CINXE.COM

Search results for: plasticity index

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plasticity index</title> <meta name="description" content="Search results for: plasticity index"> <meta name="keywords" content="plasticity index"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plasticity index" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plasticity index"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3740</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plasticity index</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3740</span> Effect of Treated Peat Soil on the Plasticity Index and Hardening Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Aida%20Mario">Siti Nur Aida Mario</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Hafifee%20Ahmad"> Farah Hafifee Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Tawie"> Rudy Tawie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=peat%20soil" title=" peat soil"> peat soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a> </p> <a href="https://publications.waset.org/abstracts/44907/effect-of-treated-peat-soil-on-the-plasticity-index-and-hardening-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3739</span> Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Patel%20Darshan%20Shaileshkumar">Patel Darshan Shaileshkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20G.%20Vanza"> M. G. Vanza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20shell%20ash" title="palm kernel shell ash">palm kernel shell ash</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cotton%20soil" title=" black cotton soil"> black cotton soil</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=group%20index" title=" group index"> group index</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a> </p> <a href="https://publications.waset.org/abstracts/167203/improvement-in-plasticity-index-and-group-index-of-black-cotton-soil-using-palm-kernel-shell-ash" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3738</span> Nonlinear Analysis with Failure Using the Boundary Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ernesto%20Pineda%20Leon">Ernesto Pineda Leon</a>, <a href="https://publications.waset.org/abstracts/search?q=Dante%20Tolentino%20Lopez"> Dante Tolentino Lopez</a>, <a href="https://publications.waset.org/abstracts/search?q=Janis%20Zapata%20Lopez"> Janis Zapata Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper shows the application of the boundary element method for the analysis of plates under shear stress causing plasticity. In this case, the shear deformation of a plate is considered by means of the Reissner’s theory. The probability of failure of a Reissner’s plate due to a proposed index plastic behavior is calculated taken into account the uncertainty in mechanical and geometrical properties. The problem is developed in two dimensions. The classic plasticity’s theory is applied and a formulation for initial stresses that lead to the boundary integral equations due to plasticity is also used. For the plasticity calculation, the Von Misses criteria is used. To solve the non-linear equations an incremental method is employed. The results show a relatively small failure probability for the ranges of loads between 0.6 and 1.0. However, for values between 1.0 and 2.5, the probability of failure increases significantly. Consequently, for load bigger than 2.5 the plate failure is a safe event. The results are compared to those that were found in the literature and the agreement is good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title="boundary element method">boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=probability" title=" probability"> probability</a> </p> <a href="https://publications.waset.org/abstracts/89969/nonlinear-analysis-with-failure-using-the-boundary-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89969.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3737</span> The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Hastuti">Yulia Hastuti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Dewi"> Ratna Dewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Sandi"> Muhammad Sandi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expansive%20soil" title="expansive soil">expansive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=gypsum" title=" gypsum"> gypsum</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20binder" title=" soil binder"> soil binder</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a> </p> <a href="https://publications.waset.org/abstracts/58657/the-effect-of-soil-binder-and-gypsum-to-the-changes-of-the-expansive-soil-shear-strength-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3736</span> Shear Strength of Unsaturated Clayey Soils Using Laboratory Vane Shear Test</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Ziaie%20Moayed">Reza Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Abdolhassan%20Naeini"> Seyed Abdolhassan Naeini</a>, <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Nouri"> Peyman Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Yekehdehghan"> Hamed Yekehdehghan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The shear strength of soils is a significant parameter in the design of clay structures, depots, clay gables, and freeways. Most research has addressed the shear strength of saturated soils. However, soils can become partially saturated with changes in weather, changes in groundwater levels, and the absorption of water by plant roots. Hence, it is necessary to study the strength behavior of partially saturated soils. The shear vane test is an experiment that determines the undrained shear strength of clay soils. This test may be performed in the laboratory or at the site. The present research investigates the effect of liquidity index (LI), plasticity index (PI), and saturation degree of the soil on its undrained shear strength obtained from the shear vane test. According to the results, an increase in the LI and a decrease in the PL of the soil decrease its undrained shear strength. Furthermore, studies show that a rise in the degree of saturation decreases the shear strength obtained from the shear vane test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=liquidity%20index" title="liquidity index">liquidity index</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20strength" title=" shear strength"> shear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20soil" title=" unsaturated soil"> unsaturated soil</a> </p> <a href="https://publications.waset.org/abstracts/147252/shear-strength-of-unsaturated-clayey-soils-using-laboratory-vane-shear-test" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3735</span> The Effect of Sand Content on Behavior of Kaolin Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Tohidi">Hamed Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20W.