CINXE.COM

Search results for: flame holder

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flame holder</title> <meta name="description" content="Search results for: flame holder"> <meta name="keywords" content="flame holder"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flame holder" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flame holder"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 384</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flame holder</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> Influence of Flame-Holder on Existence Important Parameters in a Duct Combustion Simulator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Doustdar">Mohammad Mahdi Doustdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mojtahedpoor"> Mohammad Mojtahedpoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of flame-holder position, the ratio of flame holder diameter to combustion chamber diameter and injection angle on fuel propulsive droplets sizing and effective mass fraction have been studied by a cold flow. We named the mass of fuel vapor inside the flammability limit as the effective mass fraction. An empty cylinder as well as a flame-holder which are as a simulator for duct combustion has been considered. The airflow comes into the cylinder from one side and injection operation will be done by four nozzles which are located on the entrance of cylinder. To fulfill the calculations a modified version of KIVA-3V code which is a transient, three-dimensional, multi phase, multi component code for the analysis of chemically reacting flows with sprays, is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=KIVA-3V" title="KIVA-3V">KIVA-3V</a>, <a href="https://publications.waset.org/abstracts/search?q=flame-holder" title=" flame-holder"> flame-holder</a>, <a href="https://publications.waset.org/abstracts/search?q=duct%20combustion" title=" duct combustion"> duct combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=effective%20mass%20fraction" title=" effective mass fraction"> effective mass fraction</a>, <a href="https://publications.waset.org/abstracts/search?q=mean%20diameter%20of%20droplets" title=" mean diameter of droplets"> mean diameter of droplets</a> </p> <a href="https://publications.waset.org/abstracts/33237/influence-of-flame-holder-on-existence-important-parameters-in-a-duct-combustion-simulator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">619</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tohidi">Yasaman Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouzbeh%20Riazi"> Rouzbeh Riazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Mohammadi"> Masoud Mohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to numerically investigate the effect of CO<sub>2</sub> replacement of N<sub>2</sub> in air stream on the flame characteristics of the CH<sub>4</sub> turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-&epsilon; models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO<sub>2</sub> in air stream changes the flame shape and maximum flame temperature. Also, CO<sub>2</sub> dilution causes an increment in CO mass fraction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CH4%20diffusion%20flame" title="CH4 diffusion flame">CH4 diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20dilution" title=" CO2 dilution"> CO2 dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flame" title=" turbulent flame"> turbulent flame</a> </p> <a href="https://publications.waset.org/abstracts/76025/a-numerical-study-on-the-influence-of-co2-dilution-on-combustion-characteristics-of-a-turbulent-diffusion-flame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Supersonic Combustion (Scramjet) Containing Flame-Holder with Slot Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anupriya">Anupriya</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikramjit%20Sinfh"> Bikramjit Sinfh</a>, <a href="https://publications.waset.org/abstracts/search?q=Radhay%20Shyam"> Radhay Shyam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve mixing phenomena and combustion processes in supersonic flow, the current work has concentrated on identifying the ideal cavity parameters using CFD ANSYS Fluent. Offset ratios (OR) and aft ramp angles () have been manipulated in simulations of several models, but the length-to-depth ratio has remained the same. The length-to-depth ratio of all cavity flows is less than 10, making them all open. Hydrogen fuel was injected into a supersonic air flow with a Mach number of 3.75 using a chamber with a 1 mm diameter and a transverse slot nozzle. The free stream had conditions of a pressure of 1.2 MPa, a temperature of 299K, and a Reynolds number of 2.07x107. This method has the ability to retain a flame since the cavity facilitates rapid mixing of fuel and oxidizer and decreases total pressure losses. The impact of the cavity on combustion efficiency and total pressure loss is discussed, and the results are compared to those of a model without a cavity. Both the mixing qualities and the combustion processes were enhanced in the model with the cavity. The overall pressure loss as well as the effectiveness of the combustion process both increase with the increase in the ramp angle to the rear. When OR is increased, however, resistance to the supersonic flow field is reduced, which has a detrimental effect on both parameters. For a given ramp height, larger pressure losses were observed at steeper ramp angles due to increased eddy-viscous turbulent flow and increased wall drag. