CINXE.COM

Search results for: nylon

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nylon</title> <meta name="description" content="Search results for: nylon"> <meta name="keywords" content="nylon"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nylon" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nylon"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 42</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nylon</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> A Bio-Inspired Approach to Produce Wettable Nylon Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujani%20B.%20Y.%20Abeywardena">Sujani B. Y. Abeywardena</a>, <a href="https://publications.waset.org/abstracts/search?q=Srimala%20Perera"> Srimala Perera</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Nalin%20De%20Silva"> K. M. Nalin De Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Walpalage"> S. Walpalage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface modifications are vital to accomplish the moisture management property in highly demanded synthetic fabrics. Biomimetic and bio-inspired surface modifications are identified as one of the fascinating areas of research. In this study, nature’s way of cooling elephants’ body temperature using mud bathing was mimicked to create a superior wettable nylon fabric with improved comfortability. For that, bentonite nanoclay was covalently grafted on nylon fabric using silane as a coupling agent. Fourier transform infrared spectra and Scanning electron microscopy images confirmed the successful grafting of nanoclay on nylon. The superior wettability of surface modified nylon was proved by standard protocols. This fabric coating strongly withstands more than 50 cycles of laundry. It is expected that this bio-inspired wettable nylon fabric may break the barrier of using nylon in various hydrophilic textile applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite%20nanoclay" title="bentonite nanoclay">bentonite nanoclay</a>, <a href="https://publications.waset.org/abstracts/search?q=biomimetic" title=" biomimetic"> biomimetic</a>, <a href="https://publications.waset.org/abstracts/search?q=covalent%20modification" title=" covalent modification"> covalent modification</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fabric" title=" nylon fabric"> nylon fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=surface" title=" surface"> surface</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/77249/a-bio-inspired-approach-to-produce-wettable-nylon-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77249.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Fereydouni">E. Fereydouni</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia </a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Olya"> M. E. Olya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-Si" title="nano-Si">nano-Si</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-%20Ti" title=" nano- Ti"> nano- Ti</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2-TiO2%20nancomposite" title=" SiO2-TiO2 nancomposite"> SiO2-TiO2 nancomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fabric" title=" nylon fabric"> nylon fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant%20nylon" title=" flame retardant nylon"> flame retardant nylon</a> </p> <a href="https://publications.waset.org/abstracts/35340/multifunctional-coating-of-nylon-using-nano-si-nano-ti-and-sio2-tio2-nancomposite-properties-of-colorimetric-and-flammability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35340.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roshank%20Haghighat">Roshank Haghighat</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilicity" title=" hydrophilicity"> hydrophilicity</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon-6%2FTiO2" title=" nylon-6/TiO2"> nylon-6/TiO2</a> </p> <a href="https://publications.waset.org/abstracts/34568/electrospun-tio2nylon-6-nanofiber-mat-improved-hydrophilicity-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisrin%20R.%20Abdelal">Nisrin R. Abdelal</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20L.%20Donaldson"> Steven L. Donaldson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon" title="carbon">carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=delamination" title=" delamination"> delamination</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevlar" title=" Kevlar"> Kevlar</a>, <a href="https://publications.waset.org/abstracts/search?q=mode%20I" title=" mode I"> mode I</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon" title=" nylon"> nylon</a>, <a href="https://publications.waset.org/abstracts/search?q=stitching" title=" stitching"> stitching</a> </p> <a href="https://publications.waset.org/abstracts/79708/the-effect-of-nylon-and-kevlar-stitching-on-the-mode-i-fracture-of-carbonepoxy-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79708.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Preparation and Characterization of Electrospun CdTe Quantum Dots / Nylon-6 Nanofiber Mat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negar%20Mesgara">Negar Mesgara</a>, <a href="https://publications.waset.org/abstracts/search?q=Laleh%20Maleknia"> Laleh Maleknia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, electrospun CdTe quantum dot / nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by FE-SEM, XRD and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The phenomenon of ‘on ‘ and ‘off ‘ luminescence intermittency (blinking) of CdTe QDs in nylon-6 was investigated by single-molecule optical microscopy, and we identified that the intermittencies of single QDs were correlated with the interaction of water molecules absorbed on the QD surface. The ‘off’ times, the interval between adjacent ‘on’ states, remained essentially unaffected with an increase in excitation intensity. In the case of ‘on’ time distribution, power law behavior with an exponential cutoff tail is observed at longer time scales. These observations indicate that the luminescence blinking statistics of water-soluble single CdTe QDs is significantly dependent on the aqueous environment, which is interpreted in terms of passivation of the surface trap states of QDs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title="electrospinning">electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=CdTe%20quantum%20dots" title=" CdTe quantum dots"> CdTe quantum dots</a>, <a href="https://publications.waset.org/abstracts/search?q=Nylon-6" title=" Nylon-6"> Nylon-6</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/34595/preparation-and-characterization-of-electrospun-cdte-quantum-dots-nylon-6-nanofiber-mat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Investigating the Properties of Nylon Fiber Reinforced Asphalt Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Taherkhani">Hasan Taherkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of asphalt pavements is highly dependent on the mechanical properties of asphaltic layers. Improving the mechanical properties of asphaltic mixtures by fiber reinforcement is a common method. Randomly distribution of fibers in the bituminous mixtures and placing between the particles develop reinforcing property in all directions in the mixture and improve their engineering properties. In this research, the effects of the nylon fiber length and content on some engineering properties of a typical binder course asphalt concrete have been investigated. The fibers at different contents of 0.3, 0.4 and 0.5% (by the weight of total mixture), each at three different lengths of 10, 25 and 40 mm have been used, and the properties of the mixtures, such as, volumetric properties, Marshall stability, flow, Marshall quotient, indirect tensile strength and moisture damage have been studied. It is found that the highest Marshall quotient is obtained by using 0.4% of 25mm long nylon fibers. The results also show that the indirect tensile strength and tensile strength ratio, which is an indication of moisture damage of asphalt concrete, decreases with increasing the length of fibers and fiber content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asphalt%20concrete" title="asphalt concrete">asphalt concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture%20damage" title=" moisture