CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 181 results for author: <span class="mathjax">Zhu, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/eess" aria-role="search"> Searching in archive <strong>eess</strong>. <a href="/search/?searchtype=author&query=Zhu%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Zhu, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Zhu%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Zhu, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.15368">arXiv:2501.15368</a> <span> [<a href="https://arxiv.org/pdf/2501.15368">pdf</a>, <a href="https://arxiv.org/format/2501.15368">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Sound">cs.SD</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Audio and Speech Processing">eess.AS</span> </div> </div> <p class="title is-5 mathjax"> Baichuan-Omni-1.5 Technical Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+Y">Yadong Li</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+T">Tao Zhang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+S">Song Chen</a>, <a href="/search/eess?searchtype=author&query=Li%2C+T">Tianpeng Li</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zehuan Li</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+L">Lijun Liu</a>, <a href="/search/eess?searchtype=author&query=Ming%2C+L">Lingfeng Ming</a>, <a href="/search/eess?searchtype=author&query=Dong%2C+G">Guosheng Dong</a>, <a href="/search/eess?searchtype=author&query=Pan%2C+D">Da Pan</a>, <a href="/search/eess?searchtype=author&query=Li%2C+C">Chong Li</a>, <a href="/search/eess?searchtype=author&query=Fang%2C+Y">Yuanbo Fang</a>, <a href="/search/eess?searchtype=author&query=Kuang%2C+D">Dongdong Kuang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+M">Mingrui Wang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+C">Chenglin Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Youwei Zhang</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+H">Hongyu Guo</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+F">Fengyu Zhang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yuran Wang</a>, <a href="/search/eess?searchtype=author&query=Ding%2C+B">Bowen Ding</a>, <a href="/search/eess?searchtype=author&query=Song%2C+W">Wei Song</a>, <a href="/search/eess?searchtype=author&query=Li%2C+X">Xu Li</a>, <a href="/search/eess?searchtype=author&query=Huo%2C+Y">Yuqi Huo</a>, <a href="/search/eess?searchtype=author&query=Liang%2C+Z">Zheng Liang</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.15368v1-abstract-short" style="display: inline;"> We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pip… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15368v1-abstract-full').style.display = 'inline'; document.getElementById('2501.15368v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.15368v1-abstract-full" style="display: none;"> We introduce Baichuan-Omni-1.5, an omni-modal model that not only has omni-modal understanding capabilities but also provides end-to-end audio generation capabilities. To achieve fluent and high-quality interaction across modalities without compromising the capabilities of any modality, we prioritized optimizing three key aspects. First, we establish a comprehensive data cleaning and synthesis pipeline for multimodal data, obtaining about 500B high-quality data (text, audio, and vision). Second, an audio-tokenizer (Baichuan-Audio-Tokenizer) has been designed to capture both semantic and acoustic information from audio, enabling seamless integration and enhanced compatibility with MLLM. Lastly, we designed a multi-stage training strategy that progressively integrates multimodal alignment and multitask fine-tuning, ensuring effective synergy across all modalities. Baichuan-Omni-1.5 leads contemporary models (including GPT4o-mini and MiniCPM-o 2.6) in terms of comprehensive omni-modal capabilities. Notably, it achieves results comparable to leading models such as Qwen2-VL-72B across various multimodal medical benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.15368v1-abstract-full').style.display = 'none'; document.getElementById('2501.15368v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07989">arXiv:2501.07989</a> <span> [<a href="https://arxiv.org/pdf/2501.07989">pdf</a>, <a href="https://arxiv.org/ps/2501.07989">ps</a>, <a href="https://arxiv.org/format/2501.07989">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna Enhanced DF and AF Relaying Systems: Performance Analysis and Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+N">Nianzu Li</a>, <a href="/search/eess?searchtype=author&query=Mei%2C+W">Weidong Mei</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+P">Peiran Wu</a>, <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07989v1-abstract-short" style="display: inline;"> Movable antenna (MA) has been deemed as a promising technology to flexibly reconfigure wireless channels by adjusting the antenna positions in a given local region. In this paper, we investigate the application of the MA technology in both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems, where a relay is equipped with multiple MAs to assist in the data transmission between tw… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07989v1-abstract-full').style.display = 'inline'; document.getElementById('2501.07989v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07989v1-abstract-full" style="display: none;"> Movable antenna (MA) has been deemed as a promising technology to flexibly reconfigure wireless channels by adjusting the antenna positions in a given local region. In this paper, we investigate the application of the MA technology in both decode-and-forward (DF) and amplify-and-forward (AF) relaying systems, where a relay is equipped with multiple MAs to assist in the data transmission between two single-antenna nodes. For the DF relaying system, our objective is to maximize the achievable rate at the destination by jointly optimizing the positions of the MAs in two stages for receiving signals from the source and transmitting signals to the destination, respectively. To drive essential insights, we first derive a closed-form upper bound on the maximum achievable rate of the DF relaying system. Then, a low-complexity algorithm based on projected gradient ascent (PGA) and alternating optimization (AO) is proposed to solve the antenna position optimization problem. For the AF relaying system, our objective is to maximize the achievable rate by jointly optimizing the two-stage MA positions as well as the AF beamforming matrix at the relay, which results in a more challenging optimization problem due to the intricate coupling variables. To tackle this challenge, we first reveal the hidden separability among the antenna position optimization in the two stages and the beamforming optimization. Based on such separability, we derive a closed-form upper bound on the maximum achievable rate of the AF relaying system and propose a low-complexity algorithm to obtain a high-quality suboptimal solution to the considered problem. Simulation results validate the efficacy of our theoretical analysis and demonstrate the superiority of the MA-enhanced relaying systems to the conventional relaying systems with fixed-position antennas (FPAs) and other benchmark schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07989v1-abstract-full').style.display = 'none'; document.getElementById('2501.07989v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2501.07318">arXiv:2501.07318</a> <span> [<a href="https://arxiv.org/pdf/2501.07318">pdf</a>, <a href="https://arxiv.org/ps/2501.07318">ps</a>, <a href="https://arxiv.org/format/2501.07318">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna Enhanced Integrated Sensing and Communication Via Antenna Position Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ma%2C+W">Wenyan Ma</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2501.07318v2-abstract-short" style="display: inline;"> In this paper, we propose an integrated sensing and communication (ISAC) system aided by the movable-antenna (MA) array, which can improve the communication and sensing performance via flexible antenna movement over conventional fixed-position antenna (FPA) array. First, we consider the downlink multiuser communication, where each user is randomly distributed within a given three-dimensional zone… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07318v2-abstract-full').style.display = 'inline'; document.getElementById('2501.07318v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2501.07318v2-abstract-full" style="display: none;"> In this paper, we propose an integrated sensing and communication (ISAC) system aided by the movable-antenna (MA) array, which can improve the communication and sensing performance via flexible antenna movement over conventional fixed-position antenna (FPA) array. First, we consider the downlink multiuser communication, where each user is randomly distributed within a given three-dimensional zone with local movement. To reduce the overhead of frequent antenna movement, the antenna position vector (APV) is designed based on users' statistical channel state information (CSI), so that the antennas only need to be moved in a large timescale. Then, for target sensing, the Cramer-Rao bounds (CRBs) of the estimation mean square error for different spatial angles of arrival (AoAs) are derived as functions of MAs' positions. Based on the above, we formulate an optimization problem to maximize the expected minimum achievable rate among all communication users, with given constraints on the maximum acceptable CRB thresholds for target sensing. An alternating optimization algorithm is proposed to iteratively optimize one of the horizontal and vertical APVs of the MA array with the other being fixed. Numerical results demonstrate that our proposed MA arrays can significantly enlarge the trade-off region between communication and sensing performance compared to conventional FPA arrays with different inter-antenna spacing. It is also revealed that the steering vectors of the designed MA arrays exhibit low correlation in the angular domain, thus effectively reducing channel correlation among communication users to enhance their achievable rates, while alleviating ambiguity in target angle estimation to achieve improved sensing accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2501.07318v2-abstract-full').style.display = 'none'; document.getElementById('2501.07318v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.17088">arXiv:2412.17088</a> <span> [<a href="https://arxiv.org/pdf/2412.17088">pdf</a>, <a href="https://arxiv.org/format/2412.17088">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> 6DMA-Aided Hybrid Beamforming with Joint Antenna Position and Orientation Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yichi Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yuchen Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+S">Sa Xiao</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+W">Wanbin Tang</a>, <a href="/search/eess?searchtype=author&query=Eldar%2C+Y+C">Yonina C. Eldar</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.17088v1-abstract-short" style="display: inline;"> This paper studies a sub-connected six-dimensional movable antenna (6DMA)-aided multi-user communication system. In this system, each sub-array is connected to a dedicated radio frequency chain and collectively moves and rotates as a unit within specific local regions. The movement and rotation capabilities of 6DMAs enhance design flexibility, facilitating the capture of spatial variations for imp… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17088v1-abstract-full').style.display = 'inline'; document.getElementById('2412.17088v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.17088v1-abstract-full" style="display: none;"> This paper studies a sub-connected six-dimensional movable antenna (6DMA)-aided multi-user communication system. In this system, each sub-array is connected to a dedicated radio frequency chain and collectively moves and rotates as a unit within specific local regions. The movement and rotation capabilities of 6DMAs enhance design flexibility, facilitating the capture of spatial variations for improved communication performance. To fully characterize the effect of antenna position and orientation on wireless channels between the base station (BS) and users, we develop a field-response-based 6DMA channel model to account for the antenna radiation pattern and polarization. We then maximize the sum rate of multiple users, by jointly optimizing the digital and unit-modulus analog beamformers given the transmit power budget as well as the positions and orientations of sub-arrays within given movable and rotatable ranges at the BS. Due to the highly coupled variables, the formulated optimization problem is non-convex and thus challenging to solve. We develop a fractional programming-aided alternating optimization framework that integrates the Lagrange multiplier method, manifold optimization, and gradient descent to solve the problem. Numerical results demonstrate that the proposed 6DMA-aided sub-connected structure achieves a substantial sum-rate improvement over various benchmark schemes with less flexibility in antenna movement and can even outperform fully-digital beamforming systems that employ antenna position or orientation adjustments only. The results also highlight the necessity of considering antenna polarization for optimally adjusting antenna orientation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.17088v1-abstract-full').style.display = 'none'; document.getElementById('2412.17088v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The conference version of this paper has been accepted for Globecom 2024 Workshop</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.12531">arXiv:2412.12531</a> <span> [<a href="https://arxiv.org/pdf/2412.12531">pdf</a>, <a href="https://arxiv.org/ps/2412.12531">ps</a>, <a href="https://arxiv.org/format/2412.12531">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna Aided NOMA: Joint Antenna Positioning, Precoding, and Decoding Design </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zhe Li</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=da+Costa%2C+D+B">Daniel Benevides da Costa</a>, <a href="/search/eess?searchtype=author&query=Xia%2C+X">Xiang-Gen Xia</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.12531v1-abstract-short" style="display: inline;"> This paper investigates movable antenna (MA) aided non-orthogonal multiple access (NOMA) for multi-user downlink communication, where the base station (BS) is equipped with a fixed-position antenna (FPA) array to serve multiple MA-enabled users. An optimization problem is formulated to maximize the minimum achievable rate among all the users by jointly optimizing the MA positioning of each user, t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12531v1-abstract-full').style.display = 'inline'; document.getElementById('2412.12531v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.12531v1-abstract-full" style="display: none;"> This paper investigates movable antenna (MA) aided non-orthogonal multiple access (NOMA) for multi-user downlink communication, where the base station (BS) is equipped with a fixed-position antenna (FPA) array to serve multiple MA-enabled users. An optimization problem is formulated to maximize the minimum achievable rate among all the users by jointly optimizing the MA positioning of each user, the precoding matrix at the BS, and the successive interference cancellation (SIC) decoding indicator matrix at the users, subject to a set of constraints including the limited movement area of the MAs, the maximum transmit power of the BS, and the SIC decoding condition. To solve this non-convex problem, we propose a two-loop iterative optimization algorithm that combines the hippopotamus optimization (HO) method with the alternating optimization (AO) method to obtain a suboptimal solution efficiently. Specifically, in the inner loop, the complex-valued precoding matrix and the binary decoding indicator matrix are optimized alternatively by the successive convex approximation (SCA) technique with customized greedy search to maximize the minimum achievable rate for the given positions of the MAs. In the outer loop, each user's antenna position is updated using the HO algorithm, following a novel nature-inspired intelligent optimization framework. Simulation results show that the proposed algorithms can effectively avoid local optimum for highly coupled variables and significantly improve the rate performance of the NOMA system compared to the conventional FPA system as well as other benchmark schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.12531v1-abstract-full').style.display = 'none'; document.getElementById('2412.12531v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10736">arXiv:2412.10736</a> <span> [<a href="https://arxiv.org/pdf/2412.10736">pdf</a>, <a href="https://arxiv.org/format/2412.10736">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> 6D Movable Antenna Enhanced Multi-Access Point Coordination via Position and Orientation Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Pi%2C+X">Xiangyu Pi</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Mao%2C+H">Haobin Mao</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Xia%2C+X">Xiang-Gen Xia</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10736v1-abstract-short" style="display: inline;"> The effective utilization of unlicensed spectrum is regarded as an important direction to enable the massive access and broad coverage for next-generation wireless local area network (WLAN). Due to the crowded spectrum occupancy and dense user terminals (UTs), the conventional fixed antenna (FA)-based access points (APs) face huge challenges in realizing massive access and interference cancellatio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10736v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10736v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10736v1-abstract-full" style="display: none;"> The effective utilization of unlicensed spectrum is regarded as an important direction to enable the massive access and broad coverage for next-generation wireless local area network (WLAN). Due to the crowded spectrum occupancy and dense user terminals (UTs), the conventional fixed antenna (FA)-based access points (APs) face huge challenges in realizing massive access and interference cancellation. To address this issue, in this paper we develop a six-dimensional movable antenna (6DMA) enhanced multi-AP coordination system for coverage enhancement and interference mitigation. First, we model the wireless channels between the APs and UTs to characterize their variation with respect to 6DMA movement, in terms of both the three-dimensional (3D) position and 3D orientation of each distributed AP's antenna. Then, an optimization problem is formulated to