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=total%20pressure%20loss" title="total pressure loss">total pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20holder" title=" flame holder"> flame holder</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20efficiency" title=" combustion efficiency"> combustion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cavity" title=" cavity"> cavity</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle"> nozzle</a> </p> <a href="https://publications.waset.org/abstracts/154492/supersonic-combustion-scramjet-containing-flame-holder-with-slot-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Effect of the Drawbar Force on the Dynamic Characteristics of a Spindle-Tool Holder System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jui-Pui%20Hung">Jui-Pui Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lai"> Yu-Sheng Lai</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzuo-Liang%20Luo"> Tzuo-Liang Luo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kung-Da%20Wu"> Kung-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Ji%20Zhan"> Yun-Ji Zhan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the investigation of the influence of the tool holder interface stiffness on the dynamic characteristics of a spindle tool system. The interface stiffness was produced by drawbar force on the tool holder, which tends to affect the spindle dynamics. In order to assess the influence of interface stiffness on the vibration characteristic of spindle unit, we first created a three dimensional finite element model of a high speed spindle system integrated with tool holder. The key point for the creation of FEM model is the modeling of the rolling interface within the angular contact bearings and the tool holder interface. The former can be simulated by a introducing a series of spring elements between inner and outer rings. The contact stiffness was calculated according to Hertz contact theory and the preload applied on the bearings. The interface stiffness of the tool holder was identified through the experimental measurement and finite element modal analysis. Current results show that the dynamic stiffness was greatly influenced by the tool holder system. In addition, variations of modal damping, static stiffness and dynamic stiffness of the spindle tool system were greatly determined by the interface stiffness of the tool holder which was in turn dependent on the draw bar force applied on the tool holder. Overall, this study demonstrates that identification of the interface characteristics of spindle tool holder is of very importance for the refinement of the spindle tooling system to achieve the optimum machining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20stiffness" title="dynamic stiffness">dynamic stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle-tool%20holder" title=" spindle-tool holder"> spindle-tool holder</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20stiffness" title=" interface stiffness"> interface stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=drawbar%20force" title=" drawbar force"> drawbar force</a> </p> <a href="https://publications.waset.org/abstracts/10212/effect-of-the-drawbar-force-on-the-dynamic-characteristics-of-a-spindle-tool-holder-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Flame Dynamics in Small Scale Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mahmoud%20Osman%20Ahmed">Mohammed Mahmoud Osman Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Mohammad"> Akram Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flame dynamics in heated quartz glass channels of various aspect ratios (2,5,10,15) were experimentally investigated. A premixed Propane-air mixture was used for the reported experiments. Regarding micro-combustion, flame quenching is considered to be the most crucial problem to overcome first. Experiments were carried out on four channels with different aspect ratios. The results show that at a very low equivalence ratio ϕ=0.4, there is no flame inside the channels. The FREI condition (Flame with repetitive extinction and ignition) was overcome by increasing velocity and by making the channels more in contact with the external heater. The flame tested inside the channels at different locations for V=0.3 m/s or higher below V=0.65 m/s. The effects of equivalence ratio and flow velocity on the characteristics of combustion in the channels were examined. Different ways of flame propagation were observed in the current investigations based on how they appear as planar, concave and convex flames. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20stabilization" title="flame stabilization">flame stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20dynamics" title=" flame dynamics"> flame dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=small-scale%20channels" title=" small-scale channels"> small-scale channels</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20heater" title=" external heater"> external heater</a> </p> <a href="https://publications.waset.org/abstracts/166106/flame-dynamics-in-small-scale-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> Flame Spread along Fuel Cylinders in High Pressures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanli%20Zhao">Yanli Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Chen"> Jian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shouxiang%20Lu"> Shouxiang Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cylinder%20fuel" title="cylinder