%20Mahar"> James W. Mahar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the unknowns in the design of zoned earth dams is the percentage of sand which can be present in a clay core and still retain the necessary plasticity to prevent cracking in response to deformation. Cracks in the clay core of a dam caused by differential settlement can lead to failure of the dam. In this study, a series of Atterberg Limit tests and unconfined compression strength tests have been conducted in the ISU soil mechanics laboratory on prepared mixes of quartz sand and commercial clays (Kaolin and Smectite) to determine the relationship between sand content, plasticity and squeezing behavior. The prepared mixes have variable percentages of sand ranging between 10 and 90% by weight. Plastic limit test results in which specimens can be rolled into 1/8 in. threads without crumbling and plasticity index values which represent the range of water content over which the specimens can be remolded without cracking were used to evaluate the plasticity of the sand-clay mixtures. The test results show that the design mixes exhibit plastic behavior with sand contents up to 80% by weight. However, the plasticity of the mixes decreases with increasing sand content. For unconfined compression strength tests, the same mixtures of sand and clay (Kaolin) were made in plastic limit. The results which were concluded from the UCC tests represent the relationship between sand-clay content and chance of having squeezing behavior, also according to the results from UCC, strength of different samples and stress-strain curves can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay%27s%20behaviour" title="clay&#039;s behaviour">clay&#039;s behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20content" title=" sand content"> sand content</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaolin%20clay" title=" Kaolin clay"> Kaolin clay</a> </p> <a href="https://publications.waset.org/abstracts/76267/the-effect-of-sand-content-on-behavior-of-kaolin-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3734</span> Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetiana%20Didenko"> Tetiana Didenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climb%20and%20glide%20of%20dislocations" title="climb and glide of dislocations">climb and glide of dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=fractures%20of%20transient%20plasticity" title=" fractures of transient plasticity"> fractures of transient plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20feed-back" title=" non-linear feed-back"> non-linear feed-back</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defects" title=" point defects"> point defects</a> </p> <a href="https://publications.waset.org/abstracts/55262/theoretical-approach-to-kinetics-of-transient-plasticity-of-metals-under-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3733</span> Plasticity in Matrix Dominated Metal-Matrix Composite with One Active Slip Based Dislocation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Takele%20Kasa">Temesgen Takele Kasa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main aim of this paper is to suggest one active slip based continuum dislocation approach to matrix dominated MMC plasticity analysis. The approach centered the free energy principles through the continuum behavior of dislocations combined with small strain continuum kinematics. The analytical derivation of this method includes the formulation of one active slip system, the thermodynamic approach of dislocations, determination of free energy, and evolution of dislocations. In addition zero and non-zero energy dissipation analysis of dislocation evolution is also formulated by using varational energy minimization method. In general, this work shows its capability to analyze the plasticity of matrix dominated MMC with inclusions. The proposed method is also found to be capable of handling plasticity of MMC. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20slip" title="active slip">active slip</a>, <a href="https://publications.waset.org/abstracts/search?q=continuum%20dislocation" title=" continuum dislocation"> continuum dislocation</a>, <a href="https://publications.waset.org/abstracts/search?q=distortion" title=" distortion"> distortion</a>, <a href="https://publications.waset.org/abstracts/search?q=dominated" title=" dominated"> dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dissipation" title=" energy dissipation"> energy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20dominated" title=" matrix dominated"> matrix dominated</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/66664/plasticity-in-matrix-dominated-metal-matrix-composite-with-one-active-slip-based-dislocation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3732</span> A Crystal Plasticity Approach to Model Dynamic Strain Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Bal">Burak Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demircan%20Canadinc"> Demircan Canadinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20aging" title=" dynamic strain aging"> dynamic strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadfield%20steel" title=" Hadfield steel"> Hadfield steel</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20strain%20rate%20sensitivity" title=" negative strain rate sensitivity"> negative strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/76918/a-crystal-plasticity-approach-to-model-dynamic-strain-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3731</span> Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rasyid%20Angkotasan">Muhammad Rasyid Angkotasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate%20change" title="climate change">climate change</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20shrinkage" title=" soil shrinkage"> soil shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=shrinking%20dimensions" title=" shrinking dimensions"> shrinking dimensions</a> </p> <a href="https://publications.waset.org/abstracts/52450/effect-of-climate-change-rate-in-indonesia-against-the-shrinking-dimensions-of-granules-and-plasticity-index-of-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3730</span> Effect of Nanobentonite