CINXE.COM

Search results for: physical model

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: physical model</title> <meta name="description" content="Search results for: physical model"> <meta name="keywords" content="physical model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="physical model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="physical model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21706</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: physical model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21706</span> Physical Education Teacher&#039;s Interpretation toward Teaching Games for Understanding Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soni%20Nopembri">Soni Nopembri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to evaluate the implementation of teaching games for Understanding model by conducting action to physical education teacher who have got long teaching experience. The research applied Participatory Action Research. The subjects of this research were 19 physical education teachers who had got training of Teaching Games for Understanding. Data collection was conducted intensively through a questionnaire, in-depth interview, Focus Group Discussion (FGD), observation, and documentation. The collected data was analysis zed qualitatively and quantitatively. The result showed that physical education teachers had got an appropriate interpretation on TGfU model. Some indicators that were the focus of this research indicated this points; they are: (1) physical education teachers had good understanding toward TGfU model, (2) PE teachers’ competence in applying TGfU model on Physical Education at school were adequate, though some improvement were needed, (3) the influence factors in the implementation of TGfU model, in sequence, were teacher, facilities, environment, and students factors, (4) PE teachers’ perspective toward TGfU model were positively good, although some teachers were less optimistic toward the development of TGfU model in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TGfU" title="TGfU">TGfU</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20education%20teacher" title=" physical education teacher"> physical education teacher</a>, <a href="https://publications.waset.org/abstracts/search?q=teaching%20games" title=" teaching games"> teaching games</a>, <a href="https://publications.waset.org/abstracts/search?q=FGD" title=" FGD"> FGD</a> </p> <a href="https://publications.waset.org/abstracts/9668/physical-education-teachers-interpretation-toward-teaching-games-for-understanding-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21705</span> Conduction Model Compatible for Multi-Physical Domain Dynamic Investigations: Bond Graph Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zanj">A. Zanj</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20He"> F. He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current paper, a domain independent conduction model compatible for multi-physical system dynamic investigations is suggested. By means of a port-based approach, a classical nonlinear conduction model containing physical states is first represented. A compatible discrete configuration of the thermal domain in line with the elastic domain is then generated through the enhancement of the configuration of the conventional thermal element. The presented simulation results of a sample structure indicate that the suggested conductive model can cover a wide range of dynamic behavior of the thermal domain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20domain" title="multi-physical domain">multi-physical domain</a>, <a href="https://publications.waset.org/abstracts/search?q=conduction%20model" title=" conduction model"> conduction model</a>, <a href="https://publications.waset.org/abstracts/search?q=port%20based%20modeling" title=" port based modeling"> port based modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20interaction" title=" dynamic interaction"> dynamic interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20modeling" title=" physical modeling"> physical modeling</a> </p> <a href="https://publications.waset.org/abstracts/42625/conduction-model-compatible-for-multi-physical-domain-dynamic-investigations-bond-graph-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21704</span> Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In designing a kinetic fa&ccedil;ade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20media" title="design media">design media</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20facades" title=" kinetic facades"> kinetic facades</a>, <a href="https://publications.waset.org/abstracts/search?q=tangible%20user%20interface" title=" tangible user interface"> tangible user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20scanning" title=" 3D scanning"> 3D scanning</a> </p> <a href="https://publications.waset.org/abstracts/70846/kinetic-facade-design-using-3d-scanning-to-convert-physical-models-into-digital-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21703</span> A Physical Theory of Information vs. a Mathematical Theory of Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manouchehr%20Amiri">Manouchehr Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20theory%20of%20information" title="physical theory of information">physical theory of information</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20data%20matrix%20model" title=" binary data matrix model"> binary data matrix model</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%20information%20theory" title=" Shannon information theory"> Shannon information theory</a>, <a href="https://publications.waset.org/abstracts/search?q=bit%20information%20principle" title=" bit information principle"> bit information principle</a> </p> <a href="https://publications.waset.org/abstracts/166010/a-physical-theory-of-information-vs-a-mathematical-theory-of-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21702</span> Application of Computational Flow Dynamics (CFD) Analysis for Surge Inception and Propagation for Low Head Hydropower Projects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohsin%20Munir">M. Mohsin Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Taimoor%20Ahmad"> Taimoor Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Javed%20Munir"> Javed Munir</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Rashid"> Usman Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Determination of maximum elevation of a flowing fluid due to sudden rejection of load in a hydropower facility is of great interest to hydraulic engineers to ensure safety of the hydraulic structures. Several mathematical models exist that employ one-dimensional modeling for the determination of surge but none of these perfectly simulate real-time circumstances. The paper envisages investigation of surge inception and propagation for a Low Head Hydropower project using Computational Fluid Dynamics (CFD) analysis on FLOW-3D software package. The fluid dynamic model utilizes its analysis for surge by employing Reynolds’ Averaged Navier-Stokes Equations (RANSE). The CFD model is designed for a case study at Taunsa hydropower Project in Pakistan. Various scenarios have run through the model keeping in view upstream boundary conditions. The prototype results were then compared with the results of physical model testing for the same scenarios. The results of the numerical model proved quite accurate coherence with the physical model testing and offers insight into phenomenon which are not apparent in physical model and shall be adopted in future for the similar low head projects limiting delays and cost incurred in the physical model testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surge" title="surge">surge</a>, <a href="https://publications.waset.org/abstracts/search?q=FLOW-3D" title=" FLOW-3D"> FLOW-3D</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=Taunsa" title=" Taunsa"> Taunsa</a>, <a