maximize the weighted sum rate of multiple UTs for their uplink transmissions by jointly optimizing the antenna position vector (APV), the antenna orientation matrix (AOM), and the receive combining matrix over all coordinated APs, subject to the constraints on local antenna movement regions. To solve this challenging non-convex optimization problem, we first transform it into a more tractable Lagrangian dual problem. Then, an alternating optimization (AO)-based algorithm is developed by iteratively optimizing the APV and AOM, which are designed by applying the successive convex approximation (SCA) technique and Riemannian manifold optimization-based algorithm, respectively. Simulation results show that the proposed 6DMA-enhanced multi-AP coordination system can significantly enhance network capacity, and both of the online and offline 6DMA schemes can attain considerable performance improvement compared to the conventional FA-based schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10736v1-abstract-full').style.display = 'none'; document.getElementById('2412.10736v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, submitted to an IEEE journal for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14798">arXiv:2411.14798</a> <span> [<a href="https://arxiv.org/pdf/2411.14798">pdf</a>, <a href="https://arxiv.org/format/2411.14798">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Facial Features Matter: a Dynamic Watermark based Proactive Deepfake Detection Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Lan%2C+S">Shulin Lan</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+K">Kanlin Liu</a>, <a href="/search/eess?searchtype=author&query=Zhao%2C+Y">Yazhou Zhao</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+C">Chen Yang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yingchao Wang</a>, <a href="/search/eess?searchtype=author&query=Yao%2C+X">Xingshan Yao</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Liehuang Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14798v1-abstract-short" style="display: inline;"> Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14798v1-abstract-full').style.display = 'inline'; document.getElementById('2411.14798v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14798v1-abstract-full" style="display: none;"> Current passive deepfake face-swapping detection methods encounter significance bottlenecks in model generalization capabilities. Meanwhile, proactive detection methods often use fixed watermarks which lack a close relationship with the content they protect and are vulnerable to security risks. Dynamic watermarks based on facial features offer a promising solution, as these features provide unique identifiers. Therefore, this paper proposes a Facial Feature-based Proactive deepfake detection method (FaceProtect), which utilizes changes in facial characteristics during deepfake manipulation as a novel detection mechanism. We introduce a GAN-based One-way Dynamic Watermark Generating Mechanism (GODWGM) that uses 128-dimensional facial feature vectors as inputs. This method creates irreversible mappings from facial features to watermarks, enhancing protection against various reverse inference attacks. Additionally, we propose a Watermark-based Verification Strategy (WVS) that combines steganography with GODWGM, allowing simultaneous transmission of the benchmark watermark representing facial features within the image. Experimental results demonstrate that our proposed method maintains exceptional detection performance and exhibits high practicality on images altered by various deepfake techniques. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14798v1-abstract-full').style.display = 'none'; document.getElementById('2411.14798v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13983">arXiv:2411.13983</a> <span> [<a href="https://arxiv.org/pdf/2411.13983">pdf</a>, <a href="https://arxiv.org/format/2411.13983">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Multiagent Systems">cs.MA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Learning Two-agent Motion Planning Strategies from Generalized Nash Equilibrium for Model Predictive Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Kim%2C+H">Hansung Kim</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+E+L">Edward L. Zhu</a>, <a href="/search/eess?searchtype=author&query=Lim%2C+C+S">Chang Seok Lim</a>, <a href="/search/eess?searchtype=author&query=Borrelli%2C+F">Francesco Borrelli</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13983v2-abstract-short" style="display: inline;"> We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach appl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13983v2-abstract-full').style.display = 'inline'; document.getElementById('2411.13983v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13983v2-abstract-full" style="display: none;"> We introduce an Implicit Game-Theoretic MPC (IGT-MPC), a decentralized algorithm for two-agent motion planning that uses a learned value function that predicts the game-theoretic interaction outcomes as the terminal cost-to-go function in a model predictive control (MPC) framework, guiding agents to implicitly account for interactions with other agents and maximize their reward. This approach applies to competitive and cooperative multi-agent motion planning problems which we formulate as constrained dynamic games. Given a constrained dynamic game, we randomly sample initial conditions and solve for the generalized Nash equilibrium (GNE) to generate a dataset of GNE solutions, computing the reward outcome of each game-theoretic interaction from the GNE. The data is used to train a simple neural network to predict the reward outcome, which we use as the terminal cost-to-go function in an MPC scheme. We showcase emerging competitive and coordinated behaviors using IGT-MPC in scenarios such as two-vehicle head-to-head racing and un-signalized intersection navigation. IGT-MPC offers a novel method integrating machine learning and game-theoretic reasoning into model-based decentralized multi-agent motion planning. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13983v2-abstract-full').style.display = 'none'; document.getElementById('2411.13983v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to 2025 Learning for Dynamics and Control Conference (L4DC)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.12791">arXiv:2411.12791</a> <span> [<a href="https://arxiv.org/pdf/2411.12791">pdf</a>, <a href="https://arxiv.org/format/2411.12791">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Mitigating Perception Bias: A Training-Free Approach to Enhance LMM for Image Quality Assessment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Pan%2C+S">Siyi Pan</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+B">Baoliang Chen</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+D">Danni Huang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+H">Hanwei Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lingyu Zhu</a>, <a href="/search/eess?searchtype=author&query=Sui%2C+X">Xiangjie Sui</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S">Shiqi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.12791v1-abstract-short" style="display: inline;"> Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitabl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12791v1-abstract-full').style.display = 'inline'; document.getElementById('2411.12791v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.12791v1-abstract-full" style="display: none;"> Despite the impressive performance of large multimodal models (LMMs) in high-level visual tasks, their capacity for image quality assessment (IQA) remains limited. One main reason is that LMMs are primarily trained for high-level tasks (e.g., image captioning), emphasizing unified image semantics extraction under varied quality. Such semantic-aware yet quality-insensitive perception bias inevitably leads to a heavy reliance on image semantics when those LMMs are forced for quality rating. In this paper, instead of retraining or tuning an LMM costly, we propose a training-free debiasing framework, in which the image quality prediction is rectified by mitigating the bias caused by image semantics. Specifically, we first explore several semantic-preserving distortions that can significantly degrade image quality while maintaining identifiable semantics. By applying these specific distortions to the query or test images, we ensure that the degraded images are recognized as poor quality while their semantics remain. During quality inference, both a query image and its corresponding degraded version are fed to the LMM along with a prompt indicating that the query image quality should be inferred under the condition that the degraded one is deemed poor quality.This prior condition effectively aligns the LMM's quality perception, as all degraded images are consistently rated as poor quality, regardless of their semantic difference.Finally, the quality scores of the query image inferred under different prior conditions (degraded versions) are aggregated using a conditional probability model. Extensive experiments on various IQA datasets show that our debiasing framework could consistently enhance the LMM performance and the code will be publicly available. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.12791v1-abstract-full').style.display = 'none'; document.getElementById('2411.12791v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.00374">arXiv:2411.00374</a> <span> [<a href="https://arxiv.org/pdf/2411.00374">pdf</a>, <a href="https://arxiv.org/ps/2411.00374">ps</a>, <a href="https://arxiv.org/format/2411.00374">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> RSRP Measurement Based Channel Autocorrelation Estimation for IRS-Aided Wideband Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Sun%2C+H">He Sun</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Mei%2C+W">Weidong Mei</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.00374v3-abstract-short" style="display: inline;"> The passive and frequency-flat reflection of IRS, as well as the high-dimensional IRS-reflected channels, have posed significant challenges for efficient IRS channel estimation, especially in wideband communication systems with significant multi-path channel delay spread. To address these challenges, we propose a novel neural network (NN)-empowered framework for IRS channel autocorrelation matrix… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00374v3-abstract-full').style.display = 'inline'; document.getElementById('2411.00374v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.00374v3-abstract-full" style="display: none;"> The passive and frequency-flat reflection of IRS, as well as the high-dimensional IRS-reflected channels, have posed significant challenges for efficient IRS channel estimation, especially in wideband communication systems with significant multi-path channel delay spread. To address these challenges, we propose a novel neural network (NN)-empowered framework for IRS channel autocorrelation matrix estimation in wideband orthogonal frequency division multiplexing (OFDM) systems. This framework relies only on the easily accessible reference signal received power (RSRP) measurements at users in existing wideband communication systems, without requiring additional pilot transmission. Based on the estimates of channel autocorrelation matrix, the passive reflection of IRS is optimized to maximize the average user received signal-to-noise ratio (SNR) over all subcarriers in the OFDM system. Numerical results verify that the proposed algorithm significantly outperforms existing powermeasurement-based IRS reflection designs in wideband channels. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.00374v3-abstract-full').style.display = 'none'; document.getElementById('2411.00374v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21799">arXiv:2410.21799</a> <span> [<a href="https://arxiv.org/pdf/2410.21799">pdf</a>, <a href="https://arxiv.org/ps/2410.21799">ps</a>, <a href="https://arxiv.org/format/2410.21799">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">stat.ML</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Exponentially Consistent Statistical Classification of Continuous Sequences with Distribution Uncertainty </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lina Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+L">Lin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21799v1-abstract-short" style="display: inline;"> In multiple classification, one aims to determine whether a testing sequence is generated from the same distribution as one of the M training sequences or not. Unlike most of existing studies that focus on discrete-valued sequences with perfect distribution match, we study multiple classification for continuous sequences with distribution uncertainty, where the generating distributions of the test… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21799v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21799v1-abstract-full" style="display: none;"> In multiple classification, one aims to determine whether a testing sequence is generated from the same distribution as one of the M training sequences or not. Unlike most of existing studies that focus on discrete-valued sequences with perfect distribution match, we study multiple classification for continuous sequences with distribution uncertainty, where the generating distributions of the testing and training sequences deviate even under the true hypothesis. In particular, we propose distribution free tests and prove that the error probabilities of our tests decay exponentially fast for three different test designs: fixed-length, sequential, and two-phase tests. We first consider the simple case without the null hypothesis, where the testing sequence is known to be generated from a distribution close to the generating distribution of one of the training sequences. Subsequently, we generalize our results to a more general case with the null hypothesis by allowing the testing sequence to be generated from a distribution that is vastly different from the generating distributions of all training sequences. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21799v1-abstract-full').style.display = 'none'; document.getElementById('2410.21799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:2405.01161</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20042">arXiv:2410.20042</a> <span> [<a href="https://arxiv.org/pdf/2410.20042">pdf</a>, <a href="https://arxiv.org/format/2410.20042">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Multi-IRS Enhanced Wireless Coverage: Deployment Optimization Based on Large-Scale Channel Knowledge </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Fu%2C+M">Min Fu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20042v1-abstract-short" style="display: inline;"> In this paper, we study the intelligent reflecting surface (IRS) deployment problem where a number of IRSs are optimally placed in a target area to improve its signal coverage with the serving base station (BS). To achieve this, we assume that there is a given set of candidate sites in the target area for deploying IRSs and divide the area into multiple grids of identical size. Then, we derive the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20042v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20042v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20042v1-abstract-full" style="display: none;"> In this paper, we study the intelligent reflecting surface (IRS) deployment problem where a number of IRSs are optimally placed in a target area to improve its signal coverage with the serving base station (BS). To achieve this, we assume that there is a given set of candidate sites in the target area for deploying IRSs and divide the area into multiple grids of identical size. Then, we derive the average channel power gains from the BS to IRS in each candidate site and from this IRS to any grid in the target area in terms of IRS deployment parameters, including its size, position, height, and orientation. Thus, we are able to approximate the average cascaded channel power gain from the BS to each grid via any IRS, assuming an effective IRS reflection gain based on the large-scale channel knowledge only. Next, we formulate a multi-IRS deployment optimization problem to minimize the total deployment cost by selecting a subset of candidate sites for deploying IRSs and jointly optimizing their heights, orientations, and numbers of reflecting elements while satisfying a given coverage rate performance requirement over all grids in the target area. To solve this challenging combinatorial optimization problem, we first reformulate it as an integer linear programming problem and solve it optimally using the branch-and-bound (BB) algorithm. In addition, we propose an efficient successive refinement algorithm to further reduce computational complexity. Simulation results demonstrate that the proposed lower-complexity successive refinement algorithm achieves near-optimal performance but with significantly reduced running time compared to the proposed optimal BB algorithm, as well as superior performance-cost trade-off than other baseline IRS deployment strategies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20042v1-abstract-full').style.display = 'none'; document.getElementById('2410.20042v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19765">arXiv:2410.19765</a> <span> [<a href="https://arxiv.org/pdf/2410.19765">pdf</a>, <a href="https://arxiv.org/format/2410.19765">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/978-3-031-72117-5_2">10.1007/978-3-031-72117-5_2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A New Perspective to Boost Performance Fairness for Medical Federated Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yan%2C+Y">Yunlu Yan</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Y">Yuexiang Li</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+X">Xinxing Xu</a>, <a href="/search/eess?searchtype=author&query=Goh%2C+R+S+M">Rick Siow Mong Goh</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yong Liu</a>, <a href="/search/eess?searchtype=author&query=Khan%2C+S">Salman Khan</a>, <a href="/search/eess?searchtype=author&query=Feng%2C+C">Chun-Mei Feng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19765v1-abstract-short" style="display: inline;"> Improving the fairness of federated learning (FL) benefits healthy and sustainable collaboration, especially for medical applications. However, existing fair FL methods ignore the specific characteristics of medical FL applications, i.e., domain shift among the datasets from different hospitals. In this work, we propose Fed-LWR to improve performance fairness from the perspective of feature shift,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19765v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19765v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19765v1-abstract-full" style="display: none;"> Improving the fairness of federated learning (FL) benefits healthy and sustainable collaboration, especially for medical applications. However, existing fair FL methods ignore the specific characteristics of medical FL applications, i.e., domain shift among the datasets from different hospitals. In this work, we propose Fed-LWR to improve performance fairness from the perspective of feature shift, a key issue influencing the performance of medical FL systems caused by domain shift. Specifically, we dynamically perceive the bias of the global model across all hospitals by estimating the layer-wise difference in feature representations between local and global models. To minimize global divergence, we assign higher weights to hospitals with larger differences. The estimated client weights help us to re-aggregate the local models per layer to obtain a fairer global model. We evaluate our method on two widely used federated medical image segmentation benchmarks. The results demonstrate that our method achieves better and fairer performance compared with several state-of-the-art fair FL methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19765v1-abstract-full').style.display = 'none'; document.getElementById('2410.19765v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 2 Figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Conference on Medical Image Computing and Computer-Assisted Intervention 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19452">arXiv:2410.19452</a> <span> [<a href="https://arxiv.org/pdf/2410.19452">pdf</a>, <a href="https://arxiv.org/format/2410.19452">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> NeuroClips: Towards High-fidelity and Smooth fMRI-to-Video Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Gong%2C+Z">Zixuan Gong</a>, <a href="/search/eess?searchtype=author&query=Bao%2C+G">Guangyin Bao</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Q">Qi Zhang</a>, <a href="/search/eess?searchtype=author&query=Wan%2C+Z">Zhongwei Wan</a>, <a href="/search/eess?searchtype=author&query=Miao%2C+D">Duoqian Miao</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S">Shoujin Wang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+C">Changwei Wang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+R">Rongtao Xu</a>, <a href="/search/eess?searchtype=author&query=Hu%2C+L">Liang Hu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+K">Ke Liu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yu Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19452v3-abstract-short" style="display: inline;"> Reconstruction of static visual stimuli from non-invasion brain activity fMRI achieves great success, owning to advanced deep learning models such as CLIP and Stable Diffusion. However, the research on fMRI-to-video reconstruction remains limited since decoding the spatiotemporal perception of continuous visual experiences is formidably challenging. We contend that the key to addressing these chal… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19452v3-abstract-full').style.display = 'inline'; document.getElementById('2410.19452v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19452v3-abstract-full" style="display: none;"> Reconstruction of static visual stimuli from non-invasion brain activity fMRI achieves great success, owning to advanced deep learning models such as CLIP and Stable Diffusion. However, the research on fMRI-to-video reconstruction remains limited since decoding the spatiotemporal perception of continuous visual experiences is formidably challenging. We contend that the key to addressing these challenges lies in accurately decoding both high-level semantics and low-level perception flows, as perceived by the brain in response to video stimuli. To the end, we propose NeuroClips, an innovative framework to decode high-fidelity and smooth video from fMRI. NeuroClips utilizes a semantics reconstructor to reconstruct video keyframes, guiding semantic accuracy and consistency, and employs a perception reconstructor to capture low-level perceptual details, ensuring video smoothness. During inference, it adopts a pre-trained T2V diffusion model injected with both keyframes and low-level perception flows for video reconstruction. Evaluated on a publicly available fMRI-video dataset, NeuroClips achieves smooth high-fidelity video reconstruction of up to 6s at 8FPS, gaining significant improvements over state-of-the-art models in various metrics, e.g., a 128% improvement in SSIM and an 81% improvement in spatiotemporal metrics. Our project is available at https://github.com/gongzix/NeuroClips. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19452v3-abstract-full').style.display = 'none'; document.getElementById('2410.19452v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024 Oral</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.16626">arXiv:2410.16626</a> <span> [<a href="https://arxiv.org/pdf/2410.16626">pdf</a>, <a href="https://arxiv.org/ps/2410.16626">ps</a>, <a href="https://arxiv.org/format/2410.16626">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Codebook Design and Performance Analysis for Wideband Beamforming in Terahertz Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=Mei%2C+W">Weidong Mei</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Z">Zhi Chen</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.16626v1-abstract-short" style="display: inline;"> The codebook-based analog beamforming is appealing for future terahertz (THz) communications since it can generate high-gain directional beams with low-cost phase shifters via low-complexity beam training. However, conventional beamforming codebook design based on array response vectors for narrowband communications may suffer from severe performance loss in wideband systems due to the ``beam squi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16626v1-abstract-full').style.display = 'inline'; document.getElementById('2410.16626v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.16626v1-abstract-full" style="display: none;"> The codebook-based analog beamforming is appealing for future terahertz (THz) communications since it can generate high-gain directional beams with low-cost phase shifters via low-complexity beam training. However, conventional beamforming codebook design based on array response vectors for narrowband communications may suffer from severe performance loss in wideband systems due to the ``beam squint" effect over frequency. To tackle this issue, we propose in this paper a new codebook design method for analog beamforming in wideband THz systems. In particular, to characterize the analog beamforming performance in wideband systems, we propose a new metric termed wideband beam gain, which is given by the minimum beamforming gain over the entire frequency band given a target angle. Based on this metric, a wideband analog beamforming codebook design problem is formulated for optimally balancing the beamforming gains in both the spatial and frequency domains, and the performance loss of conventional narrowband beamforming in wideband systems is analyzed. To solve the new wideband beamforming codebook design problem, we divide the spatial domain into orthogonal angular zones each associated with one beam, thereby decoupling the codebook design into a zone division sub-problem and a set of beamforming optimization sub-problems each for one zone. For the zone division sub-problem, we propose a bisection method to obtain the optimal boundaries for separating adjacent zones. While for each of the per-zone-based beamforming optimization sub-problems, we further propose an efficient augmented Lagrange method (ALM) to solve it. Numerical results demonstrate the performance superiority of our proposed codebook design for wideband analog beamforming to the narrowband beamforming codebook and also validate our performance analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.16626v1-abstract-full').style.display = 'none'; document.getElementById('2410.16626v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 8 figures. Accepted for publication by IEEE TWC</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.14965">arXiv:2410.14965</a> <span> [<a href="https://arxiv.org/pdf/2410.14965">pdf</a>, <a href="https://arxiv.org/format/2410.14965">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Non-Invasive to Invasive: Enhancing FFA Synthesis from CFP with a Benchmark Dataset and a Novel Network </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+H">Hongqiu Wang</a>, <a href="/search/eess?searchtype=author&query=Xing%2C+Z">Zhaohu Xing</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+W">Weitong Wu</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+Y">Yijun Yang</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+Q">Qingqing Tang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+M">Meixia Zhang</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+Y">Yanwu Xu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.14965v1-abstract-short" style="display: inline;"> Fundus imaging is a pivotal tool in ophthalmology, and different imaging modalities are characterized by their specific advantages. For example, Fundus Fluorescein Angiography (FFA) uniquely provides detailed insights into retinal vascular dynamics and pathology, surpassing Color Fundus Photographs (CFP) in detecting microvascular abnormalities and perfusion status. However, the conventional invas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14965v1-abstract-full').style.display = 'inline'; document.getElementById('2410.14965v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.14965v1-abstract-full" style="display: none;"> Fundus imaging is a pivotal tool in ophthalmology, and different imaging modalities are characterized by their specific advantages. For example, Fundus Fluorescein Angiography (FFA) uniquely provides detailed insights into retinal vascular dynamics and pathology, surpassing Color Fundus Photographs (CFP) in detecting microvascular abnormalities and perfusion status. However, the conventional invasive FFA involves discomfort and risks due to fluorescein dye injection, and it is meaningful but challenging to synthesize FFA images from non-invasive CFP. Previous studies primarily focused on FFA synthesis in a single disease category. In this work, we explore FFA synthesis in multiple diseases by devising a Diffusion-guided generative adversarial network, which introduces an adaptive and dynamic diffusion forward process into the discriminator and adds a category-aware representation enhancer. Moreover, to facilitate this research, we collect the first multi-disease CFP and FFA paired dataset, named the Multi-disease Paired Ocular Synthesis (MPOS) dataset, with four different fundus diseases. Experimental results show that our FFA synthesis network can generate better FFA images compared to state-of-the-art methods. Furthermore, we introduce a paired-modal diagnostic network to validate the effectiveness of synthetic FFA images in the diagnosis of multiple fundus diseases, and the results show that our synthesized FFA images with the real CFP images have higher diagnosis accuracy than that of the compared FFA synthesizing methods. Our research bridges the gap between non-invasive imaging and FFA, thereby offering promising prospects to enhance ophthalmic diagnosis and patient care, with a focus on reducing harm to patients through non-invasive procedures. Our dataset and code will be released to support further research in this field (https://github.com/whq-xxh/FFA-Synthesis). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.14965v1-abstract-full').style.display = 'none'; document.getElementById('2410.14965v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ACMMM 24 MCHM</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.09436">arXiv:2410.09436</a> <span> [<a href="https://arxiv.org/pdf/2410.09436">pdf</a>, <a href="https://arxiv.org/ps/2410.09436">ps</a>, <a href="https://arxiv.org/format/2410.09436">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Sum Rate Maximization for Movable Antenna Enhanced Multiuser Covert Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Mao%2C+H">Haobin Mao</a>, <a href="/search/eess?searchtype=author&query=Pi%2C+X">Xiangyu Pi</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Xia%2C+X">Xiang-Gen Xia</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.09436v2-abstract-short" style="display: inline;"> In this letter, we propose to employ movable antenna (MA) to enhance covert communications with noise uncertainty, where the confidential data is transmitted from an MA-aided access point (AP) to multiple users with a warden attempting to detect the existence of the legal transmission. To maximize the sum rate of users under covertness constraint, we formulate an optimization problem to jointly de… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09436v2-abstract-full').style.display = 'inline'; document.getElementById('2410.09436v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.09436v2-abstract-full" style="display: none;"> In this letter, we propose to employ movable antenna (MA) to enhance covert communications with noise uncertainty, where the confidential data is transmitted from an MA-aided access point (AP) to multiple users with a warden attempting to detect the existence of the legal transmission. To maximize the sum rate of users under covertness constraint, we formulate an optimization problem to jointly design the transmit beamforming and the positions of MAs at the AP. To solve the formulated non-convex optimization problem, we develop a block successive upper-bound minimization (BSUM) based algorithm, where the proximal distance algorithm (PDA) and the successive convex approximation (SCA) are employed to optimize the transmit beamforming and the MAs' positions, respectively. Simulation results show that the proposed MAs-aided system can significantly increase the covert sum rate via antenna position optimization as compared to conventional systems with fixed-position antennas (FPAs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.09436v2-abstract-full').style.display = 'none'; document.getElementById('2410.09436v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 5 figures (subfigures included), submitted to an IEEE journal for possible publication</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.08485">arXiv:2410.08485</a> <span> [<a href="https://arxiv.org/pdf/2410.08485">pdf</a>, <a href="https://arxiv.org/format/2410.08485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Beyond GFVC: A Progressive Face Video Compression Framework with Adaptive Visual Tokens </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Chen%2C+B">Bolin Chen</a>, <a href="/search/eess?searchtype=author&query=Yin%2C+S">Shanzhi Yin</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Z">Zihan Zhang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+J">Jie Chen</a>, <a href="/search/eess?searchtype=author&query=Liao%2C+R">Ru-Ling Liao</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lingyu Zhu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S">Shiqi Wang</a>, <a href="/search/eess?searchtype=author&query=Ye%2C+Y">Yan Ye</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.08485v1-abstract-short" style="display: inline;"> Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08485v1-abstract-full').style.display = 'inline'; document.getElementById('2410.08485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.08485v1-abstract-full" style="display: none;"> Recently, deep generative models have greatly advanced the progress of face video coding towards promising rate-distortion performance and diverse application functionalities. Beyond traditional hybrid video coding paradigms, Generative Face Video Compression (GFVC) relying on the strong capabilities of deep generative models and the philosophy of early Model-Based Coding (MBC) can facilitate the compact representation and realistic reconstruction of visual face signal, thus achieving ultra-low bitrate face video communication. However, these GFVC algorithms are sometimes faced with unstable reconstruction quality and limited bitrate ranges. To address these problems, this paper proposes a novel Progressive Face Video Compression framework, namely PFVC, that utilizes adaptive visual tokens to realize exceptional trade-offs between reconstruction robustness and bandwidth intelligence. In particular, the encoder of the proposed PFVC projects the high-dimensional face signal into adaptive visual tokens in a progressive manner, whilst the decoder can further reconstruct these adaptive visual tokens for motion estimation and signal synthesis with different granularity levels. Experimental results demonstrate that the proposed PFVC framework can achieve better coding flexibility and superior rate-distortion performance in comparison with the latest Versatile Video Coding (VVC) codec and the state-of-the-art GFVC algorithms. The project page can be found at https://github.com/Berlin0610/PFVC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.08485v1-abstract-full').style.display = 'none'; document.getElementById('2410.08485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07196">arXiv:2410.07196</a> <span> [<a href="https://arxiv.org/pdf/2410.07196">pdf</a>, <a href="https://arxiv.org/format/2410.07196">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> EEGUnity: Open-Source Tool in Facilitating Unified EEG Datasets Towards Large-Scale EEG Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Qin%2C+C">Chengxuan Qin</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+R">Rui Yang</a>, <a href="/search/eess?searchtype=author&query=You%2C+W">Wenlong You</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Z">Zhige Chen</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Longsheng Zhu</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+M">Mengjie Huang</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Z">Zidong Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07196v1-abstract-short" style="display: inline;"> The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07196v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07196v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07196v1-abstract-full" style="display: none;"> The increasing number of dispersed EEG dataset publications and the advancement of large-scale Electroencephalogram (EEG) models have increased the demand for practical tools to manage diverse EEG datasets. However, the inherent complexity of EEG data, characterized by variability in content data, metadata, and data formats, poses challenges for integrating multiple datasets and conducting large-scale EEG model research. To tackle the challenges, this paper introduces EEGUnity, an open-source tool that incorporates modules of 'EEG Parser', 