damage"> moisture damage</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%20fiber" title=" nylon fiber"> nylon fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength"> tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/16685/investigating-the-properties-of-nylon-fiber-reinforced-asphalt-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> The Effect of Solution pH of Chitosan on Antimicrobial Properties of Nylon 6,6 Fabrics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nil%C3%BCfer%20Y%C4%B1ld%C4%B1z%20Varan">Nilüfer Yıldız Varan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The antimicrobial activities of chitosan against various bacteria and fungi are well known, and the antimicrobial activity of chitosan depends on pH. This study investigates the antimicrobial activity at different pH levels. Nylon 6,6 fabrics were treated with different chitosan solutions. Additionally, samples were treated also in basic conditions to see the antimicrobial activities. AATCC Test Method 100 was followed to evaluate the antimicrobial activity using Staphylococcus aureus ATCC 6538 test inoculum. The pH of the chitosan solutions was controlled below 6.5 since chitosan shows its antimicrobial activity only in acidic conditions because of its poor solubility above 6.5. In basic conditions, the samples did not show any antimicrobial activity. It appears from SEM images that the bonded chitosan in the structures exists. In acidic media (ph < 6.5), all samples showed antimicrobial activity. No correlation was found between pH levels and antimicrobial activity in acidic media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nylon%206" title=" nylon 6"> nylon 6</a>, <a href="https://publications.waset.org/abstracts/search?q=6" title="6">6</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a> </p> <a href="https://publications.waset.org/abstracts/74096/the-effect-of-solution-ph-of-chitosan-on-antimicrobial-properties-of-nylon-66-fabrics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Use of Fish Gelatin Based-Films as Edible Pouch to Extend the Shelf-Life of Dried Chicken Powder and Chicken Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soottawat%20Benjakul">Soottawat Benjakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Phakawat%20Tongnuanchan"> Phakawat Tongnuanchan</a>, <a href="https://publications.waset.org/abstracts/search?q=Thummanoon%20Prodpran"> Thummanoon Prodpran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Edible pouches made from fish gelatin film incorporated without and with palm oil (PO), basil essential oil (BEO) or oil mixture (M) were prepared and used to store chicken powder and chicken skin oil in comparison with nylon/low-density polyethylene (Nylon/LDPE) pouch during storage of 15 days. The moisture content of chicken powder packaged in pouches from fish gelatin films incorporated without and with various oils increased during 15 days of storage (p > 0.05). However, there was a non-significant change in moisture content of sample packaged in Nylon/LDPE pouch (p > 0.05). Samples packaged in pouches from fish gelatin films incorporated with oils had lower moisture content than those stored in pouch from gelatin film without oil added throughout the storage (p < 0.05). This coincided with the higher increases in darkness and yellowness for the latter. All samples packaged in pouches made from all films had the slight increase in PV, whereas a drastic increase in TBARS was observed for all samples during 15 days of storage. During 15 days of storage, chicken skin oil packaged in Nylon/LDPE pouch had higher TBARS and p-anisidine value than those stored in pouches made from fish gelatin, regardless of oil incorporated (p< 0.05). Therefore, pouches from gelatin film incorporated with oils could lower water migration and lipid oxidation in fat containing foods and oils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edible%20pouch" title="edible pouch">edible pouch</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20gelatin" title=" fish gelatin"> fish gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20changes" title=" quality changes"> quality changes</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20stability" title=" storage stability"> storage stability</a> </p> <a href="https://publications.waset.org/abstracts/61138/use-of-fish-gelatin-based-films-as-edible-pouch-to-extend-the-shelf-life-of-dried-chicken-powder-and-chicken-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Wash Fastness of Textile Fibers Dyed with Natural Dye from Eucalyptus Wood Steaming Waste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ticiane%20Rossi">Ticiane Rossi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maur%C3%ADcio%20C.%20Ara%C3%BAjo"> Maurício C. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20O.%20Brito"> José O. Brito</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20S.%20Freeman"> Harold S. Freeman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural dyes are gaining interest due their expected low risk to human health and to the environment. In this study, the wash fastness of a natural coloring matter from the liquid waste produced in the steam treatment of eucalyptus wood in textile fabrics was investigated. Specifically, eucalyptus wood extract was used to dye cotton, nylon and wool in an exhaust dyeing process without the addition of the traditional mordanting agents and then submitted to wash fastness analysis. The resulting dyed fabrics were evaluated for color fastness. It was found that wash fastness of dyed fabrics was very good to cotton and excellent to nylon and wool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eucalyptus" title="eucalyptus">eucalyptus</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dye" title=" natural dye"> natural dye</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20fibers" title=" textile fibers"> textile fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=wash%20fastness" title=" wash fastness"> wash fastness</a> </p> <a href="https://publications.waset.org/abstracts/25681/wash-fastness-of-textile-fibers-dyed-with-natural-dye-from-eucalyptus-wood-steaming-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25681.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">614</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Effect of Surface Treatments on the Cohesive Response of Nylon 6/silica Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Arabnejad">S. Arabnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20W.%20C.%20Cheong"> D. W. C. Cheong</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Chaobin"> H. Chaobin</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20W.%20Shim"> V. P. W. Shim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Debonding is the one of the fundamental damage mechanisms in particle field composites. This phenomenon gains more importance in nano composites because of the extensive interfacial region present in these materials. Understanding the debonding mechanism accurately, can help in understanding and predicting the response of nano composites as the interface deteriorates. The small length scale of the phenomenon makes the experimental characterization complicated and the results of it, far from real physical behavior. In this study the damage process in nylon-6/silica interface is examined through Molecular Dynamics (MD) modeling and simulations. The silica has been modeled with three forms of surfaces – without any surface treatment, with the surface treatment of 3-aminopropyltriethoxysilane (APTES) and with Hexamethyldisilazane (HMDZ) surface treatment. The APTES surface modification used to create functional groups on the silica surface, reacts and form covalent bonds with nylon 6 chains while the HMDZ surface treatment only interacts with both particle and polymer by non-bond interaction. The MD model in this study uses a PCFF force field. The atomic model is generated in a periodic box with a layer of vacuum on top of the polymer layer. This layer of vacuum is large enough that assures us from not having any interaction between particle and substrate after debonding. Results show that each of these three models show a different traction separation behavior. However, all of them show an almost bilinear traction separation behavior. The study also reveals a strong correlation between the length of APTES surface treatment and the cohesive strength of the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=debonding" title="debonding">debonding</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20treatment" title=" surface treatment"> surface treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20response" title=" cohesive response"> cohesive response</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20behaviour" title=" separation behaviour "> separation behaviour </a> </p> <a href="https://publications.waset.org/abstracts/11855/effect-of-surface-treatments-on-the-cohesive-response-of-nylon-6silica-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11855.