href="https://publications.waset.org/abstracts/search?q=RANSE" title=" RANSE"> RANSE</a> </p> <a href="https://publications.waset.org/abstracts/36198/application-of-computational-flow-dynamics-cfd-analysis-for-surge-inception-and-propagation-for-low-head-hydropower-projects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21701</span> A “Best Practice” Model for Physical Education in the BRICS Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasti%20Oelofse">Vasti Oelofse</a>, <a href="https://publications.waset.org/abstracts/search?q=Niekie%20van%20der%20Merwe"> Niekie van der Merwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorita%20du%20Toit"> Dorita du Toit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study addresses the need for a unified best practice model for Physical Education across BRICS nations, as current research primarily offers individual country recommendations. Drawing on relevant literature within the framework of Bronfenbrenner’s Ecological Systems Theory, as well as data from open-ended questionnaires completed by Physical Education experts from the BRICS countries, , the study develops a best practice model based on identified challenges and effective practices in Physical Education. A model is proposed that incorporates flexible and resource-efficient strategies tailored to address PE challenges specific to these countries, enhancing outcomes for learners, empowering teachers, and fostering systemic collaboration among BRICS members. The proposed model comprises six key areas: “Curriculum and policy requirements”, “General approach”, “Theoretical basis”, “Strategies for presenting content”, “Teacher training”, and “Evaluation”. The “Strategies for presenting program content” area addresses both well-resourced and poorly resourced schools, adapting curriculum, teaching strategies, materials, and learner activities for varied socio-economic contexts. The model emphasizes a holistic approach to learner development, engaging environments, and continuous teacher training. A collaborative approach among BRICS countries, focusing on shared best practices and continuous improvement, is vital for the model's successful implementation, enhancing Physical Education programs and outcomes across these nations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BRICS%20countries" title="BRICS countries">BRICS countries</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20education" title=" physical education"> physical education</a>, <a href="https://publications.waset.org/abstracts/search?q=best%20practice%20model" title=" best practice model"> best practice model</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20systems%20theory" title=" ecological systems theory"> ecological systems theory</a> </p> <a href="https://publications.waset.org/abstracts/193570/a-best-practice-model-for-physical-education-in-the-brics-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">12</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21700</span> Physical Education Effect on Sports Science Analysis Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Adly%20Hamdy%20Fahmy">Peter Adly Hamdy Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approach%20competencies" title="approach competencies">approach competencies</a>, <a href="https://publications.waset.org/abstracts/search?q=physical" title=" physical"> physical</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=teachers%20employment" title=" teachers employment"> teachers employment</a>, <a href="https://publications.waset.org/abstracts/search?q=graduate" title=" graduate"> graduate</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20education%20and%20sport%20sciences" title=" physical education and sport sciences"> physical education and sport sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=SWOT%20analysis%20character%20education" title=" SWOT analysis character education"> SWOT analysis character education</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20season" title=" sport season"> sport season</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20performance" title=" game performance"> game performance</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20competence" title=" sport competence"> sport competence</a> </p> <a href="https://publications.waset.org/abstracts/185889/physical-education-effect-on-sports-science-analysis-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21699</span> The Effect of Articial Intelligence on Physical Education Analysis and Sports Science</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peter%20Adly%20Hamdy%20Fahmy">Peter Adly Hamdy Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study was to examine the effects of a physical education program on student learning by combining the teaching of personal and social responsibility (TPSR) with a physical education model and TPSR with a traditional teaching model, these learning outcomes involving self-learning. -Study. Athletic performance, enthusiasm for sport, group cohesion, sense of responsibility and game performance. The participants were 3 secondary school physical education teachers and 6 physical education classes, 133 participants with students from the experimental group with 75 students and the control group with 58 students, and each teacher taught the experimental group and the control group for 16 weeks. The research methods used surveys, interviews and focus group meetings. Research instruments included the Personal and Social Responsibility Questionnaire, Sports Enthusiasm Scale, Group Cohesion Scale, Sports Self-Efficacy Scale, and Game Performance Assessment Tool. Multivariate analyzes of covariance and repeated measures ANOVA were used to examine differences in student learning outcomes between combining the TPSR with a physical education model and the TPSR with a traditional teaching model. The research findings are as follows: 1) The TPSR sports education model can improve students' learning outcomes, including sports self-efficacy, game performance, sports enthusiasm, team cohesion, group awareness and responsibility. 2) A traditional teaching model with TPSR could improve student learning outcomes, including sports self-efficacy, responsibility, and game performance. 3) The sports education model with TPSR could improve learning outcomes more than the traditional teaching model with TPSR, including sports self-efficacy, sports enthusiasm, responsibility and game performance. 4) Based on qualitative data on teachers' and students' learning experience, the physical education model with TPSR significantly improves learning motivation, group interaction and sense of play. The results suggest that physical education with TPSR could further improve learning outcomes in the physical education program. On the other hand, the hybrid model curriculum projects TPSR - Physical Education and TPSR - Traditional Education are good curriculum projects for moral character education that can be used in school physics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approach%20competencies" title="approach competencies">approach competencies</a>, <a href="https://publications.waset.org/abstracts/search?q=physical" title=" physical"> physical</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a>, <a href="https://publications.waset.org/abstracts/search?q=teachers%20employment" title=" teachers employment"> teachers employment</a>, <a href="https://publications.waset.org/abstracts/search?q=graduate" title=" graduate"> graduate</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20education%20and%20sport%20sciences" title=" physical education and sport sciences"> physical education and sport sciences</a>, <a href="https://publications.waset.org/abstracts/search?q=SWOT%20analysis%20character%20education" title=" SWOT analysis character education"> SWOT analysis character education</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20season" title=" sport season"> sport