'Correction', 'Batch Processing', and 'Large Language Model Boost'. Leveraging the functionality of such modules, EEGUnity facilitates the efficient management of multiple EEG datasets, such as intelligent data structure inference, data cleaning, and data unification. In addition, the capabilities of EEGUnity ensure high data quality and consistency, providing a reliable foundation for large-scale EEG data research. EEGUnity is evaluated across 25 EEG datasets from different sources, offering several typical batch processing workflows. The results demonstrate the high performance and flexibility of EEGUnity in parsing and data processing. The project code is publicly available at github.com/Baizhige/EEGUnity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07196v1-abstract-full').style.display = 'none'; document.getElementById('2410.07196v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.03426">arXiv:2410.03426</a> <span> [<a href="https://arxiv.org/pdf/2410.03426">pdf</a>, <a href="https://arxiv.org/ps/2410.03426">ps</a>, <a href="https://arxiv.org/format/2410.03426">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable-Antenna Aided Secure Transmission for RIS-ISAC Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ma%2C+Y">Yaodong Ma</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+K">Kai Liu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yanming Liu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.03426v1-abstract-short" style="display: inline;"> Integrated sensing and communication (ISAC) systems have the issue of secrecy leakage when using the ISAC waveforms for sensing, thus posing a potential risk for eavesdropping. To address this problem, we propose to employ movable antennas (MAs) and reconfigurable intelligent surface (RIS) to enhance the physical layer security (PLS) performance of ISAC systems, where an eavesdropping target poten… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03426v1-abstract-full').style.display = 'inline'; document.getElementById('2410.03426v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.03426v1-abstract-full" style="display: none;"> Integrated sensing and communication (ISAC) systems have the issue of secrecy leakage when using the ISAC waveforms for sensing, thus posing a potential risk for eavesdropping. To address this problem, we propose to employ movable antennas (MAs) and reconfigurable intelligent surface (RIS) to enhance the physical layer security (PLS) performance of ISAC systems, where an eavesdropping target potentially wiretaps the signals transmitted by the base station (BS). To evaluate the synergistic performance gain provided by MAs and RIS, we formulate an optimization problem for maximizing the sum-rate of the users by jointly optimizing the transmit/receive beamformers of the BS, the reflection coefficients of the RIS, and the positions of MAs at communication users, subject to a minimum communication rate requirement for each user, a minimum radar sensing requirement, and a maximum secrecy leakage to the eavesdropping target. To solve this non-convex problem with highly coupled variables, a two-layer penalty-based algorithm is developed by updating the penalty parameter in the outer-layer iterations to achieve a trade-off between the optimality and feasibility of the solution. In the inner-layer iterations, the auxiliary variables are first obtained with semi-closed-form solutions using Lagrange duality. Then, the receive beamformer filter at the BS is optimized by solving a Rayleigh-quotient subproblem. Subsequently, the transmit beamformer matrix is obtained by solving a convex subproblem. Finally, the majorization-minimization (MM) algorithm is employed to optimize the RIS reflection coefficients and the positions of MAs. Extensive simulation results validate the considerable benefits of the proposed MAs-aided RIS-ISAC systems in enhancing security performance compared to traditional fixed position antenna (FPA)-based systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.03426v1-abstract-full').style.display = 'none'; document.getElementById('2410.03426v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19420">arXiv:2409.19420</a> <span> [<a href="https://arxiv.org/pdf/2409.19420">pdf</a>, <a href="https://arxiv.org/format/2409.19420">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Multi-sensor Learning Enables Information Transfer across Different Sensory Data and Augments Multi-modality Imaging </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lingting Zhu</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yizheng Chen</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+L">Lianli Liu</a>, <a href="/search/eess?searchtype=author&query=Xing%2C+L">Lei Xing</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+L">Lequan Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19420v1-abstract-short" style="display: inline;"> Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spatially registered hardware, which limits the accuracy and utility of multi-modality imaging. Here, we… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19420v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19420v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19420v1-abstract-full" style="display: none;"> Multi-modality imaging is widely used in clinical practice and biomedical research to gain a comprehensive understanding of an imaging subject. Currently, multi-modality imaging is accomplished by post hoc fusion of independently reconstructed images under the guidance of mutual information or spatially registered hardware, which limits the accuracy and utility of multi-modality imaging. Here, we investigate a data-driven multi-modality imaging (DMI) strategy for synergetic imaging of CT and MRI. We reveal two distinct types of features in multi-modality imaging, namely intra- and inter-modality features, and present a multi-sensor learning (MSL) framework to utilize the crossover inter-modality features for augmented multi-modality imaging. The MSL imaging approach breaks down the boundaries of traditional imaging modalities and allows for optimal hybridization of CT and MRI, which maximizes the use of sensory data. We showcase the effectiveness of our DMI strategy through synergetic CT-MRI brain imaging. The principle of DMI is quite general and holds enormous potential for various DMI applications across disciplines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19420v1-abstract-full').style.display = 'none'; document.getElementById('2409.19420v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures. Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19346">arXiv:2409.19346</a> <span> [<a href="https://arxiv.org/pdf/2409.19346">pdf</a>, <a href="https://arxiv.org/ps/2409.19346">ps</a>, <a href="https://arxiv.org/format/2409.19346">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Channel Estimation for Movable Antenna Aided Wideband Communication Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Cao%2C+S">Songqi Cao</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=Xia%2C+X">Xiang-Gen Xia</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19346v1-abstract-short" style="display: inline;"> Movable antenna (MA) is an emerging technology that can significantly improve communication performance via the continuous adjustment of the antenna positions. To unleash the potential of MAs in wideband communication systems, acquiring accurate channel state information (CSI), i.e., the channel frequency responses (CFRs) between any position pair within the transmit (Tx) region and the receive (R… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19346v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19346v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19346v1-abstract-full" style="display: none;"> Movable antenna (MA) is an emerging technology that can significantly improve communication performance via the continuous adjustment of the antenna positions. To unleash the potential of MAs in wideband communication systems, acquiring accurate channel state information (CSI), i.e., the channel frequency responses (CFRs) between any position pair within the transmit (Tx) region and the receive (Rx) region across all subcarriers, is a crucial issue. In this paper, we study the channel estimation problem for wideband MA systems. To start with, we express the CFRs as a combination of the field-response vectors (FRVs), delay-response vector (DRV), and path-response tensor (PRT), which exhibit sparse characteristics and can be recovered by using a limited number of channel measurements at selected position pairs of Tx and Rx MAs over a few subcarriers. Specifically, we first formulate the recovery of the FRVs and DRV as a problem with multiple measurement vectors in compressed sensing (MMV-CS), which can be solved via a simultaneous orthogonal matching pursuit (SOMP) algorithm. Next, we estimate the PRT using the least-square (LS) method. Moreover, we also devise an alternating refinement approach to further improve the accuracy of the estimated FRVs, DRV, and PRT. This is achieved by minimizing the discrepancy between the received pilots and those constructed by the estimated CSI, which can be efficiently carried out by using the gradient descent algorithm. Finally, simulation results demonstrate that both the SOMP-based channel estimation method and alternating refinement method can reconstruct the complete wideband CSI with high accuracy, where the alternating refinement method performs better despite a higher complexity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19346v1-abstract-full').style.display = 'none'; document.getElementById('2409.19346v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.19316">arXiv:2409.19316</a> <span> [<a href="https://arxiv.org/pdf/2409.19316">pdf</a>, <a href="https://arxiv.org/ps/2409.19316">ps</a>, <a href="https://arxiv.org/format/2409.19316">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna Enabled Near-Field Communications: Channel Modeling and Performance Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Ma%2C+W">Wenyan Ma</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.19316v1-abstract-short" style="display: inline;"> Movable antenna (MA) technology offers promising potential to enhance wireless communication by allowing flexible antenna movement. To maximize spatial degrees of freedom (DoFs), larger movable regions are required, which may render the conventional far-field assumption for channels between transceivers invalid. In light of it, we investigate in this paper MA-enabled near-field communications, whe… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19316v1-abstract-full').style.display = 'inline'; document.getElementById('2409.19316v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.19316v1-abstract-full" style="display: none;"> Movable antenna (MA) technology offers promising potential to enhance wireless communication by allowing flexible antenna movement. To maximize spatial degrees of freedom (DoFs), larger movable regions are required, which may render the conventional far-field assumption for channels between transceivers invalid. In light of it, we investigate in this paper MA-enabled near-field communications, where a base station (BS) with multiple movable subarrays serves multiple users, each equipped with a fixed-position antenna (FPA). First, we extend the field response channel model for MA systems to the near-field propagation scenario. Next, we examine MA-aided multiuser communication systems under both digital and analog beamforming architectures. For digital beamforming, spatial division multiple access (SDMA) is utilized, where an upper bound on the minimum signal-to-interference-plus-noise ratio (SINR) across users is derived in closed form. A low-complexity algorithm based on zero-forcing (ZF) is then proposed to jointly optimize the antenna position vector (APV) and digital beamforming matrix (DBFM) to approach this bound. For analog beamforming, orthogonal frequency division multiple access (OFDMA) is employed, and an upper bound on the minimum signal-to-noise ratio (SNR) among users is derived. An alternating optimization (AO) algorithm is proposed to iteratively optimize the APV, analog beamforming vector (ABFV), and power allocation until convergence. For both architectures, we further explore MA design strategies based on statistical channel state information (CSI), with the APV updated less frequently to reduce the antenna movement overhead. Simulation results demonstrate that our proposed algorithms achieve performance close to the derived bounds and also outperform the benchmark schemes using dense or sparse arrays with FPAs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.19316v1-abstract-full').style.display = 'none'; document.getElementById('2409.19316v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.13278">arXiv:2409.13278</a> <span> [<a href="https://arxiv.org/pdf/2409.13278">pdf</a>, <a href="https://arxiv.org/format/2409.13278">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> 6D Movable Antenna Enhanced Interference Mitigation for Cellular-Connected UAV Communications </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ren%2C+T">Tianshi Ren</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+X">Xianchao Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Ma%2C+W">Wenyan Ma</a>, <a href="/search/eess?searchtype=author&query=Gao%2C+X">Xiaozheng Gao</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.13278v1-abstract-short" style="display: inline;"> Cellular-connected unmanned aerial vehicle (UAV) communications is an enabling technology to transmit control signaling or payload data for UAVs through cellular networks. Due to the line-of-sight (LoS) dominant air-to-ground channels, efficient interference mitigation is crucial to UAV communications, while the conventional fixed-position antenna (FPA) arrays have limited degrees of freedom (DoFs… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13278v1-abstract-full').style.display = 'inline'; document.getElementById('2409.13278v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.13278v1-abstract-full" style="display: none;"> Cellular-connected unmanned aerial vehicle (UAV) communications is an enabling technology to transmit control signaling or payload data for UAVs through cellular networks. Due to the line-of-sight (LoS) dominant air-to-ground channels, efficient interference mitigation is crucial to UAV communications, while the conventional fixed-position antenna (FPA) arrays have limited degrees of freedom (DoFs) to suppress the interference between the UAV and its non-associated co-channel base stations (BSs). To address this challenge, we propose in this letter a new approach by utilizing the six-dimensional movable antenna (6DMA) arrays to enhance the interference mitigation for the UAV. Specifically, we propose an efficient block coordinate descent (BCD) algorithm to iteratively optimize the antenna position vector (APV), array rotation vector (ARV), receive beamforming vector, and associated BS of the UAV to maximize its signal-to-interference-plus-noise ratio (SINR). Numerical results show that the proposed 6DMA enhanced cellular-connected UAV communication can significantly outperform that with the traditional FPA arrays and other benchmark schemes in terms of interference mitigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.13278v1-abstract-full').style.display = 'none'; document.getElementById('2409.13278v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11711">arXiv:2409.11711</a> <span> [<a href="https://arxiv.org/pdf/2409.11711">pdf</a>, <a href="https://arxiv.org/format/2409.11711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LFIC-DRASC: Deep Light Field Image Compression Using Disentangled Representation and Asymmetrical Strip Convolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Feng%2C+S">Shiyu Feng</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Y">Yun Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Linwei Zhu</a>, <a href="/search/eess?searchtype=author&query=Kwong%2C+S">Sam Kwong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11711v1-abstract-short" style="display: inline;"> Light-Field (LF) image is emerging 4D data of light rays that is capable of realistically presenting spatial and angular information of 3D scene. However, the large data volume of LF images becomes the most challenging issue in real-time processing, transmission, and storage. In this paper, we propose an end-to-end deep LF Image Compression method Using Disentangled Representation and Asymmetrical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11711v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11711v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11711v1-abstract-full" style="display: none;"> Light-Field (LF) image is emerging 4D data of light rays that is capable of realistically presenting spatial and angular information of 3D scene. However, the large data volume of LF images becomes the most challenging issue in real-time processing, transmission, and storage. In this paper, we propose an end-to-end deep LF Image Compression method Using Disentangled Representation and Asymmetrical Strip Convolution (LFIC-DRASC) to improve coding efficiency. Firstly, we formulate the LF image compression problem as learning a disentangled LF representation network and an image encoding-decoding network. Secondly, we propose two novel feature extractors that leverage the structural prior of LF data by integrating features across different dimensions. Meanwhile, disentangled LF representation network is proposed to enhance the LF feature disentangling and decoupling. Thirdly, we propose the LFIC-DRASC for LF image compression, where two Asymmetrical Strip Convolution (ASC) operators, i.e. horizontal and vertical, are proposed to capture long-range correlation in LF feature space. These two ASC operators can be combined with the square convolution to further decouple LF features, which enhances the model ability in representing intricate spatial relationships. Experimental results demonstrate that the proposed LFIC-DRASC achieves an average of 20.5\% bit rate reductions comparing with the state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11711v1-abstract-full').style.display = 'none'; document.getElementById('2409.11711v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10351">arXiv:2409.10351</a> <span> [<a href="https://arxiv.org/pdf/2409.10351">pdf</a>, <a href="https://arxiv.org/format/2409.10351">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LWC.2024.3485513">10.1109/LWC.2024.3485513 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Over-the-Air Computation via 2D Movable Antenna Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+N">Nianzu Li</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+P">Peiran Wu</a>, <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Mei%2C+W">Weidong Mei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10351v1-abstract-short" style="display: inline;"> Movable antenna (MA) has emerged as a promising technology for improving the performance of wireless communication systems, which enables local movement of the antennas to create more favorable channel conditions. In this letter, we advance its application for over-the-air computation (AirComp) network, where an access point is equipped with a two-dimensional (2D) MA array to aggregate wireless da… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10351v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10351v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10351v1-abstract-full" style="display: none;"> Movable antenna (MA) has emerged as a promising technology for improving the performance of wireless communication systems, which enables local movement of the antennas to create more favorable channel conditions. In this letter, we advance its application for over-the-air computation (AirComp) network, where an access point is equipped with a two-dimensional (2D) MA array to aggregate wireless data from massive users. We aim to minimize the computation mean square error (CMSE) by jointly optimizing the antenna position vector (APV), the receive combining vector at the access point and the transmit coefficients from all users. To tackle this highly non-convex problem, we propose a two-loop iterative algorithm, where the particle swarm optimization (PSO) approach is leveraged to obtain a suboptimal APV in the outer loop while the receive combining vector and transmit coefficients are alternately optimized in the inner loop. Numerical results demonstrate that the proposed MA-enhanced AirComp network outperforms the conventional network with fixed-position antennas (FPAs). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10351v1-abstract-full').style.display = 'none'; document.getElementById('2409.10351v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Wireless Communications Letters, vol. 14, no. 1, pp. 33-37, Jan. 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08500">arXiv:2409.08500</a> <span> [<a href="https://arxiv.org/pdf/2409.08500">pdf</a>, <a href="https://arxiv.org/format/2409.08500">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Cross-conditioned Diffusion Model for Medical Image to Image Translation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Xing%2C+Z">Zhaohu Xing</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+S">Sicheng Yang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+S">Sixiang Chen</a>, <a href="/search/eess?searchtype=author&query=Ye%2C+T">Tian Ye</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+Y">Yijun Yang</a>, <a href="/search/eess?searchtype=author&query=Qin%2C+J">Jing Qin</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08500v1-abstract-short" style="display: inline;"> Multi-modal magnetic resonance imaging (MRI) provides rich, complementary information for analyzing diseases. However, the practical challenges of acquiring multiple MRI modalities, such as cost, scan time, and safety considerations, often result in incomplete datasets. This affects both the quality of diagnosis and the performance of deep learning models trained on such data. Recent advancements… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08500v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08500v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08500v1-abstract-full" style="display: none;"> Multi-modal magnetic resonance imaging (MRI) provides rich, complementary information for analyzing diseases. However, the practical challenges of acquiring multiple MRI modalities, such as cost, scan time, and safety considerations, often result in incomplete datasets. This affects both the quality of diagnosis and the performance of deep learning models trained on such data. Recent advancements in generative adversarial networks (GANs) and denoising diffusion models have shown promise in natural and medical image-to-image translation tasks. However, the complexity of training GANs and the computational expense associated with diffusion models hinder their development and application in this task. To address these issues, we introduce a Cross-conditioned Diffusion Model (CDM) for medical image-to-image translation. The core idea of CDM is to use the distribution of target modalities as guidance to improve synthesis quality while achieving higher generation efficiency compared to conventional diffusion models. First, we propose a Modality-specific Representation Model (MRM) to model the distribution of target modalities. Then, we design a Modality-decoupled Diffusion Network (MDN) to efficiently and effectively learn the distribution from MRM. Finally, a Cross-conditioned UNet (C-UNet) with a Condition Embedding module is designed to synthesize the target modalities with the source modalities as input and the target distribution for guidance. Extensive experiments conducted on the BraTS2023 and UPenn-GBM benchmark datasets demonstrate the superiority of our method. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08500v1-abstract-full').style.display = 'none'; document.getElementById('2409.08500v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">miccai24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10552">arXiv:2408.10552</a> <span> [<a href="https://arxiv.org/pdf/2408.10552">pdf</a>, <a href="https://arxiv.org/ps/2408.10552">ps</a>, <a href="https://arxiv.org/format/2408.10552">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LWC.2024.3490697">10.1109/LWC.2024.3490697 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Near-Field Multiuser Communications Aided by Movable Antennas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ding%2C+J">Jingze Ding</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+Z">Zijian Zhou</a>, <a href="/search/eess?searchtype=author&query=Jiao%2C+B">Bingli Jiao</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10552v2-abstract-short" style="display: inline;"> This letter investigates movable antenna (MA)-aided downlink (DL) multiuser communication systems under the near-field channel condition, where both the base station (BS) and the users are equipped with MAs to fully exploit the degrees of freedom (DoFs) in antenna position optimization. We develop a general channel model to accurately describe the channel characteristics in the near-field region a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10552v2-abstract-full').style.display = 'inline'; document.getElementById('2408.10552v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10552v2-abstract-full" style="display: none;"> This letter investigates movable antenna (MA)-aided downlink (DL) multiuser communication systems under the near-field channel condition, where both the base station (BS) and the users are equipped with MAs to fully exploit the degrees of freedom (DoFs) in antenna position optimization. We develop a general channel model to accurately describe the channel characteristics in the near-field region and formulate an MA-position optimization problem to minimize the BS's transmit power subject to users' individual rate constraints. To solve this problem, we propose a two-loop dynamic neighborhood pruning particle swarm optimization (DNPPSO) algorithm that significantly reduces the computational complexity as compared to the standard particle swarm optimization (PSO) algorithm while achieving similar performance. Simulation results validate the effectiveness and advantages of the proposed scheme in power-saving for near-field multiuser communications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10552v2-abstract-full').style.display = 'none'; document.getElementById('2408.10552v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been accepted by IEEE Wireless Communications Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.06789">arXiv:2408.06789</a> <span> [<a href="https://arxiv.org/pdf/2408.06789">pdf</a>, <a href="https://arxiv.org/ps/2408.06789">ps</a>, <a href="https://arxiv.org/format/2408.06789">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/LWC.2024.3403138">10.1109/LWC.2024.3403138 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sum Rate Maximization for Movable Antenna Enabled Uplink NOMA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+N">Nianzu Li</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+P">Peiran Wu</a>, <a href="/search/eess?searchtype=author&query=Ning%2C+B">Boyu Ning</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.06789v1-abstract-short" style="display: inline;"> Movable antenna (MA) has been recently proposed as a promising candidate technology for the next generation wireless communication systems due to its significant capability of reconfiguring wireless channels via antenna movement. In this letter, we study an MA-enabled uplink non-orthogonal multiple access (NOMA) system, where each user is equipped with a single MA. Our objective is to maximize the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06789v1-abstract-full').style.display = 'inline'; document.getElementById('2408.06789v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.06789v1-abstract-full" style="display: none;"> Movable antenna (MA) has been recently proposed as a promising candidate technology for the next generation wireless communication systems due to its significant capability of reconfiguring wireless channels via antenna movement. In this letter, we study an MA-enabled uplink non-orthogonal multiple access (NOMA) system, where each user is equipped with a single MA. Our objective is to maximize the users' sum rate by jointly optimizing the MAs' positions, the decoding order and the power control. To solve this non-convex problem, we equivalently transform it into two tractable subproblems. First, we use the successive convex approximation (SCA) to find a locally optimal solution for the antenna position optimization subproblem. Next, we derive the closed-form optimal solution of the decoding order and power control subproblem. Numerical results show that our proposed MA-enabled NOMA system can significantly enhance the sum rate compared to fixed-position antenna (FPA) systems and orthogonal multiple access (OMA) systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.06789v1-abstract-full').style.display = 'none'; document.getElementById('2408.06789v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures. Accepted to IEEE Wireless Communications Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Wireless Communications Letters, vol. 13, no. 8, pp. 2140-2144, Aug. 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20252">arXiv:2407.20252</a> <span> [<a href="https://arxiv.org/pdf/2407.20252">pdf</a>, <a href="https://arxiv.org/format/2407.20252">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Power Measurement Enabled Channel Autocorrelation Matrix Estimation for IRS-Assisted Wireless Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yan%2C+G">Ge Yan</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20252v1-abstract-short" style="display: inline;"> By reconfiguring wireless channels via passive signal reflection, intelligent reflecting surface (IRS) can bring significant performance enhancement for wireless communication systems. However, such performance improvement generally relies on the knowledge of channel state information (CSI) for IRS-involved links. Prior works on IRS CSI acquisition mainly estimate IRS-cascaded channels based on th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20252v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20252v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20252v1-abstract-full" style="display: none;"> By reconfiguring wireless channels via passive signal reflection, intelligent reflecting surface (IRS) can bring significant performance enhancement for wireless communication systems. However, such performance improvement generally relies on the knowledge of channel state information (CSI) for IRS-involved links. Prior works on IRS CSI acquisition mainly estimate IRS-cascaded channels based on the extra pilot signals received at the users/base station (BS) with time-varying IRS reflections, which, however, needs to modify the existing channel training/estimation protocols of wireless systems. To address this issue, we propose in this paper a new channel estimation scheme for IRS-assisted communication systems based on the received signal power measured at the user terminal, which is practically attainable without the need of changing the current protocol. Due to the lack of signal phase information in measured power, the autocorrelation matrix of the BS-IRS-user cascaded channel is estimated by solving an equivalent rank-minimization problem. To this end, a low-rank-approaching (LRA) algorithm is proposed by employing the fractional programming and alternating optimization techniques. To reduce computational complexity, an approximate LRA (ALRA) algorithm is also developed. Furthermore, these two algorithms are extended to be robust against the receiver noise and quantization error in power measurement. Simulation results are provided to verify the effectiveness of the proposed channel estimation algorithms as well as the IRS passive reflection design based on the estimated channel autocorrelation matrix. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20252v1-abstract-full').style.display = 'none'; document.getElementById('2407.20252v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 16 figures, part of this work was presented at the IEEE Global Communications Conference Workshops 2023, Kuala Lumpur, Malaysia. arXiv admin note: text overlap with arXiv:2310.11038</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.17691">arXiv:2407.17691</a> <span> [<a href="https://arxiv.org/pdf/2407.17691">pdf</a>, <a href="https://arxiv.org/format/2407.17691">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> System-Level Simulation Framework for NB-IoT: Key Features and Performance Evaluation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhang%2C+S">Shutao Zhang</a>, <a href="/search/eess?searchtype=author&query=Wen%2C+W">Wenkun Wen</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+P">Peiran Wu</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+H">Hongqing Huang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Liya Zhu</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+Y">Yijia Guo</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+T">Tingting Yang</a>, <a href="/search/eess?searchtype=author&query=Xia%2C+M">Minghua Xia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.17691v2-abstract-short" style="display: inline;"> Narrowband Internet of Things (NB-IoT) is a technology specifically designated by the 3rd Generation Partnership Project (3GPP) to meet the explosive demand for massive machine-type communications (mMTC), and it is evolving to RedCap. Industrial companies have increasingly adopted NB-IoT as the solution for mMTC due to its lightweight design and comprehensive technical specifications released by 3… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17691v2-abstract-full').style.display = 'inline'; document.getElementById('2407.17691v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.17691v2-abstract-full" style="display: none;"> Narrowband Internet of Things (NB-IoT) is a technology specifically designated by the 3rd Generation Partnership Project (3GPP) to meet the explosive demand for massive machine-type communications (mMTC), and it is evolving to RedCap. Industrial companies have increasingly adopted NB-IoT as the solution for mMTC due to its lightweight design and comprehensive technical specifications released by 3GPP. This paper presents a system-level simulation framework for NB-IoT networks to evaluate their performance. The system-level simulator is structured into four parts: initialization, pre-generation, main simulation loop, and post-processing. Additionally, three essential features are investigated to enhance coverage, support massive connections, and ensure low power consumption, respectively. Simulation results demonstrate that the cumulative distribution function curves of the signal-to-interference-and-noise ratio fully comply with industrial standards. Furthermore, the throughput performance explains how NB-IoT networks realize massive connections at the cost of data rate. This work highlights its practical utility and paves the way for developing NB-IoT networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.17691v2-abstract-full').style.display = 'none'; document.getElementById('2407.17691v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16404">arXiv:2407.16404</a> <span> [<a href="https://arxiv.org/pdf/2407.16404">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Evaluating Uncertainties in Electricity Markets via Machine Learning and Quantum Computing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+S">Shuyang Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+Z">Ziqing Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Linghua Zhu</a>, <a href="/search/eess?searchtype=author&query=Ye%2C+Y">Yujian Ye</a>, <a href="/search/eess?searchtype=author&query=Bu%2C+S">Siqi Bu</a>, <a href="/search/eess?searchtype=author&query=Djokic%2C+S+Z">Sasa Z. Djokic</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16404v1-abstract-short" style="display: inline;"> The analysis of decision-making process in electricity markets is crucial for understanding and resolving issues related to market manipulation and reduced social welfare. Traditional Multi-Agent Reinforcement Learning (MARL) method can model decision-making of generation companies (GENCOs), but faces challenges due to uncertainties in policy functions, reward functions, and inter-agent interactio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16404v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16404v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16404v1-abstract-full" style="display: none;"> The analysis of decision-making process in electricity markets is crucial for understanding and resolving issues related to market manipulation and reduced social welfare. Traditional Multi-Agent Reinforcement Learning (MARL) method can model decision-making of generation companies (GENCOs), but faces challenges due to uncertainties in policy functions, reward functions, and inter-agent interactions. Quantum computing offers a promising solution to resolve these uncertainties, and this paper introduces the Quantum Multi-Agent Deep Q-Network (Q-MADQN) method, which integrates variational quantum circuits into the traditional MARL framework. The main contributions of the paper are: identifying the correspondence between market uncertainties and quantum properties, proposing the Q-MADQN algorithm for simulating electricity market bidding, and demonstrating that Q-MADQN allows for a more thorough exploration and simulates