54947,16.46787)"></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-28" x="431.511" y="6.91"></use> <use xlink:href="#454609461-glyph0-7" x="437.392006" y="6.91"></use> <use xlink:href="#454609461-glyph0-16" x="441.363585" y="6.91"></use> <use xlink:href="#454609461-glyph0-7" x="445.335164" y="6.91"></use> <use xlink:href="#454609461-glyph0-3" x="449.306743" y="6.91"></use> <use xlink:href="#454609461-glyph0-7" x="452.419847" y="6.91"></use> <use xlink:href="#454609461-glyph0-10" x="456.391426" y="6.91"></use> <use xlink:href="#454609461-glyph0-29" x="459.075642" y="6.91"></use> <use xlink:href="#454609461-glyph0-1" x="463.47611" y="6.91"></use> <use xlink:href="#454609461-glyph0-5" x="470.021021" y="6.91"></use> <use xlink:href="#454609461-glyph0-4" x="472.276348" y="6.91"></use> <use xlink:href="#454609461-glyph0-15" x="475.389452" y="6.91"></use> <use xlink:href="#454609461-glyph0-11" x="479.78992" y="6.91"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-30" x="483.545311" y="6.91"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-1" x="430.21" y="14.125"></use> <use xlink:href="#454609461-glyph0-2" x="436.754911" y="14.125"></use> <use xlink:href="#454609461-glyph0-3" x="440.296904" y="14.125"></use> <use xlink:href="#454609461-glyph0-4" x="443.410009" y="14.125"></use> <use xlink:href="#454609461-glyph0-5" x="446.523113" y="14.125"></use> <use xlink:href="#454609461-glyph0-31" x="448.77844" y="14.125"></use> <use xlink:href="#454609461-glyph0-7" x="452.320433" y="14.125"></use> <use xlink:href="#454609461-glyph0-3" x="456.292012" y="14.125"></use> <use xlink:href="#454609461-glyph0-5" x="459.405116" y="14.125"></use> <use xlink:href="#454609461-glyph0-11" x="461.660443" y="14.125"></use> <use xlink:href="#454609461-glyph0-15" x="465.632022" y="14.125"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-3" x="472.717403" y="14.125"></use> <use xlink:href="#454609461-glyph0-32" x="475.830507" y="14.125"></use> <use xlink:href="#454609461-glyph0-1" x="480.230975" y="14.125"></use> <use xlink:href="#454609461-glyph0-33" x="486.775887" y="14.125"></use> </g> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M 187.959094 77.822469 L 187.959094 53.509969 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M 187.959094 77.822469 L 187.959094 53.509969 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.294848 2.558477 C -0.665941 1.206915 1.021559 0.0467587 1.986402 -0.00011625 C 1.021559 -0.0469913 -0.665941 -1.207148 -1.294848 -2.55871 " transform="matrix(0,1,1,0,527.24621,51.33391)"></path> <g clip-path="url(#clip5)" clip-rule="nonzero"> <path style="fill:none;stroke-width:2.32874;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -257.689344 -82.380656 L -68.603406 -9.404094 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <g clip-path="url(#clip6)" clip-rule="nonzero"> <path style="fill:none;stroke-width:1.53175;stroke-linecap:butt;stroke-linejoin:miter;stroke:rgb(100%,100%,100%);stroke-opacity:1;stroke-miterlimit:10;" d="M -257.689344 -82.380656 L -68.603406 -9.404094 " transform="matrix(1,0,0,-1,339.287,104.842)"></path> </g> <path style="fill:none;stroke-width:0.39848;stroke-linecap:round;stroke-linejoin:round;stroke:rgb(0%,0%,0%);stroke-opacity:1;stroke-miterlimit:10;" d="M -1.293618 2.55964 C -0.666781 1.206173 1.02194 0.0488286 1.989779 0.0012661 C 1.02239 -0.0474574 -0.665601 -1.205445 -1.292715 -2.559727 " transform="matrix(0.93478,-0.36075,-0.36075,-0.93478,270.68342,114.24634)"></path> <path style=" stroke:none;fill-rule:nonzero;fill:rgb(100%,100%,100%);fill-opacity:1;" d="M 217.125 136.425781 L 232.765625 136.425781 L 232.765625 127.371094 L 217.125 127.371094 Z M 217.125 136.425781 "></path> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-27" x="219.27" y="134.281"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-25" x="224.934818" y="134.281"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-5" x="131.727" y="175.967"></use> <use xlink:href="#454609461-glyph0-24" x="133.982327" y="175.967"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph1-2" x="139.137" y="175.967"></use> </g> <g style="fill:rgb(0%,0%,0%);fill-opacity:1;"> <use xlink:href="#454609461-glyph0-26" x="148.897" y="175.967"></use> <use xlink:href="#454609461-glyph0-7" x="153.297468" y="175.967"></use> <use xlink:href="#454609461-glyph0-4" x="157.269047" y="175.967"></use> <use xlink:href="#454609461-glyph0-7" x="160.382151" y="175.967"></use> <use xlink:href="#454609461-glyph0-12" x="164.35373" y="175.967"></use> <use xlink:href="#454609461-glyph0-11" x="167.895723" y="175.967"></use> <use xlink:href="#454609461-glyph0-1" x="171.867302" y="175.967"></use> <use xlink:href="#454609461-glyph0-26" x="178.412214" y="175.967"></use> <use xlink:href="#454609461-glyph0-7" x="182.812682" y="175.967"></use> <use xlink:href="#454609461-glyph0-12" x="186.784261" y="175.967"></use> <use xlink:href="#454609461-glyph0-3" x="190.326254" y="175.967"></use> </g> </g> </svg> <p>Axioms: <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">axiom of choice</a> (AC), <a class="existingWikiWord" href="/nlab/show/countable+choice">countable choice</a> (CC).