season</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20performance" title=" game performance"> game performance</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20competence" title=" sport competence"> sport competence</a> </p> <a href="https://publications.waset.org/abstracts/183065/the-effect-of-articial-intelligence-on-physical-education-analysis-and-sports-science" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21698</span> Thermal Modelling and Experimental Comparison for a Moving Pantograph Strip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nicolas%20Delcey">Nicolas Delcey</a>, <a href="https://publications.waset.org/abstracts/search?q=Philippe%20Baucour"> Philippe Baucour</a>, <a href="https://publications.waset.org/abstracts/search?q=Didier%20Chamagne"> Didier Chamagne</a>, <a href="https://publications.waset.org/abstracts/search?q=Genevi%C3%A8ve%20Wimmer"> Geneviève Wimmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Auditeau%20G%C3%A9rard"> Auditeau Gérard</a>, <a href="https://publications.waset.org/abstracts/search?q=Bausseron%20Thomas"> Bausseron Thomas</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouger%20Odile"> Bouger Odile</a>, <a href="https://publications.waset.org/abstracts/search?q=Blanvillain%20G%C3%A9rard"> Blanvillain Gérard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a thermal study of the catenary/pantograph interface for a train in motion. A 2.5D complex model of the pantograph strip has been defined and created by a coupling between a 1D and a 2D model. Experimental and simulation results are presented and with a comparison allow validating the 2.5D model. Some physical phenomena are described and presented with the help of the model such as the stagger motion thermal effect, particular heats and the effect of the material characteristics. Finally it is possible to predict the critical thermal configuration during a train trip. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-thermal%20studies" title="electro-thermal studies">electro-thermal studies</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20optimizations" title=" mathematical optimizations"> mathematical optimizations</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-physical%20approach" title=" multi-physical approach"> multi-physical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20model" title=" numerical model"> numerical model</a>, <a href="https://publications.waset.org/abstracts/search?q=pantograph%20strip%20wear" title=" pantograph strip wear"> pantograph strip wear</a> </p> <a href="https://publications.waset.org/abstracts/63675/thermal-modelling-and-experimental-comparison-for-a-moving-pantograph-strip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21697</span> An Aesthetic Spatial Turn - AI and Aesthetics in the Physical, Psychological, and Symbolic Spaces of Brand Advertising</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu%20Chen">Yu Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In line with existing philosophical approaches, this research proposes a conceptual model with an innovative spatial vision and aesthetic principles for Artificial Intelligence (AI) application in brand advertising. The model first identifies the major constituencies in contemporary advertising on three spatial levels—physical, psychological, and symbolic. The model further incorporates the relationships among AI, aesthetics, branding, and advertising and their interactions with the major actors in all spaces. It illustrates that AI may follow the aesthetic principles-- beauty, elegance, and simplicity-- to reinforce brand identity and consistency in advertising, to collaborate with stakeholders, and to satisfy different advertising objectives on each level. It proposes that, with aesthetic guidelines, AI may assist consumers to emerge into the physical, psychological, and symbolic advertising spaces and helps transcend the tangible advertising messages to meaningful brand symbols. Conceptually, the research illustrates that even though consumers’ engagement with brand mostly begins with physical advertising and later moves to psychological-symbolic, AI-assisted advertising should start with the understanding of brand symbolic-psychological and consumer aesthetic preferences before the physical design to better resonate. Limits of AI and future AI functions in advertising are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AI" title="AI">AI</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial" title=" spatial"> spatial</a>, <a href="https://publications.waset.org/abstracts/search?q=aesthetic" title=" aesthetic"> aesthetic</a>, <a href="https://publications.waset.org/abstracts/search?q=brand%20advertising" title=" brand advertising"> brand advertising</a> </p> <a href="https://publications.waset.org/abstracts/164356/an-aesthetic-spatial-turn-ai-and-aesthetics-in-the-physical-psychological-and-symbolic-spaces-of-brand-advertising" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21696</span> Double Layer Security Model for Identification Friend or Foe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buse%20T.%20Ayd%C4%B1n">Buse T. Aydın</a>, <a href="https://publications.waset.org/abstracts/search?q=Enver%20Ozdemir"> Enver Ozdemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a double layer authentication scheme between the aircraft and the Air Traffic Control (ATC) tower is designed to prevent any unauthorized aircraft from introducing themselves as friends. The method is a combination of classical cryptographic methods and new generation physical layers. The first layer has employed the embedded key of the aircraft. The embedded key is assumed to installed during the construction of the utility. The other layer is a physical attribute (flight path, distance, etc.) between the aircraft and the ATC tower. We create a mathematical model so that two layers’ information is employed and an aircraft is authenticated as a friend or foe according to the accuracy of the results of the model. The results of the aircraft are compared with the results of the ATC tower and if the values found by the aircraft and ATC tower match within a certain error margin, we mark the aircraft as a friend. In this method, even if embedded key is captured by the enemy aircraft, without the information of the second layer, the enemy can easily be determined. Overall, in this work, we present a more reliable system by adding a physical layer in the authentication process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADS-B" title="ADS-B">ADS-B</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20with%20physical%20layer%20security" title=" communication with physical layer security"> communication with physical layer security</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=identification%20friend%20or%20foe" title=" identification friend or foe"> identification friend or foe</a> </p> <a href="https://publications.waset.org/abstracts/105521/double-layer-security-model-for-identification-friend-or-foe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21695</span> Modeling and Simulation Methods Using MATLAB/Simulink</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamuna%20Konda">Jamuna Konda</a>, <a href="https://publications.waset.org/abstracts/search?q=Umamaheswara%20Reddy%20Karumuri"> Umamaheswara Reddy Karumuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Sriramya%20Muthugi"> Sriramya Muthugi</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Pishati"> Varun Pishati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Shakya"> Ravi Shakya</a>, <a href="https://publications.waset.org/abstracts/search?q="> </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the challenges involved in mathematical modeling of plant simulation models ensuring the performance of the plant models much closer to the real time physical model. The paper includes the analysis performed and investigation on different methods of modeling, design and development for plant