more potential bidding strategies of profit-oriented GENCOs, compared to conventional methods, without compromising computational efficiency. The proposed method is illustrated on IEEE 30-bus test network, confirming that it offers a more accurate model for simulating complex market dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16404v1-abstract-full').style.display = 'none'; document.getElementById('2407.16404v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">3 pages, 3 figures, plan for submitting to IEEE Power Engineering Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11413">arXiv:2407.11413</a> <span> [<a href="https://arxiv.org/pdf/2407.11413">pdf</a>, <a href="https://arxiv.org/format/2407.11413">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optimization and Control">math.OC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Distributed Prescribed-Time Convex Optimization: Cascade Design and Time-Varying Gain Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zuo%2C+G">Gewei Zuo</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lijun Zhu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yujuan Wang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Z">Zhiyong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11413v2-abstract-short" style="display: inline;"> In this paper, we address the distributed prescribed-time convex optimization (DPTCO) problem for a class of nonlinear multi-agent systems (MASs) under undirected connected graph. A cascade design framework is proposed such that the DPTCO implementation is divided into two parts: distributed optimal trajectory generator design and local reference trajectory tracking controller design. The DPTCO pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11413v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11413v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11413v2-abstract-full" style="display: none;"> In this paper, we address the distributed prescribed-time convex optimization (DPTCO) problem for a class of nonlinear multi-agent systems (MASs) under undirected connected graph. A cascade design framework is proposed such that the DPTCO implementation is divided into two parts: distributed optimal trajectory generator design and local reference trajectory tracking controller design. The DPTCO problem is then transformed into the prescribed-time stabilization problem of a cascaded system. Changing Lyapunov function method and time-varying state transformation method together with the sufficient conditions are proposed to prove the prescribed-time stabilization of the cascaded system as well as the uniform boundedness of internal signals in the closed-loop systems. The proposed framework is then utilized to solve robust DPTCO problem for a class of chain-integrator MASs with external disturbances by constructing a novel variables and exploiting the property of time-varying gains. The proposed framework is further utilized to solve the adaptive DPTCO problem for a class of strict-feedback MASs with parameter uncertainty, in which backstepping method with prescribed-time dynamic filter is adopted. The descending power state transformation is introduced to compensate the growth of increasing rate induced by the derivative of time-varying gains in recursive steps and the high-order derivative of local reference trajectory is not required. Finally, theoretical results are verified by two numerical examples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11413v2-abstract-full').style.display = 'none'; document.getElementById('2407.11413v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11408">arXiv:2407.11408</a> <span> [<a href="https://arxiv.org/pdf/2407.11408">pdf</a>, <a href="https://arxiv.org/format/2407.11408">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Prescribed-time Cooperative Output Regulation of Linear Heterogeneous Multi-agent Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zuo%2C+G">Gewei Zuo</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lijun Zhu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yujuan Wang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Z">Zhiyong Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11408v2-abstract-short" style="display: inline;"> A finite-time protocol for a multi-agent systems (MASs) can guarantee the convergence of every agent in a finite time interval in contrast to the asymptotic convergence, but the settling time depends on the initial condition and design parameters and is inconsistent across the agents. In this paper, we study the prescribed-time cooperative output regulation (PTCOR) problem for a class of linear he… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11408v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11408v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11408v2-abstract-full" style="display: none;"> A finite-time protocol for a multi-agent systems (MASs) can guarantee the convergence of every agent in a finite time interval in contrast to the asymptotic convergence, but the settling time depends on the initial condition and design parameters and is inconsistent across the agents. In this paper, we study the prescribed-time cooperative output regulation (PTCOR) problem for a class of linear heterogeneous MASs under a directed communication graph, where the settling time of every agent can be specified a priori and thus consistent. As a special case of PTCOR, the necessary and sufficient condition for prescribed-time output regulation of an individual system is first discussed. Then, the PTCOR problem is converted into two cascaded subsystem, where the first one composed of distributed estimate errors and local estimate errors and the second one is for local tracking errors. The criterion for prescribed-time stabilization of the cascaded system is proposed and is found to be different from that of traditional asymptotic stabilization of a cascaded system. Under the criterion and sufficient condition, the general PTCOR problem is studied in two scenarios including state feedback control and measurement output feedback control. In particular, a distributed prescribed-time observer for each subsystem is explicitly constructed to estimate the exosystem's state. Based on the observer, a distributed controller is proposed to achieve convergence of the regulated output to zero within a prescribed-time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11408v2-abstract-full').style.display = 'none'; document.getElementById('2407.11408v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">None</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11397">arXiv:2407.11397</a> <span> [<a href="https://arxiv.org/pdf/2407.11397">pdf</a>, <a href="https://arxiv.org/format/2407.11397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Event-triggered Control with Sampled Transmitted Output and Controller Dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zuo%2C+G">Gewei Zuo</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lijun Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11397v1-abstract-short" style="display: inline;"> The event-triggered control with intermittent output can reduce the communication burden between the controller and plant side over the network. It has been exploited for adaptive output feedback control of uncertain nonlinear systems in the literature, however the controller must partially reside at the plant side where the computation capacity is required. In this paper, all controller component… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11397v1-abstract-full').style.display = 'inline'; document.getElementById('2407.11397v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11397v1-abstract-full" style="display: none;"> The event-triggered control with intermittent output can reduce the communication burden between the controller and plant side over the network. It has been exploited for adaptive output feedback control of uncertain nonlinear systems in the literature, however the controller must partially reside at the plant side where the computation capacity is required. In this paper, all controller components are moved to the controller side and their dynamics use sampled states rather than continuous one with the benefit of directly estimating next triggering instance of some conditions and avoiding constantly checking event condition at the controller side. However, these bring two major challenges. First, the virtual input designed in the dynamic filtering technique for the stabilization is no longer differentiable. Second, the plant output is sampled to transmit at plant side and sampled again at controller side to construct the controller, and the two asynchronous samplings make the analysis more involving. This paper solves these two issues by introducing a new state observer to simplify the adaptive law, a set of continuous companion variables for stability analysis and a new lemma quantifying the error bound between actual output signal and sampled transmitted output. It is theoretically guaranteed that all internal signals in the closed-loop system are semiglobally bounded and the output is practically stabilized to the origin. Finally, the numerical simulation illustrates the effectiveness of proposed scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11397v1-abstract-full').style.display = 'none'; document.getElementById('2407.11397v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 10 gigures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10986">arXiv:2407.10986</a> <span> [<a href="https://arxiv.org/pdf/2407.10986">pdf</a>, <a href="https://arxiv.org/format/2407.10986">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Integrating Base Station with Intelligent Surface for 6G Wireless Networks: Architectures, Design Issues, and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Huang%2C+Y">Yuwei Huang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10986v2-abstract-short" style="display: inline;"> Intelligent surface (IS) is envisioned as a promising technology for the sixth-generation (6G) wireless networks, which can effectively reconfigure the wireless propagation environment via dynamically controllable signal reflection/transmission. In particular, integrating passive intelligent surface (IS) into the base station (BS) is a novel solution to enhance the wireless network throughput and… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10986v2-abstract-full').style.display = 'inline'; document.getElementById('2407.10986v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10986v2-abstract-full" style="display: none;"> Intelligent surface (IS) is envisioned as a promising technology for the sixth-generation (6G) wireless networks, which can effectively reconfigure the wireless propagation environment via dynamically controllable signal reflection/transmission. In particular, integrating passive intelligent surface (IS) into the base station (BS) is a novel solution to enhance the wireless network throughput and coverage both cost-effectively and energyefficiently. In this article, we provide an overview of IS-integrated BSs for wireless networks, including their motivations, practical architectures, and main design issues. Moreover, numerical results are presented to compare the performance of different IS-integrated BS architectures as well as the conventional BS without IS. Finally, promising directions are pointed out to stimulate future research on IS-BS/terminal integration in wireless networks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10986v2-abstract-full').style.display = 'none'; document.getElementById('2407.10986v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE Wireless Communications. 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07306">arXiv:2407.07306</a> <span> [<a href="https://arxiv.org/pdf/2407.07306">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Electrical Impedance Tomography Based Closed-loop Tumor Treating Fields in Dynamic Lung Tumors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+M">Minmin Wang</a>, <a href="/search/eess?searchtype=author&query=Xie%2C+X">Xu Xie</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+Y">Yuxi Guo</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Liying Zhu</a>, <a href="/search/eess?searchtype=author&query=Lan%2C+Y">Yue Lan</a>, <a href="/search/eess?searchtype=author&query=Yang%2C+H">Haitang Yang</a>, <a href="/search/eess?searchtype=author&query=Pan%2C+Y">Yun Pan</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+G">Guangdi Chen</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+S">Shaomin Zhang</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+M">Maomao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07306v1-abstract-short" style="display: inline;"> Tumor Treating Fields (TTFields) is a non-invasive anticancer modality that utilizes alternating electric fields to disrupt cancer cell division and growth. While generally well-tolerated with minimal side effects, traditional TTFields therapy for lung tumors faces challenges due to the influence of respiratory motion. We design a novel closed-loop TTFields strategy for lung tumors by incorporatin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07306v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07306v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07306v1-abstract-full" style="display: none;"> Tumor Treating Fields (TTFields) is a non-invasive anticancer modality that utilizes alternating electric fields to disrupt cancer cell division and growth. While generally well-tolerated with minimal side effects, traditional TTFields therapy for lung tumors faces challenges due to the influence of respiratory motion. We design a novel closed-loop TTFields strategy for lung tumors by incorporating electrical impedance tomography (EIT) for real-time respiratory phase monitoring and dynamic parameter adjustments. Furthermore, we conduct theoretical analysis to evaluate the performance of the proposed method using the lung motion model. Compared to conventional TTFields settings, we observed that variations in the electrical conductivity of lung during different respiratory phases led to a decrease in the average electric field intensity within lung tumors, transitioning from end-expiratory (1.08 V/cm) to end-inspiratory (0.87 V/cm) phases. Utilizing our proposed closed-Loop TTFields approach at the same dose setting (2400 mA, consistent with the traditional TTFields setting), we can achieve a higher and consistent average electric field strength at the tumor site (1.30 V/cm) across different respiratory stages. Our proposed closed-loop TTFields method has the potential to improved lung tumor therapy by mitigating the impact of respiratory motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07306v1-abstract-full').style.display = 'none'; document.getElementById('2407.07306v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.01530">arXiv:2407.01530</a> <span> [<a href="https://arxiv.org/pdf/2407.01530">pdf</a>, <a href="https://arxiv.org/format/2407.01530">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> xLSTM-UNet can be an Effective 2D & 3D Medical Image Segmentation Backbone with Vision-LSTM (ViL) better than its Mamba Counterpart </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Chen%2C+T">Tianrun Chen</a>, <a href="/search/eess?searchtype=author&query=Ding%2C+C">Chaotao Ding</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lanyun Zhu</a>, <a href="/search/eess?searchtype=author&query=Xu%2C+T">Tao Xu</a>, <a href="/search/eess?searchtype=author&query=Ji%2C+D">Deyi Ji</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Y">Yan Wang</a>, <a href="/search/eess?searchtype=author&query=Zang%2C+Y">Ying Zang</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Z">Zejian Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.01530v2-abstract-short" style="display: inline;"> Convolutional Neural Networks (CNNs) and Vision Transformers (ViT) have been pivotal in biomedical image segmentation, yet their ability to manage long-range dependencies remains constrained by inherent locality and computational overhead. To overcome these challenges, in this technical report, we first propose xLSTM-UNet, a UNet structured deep learning neural network that leverages Vision-LSTM (… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01530v2-abstract-full').style.display = 'inline'; document.getElementById('2407.01530v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.01530v2-abstract-full" style="display: none;"> Convolutional Neural Networks (CNNs) and Vision Transformers (ViT) have been pivotal in biomedical image segmentation, yet their ability to manage long-range dependencies remains constrained by inherent locality and computational overhead. To overcome these challenges, in this technical report, we first propose xLSTM-UNet, a UNet structured deep learning neural network that leverages Vision-LSTM (xLSTM) as its backbone for medical image segmentation. xLSTM is a recently proposed as the successor of Long Short-Term Memory (LSTM) networks and have demonstrated superior performance compared to Transformers and State Space Models (SSMs) like Mamba in Neural Language Processing (NLP) and image classification (as demonstrated in Vision-LSTM, or ViL implementation). Here, xLSTM-UNet we designed extend the success in biomedical image segmentation domain. By integrating the local feature extraction strengths of convolutional layers with the long-range dependency capturing abilities of xLSTM, xLSTM-UNet offers a robust solution for comprehensive image analysis. We validate the efficacy of xLSTM-UNet through experiments. Our findings demonstrate that xLSTM-UNet consistently surpasses the performance of leading CNN-based, Transformer-based, and Mamba-based segmentation networks in multiple datasets in biomedical segmentation including organs in abdomen MRI, instruments in endoscopic images, and cells in microscopic images. With comprehensive experiments performed, this technical report highlights the potential of xLSTM-based architectures in advancing biomedical image analysis in both 2D and 3D. The code, models, and datasets are publicly available at http://tianrun-chen.github.io/xLSTM-UNet/ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.01530v2-abstract-full').style.display = 'none'; document.getElementById('2407.01530v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.19627">arXiv:2406.19627</a> <span> [<a href="https://arxiv.org/pdf/2406.19627">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Practical Power System Inertia Monitoring Based on Pumped Storage Hydropower Operation Signature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Li%2C+H">Hongyu Li</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+C">Chang Chen</a>, <a href="/search/eess?searchtype=author&query=Baldwin%2C+M">Mark Baldwin</a>, <a href="/search/eess?searchtype=author&query=You%2C+S">Shutang You</a>, <a