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Othman%20S.%20Alsheraida">Othman S. Alsheraida</a>, <a href="https://publications.waset.org/abstracts/search?q=Sherif%20El-Gamal"> Sherif El-Gamal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fiber Reinforced Polymers (FRP) is a composite material with exceptional properties that are capable of replacing conventional steel reinforcement in reinforced and pre-stressed concrete structures. However, the main obstacle for their wide use in the pre-stressed concrete application is the anchorage system. Due to the weakness of FRP in the transverse direction, the pre-stressing capacity of FRP bars is limited. This paper investigates the modification of the conventional wedge anchorage system to be used for stressing of FRP bars in pre-stressed applications. Epoxy adhesive material with glass FRP (GFRP) bars and conventional steel wedge were used in this paper. The GFRP bars are encased with epoxy at the anchor zone and the wedge system was used in the pull-out test. The results showed a loading capacity of 47.6 kN which is 69% of the bar ultimate capacity. Additionally, nylon wedge was made with the same dimensions of the steel wedge and tested for GFRP bars without epoxy layer. The nylon wedge showed a loading capacity of 19.7 kN which is only 28.5% of the ultimate bar capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anchorage" title="anchorage">anchorage</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=frp" title=" frp"> frp</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stressed" title=" pre-stressed"> pre-stressed</a> </p> <a href="https://publications.waset.org/abstracts/31388/performance-of-modified-wedge-anchorage-system-for-pre-stressed-frp-bars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31388.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Mechanical and Physical Properties of Various Types of Dental Floss</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supanitayanon%20Lalita">Supanitayanon Lalita</a>, <a href="https://publications.waset.org/abstracts/search?q=Dechkunakorn%20Surachai"> Dechkunakorn Surachai</a>, <a href="https://publications.waset.org/abstracts/search?q=Anuwongnukroh%20Niwat"> Anuwongnukroh Niwat</a>, <a href="https://publications.waset.org/abstracts/search?q=Srikhirin%20Toemsak"> Srikhirin Toemsak</a>, <a href="https://publications.waset.org/abstracts/search?q=Roongrujimek%20Pitchaya"> Roongrujimek Pitchaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Tua-Ngam%20Peerapong"> Tua-Ngam Peerapong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: To compare maximum load, percentage of elongation, physical characteristics of 4 types of dental floss: (1) Thai Silk Floss (silk, waxed), (2) Oral B® Essential Floss (nylon, waxed), (3) Experimental Floss Xu (nylon, unwaxed), (4) Experimental Floss Xw (nylon, waxed). Materials & method: Four types of floss were tested (n=30) with a Universal Testing Machine (Instron®). Each sample (30 cm long, 5 cm segment) was fixed, and pulled apart with load cell of 100 N and a test speed of 100 mm/min. Physical characteristics were investigated by digital microscope under 2.5×10 magnification, and scanning electron microscope under 1×100 and 5×100 magnification. The size of the filaments was measured in micron (μm) and the fineness were measured in Denier. Statistical analysis: For mechanical properties, the maximum load and the percentage of elongation were presented as mean ± SD. The distribution of the data was calculated by the Kolmogorov-Smirnov test. One-way ANOVA and multiple comparison (Tukey HSD) were used to analyze the differences among the groups with the level of a statistical difference at p < 0.05. Results: The maximum load of Floss Xu, Floss Xw, Oral B and Thai Silk were 47.39, 46.46, 25.38, and 23.70 N, respectively. The percentage of elongation of Oral B, Floss Xw, Floss Xu and Thai Silk were 72.43, 44.62, 31.25, and 16.44%, respectively. All 4 types of dental floss showed statistically differences in both the maximum load and percentage of elongation at p < 0.05, except for maximum load between Floss Xw and Floss Xu that showed no statistically significant difference. Physical characteristics of Thai silk revealed the most disintegrated, the smallest, and the least fine filaments. Conclusion: Floss Xu had the highest maximum load. Oral B had the highest percentage of elongation. Wax coating on Floss X increased the elongation but had no significant effect on the maximum load. The physical characteristics of Thai Silk resulted in the lowest mechanical properties values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dental%20floss" title="dental floss">dental floss</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20load" title=" maximum load"> maximum load</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20property" title=" mechanical property"> mechanical property</a>, <a href="https://publications.waset.org/abstracts/search?q=percentage%20of%20elongation" title=" percentage of elongation"> percentage of elongation</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20property" title=" physical property"> physical property</a> </p> <a href="https://publications.waset.org/abstracts/50248/mechanical-and-physical-properties-of-various-types-of-dental-floss" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> Mechanical Properties and Thermal Comfort of 3D Printed Hand Orthosis for Neurorehabilitation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paulo%20H.%20R.%20G.%20Reis">Paulo H. R. G. Reis</a>, <a href="https://publications.waset.org/abstracts/search?q=Joana%20P.%20Maia"> Joana P. Maia</a>, <a href="https://publications.waset.org/abstracts/search?q=Davi%20Neiva%20Alves"> Davi Neiva Alves</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20R.%20C.%20Aquino"> Mariana R. C. Aquino</a>, <a href="https://publications.waset.org/abstracts/search?q=Igor%20B.%20Guimaraes"> Igor B. Guimaraes</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20Horta"> Anderson Horta</a>, <a href="https://publications.waset.org/abstracts/search?q=Thiago%20Santiago"> Thiago Santiago</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariana%20Volpini"> Mariana Volpini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing is a manufacturing technique used in many fields as a tool for the production of complex parts accurately. This technique has a wide possibility of applications in bioengineering, mainly in the manufacture of orthopedic devices, thanks to the versatility of shapes and surface details. The present article aims to evaluate the mechanical viability of a wrist-hand orthosis made using additive manufacturing techniques with Nylon 12 polyamide and compare this device with the wrist-hand orthosis manufactured by the traditional process with thermoplastic Ezeform. The methodology used is based on the application of computational simulations of voltage and temperature, from finite element analysis, in order to evaluate the properties of displacement, mechanical stresses and thermal comfort in the two devices. The execution of this work was carried out through a case study with a 29-year-old male patient. The modeling software involved was Meshmixer from US manufacturer Autodesk and Fusion 360 from the same manufacturer. The results demonstrated that the orthosis developed by 3D printing, from Nylon 12, presents better thermal comfort and response to the mechanical stresses exerted