Particles on Geotechnical Properties of Kerman Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ghasemipanah">A. Ghasemipanah</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ziaie%20Moayed"> R. Ziaie Moayed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Niroumand"> H. Niroumand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Improving the geotechnical properties of soil has always been one of the issues in geotechnical engineering. Traditional materials have been used to improve and stabilize soils to date, each with its own advantages and disadvantages. Although the soil stabilization by adding materials such as cement, lime, bitumen, etc. is one of the effective methods to improve the geotechnical properties of soil, but nanoparticles are one of the newest additives which can improve the loose soils. This research is intended to study the effect of adding nanobentonite on soil engineering properties, especially the unconfined compression strength and maximum dry unit weight, using clayey soil with low liquid limit (CL) from Kerman (Iran). Nanobentonite was mixed with soil in three different percentages (i.e. 3, 5, 7% by weight of the parent soil) with different curing time (1, 7 and 28 days). The unconfined compression strength, liquid and plastic limits and plasticity index of treated specimens were measured by unconfined compression and Atterberg limits test. It was found that increase in nanobentonite content resulted in increase in the unconfined compression strength, liquid and plastic limits of the clayey soil and reduce in plasticity index. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanobentonite%20particles" title="nanobentonite particles">nanobentonite particles</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20soil" title=" clayey soil"> clayey soil</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20stress" title=" unconfined compression stress"> unconfined compression stress</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20improvement." title=" soil improvement."> soil improvement.</a> </p> <a href="https://publications.waset.org/abstracts/111617/effect-of-nanobentonite-particles-on-geotechnical-properties-of-kerman-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3729</span> Non-linear Analysis of Spontaneous EEG After Spinal Cord Injury: An Experimental Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiangbo%20Pu">Jiangbo Pu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanhui%20Xu"> Hanhui Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yazhou%20Wang"> Yazhou Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongyan%20Cui"> Hongyan Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong%20Hu"> Yong Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spinal cord injury (SCI) brings great negative influence to the patients and society. Neurological loss in human after SCI is a major challenge in clinical. Instead, neural regeneration could have been seen in animals after SCI, and such regeneration could be retarded by blocking neural plasticity pathways, showing the importance of neural plasticity in functional recovery. Here we used sample entropy as an indicator of nonlinear dynamical in the brain to quantify plasticity changes in spontaneous EEG recordings of rats before and after SCI. The results showed that the entropy values were increased after the injury during the recovery in one week. The increasing tendency of sample entropy values is consistent with that of behavioral evaluation scores. It is indicated the potential application of sample entropy analysis for the evaluation of neural plasticity in spinal cord injury rat model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spinal%20cord%20injury%20%28SCI%29" title="spinal cord injury (SCI)">spinal cord injury (SCI)</a>, <a href="https://publications.waset.org/abstracts/search?q=sample%20entropy" title=" sample entropy"> sample entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20system" title=" complex system"> complex system</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20pattern" title=" firing pattern"> firing pattern</a>, <a href="https://publications.waset.org/abstracts/search?q=EEG" title=" EEG"> EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=spontaneous%20activity" title=" spontaneous activity"> spontaneous activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Basso%20Beattie%20Bresnahan%20%28BBB%29%20score" title=" Basso Beattie Bresnahan (BBB) score"> Basso Beattie Bresnahan (BBB) score</a> </p> <a href="https://publications.waset.org/abstracts/35148/non-linear-analysis-of-spontaneous-eeg-after-spinal-cord-injury-an-experimental-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">465</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3728</span> Descriptive Study of Role Played by Exercise and Diet on Brain Plasticity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mridul%20Sharma">Mridul Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Praveen%20Saroha"> Praveen Saroha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In today&#39;s world, everyone has become so busy in their to-do tasks and daily routine that they tend to ignore some of the basal components of our life, including exercise and diet. This comparative study analyzes the pathways of the relationship between exercise and brain plasticity and also includes another variable diet to study the effects of diet on learning by answering questions including which diet is known to be the best learning supporter and what are the recommended quantities of the same. Further, this study looks into inter-relation between diet and exercise, and also some other approach of the relation between diet and exercise on learning apart from through Brain Derived Neurotrophic Factor (BDNF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20derived%20neurotrophic%20factor" title="brain derived neurotrophic factor">brain derived neurotrophic factor</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20plasticity" title=" brain plasticity"> brain plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=diet" title=" diet"> diet</a>, <a href="https://publications.waset.org/abstracts/search?q=exercise" title=" exercise"> exercise</a> </p> <a href="https://publications.waset.org/abstracts/112374/descriptive-study-of-role-played-by-exercise-and-diet-on-brain-plasticity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3727</span> Geotechnical Characterization of Residual Soil for Deterministic Landslide Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vera%20Karla%20S.