model. Issues which impact the design time, model accuracy as real time model, tool dependence are analyzed. The real time hardware plant would be a combination of multiple physical models. It is more challenging to test the complete system with all possible test scenarios. There are possibilities of failure or damage of the system due to any unwanted test execution on real time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model%20based%20design%20%28MBD%29" title="model based design (MBD)">model based design (MBD)</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=Simulink" title=" Simulink"> Simulink</a>, <a href="https://publications.waset.org/abstracts/search?q=stateflow" title=" stateflow"> stateflow</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20model" title=" plant model"> plant model</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20time%20model" title=" real time model"> real time model</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20workshop%20%28RTW%29" title=" real-time workshop (RTW)"> real-time workshop (RTW)</a>, <a href="https://publications.waset.org/abstracts/search?q=target%20language%20compiler%20%28TLC%29" title=" target language compiler (TLC)"> target language compiler (TLC)</a> </p> <a href="https://publications.waset.org/abstracts/48455/modeling-and-simulation-methods-using-matlabsimulink" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21694</span> The Framework of System Safety for Multi Human-in-The-Loop System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hideyuki%20Shintani">Hideyuki Shintani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ichiro%20Koshijima"> Ichiro Koshijima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Cyber Physical System (CPS), if there are a large number of persons in the process, a role of person in CPS might be different comparing with the one-man system. It is also necessary to consider how Human-in-The-Loop Cyber Physical Systems (HiTLCPS) ensure safety of each person in the loop process. In this paper, the authors discuss a system safety framework with an illustrative example with STAMP model to clarify what point for safety should be considered and what role of person in the should have. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyber-physical-system" title="cyber-physical-system">cyber-physical-system</a>, <a href="https://publications.waset.org/abstracts/search?q=human-in-the-loop" title=" human-in-the-loop"> human-in-the-loop</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=STAMP%20model" title=" STAMP model"> STAMP model</a> </p> <a href="https://publications.waset.org/abstracts/54442/the-framework-of-system-safety-for-multi-human-in-the-loop-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21693</span> Pattern of Physical Activity and Its Impact on the Quality of Life: A Structural Equation Modelling Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Maksum">Ali Maksum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a number of countries, including Indonesia, the tendency for non-communicable diseases is increasing. As a result, health costs must be paid by the state continues to increase as well. People's lifestyles, including due to lack of physical activity, are thought to have contributed significantly to the problem. This study aims to examine the impact of participation in sports on quality of life, which is reflected in three main indicators, namely health, psychological, and social aspects. The study was conducted in the city of Surabaya and its surroundings, with a total of 490 participants, consisting of 245 men and 245 women with an average age of 45.4 years. Data on physical activity and quality of life were collected by questionnaire and analyzed using structural equation modeling. The test results of the model prove that the value of chi-square = 8,259 with p = .409, RMSEA = .008, NFI = .992, and CFI = 1. This means that the model is compatible with the data. The model explains that physical activity has a significant effect on quality of life. People who exercise regularly are better able to cope with stress, have a lower risk of illness, and have higher pro-social behavior. Therefore, it needs serious efforts from stakeholders, especially the government, to create an ecosystem that allows the growth of movement culture in the community. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=participation" title="participation">participation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20life" title=" quality of life"> quality of life</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20equation%20modelling" title=" structural equation modelling"> structural equation modelling</a> </p> <a href="https://publications.waset.org/abstracts/118750/pattern-of-physical-activity-and-its-impact-on-the-quality-of-life-a-structural-equation-modelling-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118750.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21692</span> Estimation of the Temperatures in an Asynchronous Machine Using Extended Kalman Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi%20Huang">Yi Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Clemens%20Guehmann"> Clemens Guehmann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to monitor the thermal behavior of an asynchronous machine with squirrel cage rotor, a 9th-order extended Kalman filter (EKF) algorithm is implemented to estimate the temperatures of the stator windings, the rotor cage and the stator core. The state-space equations of EKF are established based on the electrical, mechanical and the simplified thermal models of an asynchronous machine. The asynchronous machine with simplified thermal model in Dymola is compiled as DymolaBlock, a physical model in MATLAB/Simulink. The coolant air temperature, three-phase voltages and currents are exported from the physical model and are processed by EKF estimator as inputs. Compared to the temperatures exported from the physical model of the machine, three parts of temperatures can be estimated quite accurately by the EKF estimator. The online EKF estimator is independent from the machine control algorithm and can work under any speed and load condition if the stator current is nonzero current system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asynchronous%20machine" title="asynchronous machine">asynchronous machine</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance" title=" resistance"> resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20estimation" title=" temperature estimation"> temperature estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20model" title=" thermal model"> thermal model</a> </p> <a href="https://publications.waset.org/abstracts/67431/estimation-of-the-temperatures-in-an-asynchronous-machine-using-extended-kalman-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21691</span> Re-Imagining Physical Education Teacher Education in a South African Higher Education Institution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20F.%20Jones%20Couto">C. F. Jones Couto</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20C.