on the orthosis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20elements" title=" finite elements"> finite elements</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20orthosis" title=" hand orthosis"> hand orthosis</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=neurorehabilitation" title=" neurorehabilitation"> neurorehabilitation</a> </p> <a href="https://publications.waset.org/abstracts/101089/mechanical-properties-and-thermal-comfort-of-3d-printed-hand-orthosis-for-neurorehabilitation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Technological Transference Tools to Diffuse Low-Cost Earthquake Resistant Construction with Adobe in Rural Areas of the Peruvian Andes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcial%20Blondet">Marcial Blondet</a>, <a href="https://publications.waset.org/abstracts/search?q=Malena%20Serrano"> Malena Serrano</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%81lvaro%20Rubi%C3%B1os"> Álvaro Rubiños</a>, <a href="https://publications.waset.org/abstracts/search?q=Elin%20Mattsson"> Elin Mattsson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Peru, there are more than two million houses made of adobe (sun dried mud bricks) or rammed earth (35% of the total houses), in which almost 9 million people live, mainly because they cannot afford to purchase industrialized construction materials. Although adobe houses are cheap to build and thermally comfortable, their seismic performance is very poor, and they usually suffer significant damage or collapse with tragic loss of life. Therefore, over the years, researchers at the Pontifical Catholic University of Peru and other institutions have developed many reinforcement techniques as an effort to improve the structural safety of earthen houses located in seismic areas. However, most rural communities live under unacceptable seismic risk conditions because these techniques have not been adopted massively, mainly due to high cost and lack of diffusion. The nylon rope mesh reinforcement technique is simple and low-cost, and two technological transference tools have been developed to diffuse it among rural communities: 1) Scale seismic simulations using a portable shaking table have been designed to prove its effectiveness to protect adobe houses; 2) A step-by-step illustrated construction manual has been developed to guide the complete building process of a nylon rope mesh reinforced adobe house. As a study case, it was selected the district of Pullo: a small rural community in the Peruvian Andes where more than 80% of its inhabitants live in adobe houses and more than 60% are considered to live in poverty or extreme poverty conditions. The research team carried out a one-day workshop in May 2015 and a two-day workshop in September 2015. Results were positive: First, the nylon rope mesh reinforcement procedure was proven simple enough to be replicated by adults, both young and seniors, and participants handled ropes and knots easily as they use them for daily livestock activity. In addition, nylon ropes were proven highly available in the study area as they were found at two local stores in variety of color and size.. Second, the portable shaking table demonstration successfully showed the effectiveness of the nylon rope mesh reinforcement and generated interest on learning about it. On the first workshop, more than 70% of the participants were willing to formally subscribe and sign up for practical training lessons. On the second workshop, more than 80% of the participants returned the second day to receive introductory practical training. Third, community members found illustrations on the construction manual simple and friendly but the roof system illustrations led to misinterpretation so they were improved. The technological transfer tools developed in this project can be used to train rural dwellers on earthquake-resistant self-construction with adobe, which is still very common in the Peruvian Andes. This approach would allow community members to develop skills and capacities to improve safety of their households on their own, thus, mitigating their high seismic risk and preventing tragic losses. Furthermore, proper training in earthquake-resistant self-construction with adobe would prevent rural dwellers from depending on external aid after an earthquake and become agents of their own development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adobe" title="adobe">adobe</a>, <a href="https://publications.waset.org/abstracts/search?q=Peruvian%20Andes" title=" Peruvian Andes"> Peruvian Andes</a>, <a href="https://publications.waset.org/abstracts/search?q=safe%20housing" title=" safe housing"> safe housing</a>, <a href="https://publications.waset.org/abstracts/search?q=technological%20transference" title=" technological transference"> technological transference</a> </p> <a href="https://publications.waset.org/abstracts/42460/technological-transference-tools-to-diffuse-low-cost-earthquake-resistant-construction-with-adobe-in-rural-areas-of-the-peruvian-andes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Beam Coding with Orthogonal Complementary Golay Codes for Signal to Noise Ratio Improvement in Ultrasound Mammography</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Kumru">Y. Kumru</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Enhos"> K. Enhos</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20K%C3%B6ymen"> H. Köymen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we report the experimental results on using complementary Golay coded signals at 7.5 MHz to detect breast microcalcifications of 50 &micro;m size. Simulations using complementary Golay coded signals show perfect consistence with the experimental results, confirming the improved signal to noise ratio for complementary Golay coded signals. For improving the success on detecting the microcalcifications, orthogonal complementary Golay sequences having cross-correlation for minimum interference are used as coded signals and compared to tone burst pulse of equal energy in terms of resolution under weak signal conditions. The measurements are conducted using an experimental ultrasound research scanner, Digital Phased Array System (DiPhAS) having 256 channels, a phased array transducer with 7.5 MHz center frequency and the results obtained through experiments are validated by Field-II simulation software. In addition, to investigate the superiority of coded signals in terms of resolution, multipurpose tissue equivalent phantom containing series of monofilament nylon targets, 240 &micro;m in diameter, and cyst-like objects with attenuation of 0.5 dB/[MHz x cm] is used in the experiments. We obtained ultrasound images of monofilament nylon targets for the evaluation of resolution. Simulation and experimental results show that it is possible to differentiate closely positioned small targets with increased success by using coded excitation in very weak signal conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coded%20excitation" title="coded excitation">coded excitation</a>, <a href="https://publications.waset.org/abstracts/search?q=complementary%20golay%20codes" title=" complementary golay codes"> complementary golay codes</a>, <a href="https://publications.waset.org/abstracts/search?q=DiPhAS" title=" DiPhAS"> DiPhAS</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20ultrasound" title=" medical ultrasound"> medical ultrasound</a> </p> <a href="https://publications.waset.org/abstracts/93142/beam-coding-with-orthogonal-complementary-golay-codes-for-signal-to-noise-ratio-improvement-in-ultrasound-mammography" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93142.