%20Caingles">Vera Karla S. Caingles</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20A.%20Lorenzo"> Glen A. Lorenzo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil, as the main material of landslides, plays a vital role in landslide assessment. An efficient and accurate method of doing an assessment is significantly important to prevent damage of properties and loss of lives. The study has two phases: to establish an empirical correlation of the residual soil thickness with the slope angle and to investigate the geotechnical characteristics of residual soil. Digital Elevation Model (DEM) in Geographic Information System (GIS) was used to establish the slope map and to program sampling points for field investigation. Physical and index property tests were undertaken on the 20 soil samples obtained from the area with Pliocene-Pleistocene geology and different slope angle in Kibawe, Bukidnon. The regression analysis result shows that the best fitting model that can describe the soil thickness-slope angle relationship is an exponential function. The physical property results revealed that soils contain a high percentage of clay and silts ranges from 41% - 99.52%. Based on the index properties test results, the soil exhibits a high degree of plasticity and expansion but not collapsible. It is deemed that this compendium will serve as primary data for slope stability analysis and deterministic landslide assessment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=collapsibility" title="collapsibility">collapsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=correlation" title=" correlation"> correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=expansiveness" title=" expansiveness"> expansiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=landslide" title=" landslide"> landslide</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/109136/geotechnical-characterization-of-residual-soil-for-deterministic-landslide-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3726</span> Neuroplasticity: A Fresh Begining for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/11412/neuroplasticity-a-fresh-begining-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3725</span> Neuroplasticity: A Fresh Beginning for Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neuroplasticity or the flexibility of the neural system is the ability of the brain to adapt to the lack or deterioration of sense and the capability of the neural system to modify itself through changing shape and function. Not only have studies revealed that neuroplasticity does not end in childhood, but also they have proven that it continues till the end of life and is not limited to the neural system and covers the cognitive system as well. In the field of cognition, neuroplasticity is defined as the ability to change old thoughts according to new conditions and the individuals' differences in using various styles of cognitive regulation inducing several social, emotional and cognitive outcomes. On the other hand, complexities of daily life necessitates cognitive neuroplasticity in order to adapt to different circumstances. The. present paper attempts to discuss and define major theories and principles of neuroplasticity and elaborate on nature or nurture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neuroplasticity" title="neuroplasticity">neuroplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20plasticity" title=" cognitive plasticity"> cognitive plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20theories" title=" plasticity theories"> plasticity theories</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20mechanisms" title=" plasticity mechanisms"> plasticity mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/26751/neuroplasticity-a-fresh-beginning-for-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3724</span> Effects of Rockdust as a Soil Stabilizing Agent on Poor Subgrade Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Munawar">Muhammad Munawar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pavement destruction is normally associated with the horizontal relocation of subgrade because of pavement engrossing water and inordinate avoidance and differential settlement of material underneath the pavement. The aim of the research is to study the effect of the additives (rockdust) on the stability and the increase of bearing capacity of selected soils in Mardan City. The physical, chemical and designing properties of soil were contemplated, and the soil was treated with added admixture rockdust with the goal of stabilizing the local soil. The stabilization or modification of soil is done by blending of rock dust to soils in the scope of 0 to 85% by the rate increment of 5%, 10%, and 15% individually. The following test was done for treated sample: Atterberg limits (liquid limit, plasticity index, plastic limit), standard compaction test, the California bearing test and the direct shear test. The results demonstrated that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were shown reduction with the addition of Rock dust. It was concluded that the maximum dry density is increasing with the addition of rockdust up to 10%, beyond 10%, it shows reduction in their content. It was discovered that the Cohesion C diminished, the angle of internal friction and the California bearing ratio (C.B.R) was improved with the addition of Rock dust. The investigation demonstrated that the best stabilizer for the contextual investigation (Toru road Mardan) is the rock dust and the ideal dosage is 10 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rockdust" title="rockdust">rockdust</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=modification" title=" modification"> modification</a>, <a href="https://publications.waset.org/abstracts/search?q=CBR" title=" CBR"> CBR</a> </p> <a href="https://publications.waset.org/abstracts/84247/effects-of-rockdust-as-a-soil-stabilizing-agent-on-poor-subgrade-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3723</span> Study of Physico-Chimical Properties of a Silty Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moulay%20Sma%C3%AFne%20Ghembaza">Moulay Smaïne Ghembaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Dadouch"> Mokhtar Dadouch</a>, <a href="https://publications.waset.org/abstracts/search?q=Nour-Said%20Ikhlef"> Nour-Said Ikhlef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=treatment%20of%20soil" title="treatment of soil">treatment of soil</a>, <a href="https://publications.waset.org/abstracts/search?q=cement" title=" cement"> cement</a>, <a href="https://publications.waset.org/abstracts/search?q=subgrade" title=" subgrade"> subgrade</a>, <a href="https://publications.waset.org/abstracts/search?q=Atteberg%20limits" title=" Atteberg limits"> Atteberg limits</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20proctor%20properties" title=" optimum proctor properties"> optimum proctor properties</a> </p> <a href="https://publications.waset.org/abstracts/19154/study-of-physico-chimical-properties-of-a-silty-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19154.