fuel">cylinder fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20spread" title=" flame spread"> flame spread</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20pressure" title=" high pressure"> high pressure</a> </p> <a href="https://publications.waset.org/abstracts/74731/flame-spread-along-fuel-cylinders-in-high-pressures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">378</span> Adiabatic Flame Temperature: New Calculation Methode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muthana%20Abdul%20Mjed%20Jamel%20Al-gburi">Muthana Abdul Mjed Jamel Al-gburi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper introduces the methane-air flame and its main chemical reaction, the mass burning rate, the burning velocity, and the most important parameter, the adiabatic and its evaluation. Those major important flame parameters will be mathematically formulated and computerized using the MATLAB program. The present program established a new technique to decide the true adiabatic flame temperature. The new technique implements the trial and error procedure to obtained the calculated total internal energy of the product species then evaluate of the reactants ones, from both, we can draw two energy lines their intersection will decide the true required temperature. The obtained results show accurate evaluation for the atmospheric Stoichiometric (Φ=1.05) methane-air flame, and the value was 2136.36 K. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=1-%20methane-air%20flame" title="1- methane-air flame">1- methane-air flame</a>, <a href="https://publications.waset.org/abstracts/search?q=2-" title=" 2-"> 2-</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20flame%20temperature" title=" adiabatic flame temperature"> adiabatic flame temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=3-" title=" 3-"> 3-</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20model" title=" reaction model"> reaction model</a>, <a href="https://publications.waset.org/abstracts/search?q=4-%20matlab%20program" title=" 4- matlab program"> 4- matlab program</a>, <a href="https://publications.waset.org/abstracts/search?q=5-" title=" 5-"> 5-</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20technique" title=" new technique"> new technique</a> </p> <a href="https://publications.waset.org/abstracts/166893/adiabatic-flame-temperature-new-calculation-methode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">377</span> Thermal Performance of Dual Flame Impinging Normally on to a Flat Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satpal%20Singh">Satpal Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Subhash%20Chander"> Subhash Chander</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study has been conducted to evaluate the thermal performance of the CNG/air dual flame impinging normally on to a flat surface. The stability limits for the dual flame under both impinging and free conditions have been evaluated to select experimental operating range. Dual flame shape and structure have been explained with direct flame image and schematic diagram indicating modification in recirculation zone in presence of inner flame. Effects of various operating parameters like H/Dh, Re(o), Φ(o), and θ(o) on heat transfer characteristics have been discussed. Inner non-swirling flame Reynolds number (Re(i)) and equivalence ratio (Φ(i)) were kept constant. Heating patterns in the impingement region around the stagnation point have been altered significantly with change in the values of H/Dh, Re(o), Φ(o), and θ(o). The axial flow of inner flame has been notably effected with increase in Re(o). Heating was most favorable near stoichiometeric conditions of the outer swirling flame. However, the effect of change in swirl intensity (expressed in terms of θ(o)) on overall heat transfer efficiency was not as significant as in the case of other parameters. It has been inferred that best performance (higher uniformity and efficiency) of the dual flame impinging on a flat surface can be achieved at moderate value of separation distance (H/Dh of 2-3) and outer swirling flame Reynolds number (Re(o) of 7000-9000) under stoichiometeric conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20flame" title="dual flame">dual flame</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=impingement" title=" impingement"> impingement</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20insert" title=" swirling insert"> swirling insert</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20efficiency" title=" transmission efficiency"> transmission efficiency</a> </p> <a href="https://publications.waset.org/abstracts/34923/thermal-performance-of-dual-flame-impinging-normally-on-to-a-flat-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> An Experimental Study on the Measurement of Fuel to Air Ratio Using Flame Chemiluminescence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sewon%20Kim">Sewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chang%20Yeop%20Lee"> Chang Yeop Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwon"> Minjun Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is aiming at establishing the relationship between the optical signal of flame and an equivalent ratio of flame. In this experiment, flame optical signal in a furnace is measured using photodiode. The combustion system which is composed