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Synthesis, Characterization, and Application of Some Acid Dyes Derived from 1-Amino-4 Bromo-Anthraquine-2-Sulphonic Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nuradeen%20Abdullahi%20Nadabo">Nuradeen Abdullahi Nadabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Adewale%20Bello"> Kasali Adewale Bello</a>, <a href="https://publications.waset.org/abstracts/search?q=Istifanus%20Chindo"> Istifanus Chindo</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Ayeni"> Nurudeen Ayeni </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ten acid dyes were synthesized from 1-amino-4-bromo anthraghinone-2 sulphuric acid by condensation with different substituted amilines. These dyes were characterized by IR Spectroscopy and the results revealed an incorporation of various substituents. Application of these dyes were carried out on Nylon and wool fabrics using standard procedure melting point, percentage yield, molar extinction coefficient, wash, light and staining of adjacent fibre, of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20dyes" title="acid dyes">acid dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=dyeing" title=" dyeing"> dyeing</a>, <a href="https://publications.waset.org/abstracts/search?q=exhaustion" title=" exhaustion"> exhaustion</a>, <a href="https://publications.waset.org/abstracts/search?q=extinction%20co-efficient" title=" extinction co-efficient "> extinction co-efficient </a> </p> <a href="https://publications.waset.org/abstracts/28845/synthesis-characterization-and-application-of-some-acid-dyes-derived-from-1-amino-4-bromo-anthraquine-2-sulphonic-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">345</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Dry Friction Fluctuations in Plain Journal Bearings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=James%20Moran">James Moran</a>, <a href="https://publications.waset.org/abstracts/search?q=Anusarn%20Permsuwan"> Anusarn Permsuwan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper compares oscillations in the dry friction coefficient in different journal bearings. Measurements are made of the average and standard deviation in the coefficient of friction as a function of sliding velocity. The standard deviation of the friction coefficient changed dramatically with sliding velocity. The magnitude and frequency of the oscillations were a function of the velocity. A numerical model was developed for the frictional oscillations. There was good agreement between the model and results. Five different materials were used as the sliding surfaces in the experiments, Aluminum, Bronze, Mild Steel, Stainless Steel, and Nylon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coulomb%20friction" title="Coulomb friction">Coulomb friction</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20friction" title=" dynamic friction"> dynamic friction</a>, <a href="https://publications.waset.org/abstracts/search?q=non-lubricated%20bearings" title=" non-lubricated bearings"> non-lubricated bearings</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20oscillations" title=" frictional oscillations"> frictional oscillations</a> </p> <a href="https://publications.waset.org/abstracts/67083/dry-friction-fluctuations-in-plain-journal-bearings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Glass and Polypropylene Combinations for Thermoplastic Preforms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hireni%20Mankodi">Hireni Mankodi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The textile preforms for thermoplastic composite play a key role in providing the mechanical properties and gives the idea about preparing combination of yarn from Glass, Basalt, Carbon as reinforcement and PP, PET, Nylon as thermoplastic matrix at yarn stage for preforms to improve the quality and performance of laminates. The main objectives of this work are to develop the hybrid yarn using different yarn manufacturing process and prepare different performs using hybrid yarns. It has been observed that the glass/pp combination give homogeneous distribution in yarn. The proportion varied to optimize the glass/pp composition. The different preform has been prepared with combination of hybrid yarn, PP, glass combination. Further studies will investigate the effect of glass content in fabric, effect of weave, warps and filling density, number of layer plays significant role in deciding mechanical properties of thermoplastic laminates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoplastic" title="thermoplastic">thermoplastic</a>, <a href="https://publications.waset.org/abstracts/search?q=preform" title=" preform"> preform</a>, <a href="https://publications.waset.org/abstracts/search?q=laminates" title=" laminates"> laminates</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarn" title=" hybrid yarn"> hybrid yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=glass" title=" glass"> glass</a> </p> <a href="https://publications.waset.org/abstracts/27376/glass-and-polypropylene-combinations-for-thermoplastic-preforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Gas Separation Membranes Using Stability Improved Ion Gels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20H.%20Hwang">Y. H. Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Won"> J. Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20S.%20Kang"> Y. S. Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since ionic liquids have a special interaction with gas specially CO2 and/or olefin, supported ionic liquids membrane (SILM) are fabricated for practical gas separation. However, SILM has a problem in practical application due to the low mechanical stability under high pressure for gas separation. In order to improve the mechanical strength of the selective ionic liquid layer, we prepared supported ion gel membrane by the formation of gel on the surface of Nylon support. The ion gel was prepared by the addition of poly(styrene-block-ethyleneoxide-block-styrene) triblock copolymer in four tricyanomethanide ionic liquids have different cation; 1-ethyl-3-methlyimidazolium tricyanomethanide, 1-butyl-3-methlyimidazolium tricyanomethanide, 1-butyl-1-methylpyrrolidinium tricyanomethanide, 1-butyl-4-methylpyridinium tricyanomethanide using methylenechloride as a solvent. The characters of ion gel with different cation were studied. Four different gases (CO2, N2, O2, and CH4) permeance were measured at room temperature by bubble flow meter and cation effect of tricyanomethanide ionic liquids investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=membrane" title="membrane">membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20liquid" title=" ionic liquid"> ionic liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20gel" title=" ion gel"> ion gel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructure" title=" nanostructure"> nanostructure</a> </p> <a href="https://publications.waset.org/abstracts/17831/gas-separation-membranes-using-stability-improved-ion-gels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17831.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Effect of Chemical Treatment on Mechanical Properties of KENAF Fiber Reinforced Unsaturated Polyester Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Abdullahi">S. S. Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Musa"> H. Musa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Salisu"> A. A. Salisu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ismaila"> A. Ismaila</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20H.%20Birniwa"> A. H. Birniwa </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the treated and untreated kenaf fiber reinforced unsaturated polyester conventional composites were prepared. Hand lay-up technique was used with dump-bell shaped mold. The kenaf bast fiber was retted enzymatically, washed, dried and combed with a nylon brush. A portion of the kenaf fiber was mercerized and treated with benzoylchloride prior to composite fabrication. Untreated kenaf fiber was also used to prepare the composites to serve as control. The cured composites were subjected to various mechanical testes, such as hardness test, impact test and tensile strength test. The results obtained indicated an increase in all the parameters tested with the fiber treatment. This is because the lignin, hemi-celluloses, pectin and other impurities were removed during alkaline treatment (i.e mercerization). This shows that, the durability of the natural cellulosic fibers to different composite applications can be achieved via fiber treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite" title="composite">composite</a>, <a href="https://publications.waset.org/abstracts/search?q=kenaf%20fibre" title=" kenaf fibre"> kenaf fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforce" title=" reinforce"> reinforce</a>, <a