href="/search/eess?searchtype=author&query=Yu%2C+W">Wenpeng Yu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lin Zhu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+Y">Yilu Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.19627v2-abstract-short" style="display: inline;"> This paper proposes a practical method to monitor power system inertia using Pumped Storage Hydropower (PSH) switching-off events. This approach offers real-time system-level inertia estimation with minimal expenses, no disruption, and the inclusion of behind-the-meter inertia. First, accurate inertia estimation is achieved through improved RoCoF calculation that accounts for pre-event RoCoF, redu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19627v2-abstract-full').style.display = 'inline'; document.getElementById('2406.19627v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.19627v2-abstract-full" style="display: none;"> This paper proposes a practical method to monitor power system inertia using Pumped Storage Hydropower (PSH) switching-off events. This approach offers real-time system-level inertia estimation with minimal expenses, no disruption, and the inclusion of behind-the-meter inertia. First, accurate inertia estimation is achieved through improved RoCoF calculation that accounts for pre-event RoCoF, reducing common random frequency fluctuations in practice. Second, PSH field data is analyzed, highlighting the benefits of using switching-off events for grid inertia estimation. Third, an event detection trigger is designed to capture pump switching-off events based on local and system features. Fourth, the method is validated on the U.S. Eastern Interconnection model with over 60,000 buses, demonstrating very high accuracy (3%-5% error rate). Finally, it is applied to the U.S. Western Interconnection, with field validation showing a 9.9% average absolute error rate. Despite challenges in practical power system inertia estimation, this method enhances decision-making for power grid reliability and efficiency, addressing challenges posed by renewable energy integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.19627v2-abstract-full').style.display = 'none'; document.getElementById('2406.19627v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13645">arXiv:2406.13645</a> <span> [<a href="https://arxiv.org/pdf/2406.13645">pdf</a>, <a href="https://arxiv.org/format/2406.13645">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Advancing UWF-SLO Vessel Segmentation with Source-Free Active Domain Adaptation and a Novel Multi-Center Dataset </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Wang%2C+H">Hongqiu Wang</a>, <a href="/search/eess?searchtype=author&query=Luo%2C+X">Xiangde Luo</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+W">Wu Chen</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+Q">Qingqing Tang</a>, <a href="/search/eess?searchtype=author&query=Xin%2C+M">Mei Xin</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Q">Qiong Wang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lei Zhu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13645v1-abstract-short" style="display: inline;"> Accurate vessel segmentation in Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) images is crucial for diagnosing retinal diseases. Although recent techniques have shown encouraging outcomes in vessel segmentation, models trained on one medical dataset often underperform on others due to domain shifts. Meanwhile, manually labeling high-resolution UWF-SLO images is an extremely challenging,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13645v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13645v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13645v1-abstract-full" style="display: none;"> Accurate vessel segmentation in Ultra-Wide-Field Scanning Laser Ophthalmoscopy (UWF-SLO) images is crucial for diagnosing retinal diseases. Although recent techniques have shown encouraging outcomes in vessel segmentation, models trained on one medical dataset often underperform on others due to domain shifts. Meanwhile, manually labeling high-resolution UWF-SLO images is an extremely challenging, time-consuming and expensive task. In response, this study introduces a pioneering framework that leverages a patch-based active domain adaptation approach. By actively recommending a few valuable image patches by the devised Cascade Uncertainty-Predominance (CUP) selection strategy for labeling and model-finetuning, our method significantly improves the accuracy of UWF-SLO vessel segmentation across diverse medical centers. In addition, we annotate and construct the first Multi-center UWF-SLO Vessel Segmentation (MU-VS) dataset to promote this topic research, comprising data from multiple institutions. This dataset serves as a valuable resource for cross-center evaluation, verifying the effectiveness and robustness of our approach. Experimental results demonstrate that our approach surpasses existing domain adaptation and active learning methods, considerably reducing the gap between the Upper and Lower bounds with minimal annotations, highlighting our method's practical clinical value. We will release our dataset and code to facilitate relevant research: https://github.com/whq-xxh/SFADA-UWF-SLO. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13645v1-abstract-full').style.display = 'none'; document.getElementById('2406.13645v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">MICCAI 2024 Early Accept</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00683">arXiv:2406.00683</a> <span> [<a href="https://arxiv.org/pdf/2406.00683">pdf</a>, <a href="https://arxiv.org/format/2406.00683">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> Exploiting Frequency Correlation for Hyperspectral Image Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Yan%2C+M">Muge Yan</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+L">Lizhi Wang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lin Zhu</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+H">Hua Huang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00683v1-abstract-short" style="display: inline;"> Deep priors have emerged as potent methods in hyperspectral image (HSI) reconstruction. While most methods emphasize space-domain learning using image space priors like non-local similarity, frequency-domain learning using image frequency priors remains neglected, limiting the reconstruction capability of networks. In this paper, we first propose a Hyperspectral Frequency Correlation (HFC) prior r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00683v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00683v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00683v1-abstract-full" style="display: none;"> Deep priors have emerged as potent methods in hyperspectral image (HSI) reconstruction. While most methods emphasize space-domain learning using image space priors like non-local similarity, frequency-domain learning using image frequency priors remains neglected, limiting the reconstruction capability of networks. In this paper, we first propose a Hyperspectral Frequency Correlation (HFC) prior rooted in in-depth statistical frequency analyses of existent HSI datasets. Leveraging the HFC prior, we subsequently establish the frequency domain learning composed of a Spectral-wise self-Attention of Frequency (SAF) and a Spectral-spatial Interaction of Frequency (SIF) targeting low-frequency and high-frequency components, respectively. The outputs of SAF and SIF are adaptively merged by a learnable gating filter, thus achieving a thorough exploitation of image frequency priors. Integrating the frequency domain learning and the existing space domain learning, we finally develop the Correlation-driven Mixing Domains Transformer (CMDT) for HSI reconstruction. Extensive experiments highlight that our method surpasses various state-of-the-art (SOTA) methods in reconstruction quality and computational efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00683v1-abstract-full').style.display = 'none'; document.getElementById('2406.00683v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.19298">arXiv:2405.19298</a> <span> [<a href="https://arxiv.org/pdf/2405.19298">pdf</a>, <a href="https://arxiv.org/format/2405.19298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Adaptive Image Quality Assessment via Teaching Large Multimodal Model to Compare </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+H">Hanwei Zhu</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+H">Haoning Wu</a>, <a href="/search/eess?searchtype=author&query=Li%2C+Y">Yixuan Li</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+Z">Zicheng Zhang</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+B">Baoliang Chen</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lingyu Zhu</a>, <a href="/search/eess?searchtype=author&query=Fang%2C+Y">Yuming Fang</a>, <a href="/search/eess?searchtype=author&query=Zhai%2C+G">Guangtao Zhai</a>, <a href="/search/eess?searchtype=author&query=Lin%2C+W">Weisi Lin</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+S">Shiqi Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.19298v1-abstract-short" style="display: inline;"> While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce Compare2Score-an all-around LMM-based no-reference IQA (NR-IQA)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19298v1-abstract-full').style.display = 'inline'; document.getElementById('2405.19298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.19298v1-abstract-full" style="display: none;"> While recent advancements in large multimodal models (LMMs) have significantly improved their abilities in image quality assessment (IQA) relying on absolute quality rating, how to transfer reliable relative quality comparison outputs to continuous perceptual quality scores remains largely unexplored. To address this gap, we introduce Compare2Score-an all-around LMM-based no-reference IQA (NR-IQA) model, which is capable of producing qualitatively comparative responses and effectively translating these discrete comparative levels into a continuous quality score. Specifically, during training, we present to generate scaled-up comparative instructions by comparing images from the same IQA dataset, allowing for more flexible integration of diverse IQA datasets. Utilizing the established large-scale training corpus, we develop a human-like visual quality comparator. During inference, moving beyond binary choices, we propose a soft comparison method that calculates the likelihood of the test image being preferred over multiple predefined anchor images. The quality score is further optimized by maximum a posteriori estimation with the resulting probability matrix. Extensive experiments on nine IQA datasets validate that the Compare2Score effectively bridges text-defined comparative levels during training with converted single image quality score for inference, surpassing state-of-the-art IQA models across diverse scenarios. Moreover, we verify that the probability-matrix-based inference conversion not only improves the rating accuracy of Compare2Score but also zero-shot general-purpose LMMs, suggesting its intrinsic effectiveness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.19298v1-abstract-full').style.display = 'none'; document.getElementById('2405.19298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.16485">arXiv:2405.16485</a> <span> [<a href="https://arxiv.org/pdf/2405.16485">pdf</a>, <a href="https://arxiv.org/format/2405.16485">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> Make Safe Decisions in Power System: Safe Reinforcement Learning Based Pre-decision Making for Voltage Stability Emergency Control </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Bi%2C+C">Congbo Bi</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Liu%2C+D">Di Liu</a>, <a href="/search/eess?searchtype=author&query=Lu%2C+C">Chao Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.16485v1-abstract-short" style="display: inline;"> The high penetration of renewable energy and power electronic equipment bring significant challenges to the efficient construction of adaptive emergency control strategies against various presumed contingencies in today's power systems. Traditional model-based emergency control methods have difficulty in adapt well to various complicated operating conditions in practice. Fr emerging artificial int… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16485v1-abstract-full').style.display = 'inline'; document.getElementById('2405.16485v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.16485v1-abstract-full" style="display: none;"> The high penetration of renewable energy and power electronic equipment bring significant challenges to the efficient construction of adaptive emergency control strategies against various presumed contingencies in today's power systems. Traditional model-based emergency control methods have difficulty in adapt well to various complicated operating conditions in practice. Fr emerging artificial intelligence-based approaches, i.e., reinforcement learning-enabled solutions, they are yet to provide solid safety assurances under strict constraints in practical power systems. To address these research gaps, this paper develops a safe reinforcement learning (SRL)-based pre-decision making framework against short-term voltage collapse. Our proposed framework employs neural networks for pre-decision formulation, security margin estimation, and corrective action implementation, without reliance on precise system parameters. Leveraging the gradient projection, we propose a security projecting correction algorithm that offers theoretical security assurances to amend risky actions. The applicability of the algorithm is further enhanced through the incorporation of active learning, which expedites the training process and improves security estimation accuracy. Extensive numerical tests on the New England 39-bus system and the realistic Guangdong Provincal Power Grid demonstrate the effectiveness of the proposed framework. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.16485v1-abstract-full').style.display = 'none'; document.getElementById('2405.16485v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12432">arXiv:2405.12432</a> <span> [<a href="https://arxiv.org/pdf/2405.12432">pdf</a>, <a href="https://arxiv.org/ps/2405.12432">ps</a>, <a href="https://arxiv.org/format/2405.12432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/TWC.2024.3480314">10.1109/TWC.2024.3480314 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Power Measurement Based Channel Estimation for IRS-Enhanced Wireless Coverage </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Sun%2C+H">He Sun</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Mei%2C+W">Weidong Mei</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12432v1-abstract-short" style="display: inline;"> In this paper, we study an IRS-assisted coverage enhancement problem for a given region, aiming to optimize the passive reflection of the IRS for improving the average communication performance in the region by accounting for both deterministic and random channels in the environment. To this end, we first derive the closed-form expression of the average received signal power in terms of the determ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12432v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12432v1-abstract-full" style="display: none;"> In this paper, we study an IRS-assisted coverage enhancement problem for a given region, aiming to optimize the passive reflection of the IRS for improving the average communication performance in the region by accounting for both deterministic and random channels in the environment. To this end, we first derive the closed-form expression of the average received signal power in terms of the deterministic base station (BS)-IRS-user cascaded channels over all user locations, and propose an IRS-aided coverage enhancement framework to facilitate the estimation of such deterministic channels for IRS passive reflection design. Specifically, to avoid the exorbitant overhead of estimating the cascaded channels at all possible user locations, a location selection method is first proposed to select only a set of typical user locations for channel estimation by exploiting the channel spatial correlation in the region. To estimate the deterministic cascaded channels at the selected user locations, conventional IRS channel estimation methods require additional pilot signals, which not only results in high system training overhead but also may not be compatible with the existing communication protocols. To overcome this issue, we further propose a single-layer neural network (NN)-enabled IRS channel estimation method in this paper, based on only the average received signal power measurements at each selected location corresponding to different IRS random training reflections, which can be offline implemented in current wireless systems. Numerical results demonstrate that our proposed scheme can significantly improve the coverage performance of the target region and outperform the existing power-measurement-based IRS reflection designs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12432v1-abstract-full').style.display = 'none'; document.getElementById('2405.12432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2309.08275</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12053">arXiv:2405.12053</a> <span> [<a href="https://arxiv.org/pdf/2405.12053">pdf</a>, <a href="https://arxiv.org/format/2405.12053">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Complex Principle Kurtosis Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Liangliang Zhu</a>, <a href="/search/eess?searchtype=author&query=Song%2C+Z">Zhebin Song</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+X">Xuesen Zhang</a>, <a href="/search/eess?searchtype=author&query=Qi%2C+M">Meibin Qi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12053v1-abstract-short" style="display: inline;"> Independent component analysis (ICA) is a fundamental problem in the field of signal processing, and numerous algorithms have been developed to address this issue. The core principle of these algorithms is to find a transformation matrix that maximizes the non-Gaussianity of the separated signals. Most algorithms typically assume that the source signals are mutually independent (orthogonal to each… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12053v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12053v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12053v1-abstract-full" style="display: none;"> Independent component analysis (ICA) is a fundamental problem in the field of signal processing, and numerous algorithms have been developed to address this issue. The core principle of these algorithms is to find a transformation matrix that maximizes the non-Gaussianity of the separated signals. Most