%20Motlhaolwa"> L. C. Motlhaolwa</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Williams"> K. Williams</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article explores the re-imagining of physical education teacher education in South African higher education. Utilising student reflections from a physical education practical module, valuable insights into student experiences were obtained about the current physical education pedagogical approaches and potential areas for improvement. The traditional teaching model of physical education is based on the idea of teaching students a variety of sports and physical activities. However, this model has been shown to be ineffective in promoting lifelong physical activity. The modern world demands a more holistic approach to health and wellness. Data was collected using the arts-based collage method in combination with written group reflections from 139 second-year undergraduate physical education students. This study employed thematic analysis methods to gain a comprehensive understanding of the data and extract a broader perspective on the students' experiences. The study aimed to empower student teachers to learn, think, and act creatively within the many educational models that impact their experience, contributing to the ongoing efforts of re-imagining physical education teacher education in South African higher education. This research is significant as the students' valuable insights reflected that they can think and work across disciplines. Sustainable development goals and graduate attributes are important concepts that can contribute to student preparation. Using a multi-model educational approach based on the cultural-historical theory, higher education institutions can help develop graduate attributes that will prepare students for success in the workplace and life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holistic%20education" title="holistic education">holistic education</a>, <a href="https://publications.waset.org/abstracts/search?q=graduate%20attributes" title=" graduate attributes"> graduate attributes</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20education" title=" physical education"> physical education</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20education" title=" teacher education"> teacher education</a>, <a href="https://publications.waset.org/abstracts/search?q=student%20experiences" title=" student experiences"> student experiences</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development%20goals" title=" sustainable development goals"> sustainable development goals</a> </p> <a href="https://publications.waset.org/abstracts/171176/re-imagining-physical-education-teacher-education-in-a-south-african-higher-education-institution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21690</span> Iterative Panel RC Extraction for Capacitive Touchscreen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chae%20Hoon%20Park">Chae Hoon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Kang%20Park"> Jong Kang Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong%20Tae%20Kim"> Jong Tae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical characteristics of capacitive touchscreen need to be accurately analyzed to result in better performance for multi-channel capacitance sensing. In this paper, we extracted the panel resistances and capacitances of the touchscreen by comparing measurement data and model data. By employing a lumped RC model for driver-to-receiver paths in touchscreen, we estimated resistance and capacitance values according to the physical lengths of channel paths which are proportional to the RC model. As a result, we obtained the model having 95.54% accuracy of the measurement data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20characteristics%20of%20capacitive%20touchscreen" title="electrical characteristics of capacitive touchscreen">electrical characteristics of capacitive touchscreen</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20extraction" title=" iterative extraction"> iterative extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20RC%20model" title=" lumped RC model"> lumped RC model</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20lengths%20of%20channel%20paths" title=" physical lengths of channel paths"> physical lengths of channel paths</a> </p> <a href="https://publications.waset.org/abstracts/88656/iterative-panel-rc-extraction-for-capacitive-touchscreen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21689</span> Students’ learning Effects in Physical Education between Sport Education Model with TPSR and Traditional Teaching Model with TPSR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsiang%20Pan">Yi-Hsiang Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hui%20Huang"> Chen-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ching-Hsiang%20Chen"> Ching-Hsiang Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Hsu"> Wei-Ting Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of the study were to explore the students' learning effect of physical education curriculum between merging Teaching Personal and Social Responsibility (TPSR) with sport education model and TPSR with traditional teaching model, which these learning effects included sport self-efficacy, sport enthusiastic, group cohesion, responsibility and game performance. The participants include 3 high school physical education teachers and 6 physical education classes, 133 participants with experience group 75 students and control group 58 students, and each teacher taught an experimental group and a control group for 16 weeks. The research methods used questionnaire investigation, interview, focus group meeting. The research instruments included personal and social responsibility questionnaire, sport enthusiastic scale, group cohesion scale, sport self-efficacy scale and game performance assessment instrument. Multivariate Analysis of covariance and Repeated measure ANOVA were used to test difference of students' learning effects between merging TPSR with sport education model and TPSR with traditional teaching model. The findings of research were: 1) The sport education model with TPSR could improve students' learning effects, including sport self-efficacy, game performance, sport enthusiastic, group cohesion and responsibility. 2) The traditional teaching model with TPSR could improve students' learning effect, including sport self-efficacy, responsibility and game performance. 3) the sport education model with TPSR could improve more learning effects than traditional teaching model with TPSR, including sport self-efficacy, sport enthusiastic,responsibility and game performance. 4) Based on qualitative data about learning experience of teachers and students, sport education model with TPSR significant improve learning motivation, group interaction and game sense. The conclusions indicated sport education model with TPSR could improve more learning effects in physical education curriculum. On other hand, the curricular projects of hybrid TPSR-Sport Education model and TPSR-Traditional Teaching model are both good curricular projects of moral character education, which may be applied in school physical education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=character%20education" title="character education">character education</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20season" title=" sport season"> sport season</a>, <a href="https://publications.waset.org/abstracts/search?q=game%20performance" title=" game performance"> game performance</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20competence" title=" sport competence"> sport competence</a> </p> <a href="https://publications.waset.org/abstracts/52014/students-learning-effects-in-physical-education-between-sport-education-model-with-tpsr-and-traditional-teaching-model-with-tpsr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21688</span> Developing an Integrated Seismic Risk Model for Existing Buildings in Northern Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Monteiro">R. Monteiro</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abarca"> A. Abarca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large scale seismic risk assessment has become increasingly popular to evaluate the physical vulnerability of a given region to seismic events, by putting together hazard, exposure and vulnerability components. This study, developed within the scope of the EU-funded project ITERATE (Improved Tools for Disaster Risk Mitigation in Algeria), explains the steps and expected results for the development of an integrated seismic risk model for assessment of the vulnerability of residential buildings in Northern Algeria. For this purpose, the model foresees the consideration of an updated seismic hazard model, as well as ad-hoc exposure and physical vulnerability models for local residential buildings. The first results of this endeavor, such as the hazard model and a specific taxonomy to be used for the exposure and fragility components of the model are presented, using as starting point the province of Blida, in Algeria. Specific remarks and conclusions regarding the characteristics of the Northern Algerian in-built are then made based on these results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Algeria" title="Northern Algeria">Northern Algeria</a>, <a href="https://publications.waset.org/abstracts/search?q=risk" title=" risk"> risk</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=vulnerability" title=" vulnerability"> vulnerability</a> </p> <a href="https://publications.waset.org/abstracts/92772/developing-an-integrated-seismic-risk-model-for-existing-buildings-in-northern-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21687</span> Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketan%20Naik">Ketan Naik</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20H.