href="https://publications.waset.org/abstracts/search?q=retted" title=" retted"> retted</a> </p> <a href="https://publications.waset.org/abstracts/22283/effect-of-chemical-treatment-on-mechanical-properties-of-kenaf-fiber-reinforced-unsaturated-polyester-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">513</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Aerodynamic Analysis and Design of Banners for Remote-Controlled Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peyman%20Honarmandi">Peyman Honarmandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazen%20Alhirsh"> Mazen Alhirsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Banner towing is a major form of advertisement. It consists of a banner showing a logo or a selection of words or letters being towed by an aircraft. Traditionally bush planes have been used to tow banners given their high thrust capabilities; however, with the development of remote-controlled (RC) aircraft, they could be a good replacement as RC planes mitigate the risk of human life and can be easier to operate. This paper studies the best banner design to be towed by an RC aircraft. This is done by conducting wind tunnel testing on an array of banners with different materials and designs. A pull gauge is used to record the drag force during testing, which is then used to calculate the coefficient of drag, Cd. The testing results show that the best banner design would be a hybrid design with a solid and mesh material. The design with the lowest Cd of 0.082 was a half ripstop nylon half polyester mesh design. On the other hand, the design with the highest Cd of 0.305 involved incorporating a tail chute to decrease fluttering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20banner" title="aerodynamics of banner">aerodynamics of banner</a>, <a href="https://publications.waset.org/abstracts/search?q=banner%20design" title=" banner design"> banner design</a>, <a href="https://publications.waset.org/abstracts/search?q=banner%20towing" title=" banner towing"> banner towing</a>, <a href="https://publications.waset.org/abstracts/search?q=drag%20coefficients%20of%20banner" title=" drag coefficients of banner"> drag coefficients of banner</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20aircraft%20banner" title=" RC aircraft banner"> RC aircraft banner</a> </p> <a href="https://publications.waset.org/abstracts/141485/aerodynamic-analysis-and-design-of-banners-for-remote-controlled-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Microplastics in Two Bivalves of The Bay of Bengal Coast, Bangladesh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Showmitra%20Chowdhury">Showmitra Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shahadat%20Hossain"> M. Shahadat Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Sharifuzzaman"> S. M. Sharifuzzaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayedur%20Rahman%20Chowdhury"> Sayedur Rahman Chowdhury</a>, <a href="https://publications.waset.org/abstracts/search?q=Subrata%20Sarker"> Subrata Sarker</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shah%20Nawaz%20Chowdhury"> M. Shah Nawaz Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microplastics were identified in mussel (Pernaviridis) and Oyster (Crassostrea madrasensis) from the south east coast of Bangladesh. Samples were collected from four sites of the coast based on their availability, and gastrointestinal tracts were assessed following isolation, floatation, filtration, microscopic observation, and polymer identification by micro-Fourier Transformed Infrared Spectroscope (μ-FTIR) for microplastics determination. A total of 1527 microplastics were identified from 130 samples. The amount of microplastics varied from 0.66 to 3.10 microplastics/g and from 3.20 to 27.60 items/individual. Crassostrea madrasensiscontained on average 1.64 items/g and exhibited the highest level of microplastics by weight. Fiber was the most dominant type, accounting for 72% of total microplastics. Polyethylene, polypropylene, polystyrene, polyester, and nylon were the major polymer types. In both species, transparent/ black color and filamentous shape was dominant. The most common size ranges from 0.005 to 0.25mm and accounted for 39% to 67%. The study revealed microplastics pollution is widespread and relatively high in the bivalves of Bangladesh. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microplastics" title="microplastics">microplastics</a>, <a href="https://publications.waset.org/abstracts/search?q=bivalves" title=" bivalves"> bivalves</a>, <a href="https://publications.waset.org/abstracts/search?q=mussel" title=" mussel"> mussel</a>, <a href="https://publications.waset.org/abstracts/search?q=oyster" title=" oyster"> oyster</a>, <a href="https://publications.waset.org/abstracts/search?q=bay%20of%20bengal" title=" bay of bengal"> bay of bengal</a>, <a href="https://publications.waset.org/abstracts/search?q=Bangladesh" title=" Bangladesh"> Bangladesh</a> </p> <a href="https://publications.waset.org/abstracts/148905/microplastics-in-two-bivalves-of-the-bay-of-bengal-coast-bangladesh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Tyrosine Rich Fraction as an Immunomodulatory Agent from Ficus Religiosa Bark</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Nirmal">S. A. Nirmal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Asane"> G. S. Asane</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Pal"> S. C. Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Mandal"> S. C. Mandal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Ficus religiosa Linn (Moraceae) is being used in traditional medicine to improve immunity hence present work was undertaken to validate this use scientifically. Material and Methods: Dried, powdered bark of F. religiosa was extracted successively using petroleum ether and 70% ethanol in soxhlet extractor. The extracts obtained were screened for immunomodulatory activity by delayed type hypersensitivity (DTH), neutrophil adhesion test and cyclophosphamide-induced neutropenia in Swiss albino mice at the dose of 50 and 100 mg/kg, i.p. 70% ethanol extract showed significant immunostimulant activity hence subjected to column chromatography to produce tyrosine rich fraction (TRF). TRF obtained was screened for immunomodulatory activity by above methods at the dose of 10 mg/kg, i.p. Results: TRF showed potentiation of DTH response in terms of significant increase in the mean difference in foot-pad thickness and it significantly increased neutrophil adhesion to nylon fibers by 48.20%. Percentage reduction in total leukocyte count and neutrophil by TRF was found to be 43.85% and 18.72%, respectively. Conclusion: Immunostimulant activity of TRF was more pronounced and thus it has great potential as a source for natural health products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ficus%20religiosa" title="Ficus religiosa">Ficus religiosa</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclophosphamide" title=" cyclophosphamide"> cyclophosphamide</a>, <a href="https://publications.waset.org/abstracts/search?q=neutropenia" title=" neutropenia"> neutropenia</a> </p> <a href="https://publications.waset.org/abstracts/26530/tyrosine-rich-fraction-as-an-immunomodulatory-agent-from-ficus-religiosa-bark" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Osman%20G%C3%BCney">Ali Osman Güney</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20Kanber"> Bahattin Kanber</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced%20vulcanized%20rubbers" title="reinforced vulcanized rubbers">reinforced vulcanized rubbers</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20properties" title=" fiber properties"> fiber properties</a>, <a href="https://publications.waset.org/abstracts/search?q=out%20of%20plane%20loading" title=" out of plane loading"> out of plane loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a> </p> <a href="https://publications.waset.org/abstracts/61294/assessment-of-material-type-diameter-orientation-and-closeness-of-fibers-in-vulcanized-reinforced-rubbers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Bacteriological Safety of Sachet Drinking Water Sold in Benin City, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20Olusanmi%20Akintayo">Stephen