of metal fiber burner and vertical furnace and flame chemiluminescence is measured at various experimental conditions. In this study, the flame chemiluminescence of laminar premixed flame is measured by using commercially available photodiode. It is experimentally investigated the relationship between equivalent ratio and photodiode signal. In addition, The strategy of combustion control method is proposed by using the optical signal and fuel pressure. The results showed that certain relationship between optical data of photodiode and equivalence ratio exists and this leads to the successful application of this system for instantaneous measurement of equivalence ration of the combustion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20chemiluminescence" title="flame chemiluminescence">flame chemiluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=photo%20diode" title=" photo diode"> photo diode</a>, <a href="https://publications.waset.org/abstracts/search?q=equivalence%20ratio" title=" equivalence ratio"> equivalence ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20control" title=" combustion control"> combustion control</a> </p> <a href="https://publications.waset.org/abstracts/2626/an-experimental-study-on-the-measurement-of-fuel-to-air-ratio-using-flame-chemiluminescence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Experimental Investigation of Partially Premixed Laminar Methane/Air Co-Flow Flames Using Mach-Zehnder Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Misagh%20Irandoost%20Shahrestani">Misagh Irandoost Shahrestani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ashjaee"> Mehdi Ashjaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahrokh%20Zandieh%20Vakili"> Shahrokh Zandieh Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame was established on an axisymmetric coannular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame features and to develop a nonintrusive method for temperature measurement of methane/air partially premixed flame using Mach-Zehnder interferometry method. Different equivalence ratios and Reynolds numbers are considered. Flame generic visible appearance was also investigated and its various structures were studied. Three distinguished flame regimes were seen based on its appearance. A double flame structure can be seen for the equivalence ratio in the range of 1<Φ<2.1. By adding air to the mixture up to Φ=4 the flame has the characteristics of both premixed and non-premixed flames. Finally for 4<Φ<∞ the flame mainly becomes non-premixed like and the luminous sooting region on its tip is the obvious feature of this type of flames. The Mach-Zehnder method is used to obtain temperature field of a transparent fluid by means of index of refraction. Temperature obtained from optical techniques was compared with that of obtained from thermocouples in order to validate the results. Good agreement was observed for these two methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20structure" title="flame structure">flame structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehnder%20interferometry" title=" Mach-Zehnder interferometry"> Mach-Zehnder interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20premixed%20flame" title=" partially premixed flame"> partially premixed flame</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20field" title=" temperature field "> temperature field </a> </p> <a href="https://publications.waset.org/abstracts/17291/experimental-investigation-of-partially-premixed-laminar-methaneair-co-flow-flames-using-mach-zehnder-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">481</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> A Numerical Study on the Effects of N2 Dilution on the Flame Structure and Temperature Distribution of Swirl Diffusion Flames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasaman%20Tohidi">Yasaman Tohidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Shidvash%20Vakilipour"> Shidvash Vakilipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Ebadi%20Tavallaee"> Saeed Ebadi Tavallaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahin%20Vakilipoor%20Takaloo"> Shahin Vakilipoor Takaloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Amiri"> Hossein Amiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The numerical modeling is performed to study the effects of N<sub>2</sub> addition to the fuel stream on the flame structure and temperature distribution of methane-air swirl diffusion flames with different swirl intensities. The Open source Field Operation and Manipulation (OpenFOAM) has been utilized as the computational tool. Flamelet approach along with modified k-&epsilon; model is employed to model the flame characteristics.