%20Bhathawala"> P. H. Bhathawala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel&rsquo;s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel&rsquo;s pressure and blood flow at certain time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardiovascular%20system" title="cardiovascular system">cardiovascular system</a>, <a href="https://publications.waset.org/abstracts/search?q=lumped%20parameter%20method" title=" lumped parameter method"> lumped parameter method</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/57520/mathematical-modeling-of-human-cardiovascular-system-a-lumped-parameter-approach-and-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21686</span> Effective Validation Model and Use of Mobile-Health Apps for Elderly People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leonardo%20Ramirez%20Lopez">Leonardo Ramirez Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Edward%20Guillen%20Pinto"> Edward Guillen Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Ramos%20Linares"> Carlos Ramos Linares</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The controversy brought about by the increasing use of mHealth apps and their effectiveness for disease prevention and diagnosis calls for immediate control. Although a critical topic in research areas such as medicine, engineering, economics, among others, this issue lacks reliable implementation models. However, projects such as Open Web Application Security Project (OWASP) and various studies have helped to create useful and reliable apps. This research is conducted under a quality model to optimize two mHealth apps for older adults. Results analysis on the use of two physical activity monitoring apps - AcTiv (physical activity) and SMCa (energy expenditure) - is positive and ideal. Through a theoretical and practical analysis, precision calculations and personal information control of older adults for disease prevention and diagnosis were performed. Finally, apps are validated by a physician and, as a result, they may be used as health monitoring tools in physical performance centers or any other physical activity. The results obtained provide an effective validation model for this type of mobile apps, which, in turn, may be applied by other software developers that along with medical staff would offer digital healthcare tools for elderly people. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=model" title="model">model</a>, <a href="https://publications.waset.org/abstracts/search?q=validation" title=" validation"> validation</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare" title=" healthcare"> healthcare</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly%20people" title=" elderly people"> elderly people</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20app" title=" mobile app"> mobile app</a> </p> <a href="https://publications.waset.org/abstracts/90054/effective-validation-model-and-use-of-mobile-health-apps-for-elderly-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21685</span> Classification of Barley Varieties by Artificial Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alper%20Taner">Alper Taner</a>, <a href="https://publications.waset.org/abstracts/search?q=Yesim%20Benal%20Oztekin"> Yesim Benal Oztekin</a>, <a href="https://publications.waset.org/abstracts/search?q=Huseyin%20Duran"> Huseyin Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20properties" title="physical properties">physical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20networks" title=" artificial neural networks"> artificial neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=barley" title=" barley"> barley</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/96350/classification-of-barley-varieties-by-artificial-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96350.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21684</span> Physical Activity Self-Efficacy among Pregnant Women with High Risk for Gestational Diabetes Mellitus: A Cross-Sectional Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Yang">Xiao Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji%20Zhang"> Ji Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingli%20Song"> Yingli Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Huang"> Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang"> Jing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang"> Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rongrong%20Han"> Rongrong Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhixuan%20Xiang"> Zhixuan Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Chen"> Lu Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingling%20Gao"> Lingling Gao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aim and Objectives: To examine physical activity self-efficacy, identify its predictors, and further explore the mechanism of action among the predictors in mainland Chinese pregnant women with high risk for gestational diabetes mellitus (GDM). Background: Physical activity could protect pregnant women from developing GDM. Physical activity self-efficacy was the key predictor of physical activity. Design: A cross-sectional study was conducted from October 2021 to May 2022 in Zhengzhou, China. Methods: 252 eligible pregnant women completed the Pregnancy Physical Activity Self-efficacy Scale, the Social Support for Physical Activity Scale, the Knowledge on Physical Activity Questionnaire, the 7-item Generalized Anxiety Disorder scale, the Edinburgh Postnatal Depression Scale, and a socio-demographic data sheet. Multiple linear regression was applied to explore the predictors of physical activity self-efficacy. Structural equation modeling was used to explore the mechanism of action among the predictors. Results: Chinese pregnant women with a high risk for GDM reported a moderate level of physical activity self-efficacy. The best-fit regression analysis revealed four variables explained 17.5% of the variance in physical activity self-efficacy. Social support for physical activity was the strongest predictor, followed by knowledge of the physical activity, intention to do physical activity, and anxiety symptoms. The model analysis indicated that knowledge of physical activity could release anxiety and depressive symptoms and then increase physical activity self-efficacy. Conclusion: The present study revealed a moderate level of physical activity self-efficacy. Interventions targeting pregnant women with high risk for GDM need to include the predictors of physical activity self-efficacy. Relevance to clinical practice: To facilitate pregnant women with high risk for GDM to engage in physical activity, healthcare professionals may find assess physical activity self-efficacy and intervene as soon as possible on their first antenatal visit. Physical activity intervention programs focused on self-efficacy may be conducted in further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title="physical