Olusanmi Akintayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Access to safe drinking water remains a major challenge in Nigeria, and where available, the quality of the water is often in doubt. An alternative to the inadequate clean drinking water is being found in treated drinking water packaged in electrically heated sealed nylon and commonly referred to as “sachet water”. “Sachet water” is a common thing in Nigeria as the selling price is within the reach of members of the low socio- economic class and the setting up of a production unit does not require huge capital input. The bacteriological quality of selected “sachet water” stored at room temperature over a period of 56 days was determined to evaluate the safety of the sachet drinking water. Test for the detection of coliform bacteria was performed, and the result showed no coliform bacteria that indicates the absence of fecal contamination throughout 56 days. Heterotrophic plate count (HPC) was done at an interval 14 days, and the samples showed HPC between 0 cfu/mL and 64 cfu/mL. The highest count was observed on day 1. The count decreased between day 1 and 28, while no growths were observed between day 42 and 56. The decrease in HPC suggested the presence of residual disinfectant in the water. The organisms isolated were identified as Staphylococcus epidermis and S. aureus. The presence of these microorganisms in sachet water is indicative for contamination during processing and handling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coliform" title="coliform">coliform</a>, <a href="https://publications.waset.org/abstracts/search?q=heterotrophic%20plate%20count" title=" heterotrophic plate count"> heterotrophic plate count</a>, <a href="https://publications.waset.org/abstracts/search?q=sachet%20water" title=" sachet water"> sachet water</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20aureus" title=" Staphyloccocus aureus"> Staphyloccocus aureus</a>, <a href="https://publications.waset.org/abstracts/search?q=Staphyloccocus%20epidermidis" title=" Staphyloccocus epidermidis"> Staphyloccocus epidermidis</a> </p> <a href="https://publications.waset.org/abstracts/77952/bacteriological-safety-of-sachet-drinking-water-sold-in-benin-city-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77952.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Study and Analysis of Permeable Articulated Concrete Blocks Pavement: With Reference to Indian Context</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Charhate">Shrikant Charhate</a>, <a href="https://publications.waset.org/abstracts/search?q=Gayatri%20Deshpande"> Gayatri Deshpande</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Permeable pavements have significant benefits like managing runoff, infiltration, and carrying traffic over conventional pavements in terms of sustainability and environmental impact. Some of the countries are using this technique, especially at locations where durability and other parameters are of importance in nature; however, sparse work has been done on this concept. In India, this is yet to be adopted. In this work, the progress in the characterization and development of Permeable Articulated Concrete Blocks (PACB) pavement design is described and discussed with reference to Indian conditions. The experimentation and in-depth analysis was carried out considering conditions like soil erosion, water logging, and dust which are significant challenges caused due to impermeability of pavement. Concrete blocks with size 16.5&rsquo;&rsquo;x 6.5&rsquo;&rsquo;x 7&rsquo;&rsquo; consisting of arch shape (4&rsquo;&rsquo;) at beneath and &frac12;&rdquo; PVC holes for articulation were casted. These blocks were tested for flexural strength. The articulation process was done with nylon ropes forming series of concrete block system. The total spacing between the blocks was kept about 8 to 10% of total area. The hydraulic testing was carried out by placing the articulated blocks with the combination of layers of soil, geotextile, clean angular aggregate. This was done to see the percentage of seepage through the entire system. The experimental results showed that with the shape of concrete block the flexural strength achieved was beyond the permissible limit. Such blocks with the combination could be very useful innovation in Indian conditions and useful at various locations compared to the traditional blocks as an alternative for long term sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=geotextile" title=" geotextile"> geotextile</a>, <a href="https://publications.waset.org/abstracts/search?q=permeable%20ACB" title=" permeable ACB"> permeable ACB</a>, <a href="https://publications.waset.org/abstracts/search?q=pavements" title=" pavements"> pavements</a>, <a href="https://publications.waset.org/abstracts/search?q=stone%20base" title=" stone base"> stone base</a> </p> <a href="https://publications.waset.org/abstracts/86967/study-and-analysis-of-permeable-articulated-concrete-blocks-pavement-with-reference-to-indian-context" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Studies on the Proximate Composition and Functional Properties of Extracted Cocoyam Starch Flour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adebola%20Ajayi">Adebola Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20B.%20Aiyeleye"> Francis B. Aiyeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Olakunke%20M.%20Makanjuola"> Olakunke M. Makanjuola</a>, <a href="https://publications.waset.org/abstracts/search?q=Olalekan%20J.%20Adebowale"> Olalekan J. Adebowale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cocoyam, a generic term for both xanthoma and colocasia, is a traditional staple root crop in many developing countries in Africa, Asia and the Pacific. It is mostly cultivated as food crop which is very rich in vitamin B6, magnesium and also in dietary fiber. The cocoyam starch is easily digested and often used for baby food. Drying food is a method of food preservation that removes enough moisture from the food so bacteria, yeast and molds cannot grow. It is a one of the oldest methods of preserving food. The effect of drying methods on the proximate composition and functional properties of extracted cocoyam starch flour were studied. Freshly harvested cocoyam cultivars at matured level were washed with portable water, peeled, washed and grated. The starch in the grated cocoyam was extracted, dried using sun drying, oven and cabinet dryers. The extracted starch flour was milled into flour using Apex mill and packed and sealed in low-density polyethylene film (LDPE) 75 micron thickness with Nylon sealing machine QN5-3200HI and kept for three months under ambient temperature before analysis. The result showed that the moisture content, ash, crude fiber, fat, protein and carbohydrate ranged from 6.28% to 12.8% 2.32% to 3.2%, 0.89% to 2.24%%, 1.89% to 2.91%, 7.30% to 10.2% and 69% to 83% respectively. The functional properties of the cocoyam starch flour ranged from 2.65ml/g to 4.84ml/g water absorption capacity, 1.95ml/g to 3.12ml/g oil absorption capacity, 0.66ml/g to 7.82ml/g bulk density and 3.82% to 5.30ml/g swelling capacity. Significant difference (P≥0.5) was not obtained across the various drying methods used. The drying methods provide extension to the shelf-life of the extracted cocoyam starch flour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cocoyam" title="cocoyam">cocoyam</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=oven%20dryer" title=" oven dryer"> oven dryer</a>, <a href="https://publications.waset.org/abstracts/search?q=cabinet%20dryer" title=" cabinet dryer"> cabinet dryer</a> </p> <a href="https://publications.waset.org/abstracts/52448/studies-on-the-proximate-composition-and-functional-properties-of-extracted-cocoyam-starch-flour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> A Methodological Approach to Development of Mental Script for Mental Practice of Micro Suturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaikunthan%20Rajaratnam">Vaikunthan Rajaratnam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intro: Motor imagery (MI) and mental practice (MP) can be an alternative to acquire mastery of surgical skills. One component of using this technique is the use of a mental