</p> <h3 id="properties">Properties</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+space">second-countable</a>: there is a <a class="existingWikiWord" href="/nlab/show/countable+set">countable</a> <a class="existingWikiWord" href="/nlab/show/topological+base">base</a> of the topology.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metrisable+topological+space">metrisable</a>: the topology is induced by a metric.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math>-locally discrete base: the topology of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is generated by a <a class="existingWikiWord" href="/nlab/show/countably+locally+discrete+set+of+subsets"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>σ</mi> </mrow> <annotation encoding="application/x-tex">\sigma</annotation> </semantics> </math>-locally discrete</a> <a class="existingWikiWord" href="/nlab/show/topological+base">base</a>.</p> </li> <li> <p><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math>-locally finite base: the topology of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math> is generated by a <a class="existingWikiWord" href="/nlab/show/countably+locally+finite+set+of+subsets">countably locally finite</a> <a class="existingWikiWord" href="/nlab/show/topological+base">base</a>.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separable+space">separable</a>: there is a countable <a class="existingWikiWord" href="/nlab/show/dense+subspace">dense</a> subset.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Lindel%C3%B6f+topological+space">Lindelöf</a>: every <a class="existingWikiWord" href="/nlab/show/open+cover">open cover</a> has a <a class="existingWikiWord" href="/nlab/show/countable+cover">countable</a> sub-cover.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weakly+Lindel%C3%B6f+topological+space">weakly Lindelöf</a>: every <a class="existingWikiWord" href="/nlab/show/open+cover">open cover</a> has a <a class="existingWikiWord" href="/nlab/show/countable+set">countable</a> subcollection the union of which is dense.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/metacompact+space">metacompact</a>: every open cover has a point-finite open refinement.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/countable+chain+condition">countable chain condition</a>: A family of pairwise disjoint open subsets is at most countable.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/first-countable+space">first-countable</a>: every point has a countable <a class="existingWikiWord" href="/nlab/show/neighborhood+base">neighborhood base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Frechet-Uryson+space">Frechet-Uryson space</a>: the closure of a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> consists precisely of all limit points of sequences in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/sequential+topological+space">sequential topological space</a>: a set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> is closed if it contains all limit points of sequences in <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/countably+tight+space">countably tight</a>: for each subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>A</mi></mrow><annotation encoding="application/x-tex">A</annotation></semantics></math> and each point <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mover><mi>A</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">x\in \overline A</annotation></semantics></math> there is a countable subset <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>⊆</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">D\subseteq A</annotation></semantics></math> such that <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>x</mi><mo>∈</mo><mover><mi>D</mi><mo>¯</mo></mover></mrow><annotation encoding="application/x-tex">x\in \overline D</annotation></semantics></math>.</p> </li> </ul> <h3 id="implications">Implications</h3> <ul> <li> <p><a class="existingWikiWord" href="/nlab/show/open+covers+of+metric+spaces+have+open+countably+locally+discrete+refinements">a metric space has a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>σ</mi> </mrow> <annotation encoding="application/x-tex">\sigma</annotation> </semantics> </math>-locally discrete base</a></p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/Nagata-Smirnov+metrization+theorem">Nagata-Smirnov metrization theorem</a></p> </li> <li> <p>a second-countable space has a <a class="existingWikiWord" href="/nlab/show/countably+locally+finite+set+of+subsets"><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"> <semantics> <mrow> <mi>σ</mi> </mrow> <annotation encoding="application/x-tex">\sigma</annotation> </semantics> </math>-locally finite</a> <a class="existingWikiWord" href="/nlab/show/topological+base">base</a>: take the the collection of singeltons of all elements of a countable cover of <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>X</mi></mrow><annotation encoding="application/x-tex">X</annotation></semantics></math>.