algorithms typically assume that the source signals are mutually independent (orthogonal to each other), thereby imposing an orthogonal constraint on the transformation matrix. However, this assumption is not always valid in practical scenarios, where the orthogonal constraint can lead to inaccurate results. Recently, tensor-based algorithms have attracted much attention due to their ability to reduce computational complexity and enhance separation performance. In these algorithms, ICA is reformulated as an eigenpair problem of a statistical tensor. Importantly, the eigenpairs of a tensor are not inherently orthogonal, making tensor-based algorithms more suitable for nonorthogonal cases. Despite this advantage, finding exact solutions to the tensor's eigenpair problem remains a challenging task. In this paper, we introduce a non-zero volume constraint and a Riemannian gradient-based algorithm to solve the tensor's eigenpair problem. The proposed algorithm can find exact solutions under nonorthogonal conditions, making it more effective for separating nonorthogonal sources. Additionally, existing tensor-based algorithms typically rely on third-order statistics and are limited to real-valued data. To overcome this limitation, we extend tensor-based algorithms to the complex domain by constructing a fourth-order statistical tensor. Experiments conducted on both synthetic and real-world datasets demonstrate the effectiveness of the proposed algorithm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12053v1-abstract-full').style.display = 'none'; document.getElementById('2405.12053v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">23 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 47A75 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10691">arXiv:2405.10691</a> <span> [<a href="https://arxiv.org/pdf/2405.10691">pdf</a>, <a href="https://arxiv.org/format/2405.10691">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> LoCI-DiffCom: Longitudinal Consistency-Informed Diffusion Model for 3D Infant Brain Image Completion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+Z">Zihao Zhu</a>, <a href="/search/eess?searchtype=author&query=Tao%2C+T">Tianli Tao</a>, <a href="/search/eess?searchtype=author&query=Tao%2C+Y">Yitian Tao</a>, <a href="/search/eess?searchtype=author&query=Deng%2C+H">Haowen Deng</a>, <a href="/search/eess?searchtype=author&query=Cai%2C+X">Xinyi Cai</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+G">Gaofeng Wu</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+K">Kaidong Wang</a>, <a href="/search/eess?searchtype=author&query=Tang%2C+H">Haifeng Tang</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lixuan Zhu</a>, <a href="/search/eess?searchtype=author&query=Gu%2C+Z">Zhuoyang Gu</a>, <a href="/search/eess?searchtype=author&query=Huang%2C+J">Jiawei Huang</a>, <a href="/search/eess?searchtype=author&query=Shen%2C+D">Dinggang Shen</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+H">Han Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10691v1-abstract-short" style="display: inline;"> The infant brain undergoes rapid development in the first few years after birth.Compared to cross-sectional studies, longitudinal studies can depict the trajectories of infants brain development with higher accuracy, statistical power and flexibility.However, the collection of infant longitudinal magnetic resonance (MR) data suffers a notorious dropout problem, resulting in incomplete datasets wit… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10691v1-abstract-full').style.display = 'inline'; document.getElementById('2405.10691v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10691v1-abstract-full" style="display: none;"> The infant brain undergoes rapid development in the first few years after birth.Compared to cross-sectional studies, longitudinal studies can depict the trajectories of infants brain development with higher accuracy, statistical power and flexibility.However, the collection of infant longitudinal magnetic resonance (MR) data suffers a notorious dropout problem, resulting in incomplete datasets with missing time points. This limitation significantly impedes subsequent neuroscience and clinical modeling. Yet, existing deep generative models are facing difficulties in missing brain image completion, due to sparse data and the nonlinear, dramatic contrast/geometric variations in the developing brain. We propose LoCI-DiffCom, a novel Longitudinal Consistency-Informed Diffusion model for infant brain image Completion,which integrates the images from preceding and subsequent time points to guide a diffusion model for generating high-fidelity missing data. Our designed LoCI module can work on highly sparse sequences, relying solely on data from two temporal points. Despite wide separation and diversity between age time points, our approach can extract individualized developmental features while ensuring context-aware consistency. Our experiments on a large infant brain MR dataset demonstrate its effectiveness with consistent performance on missing infant brain MR completion even in big gap scenarios, aiding in better delineation of early developmental trajectories. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10691v1-abstract-full').style.display = 'none'; document.getElementById('2405.10691v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.10570">arXiv:2405.10570</a> <span> [<a href="https://arxiv.org/pdf/2405.10570">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous Deep Learning of Myocardium Segmentation and T2 Quantification for Acute Myocardial Infarction MRI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhou%2C+Y">Yirong Zhou</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+C">Chengyan Wang</a>, <a href="/search/eess?searchtype=author&query=Lu%2C+M">Mengtian Lu</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+K">Kunyuan Guo</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+Z">Zi Wang</a>, <a href="/search/eess?searchtype=author&query=Ruan%2C+D">Dan Ruan</a>, <a href="/search/eess?searchtype=author&query=Guo%2C+R">Rui Guo</a>, <a href="/search/eess?searchtype=author&query=Zhao%2C+P">Peijun Zhao</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+J">Jianhua Wang</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+N">Naiming Wu</a>, <a href="/search/eess?searchtype=author&query=Lin%2C+J">Jianzhong Lin</a>, <a href="/search/eess?searchtype=author&query=Chen%2C+Y">Yinyin Chen</a>, <a href="/search/eess?searchtype=author&query=Jin%2C+H">Hang Jin</a>, <a href="/search/eess?searchtype=author&query=Xie%2C+L">Lianxin Xie</a>, <a href="/search/eess?searchtype=author&query=Wu%2C+L">Lilan Wu</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Liuhong Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+J">Jianjun Zhou</a>, <a href="/search/eess?searchtype=author&query=Cai%2C+C">Congbo Cai</a>, <a href="/search/eess?searchtype=author&query=Wang%2C+H">He Wang</a>, <a href="/search/eess?searchtype=author&query=Qu%2C+X">Xiaobo Qu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.10570v3-abstract-short" style="display: inline;"> In cardiac Magnetic Resonance Imaging (MRI) analysis, simultaneous myocardial segmentation and T2 quantification are crucial for assessing myocardial pathologies. Existing methods often address these tasks separately, limiting their synergistic potential. To address this, we propose SQNet, a dual-task network integrating Transformer and Convolutional Neural Network (CNN) components. SQNet features… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10570v3-abstract-full').style.display = 'inline'; document.getElementById('2405.10570v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.10570v3-abstract-full" style="display: none;"> In cardiac Magnetic Resonance Imaging (MRI) analysis, simultaneous myocardial segmentation and T2 quantification are crucial for assessing myocardial pathologies. Existing methods often address these tasks separately, limiting their synergistic potential. To address this, we propose SQNet, a dual-task network integrating Transformer and Convolutional Neural Network (CNN) components. SQNet features a T2-refine fusion decoder for quantitative analysis, leveraging global features from the Transformer, and a segmentation decoder with multiple local region supervision for enhanced accuracy. A tight coupling module aligns and fuses CNN and Transformer branch features, enabling SQNet to focus on myocardium regions. Evaluation on healthy controls (HC) and acute myocardial infarction patients (AMI) demonstrates superior segmentation dice scores (89.3/89.2) compared to state-of-the-art methods (87.7/87.9). T2 quantification yields strong linear correlations (Pearson coefficients: 0.84/0.93) with label values for HC/AMI, indicating accurate mapping. Radiologist evaluations confirm SQNet's superior image quality scores (4.60/4.58 for segmentation, 4.32/4.42 for T2 quantification) over state-of-the-art methods (4.50/4.44 for segmentation, 3.59/4.37 for T2 quantification). SQNet thus offers accurate simultaneous segmentation and quantification, enhancing cardiac disease diagnosis, such as AMI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.10570v3-abstract-full').style.display = 'none'; document.getElementById('2405.10570v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 8 figures, 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01215">arXiv:2405.01215</a> <span> [<a href="https://arxiv.org/pdf/2405.01215">pdf</a>, <a href="https://arxiv.org/ps/2405.01215">ps</a>, <a href="https://arxiv.org/format/2405.01215">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Movable Antenna Enhanced Wireless Sensing Via Antenna Position Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Ma%2C+W">Wenyan Ma</a>, <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01215v1-abstract-short" style="display: inline;"> In this paper, we propose a new wireless sensing system equipped with the movable-antenna (MA) array, which can flexibly adjust the positions of antenna elements for improving the sensing performance over conventional antenna arrays with fixed-position antennas (FPAs). First, we show that the angle estimation performance in wireless sensing is fundamentally determined by the array geometry, where… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01215v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01215v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01215v1-abstract-full" style="display: none;"> In this paper, we propose a new wireless sensing system equipped with the movable-antenna (MA) array, which can flexibly adjust the positions of antenna elements for improving the sensing performance over conventional antenna arrays with fixed-position antennas (FPAs). First, we show that the angle estimation performance in wireless sensing is fundamentally determined by the array geometry, where the Cramer-Rao bound (CRB) of the mean square error (MSE) for angle of arrival (AoA) estimation is derived as a function of the antennas' positions for both one-dimensional (1D) and two-dimensional (2D) MA arrays. Then, for the case of 1D MA array, we obtain a globally optimal solution for the MAs' positions in closed form to minimize the CRB of AoA estimation MSE. While in the case of 2D MA array, we aim to achieve the minimum of maximum (min-max) CRBs of estimation MSE for the two AoAs with respect to the horizontal and vertical axes, respectively. In particular, for the special case of circular antenna movement region, an optimal solution for the MAs' positions is derived under certain numbers of MAs and circle radii. Thereby, both the lower- and upper-bounds of the min-max CRB are obtained for the antenna movement region with arbitrary shapes. Moreover, we develop an efficient alternating optimization algorithm to obtain a locally optimal solution for MAs' positions by iteratively optimizing one between their horizontal and vertical coordinates with the other being fixed. Numerical results demonstrate that our proposed 1D/2D MA arrays can significantly decrease the CRB of AoA estimation MSE as well as the actual MSE compared to conventional uniform linear arrays (ULAs)/uniform planar arrays (UPAs) with different values of uniform inter-antenna spacing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01215v1-abstract-full').style.display = 'none'; document.getElementById('2405.01215v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 13 figures. We propose a new wireless sensing system equipped with the movable-antenna (MA) array, which can flexibly adjust the positions of antenna elements for improving the sensing performance over conventional antenna arrays with fixed-position antennas (FPAs)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01161">arXiv:2405.01161</a> <span> [<a href="https://arxiv.org/pdf/2405.01161">pdf</a>, <a href="https://arxiv.org/ps/2405.01161">ps</a>, <a href="https://arxiv.org/format/2405.01161">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Exponentially Consistent Outlier Hypothesis Testing for Continuous Sequences </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lina Zhu</a>, <a href="/search/eess?searchtype=author&query=Zhou%2C+L">Lin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01161v2-abstract-short" style="display: inline;"> In outlier hypothesis testing, one aims to detect outlying sequences among a given set of sequences, where most sequences are generated i.i.d. from a nominal distribution while outlying sequences (outliers) are generated i.i.d. from a different anomalous distribution. Most existing studies focus on discrete-valued sequences, where each data sample takes values in a finite set. To account for pract… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01161v2-abstract-full').style.display = 'inline'; document.getElementById('2405.01161v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01161v2-abstract-full" style="display: none;"> In outlier hypothesis testing, one aims to detect outlying sequences among a given set of sequences, where most sequences are generated i.i.d. from a nominal distribution while outlying sequences (outliers) are generated i.i.d. from a different anomalous distribution. Most existing studies focus on discrete-valued sequences, where each data sample takes values in a finite set. To account for practical scenarios where data sequences usually take real values, we study outlier hypothesis testing for continuous sequences when both the nominal and anomalous distributions are \emph{unknown}. Specifically, we propose distribution free tests and prove that the probabilities of misclassification error, false reject and false alarm decay exponentially fast for three different test designs: fixed-length test, sequential test, and two-phase test. In a fixed-length test, one fixes the sample size of each observed sequence; in a sequential test, one takes a sample sequentially from each sequence per unit time until a reliable decision can be made; in a two-phase test, one adapts the sample size from two different fixed values. Remarkably, the two-phase test achieves a good balance between test design complexity and theoretical performance. We first consider the case of at most one outlier, and then generalize our results to the case with multiple outliers where the number of outliers is unknown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01161v2-abstract-full').style.display = 'none'; document.getElementById('2405.01161v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15643">arXiv:2404.15643</a> <span> [<a href="https://arxiv.org/pdf/2404.15643">pdf</a>, <a href="https://arxiv.org/ps/2404.15643">ps</a>, <a href="https://arxiv.org/format/2404.15643">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Beam Coverage for Satellite Communications Aided by Movable-Antenna Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/eess?searchtype=author&query=Zhu%2C+L">Lipeng Zhu</a>, <a href="/search/eess?searchtype=author&query=Pi%2C+X">Xiangyu Pi</a>, <a href="/search/eess?searchtype=author&query=Ma%2C+W">Wenyan Ma</a>, <a href="/search/eess?searchtype=author&query=Xiao%2C+Z">Zhenyu Xiao</a>, <a href="/search/eess?searchtype=author&query=Zhang%2C+R">Rui Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15643v1-abstract-short" style="display: inline;"> Due to the ultra-dense constellation, efficient beam coverage and interference mitigation are crucial to low-earth orbit (LEO) satellite communication systems, while the conventional directional antennas and fixed-position antenna (FPA) arrays both have limited degrees of freedom (DoFs) in beamforming to adapt to the time-varying coverage requirement of terrestrial users. To address this challenge… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15643v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15643v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15643v1-abstract-full" style="display: none;"> Due to the ultra-dense constellation, efficient beam coverage and interference mitigation are crucial to low-earth orbit (LEO) satellite communication systems, while the conventional directional antennas and fixed-position antenna (FPA) arrays both have limited degrees of freedom (DoFs) in beamforming to adapt to the time-varying coverage requirement of terrestrial users. To address this challenge, we propose in this paper utilizing movable antenna (MA) arrays to enhance the satellite beam coverage and interference mitigation. Specifically, given the satellite orbit and the coverage requirement within a specific time interval, the antenna position vector (APV) and antenna weight vector (AWV) of the satellite-mounted MA array are jointly optimized over time to minimize the average signal leakage power to the interference area of the satellite, subject to the constraints of the minimum beamforming gain over the coverage area, the continuous movement of MAs, and the constant modulus of AWV. The corresponding continuous-time decision process for the APV and AWV is first transformed into a more tractable discrete-time optimization problem. Then, an alternating optimization (AO)-based algorithm is developed by iteratively optimizing the APV and AWV, where the successive convex approximation (SCA) technique is utilized to obtain locally optimal solutions during the iterations. Moreover, to further reduce the antenna movement overhead, a low-complexity MA scheme is proposed by using an optimized common APV over all time slots. Simulation results validate that the proposed MA array-aided beam coverage schemes can significantly decrease the interference leakage of the satellite compared to conventional FPA-based schemes, while the low-complexity MA scheme can achieve a performance comparable to the continuous-movement scheme. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15643v1-abstract-full').style.display = 'none'; document.getElementById('2404.15643v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Zhu%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>