script. The aim of this study was to design and develop a mental script for basic micro suturing training for skill acquisition using a low-fidelity rubber glove model and to describe the detailed methodology for this process. Methods: This study was based on a design and development research framework. The mental script was developed with 5 expert surgeons performing a cognitive walkthrough of the repair of a vertical opening in a rubber glove model using 8/0 nylon. This was followed by a hierarchal task analysis. A draft script was created, and face and content validity assessed with a checking-back process. The final script was validated with the recruitment of 28 participants, assessed using the Mental Imagery Questionnaire (MIQ). Results: The creation of the mental script is detailed in the full text. After assessment by the expert panel, the mental script had good face and content validity. The average overall MIQ score was 5.2 ± 1.1, demonstrating the validity of generating mental imagery from the mental script developed in this study for micro suturing in the rubber glove model. Conclusion: The methodological approach described in this study is based on an instructional design framework to teach surgical skills. This MP model is inexpensive and easily accessible, addressing the challenge of reduced opportunities to practice surgical skills. However, while motor skills are important, other non-technical expertise required by the surgeon is not addressed with this model. Thus, this model should act a surgical training augment, but not replace it. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mental%20script" title="mental script">mental script</a>, <a href="https://publications.waset.org/abstracts/search?q=motor%20imagery" title=" motor imagery"> motor imagery</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20walkthrough" title=" cognitive walkthrough"> cognitive walkthrough</a>, <a href="https://publications.waset.org/abstracts/search?q=verbal%20protocol%20analysis" title=" verbal protocol analysis"> verbal protocol analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20task%20analysis" title=" hierarchical task analysis"> hierarchical task analysis</a> </p> <a href="https://publications.waset.org/abstracts/135590/a-methodological-approach-to-development-of-mental-script-for-mental-practice-of-micro-suturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Amylase Activities of Mould Isolated from Spoilt Ogi and Eko: Two (2) Fermented Maize Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gafar%20Bamigbade">Gafar Bamigbade</a>, <a href="https://publications.waset.org/abstracts/search?q=Adebunkola%20Omemu"> Adebunkola Omemu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> “Ogi” is a fermented cereal gruel prepared from maize (Zea mays), millet (Pennisetum typhoideum) or guinea corn (Sorghum bicolour). It could be boiled to give a thicker consistency wrapped in leaf allowed to cool and set to a gel known as “eko”. The objective of this study is to determine the amylase activities of mould associated with the spoilage of Ogi and eko. Moulds were isolated from spoilt Ogi and eko samples using standard microbiological procedures. The isolate was then screened for amylase production using starch agar medium. Positive isolates were used for amylase production by solid state fermentation (SFF) using rice bran as the medium. An alpha-amylase and glucoamylase activity of the crude enzyme was determined using the DNS method. The mean mold Population ranged from 1.15 X 105cfu/g for raw Ogi to 6.25 X 105cfu/g for Eko (wrapped in Leaves). Twenty-seven (27) moulds isolated from the sample include A. niger, A. flavus, A. fumigatus, Rhizopus species and Penicillium species. Aspergillus flavus had the highest percentage (51.9%) of incidence while Penicillium species had the least (3.7%). Out of the 27 isolates screened, 19 were found to be amylase positive by showing a clear zone around their colony after flooding with iodine solution. Diameter of clear zone ranged from 3.00mm (Aspergillus niger, C4) to 22.00mm (Aspergillus flavus, A1). Aspergillus niger isolated from spoilt Eko wrapped in leaf has the highest percentage alpha-amylase activity (30.8%) and Aspergillus flavus isolated from spoilt raw ogi has the lowest activity (11.4%). Aspergillus niger isolated from spoilt Eko wrapped in nylon produces the highest glucoamylase activity (240U/ml) while penicillium specie isolated from spoilt cooked ogi has the lowest activity (100U/ml). This study shows that moulds associated with spoilage of ogi and eko can produce amylase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucoamylase" title="glucoamylase">glucoamylase</a>, <a href="https://publications.waset.org/abstracts/search?q=alpha%20amylase" title=" alpha amylase"> alpha amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=ogi" title=" ogi"> ogi</a>, <a href="https://publications.waset.org/abstracts/search?q=eko" title=" eko"> eko</a> </p> <a href="https://publications.waset.org/abstracts/65050/amylase-activities-of-mould-isolated-from-spoilt-ogi-and-eko-two-2-fermented-maize-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Measurements of Scattering Cross Sections for 5.895 keV Photons in Various Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Duggal">H. Duggal</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Singh"> G. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bhalla"> A. Bhalla</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kumar"> S. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20S.%20Shahi"> J. S. Shahi</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Mehta"> D. Mehta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total differential cross section for scattering of the 5.895 keV photons by various polymers has been measured at scattering angle of 135o. The experimental measurements were carried out using the energy dispersive setup involving annular source of the 55Fe radioisotope and a low energy germanium (LEGe) detector. The cross section values are measured for 20 polymer targets namely, Paraffin Wax, Polytetrafluoro ethylene (PTFE), Cellulose, Silicone oil, Polyvinyl alcohol (PVA), Polyvinyl purrolidone (PVP), Polymethyl methacrylate (PMMA), Kapton, Mylar, Chitosan, Polyvinyl chloride (PVC), Bakelite, Carbopol, Chlorobutyl rubber (CBR), Polyetylene glycol (PEG), Polysorbate-20, Nylon-6, Cetyl alcohol, Carboxyl methyl sodium cellulose and Sodium starch glucolate. The measurements were performed in vacuum so as to avoid scattering contribution due to air and strong absorption of low energy photons in the air column. In the present investigations, the geometrical factor and efficiency of the detector were determined by measuring the K x-rays emitted from the 22Ti and 23V targets excited by the Mn K x-rays in the same experimental set up. The measured scattering cross sections have been compared with the sum of theoretically calculated elastic and inelastic scattering cross sections. The theoretical elastic (Rayleigh) scattering cross sections based on the various form factor approximations, namely, non-relativistic form factor (NF), relativistic form factor (RF), modified form factor (MF), and MF with anomalous scattering factor (ASF) as well as the second order S-matrix formalisms, and the inelastic scattering differential cross sections based on the Klein-Nishina formula after including the inelastic scattering function (KN+ISF) have been calculated. The experimental results show fairly good agreement with theoretical cross sections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photon" title="photon">photon</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20and%20inelastic" title=" elastic and inelastic"> elastic and inelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=scattering%20cross%20sections" title=" scattering cross sections"> scattering cross sections</a> </p> <a href="https://publications.waset.org/abstracts/15642/measurements-of-scattering-cross-sections-for-5895-kev-photons-in-various-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">689</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nylon&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nylon&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10