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3722</span> Neural Reshaping: The Plasticity of Human Brain and Artificial Intelligence in the Learning Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed-Ali%20Sadegh-Zadeh">Seyed-Ali Sadegh-Zadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahboobe%20Bahrami"> Mahboobe Bahrami</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Ahmadi"> Sahar Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Seyed-Yaser%20Mousavi"> Seyed-Yaser Mousavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Atashbar"> Hamed Atashbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20M.%20Hajiyavand"> Amir M. Hajiyavand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an investigation into the concept of neural reshaping, which is crucial for achieving strong artificial intelligence through the development of AI algorithms with very high plasticity. By examining the plasticity of both human and artificial neural networks, the study uncovers groundbreaking insights into how these systems adapt to new experiences and situations, ultimately highlighting the potential for creating advanced AI systems that closely mimic human intelligence. The uniqueness of this paper lies in its comprehensive analysis of the neural reshaping process in both human and artificial intelligence systems. This comparative approach enables a deeper understanding of the fundamental principles of neural plasticity, thus shedding light on the limitations and untapped potential of both human and AI learning capabilities. By emphasizing the importance of neural reshaping in the quest for strong AI, the study underscores the need for developing AI algorithms with exceptional adaptability and plasticity. The paper's findings have significant implications for the future of AI research and development. By identifying the core principles of neural reshaping, this research can guide the design of next-generation AI technologies that can enhance human and artificial intelligence alike. These advancements will be instrumental in creating a new era of AI systems with unparalleled capabilities, paving the way for improved decision-making, problem-solving, and overall cognitive performance. In conclusion, this paper makes a substantial contribution by investigating the concept of neural reshaping and its importance for achieving strong AI. Through its in-depth exploration of neural plasticity in both human and artificial neural networks, the study unveils vital insights that can inform the development of innovative AI technologies with high adaptability and potential for enhancing human and AI capabilities alike. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20plasticity" title="neural plasticity">neural plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20adaptation" title=" brain adaptation"> brain adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=learning" title=" learning"> learning</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20reshaping" title=" cognitive reshaping"> cognitive reshaping</a> </p> <a href="https://publications.waset.org/abstracts/184565/neural-reshaping-the-plasticity-of-human-brain-and-artificial-intelligence-in-the-learning-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3721</span> Elucidating the Genetic Determinism of Seed Protein Plasticity in Response to the Environment Using Medicago truncatula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Cartelier">K. Cartelier</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aime"> D. Aime</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vernoud"> V. Vernoud</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Buitink"> J. Buitink</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20M.%20Prosperi"> J. M. Prosperi</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Gallardo"> K. Gallardo</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Le%20Signor"> C. Le Signor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legumes can produce protein-rich seeds without nitrogen fertilizer through root symbiosis with nitrogen-fixing rhizobia. Rich in lysine, these proteins are used for human nutrition and animal feed. However, the instability of seed protein yield and quality due to environmental fluctuations limits the wider use of legumes such as pea. Breeding efforts are needed to optimize and stabilize seed nutritional value, which requires to identify the genetic determinism of seed protein plasticity in response to the environment. Towards this goal, we have studied the plasticity of protein content and composition of seeds from a collection of 200 Medicago truncatula ecotypes grown under four controlled conditions (optimal, drought, and winter/spring sowing). A quantitative analysis of one-dimensional protein profiles of these mature seeds was performed and plasticity indices were calculated from each abundant protein band. Genome-Wide Association Studies (GWAS) from these data identified major GWAS hotspots, from which a list of candidate genes was obtained. A Gene Ontology Enrichment Analysis revealed an over-representation of genes involved in several amino acid metabolic pathways. This led us to propose that environmental variations are likely to modulate amino acid balance, thus impacting seed protein composition. The selection of candidate genes for controlling the plasticity of seed protein composition was refined using transcriptomics data from developing Medicago truncatula seeds. The pea orthologs of key genes were identified for functional studies by mean of TILLING (Targeting Induced Local Lesions in Genomes) lines in this crop. We will present how this study highlighted mechanisms that could govern seed protein plasticity, providing new cues towards the stabilization of legume seed quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GWAS" title="GWAS">GWAS</a>, <a href="https://publications.waset.org/abstracts/search?q=Medicago%20truncatula" title=" Medicago truncatula"> Medicago truncatula</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=seed" title=" seed"> seed</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20proteins" title=" storage proteins"> storage proteins</a> </p> <a href="https://publications.waset.org/abstracts/114311/elucidating-the-genetic-determinism-of-seed-protein-plasticity-in-response-to-the-environment-using-medicago-truncatula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3720</span> Bearing Capacity of Sulphuric Acid Content Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20N.