activity">physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=gestational%20diabetes" title=" gestational diabetes"> gestational diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=self-efficacy" title=" self-efficacy"> self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=predictors" title=" predictors"> predictors</a> </p> <a href="https://publications.waset.org/abstracts/163023/physical-activity-self-efficacy-among-pregnant-women-with-high-risk-for-gestational-diabetes-mellitus-a-cross-sectional-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21683</span> Testing a Motivational Model of Physical Education on Contextual Outcomes and Total Moderate to Vigorous Physical Activity of Middle School Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arto%20Grasten">Arto Grasten</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Given the rising trend in obesity in children and youth, age-related decline in moderate- to- vigorous-intensity physical activity (MVPA) in several Western, African, and Asian countries in addition to limited evidence of behavioral, affective, cognitive outcomes in physical education, it is important to clarify the motivational processes in physical education classes behind total MVPA engagement. The present study examined the full sequence of the Hierarchical Model of Motivation in physical education including motivational climate, basic psychological needs, intrinsic motivation, contextual behavior, affect, cognition, total MVPA, and associated links to body mass index (BMI) and gender differences. A cross-sectional data comprised self-reports and objective assessments of 770 middle school students (Mage = 13.99 ± .81 years, 52% of girls) in North-East Finland. In order to test the associations between motivational climate, psychological needs, intrinsic motivation, cognition, behavior, affect, and total MVPA, a path model was implemented. Indirect effects between motivational climate and cognition, behavior, affect and total MVPA were tested by setting basic needs and intrinsic motivation as mediators into the model. The findings showed that direct and indirect paths for girls and boys associated with different contextual outcomes and girls’ indirect paths were not related with total MVPA. Precisely, task-involving climate-mediated by physical competence and intrinsic motivation related to enjoyment, importance, and graded assessments within girls, whereas task-involving climate associated with enjoyment and importance via competence and autonomy, and total MVPA via autonomy, intrinsic motivation, and importance within boys. Physical education assessments appeared to be essential in motivating students to participate in greater total MVPA. BMI was negatively linked with competence and relatedness only among girls. Although, the current and previous empirical findings supported task-involving teaching methods in physical education, in some cases, ego-involving climate should not be totally avoided. This may indicate that girls and boys perceive physical education classes in a different way. Therefore, both task- and ego-involving teaching practices can be useful ways of driving behavior in physical education classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=achievement%20goal%20theory" title="achievement goal theory">achievement goal theory</a>, <a href="https://publications.waset.org/abstracts/search?q=assessment" title=" assessment"> assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=enjoyment" title=" enjoyment"> enjoyment</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20model%20of%20motivation" title=" hierarchical model of motivation"> hierarchical model of motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=self-determination%20theory" title=" self-determination theory"> self-determination theory</a> </p> <a href="https://publications.waset.org/abstracts/68496/testing-a-motivational-model-of-physical-education-on-contextual-outcomes-and-total-moderate-to-vigorous-physical-activity-of-middle-school-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">280</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21682</span> Effects of Merging Personal and Social Responsibility with Sports Education Model on Students&#039; Game Performance and Responsibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yi-Hsiang%20Pan">Yi-Hsiang Pan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen-Hui%20Huang"> Chen-Hui Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Ting%20Hsu"> Wei-Ting Hsu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purposes of the study were to understand these topics as follows: 1. To explore the effect of merging teaching personal and social responsibility (TPSR) with sports education model on students' game performance and responsibility. 2. To explore the effect of sports education model on students' game performance and responsibility. 3. To compare the difference between "merging TPSR with sports education model" and "sports education model" on students' game performance and responsibility. The participants include three high school physical education teachers and six physical education classes. Every teacher teaches an experimental group and a control group. The participants had 121 students, including 65 students in the experimental group and 56 students in the control group. The research methods had game performance assessment, questionnaire investigation, interview, focus group meeting. The research instruments include personal and social responsibility questionnaire and game performance assessment instrument. Paired t-test test and MANCOVA were used to test the difference between "merging TPSR with sports education model" and "sports education model" on students' learning performance. 1) "Merging TPSR with sports education model" showed significant improvements in students' game performance, and responsibilities with self-direction, helping others, cooperation. 2) "Sports education model" also had significant improvements in students' game performance, and responsibilities with effort, self-direction, helping others. 3.) There was no significant difference in game performance and responsibilities between "merging TPSR with sports education model" and "sports education model". 4)."Merging TPSR with sports education model" significantly improve learning atmosphere and peer relationships, it may be developed in the physical education curriculum. The conclusions were as follows: Both "Merging TPSR with sports education model" and "sports education model" can help improve students' responsibility and game performance. However, "Merging TPSR with sports education model" can reduce the competitive atmosphere in highly intensive games between students. The curricular projects of hybrid TPSR-Sport Education model is a good approach for moral character education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curriculum%20and%20teaching%20model" title="curriculum and teaching model">curriculum and teaching model</a>, <a href="https://publications.waset.org/abstracts/search?q=sports%20self-efficacy" title=" sports self-efficacy"> sports self-efficacy</a>, <a href="https://publications.waset.org/abstracts/search?q=sport%20enthusiastic" title=" sport enthusiastic"> sport enthusiastic</a>, <a href="https://publications.waset.org/abstracts/search?q=character%20education" title=" character education"> character education</a> </p> <a href="https://publications.waset.org/abstracts/51173/effects-of-merging-personal-and-social-responsibility-with-sports-education-model-on-students-game-performance-and-responsibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21681</span> A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashvinie%20Thembiliyagoda">Ashvinie Thembiliyagoda</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasun%20De%20Silva"> Kasun De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Nimal%20Wijayaratna"> Nimal Wijayaratna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piers" title="piers">piers</a>, <a href="https://publications.waset.org/abstracts/search?q=scouring" title=" scouring"> scouring</a>, <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title=" HEC-RAS"> HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title=" physical model"> physical model</a> </p> <a href="https://publications.waset.org/abstracts/193088/a-comprehensive-approach-to-scour-depth-estimation-through-hec-ras-2d-and-physical-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193088.