</p> </li> <li> <p>second-countable spaces are separable: use the axiom of <a class="existingWikiWord" href="/nlab/show/countable+choice">countable choice</a> to choose a point in each set of a countable cover.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/second-countable+spaces+are+Lindel%C3%B6f">second-countable spaces are Lindelöf</a>.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/weakly+Lindel%C3%B6f+spaces+with+countably+locally+finite+base+are+second+countable">weakly Lindelöf spaces with countably locally finite base are second countable</a>.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/separable+metacompact+spaces+are+Lindel%C3%B6f">separable metacompact spaces are Lindelöf</a>.</p> </li> <li> <p>separable spaces satisfy the countable chain condition: given a dense set <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi></mrow><annotation encoding="application/x-tex">D</annotation></semantics></math> and a family <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mo stretchy="false">{</mo><msub><mi>U</mi> <mi>α</mi></msub><mo>:</mo><mi>α</mi><mo>∈</mo><mi>A</mi><mo stretchy="false">}</mo></mrow><annotation encoding="application/x-tex">\{U_\alpha : \alpha \in A\}</annotation></semantics></math>, the map <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>D</mi><mo>∩</mo><msub><mo lspace="thinmathspace" rspace="thinmathspace">⋃</mo> <mrow><mi>α</mi><mo>∈</mo><mi>A</mi></mrow></msub><msub><mi>U</mi> <mi>α</mi></msub><mo>→</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">D \cap \bigcup_{\alpha \in A} U_\alpha \to A</annotation></semantics></math> assigning <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi></mrow><annotation encoding="application/x-tex">d</annotation></semantics></math> to the unique <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>α</mi><mo>∈</mo><mi>A</mi></mrow><annotation encoding="application/x-tex">\alpha \in A</annotation></semantics></math> with <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>d</mi><mo>∈</mo><msub><mi>U</mi> <mi>α</mi></msub></mrow><annotation encoding="application/x-tex">d \in U_\alpha</annotation></semantics></math> is surjective.</p> </li> <li> <p>separable spaces are weakly Lindelöf: given a countable dense subset and an open cover <a class="existingWikiWord" href="/nlab/show/axiom+of+choice">choose</a> for each point of the subset an open from the cover.</p> </li> <li> <p>Lindelöf spaces are trivially also weakly Lindelöf.</p> </li> <li> <p>a space with a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math>-locally finite base is first countable: obviously, every point is contained in at most countably many sets of a <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline" class="maruku-mathml"><semantics><mrow><mi>σ</mi></mrow><annotation encoding="application/x-tex">\sigma</annotation></semantics></math>-locally finite base.</p> </li> <li> <p>a first-countable space is obviously Fréchet-Urysohn.</p> </li> <li> <p>a Fréchet-Uryson space is obviously sequential.</p> </li> <li> <p>a sequential space is obviously countably tight.</p> </li> <li> <p><a class="existingWikiWord" href="/nlab/show/paracompact+spaces+satisfying+the+countable+chain+condition+are+Lindel%C3%B6f">paracompact spaces satisfying the countable chain condition are Lindelöf</a>.</p> </li> </ul> </div></body></html> </div> <div class="revisedby"> <p> Last revised on June 1, 2024 at 01:02:54. See the <a href="/nlab/history/second-countable+space" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/second-countable+space" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/18067/#Item_1">Discuss</a><span class="backintime"><a href="/nlab/revision/second-countable+space/17" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/diff/second-countable+space" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Changes from previous revision</a><a href="/nlab/history/second-countable+space" accesskey="S" class="navlink" id="history" rel="nofollow">History (17 revisions)</a> <a href="/nlab/show/second-countable+space/cite" style="color: black">Cite</a> <a href="/nlab/print/second-countable+space" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/second-countable+space" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10