%20Khare">R. N. Khare</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20P.%20Sahu"> J. P. Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar%20Tamrakar"> Rajesh Kumar Tamrakar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tests were conducted to determine the property of soil with variation of H2SO4 content for soils under different stage. The soils had varying amounts of plasticity’s ranging from low to high plasticity. The unsaturated soil behavior was investigated for different conditions, covering a range of compactive efforts and water contents. The soil characteristic curves were more sensitive to changes in compaction effort than changes in compaction water content. In this research paper two types of water (Ground water Ph =7.9, Turbidity= 13 ppm; Cl =2.1mg/l and surface water Ph =8.65; Turbidity=18.5; Cl=1mg/l) were selected of Bhilai Nagar, State-Chhattisgarh, India which is mixed with a certain type of soil. Results shows that by the presence of ground water day by day the particles are becoming coarser in 7 days thereafter its size reduces; on the other hand by the presence of surface water the courser particles are disintegrating, finer particles are accumulating and also the dry density is reduces. Plasticity soils retained the smallest water content and the highest plasticity soils retained the highest water content at a specified suction. In addition, soil characteristic for soils to be compacted in the laboratory and in the field are still under process for analyzing the bearing capacity. The bearing capacity was reduced 2 to 3 times in the presence of H2SO4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20compaction" title="soil compaction">soil compaction</a>, <a href="https://publications.waset.org/abstracts/search?q=H2SO4" title=" H2SO4"> H2SO4</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20water" title=" soil water"> soil water</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conditions" title=" water conditions"> water conditions</a> </p> <a href="https://publications.waset.org/abstracts/10029/bearing-capacity-of-sulphuric-acid-content-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10029.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">539</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3719</span> Topological Indices of Some Graph Operations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Mary">U. Mary </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let be a graph with a finite, nonempty set of objects called vertices together with a set of unordered pairs of distinct vertices of called edges. The vertex set is denoted by and the edge set by. Given two graphs and the wiener index of, wiener index for the splitting graph of a graph, the first Zagreb index of and its splitting graph, the 3-steiner wiener index of, the 3-steiner wiener index of a special graph are explored in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complementary%20prism%20graph" title="complementary prism graph">complementary prism graph</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20Zagreb%20index" title=" first Zagreb index"> first Zagreb index</a>, <a href="https://publications.waset.org/abstracts/search?q=neighborhood%20corona%20graph" title=" neighborhood corona graph"> neighborhood corona graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20distance" title=" steiner distance"> steiner distance</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20graph" title=" splitting graph"> splitting graph</a>, <a href="https://publications.waset.org/abstracts/search?q=steiner%20wiener%20index" title=" steiner wiener index"> steiner wiener index</a>, <a href="https://publications.waset.org/abstracts/search?q=wiener%20index" title=" wiener index"> wiener index</a> </p> <a href="https://publications.waset.org/abstracts/16774/topological-indices-of-some-graph-operations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16774.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">570</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3718</span> Collapse Surface Definition of Clayey Sands</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Omid%20Naeemifar">Omid Naeemifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Naeimifar"> Ibrahim Naeimifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Roza%20Rahbari"> Roza Rahbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been shown that a certain collapse surface may be defined for loose sands in the three dimensional space in which the sample sand experiences collapse and instability leading to an unsteady and strain-softening behaviour. The unsteady state due to collapse surface may lead to such phenomena in the sand as liquefaction and flow behaviour during undrained loading. Investigating the existence of the collapse surface in Firoozkooh 161 sand and its different clay mixtures with various plasticities, the present study aims to carry out an in-depth investigation of the effects of clay percent and its plasticity on the clayey sand behaviours. The results obtained indicate that collapse surface characteristics largely depend on fine percent and its plasticity. Interesting findings are also reported in this paper on the effects of fine sand percent and its plasticity on the behavioural characteristics and liquefaction potential of clayey sands. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=critical%20state" title="critical state">critical state</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20surface" title=" collapse surface"> collapse surface</a>, <a href="https://publications.waset.org/abstracts/search?q=liquefaction" title=" liquefaction"> liquefaction</a>, <a href="https://publications.waset.org/abstracts/search?q=clayey%20sand" title=" clayey sand"> clayey sand</a> </p> <a href="https://publications.waset.org/abstracts/38207/collapse-surface-definition-of-clayey-sands" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38207.