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21680</span> Unspoken Playground Rules Prompt Adolescents to Avoid Physical Activity: A Focus Group Study of Constructs in the Prototype Willingness Model </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Catherine%20Wheatley">Catherine Wheatley</a>, <a href="https://publications.waset.org/abstracts/search?q=Emma%20L.%20Davies"> Emma L. Davies</a>, <a href="https://publications.waset.org/abstracts/search?q=Helen%20Dawes"> Helen Dawes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The health benefits of exercise are widely recognised, but numerous interventions have failed to halt a sharp decline in physical activity during early adolescence. Many such projects are underpinned by the Theory of Planned Behaviour, yet this model of rational decision-making leaves variance in behavior unexplained. This study investigated whether the Prototype Willingness Model, which proposes a second, reactive decision-making path to account for spontaneous responses to the social environment, has potential to improve understanding of adolescent exercise behaviour in school by exploring constructs in the model with young people. PE teachers in 4 Oxfordshire schools each nominated 6 pupils who were active in school, and 6 who were inactive, to participate in the study. Of these, 45 (22 male) aged 12-13 took part in 8 focus group discussions. These were transcribed and subjected to deductive thematic analysis to search for themes relating to the prototype willingness model. Participants appeared to make rational decisions about commuting to school or attending sports clubs, but spontaneous choices to be inactive during both break and PE. These reactive decisions seemed influenced by a social context described as more ‘judgmental’ than primary school, characterised by anxiety about physical competence, negative peer evaluation and inactive playground norms. Participants described their images of typical active and inactive adolescents: active images included negative social characteristics including ‘show-off’. There was little concern about the long-term risks of inactivity, although participants seemed to recognise that physical activity is healthy. The Prototype Willingness Model might more fully explain young adolescents’ physical activity in school than rational behavioural models, indicating potential for physical activity interventions that target social anxieties in response to the changing playground environment. Images of active types could be more complex than earlier research has suggested, and their negative characteristics might influence willingness to be active. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adolescence" title="adolescence">adolescence</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=prototype%20willingness%20model" title=" prototype willingness model"> prototype willingness model</a>, <a href="https://publications.waset.org/abstracts/search?q=school" title=" school"> school</a> </p> <a href="https://publications.waset.org/abstracts/65295/unspoken-playground-rules-prompt-adolescents-to-avoid-physical-activity-a-focus-group-study-of-constructs-in-the-prototype-willingness-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21679</span> Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arsalan%20Ghaderi">Arsalan Ghaderi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HS-CRP" title="HS-CRP">HS-CRP</a>, <a href="https://publications.waset.org/abstracts/search?q=integrative%20model%20of%20behavior%20prediction" title=" integrative model of behavior prediction"> integrative model of behavior prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20activity" title=" physical activity"> physical activity</a>, <a href="https://publications.waset.org/abstracts/search?q=nurses" title=" nurses"> nurses</a>, <a href="https://publications.waset.org/abstracts/search?q=web-based%20education" title=" web-based education"> web-based education</a> </p> <a href="https://publications.waset.org/abstracts/95129/evaluating-the-educational-intervention-based-on-web-and-integrative-model-of-behavior-prediction-to-promote-physical-activities-and-hs-crp-factor-among-nurses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21678</span> Robust Control of Cyber-Physical System under Cyber Attacks Based on Invariant Tubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vili%C4%87%20Belina">Bruno Vilić Belina</a>, <a href="https://publications.waset.org/abstracts/search?q=Jadranko%20Matu%C5%A1ko"> Jadranko Matuško</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid development of cyber-physical systems significantly influences modern control systems introducing a whole new range of applications of control systems but also putting them under new challenges to ensure their resiliency to possible cyber attacks, either in the form of data integrity attacks or deception attacks. This paper presents a model predictive approach to the control of cyber-physical systems robust to cyber attacks. We assume that a cyber attack can be modelled as an additive disturbance that acts in the measuring channel. For such a system, we designed a tube-based predictive controller based. The performance of the designed controller has been verified in Matlab/Simulink environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title="control systems">control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20attacks" title=" cyber attacks"> cyber attacks</a>, <a href="https://publications.waset.org/abstracts/search?q=resiliency" title=" resiliency"> resiliency</a>, <a href="https://publications.waset.org/abstracts/search?q=robustness" title=" robustness"> robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=tube%20based%20model%20predictive%20control" title=" tube based model predictive control"> tube based model predictive control</a> </p> <a href="https://publications.waset.org/abstracts/169652/robust-control-of-cyber-physical-system-under-cyber-attacks-based-on-invariant-tubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169652.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21677</span> Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Galoie">Majid Galoie</a>, <a href="https://publications.waset.org/abstracts/search?q=Khodadad%20Safavi"> Khodadad Safavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdolreza%20Karami%20Nejad"> Abdolreza Karami Nejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Roshan"> Reza Roshan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scouring%20process" title="scouring process">scouring process</a>, <a href="https://publications.waset.org/abstracts/search?q=plunge%20pool" title=" plunge pool"> plunge pool</a>, <a href="https://publications.waset.org/abstracts/search?q=scour%20hole%20depth" title=" scour hole depth"> scour hole depth</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20model" title=" physical model"> physical model</a>, <a href="https://publications.waset.org/abstracts/search?q=flip%20bucket" title=" flip bucket "> flip bucket </a> </p> <a href="https://publications.waset.org/abstracts/20083/optimization-of-flip-bucket-dents-in-order-to-reduce-scour-hole-depth-plunge-pool-using-a-comprehensive-physical-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=723">723</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=724">724</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=physical%20model&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10