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3717</span> The Study of X- Bracing on Limit State Behaviour of Buckling Restrained Brace (BRB) in Steel Frames Using Pushover Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Shadman%20Heidari">Peyman Shadman Heidari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Bastani"> Hamid Bastani</a>, <a href="https://publications.waset.org/abstracts/search?q=Pouya%20Shadman%20Heidari"> Pouya Shadman Heidari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using energy dampers in structures is highly considered for the dissipation and absorption of earthquake energy. The main advantage of using energy damper is absorbing the earthquake energy in some sections apart from the structure frame. Among different types of dampers, hysteresis dampers are of special place because of low cost, high reliability and the lack of mechanical parts. In this paper, a special kind of hysteresis damper is considered under the name of buckling brace, which is provided with the aim of the study and investigation of cross braces in boundary behaviour of steel frames using nonlinear static analysis. In this paper, ninety three models of steel frames with cross braces of buckling type are processed with different bays and heights and their plasticity index, behaviour coefficient, distribution type and the number of plastic hinges formed were calculated. Finally, the mean behaviour coefficient was compared with standard behaviour coefficient of 2800 and the suitable mode of braces placing in improving nonlinear behaviour and suitable distribution of plastic hinges were presented. In addition, it was determined that for some placing mode of braces the behaviour coefficient will increase to 15 times of recommended 2800 standard coefficient and in some placing modes, the braced bays will show considerable difference with suggested 2800 standard behaviour coefficient relative to each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=buckling%20restrained%20brace" title="buckling restrained brace">buckling restrained brace</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=behaviour%20coefficient" title=" behaviour coefficient"> behaviour coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=resistance%20coefficient" title=" resistance coefficient"> resistance coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20joints" title=" plastic joints"> plastic joints</a> </p> <a href="https://publications.waset.org/abstracts/4251/the-study-of-x-bracing-on-limit-state-behaviour-of-buckling-restrained-brace-brb-in-steel-frames-using-pushover-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3716</span> Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guoyang%20Fu">Guoyang Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Yang"> Wei Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Chun-Qing%20Li"> Chun-Qing Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ductile%20metal%20pipes" title="Ductile metal pipes">Ductile metal pipes</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20fracture%20toughness" title=" elastic fracture toughness"> elastic fracture toughness</a>, <a href="https://publications.waset.org/abstracts/search?q=longitudinal%20crack" title=" longitudinal crack"> longitudinal crack</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity" title=" plasticity"> plasticity</a> </p> <a href="https://publications.waset.org/abstracts/79581/model-of-elastic-fracture-toughness-for-ductile-metal-pipes-with-external-longitudinal-cracks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">247</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3715</span> The Utilisation of Two Types of Fly Ashes Used as Cement Replacement in Soft Soil Stabilisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M.%20Jafer">Hassnen M. Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Atherton"> W. Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Ruddock"> F. Ruddock</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Loffill"> E. Loffill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study represents the results of an experimental work using two types of fly ashes as a cement replacement in soft soil stabilisation. The fly ashes (FA1 and FA2) used in this study are by-products resulting from an incineration processes between 800 and 1200 ˚C. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were initially conducted on soil treated with different percentages of FA1 (0, 3, 6, 9, 12, and 15%) to identify the optimum FA1 content. Then FA1 was chemically activated by FA2 which has high alkalinity by blending the optimum content of FA1 with different portions of FA2. The improvement levels were evaluated dependent on the results obtained from consistency limits and compaction tests along with the results of unconfined compressive strength (UCS) tests which were conducted on specimens of soil treated with FA1 and FA2 and exposed to different periods of curing (zero, 7, 14, and 28 days). The results indicated that the FA1 and FA2 used in this study effectively improved the physical and geotechnical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.17 with 12% of FA1; however, there was a slight increase in IP with the use of FA2. Meanwhile, 12% of FA1 was identified as the optimum percentage improving the UCS of stabilised soil significantly. Furthermore, FA2 was found effective as a chemical activator to FA1 where the UCS was improved significantly after using FA2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ashes" title="fly ashes">fly ashes</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20stabilisation" title=" soft soil stabilisation"> soft soil stabilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20materials" title=" waste materials"> waste materials</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/49522/the-utilisation-of-two-types-of-fly-ashes-used-as-cement-replacement-in-soft-soil-stabilisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3714</span> Material Parameter Identification of Modified AbdelKarim-Ohno Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cermak">Martin Cermak</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Karasek"> Tomas Karasek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Rojicek"> Jaroslav Rojicek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The key role in phenomenological modelling of cyclic plasticity is good understanding of stress-strain behaviour of given material. There are many models describing behaviour of materials using numerous parameters and constants. Combination of individual parameters in those material models significantly determines whether observed and predicted results are in compliance. Parameter identification techniques such as random gradient, genetic algorithm, and sensitivity analysis are used for identification of parameters using numerical modelling and simulation. In this paper genetic algorithm and sensitivity analysis are used to study effect of 4 parameters of modified AbdelKarim-Ohno cyclic plasticity model. Results predicted by Finite Element (FE) simulation are compared with experimental data from biaxial ratcheting test with semi-elliptical loading path. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20approach" title=" inverse approach"> inverse approach</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20plasticity" title=" cyclic plasticity"> cyclic plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=ratcheting" title=" ratcheting "> ratcheting </a> </p> <a href="https://publications.waset.org/abstracts/21152/material-parameter-identification-of-modified-abdelkarim-ohno-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">453</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3713</span> A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hassnen%20M.%20Jafer">Hassnen M. Jafer</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20S.%20Hashim"> Khalid S. Hashim</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Atherton"> W. Atherton</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20W.%20Alattabi"> Ali W. Alattabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cement%20admixtures" title="cement admixtures">cement admixtures</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20soil%20stabilisation" title=" soft soil stabilisation"> soft soil stabilisation</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20parameters" title=" geotechnical parameters"> geotechnical parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-regression%20model" title=" multi-regression model"> multi-regression model</a> </p> <a href="https://publications.waset.org/abstracts/55295/a-statistical-model-for-the-geotechnical-parameters-of-cement-stabilised-hightowns-soft-soil-a-case-stufy-of-liverpool-uk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3712</span> Effect of Temperature on Investigation of Index Properties of Red Clay Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Birhanu%20Kassa">Birhanu Kassa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The knowledge of temperature effect on index properties and, thus, the understanding of its behavior may be essential for a complete understanding of the various cases of Geotechnical Engineering problems and for conducting meaningful practical research, analysis, and design in tropical regions, such as the Ethiopian environment. The scarcity of the proper geotechnical information on the subsoil makes foundation and engineering works risk able, difficult, and sometimes hazardous. Seasonal variations, environmental effects, terrain challenges, and temperature effects all affect the quality of soil. Simada is a city which is found in south Gondar and it is developing rapidly both in horizontal and vertical construction. Rapid urbanization in the city area has led to an increased interest in the basic properties of soils that are present within the city area. There has been no previous research that looks into the effect of temperature on the investigation of clay soil index qualities in Simada. This work focuses mainly on investigating the Index and some other properties of soil in Simada Town with varying temperatures. To explore the influence of temperature change, samples were collected from various regions of the city, and routine laboratory tests were performed on the collected samples at various temperatures. Disturbed samples were taken at intervals where an average depth of 1.5-2m depths below natural ground level. The standard laboratory tests performed on all twenty-four soil samples were the water content, gradation analysis, Atterberg limits, specific gravity, and compaction test. All specimens were tested at different temperatures (25°C, 35 °C, 45 °C, 65 °C,75 and 105 °C). The variation of the plasticity characteristics of the soils has been determined based on the temperature variation. From the test result, we can conclude that temperature has a significant effect on the index properties of clay soil, in our case, red clay soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airdried" title="airdried">airdried</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20dried" title=" oven dried"> oven dried</a>, <a href="https://publications.waset.org/abstracts/search?q=soils%20index%20properties" title=" soils index properties"> soils index properties</a>, <a href="https://publications.waset.org/abstracts/search?q=compaction%20test" title=" compaction test"> compaction test</a> </p> <a href="https://publications.waset.org/abstracts/191946/effect-of-temperature-on-investigation-of-index-properties-of-red-clay-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191946.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">36</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3711</span> Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Halahla">A. M. Halahla</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Baluch"> M. H. Baluch</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Rahman"> M. K. Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Al-Gadhib"> A. H. Al-Gadhib</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20Akhtar"> M. N. Akhtar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title="reinforced concrete">reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=exterior%20beam-column%20joints" title=" exterior beam-column joints"> exterior beam-column joints</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20damage%20plasticity%20model" title=" concrete damage plasticity model"> concrete damage plasticity model</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20simulation" title=" computational simulation"> computational simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=3-D%20finite%20element%20model" title=" 3-D finite element model"> 3-D finite element model</a> </p> <a href="https://publications.waset.org/abstracts/41069/finite-element-simulation-of-rc-exterior-beam-column-joints-using-damage-plasticity-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=124">124</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=125">125</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plasticity%20index&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10