&nbsp; The results indicate that the presence of N<sub>2</sub> in the fuel stream leads to the flame temperature reduction. By increasing of swirl intensity, the flame structure changes significantly. The flame has a conical shape in low swirl intensity; however, it has an hour glass-shape with a shorter length in high swirl intensity. The effects of N<sub>2</sub> dilution decrease the flame length in all swirl intensities; however, the rate of reduction is more noticeable in low swirl intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=swirl%20diffusion%20flame" title="swirl diffusion flame">swirl diffusion flame</a>, <a href="https://publications.waset.org/abstracts/search?q=N2%20dilution" title=" N2 dilution"> N2 dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=swirl%20intensity" title=" swirl intensity"> swirl intensity</a> </p> <a href="https://publications.waset.org/abstracts/105300/a-numerical-study-on-the-effects-of-n2-dilution-on-the-flame-structure-and-temperature-distribution-of-swirl-diffusion-flames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Prediction of the Tunnel Fire Flame Length by Hybrid Model of Neural Network and Genetic Algorithms </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Niknam">Behzad Niknam</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Shahriar"> Kourosh Shahriar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Madani"> Hassan Madani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper demonstrates the applicability of Hybrid Neural Networks that combine with back propagation networks (BPN) and Genetic Algorithms (GAs) for predicting the flame length of tunnel fire A hybrid neural network model has been developed to predict the flame length of tunnel fire based parameters such as Fire Heat Release rate, air velocity, tunnel width, height and cross section area. The network has been trained with experimental data obtained from experimental work. The hybrid neural network model learned the relationship for predicting the flame length in just 3000 training epochs. After successful learning, the model predicted the flame length. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tunnel%20fire" title="tunnel fire">tunnel fire</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20length" title=" flame length"> flame length</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/10980/prediction-of-the-tunnel-fire-flame-length-by-hybrid-model-of-neural-network-and-genetic-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">643</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> Temperature Field Measurement of Premixed Landfill Gas Laminar Flame in a Cylindrical Slot Burner Using Mach-Zehnder Interferometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahareh%20Najafian%20Ashrafi">Bahareh Najafian Ashrafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Zeidabadinejad"> Hossein Zeidabadinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Ashjaee"> Mehdi Ashjaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature field is a key factor of flame heat transfer rate and therefore should be measured accurately. In this study, the Mach-Zehnder Interferometry method is applied to measure the temperature field of premixed air/landfill gas (LFG60:60% CH4+40% CO2) laminar flame. The three-dimensional flame of cylindrical slot burner can assume to be two-dimensional due to the high aspect ratio (L/W=10) of the rectangular slot. So, the method converts two-dimensional flame to closed isothermal curves called fringes and the outer fringes temperature is measured by thermocouples. The experiments are carried out for Reynolds numbers and equivalence ratios ranging from 100 to 400 and 1.0 to 1.4, respectively. Results show that by increasing the equivalence ratio or Reynolds number, the flame height increases. The maximum flame temperature decreases by increasing the equivalence ratio but does not change considerably by changing the Reynolds number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landfill%20gas" title="landfill gas">landfill gas</a>, <a href="https://publications.waset.org/abstracts/search?q=Mach-Zehender%20interferometry" title=" Mach-Zehender interferometry"> Mach-Zehender interferometry</a>, <a href="https://publications.waset.org/abstracts/search?q=premix%20flame" title=" premix flame"> premix flame</a>, <a href="https://publications.waset.org/abstracts/search?q=slot%20burner" title=" slot burner"> slot burner</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20filed" title=" temperature filed "> temperature filed </a> </p> <a href="https://publications.waset.org/abstracts/126018/temperature-field-measurement-of-premixed-landfill-gas-laminar-flame-in-a-cylindrical-slot-burner-using-mach-zehnder-interferometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Development of Ultrasounf Probe Holder for Automatic Scanning Asymmetric Reflector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nabilah%20Ibrahim">Nabilah Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Mohd%20Zaini"> Hafiz Mohd Zaini</a>, <a href="https://publications.waset.org/abstracts/search?q=Wan%20Fatin%20Liyana%20Mutalib"> Wan Fatin Liyana Mutalib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultrasound equipment or machine is capable to scan in two dimensional (2D) areas. However there are some limitations occur during scanning an object. The problem will occur when scanning process that involving the asymmetric object. In this project, the ultrasound probe holder for asymmetric reflector scanning in 3D image is proposed to make easier for scanning the phantom or object that has asymmetric shape. Initially, the constructed asymmetric phantom that construct will be used in 2D scanning. Next, the asymmetric phantom will be interfaced by the movement of ultrasound probe holder using the Arduino software. After that, the performance of the ultrasound probe holder will be evaluated by using the various asymmetric reflector or phantom in constructing a 3D image <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ultrasound%203D%20images" title="ultrasound 3D images">ultrasound 3D images</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20and%20lateral%20resolution" title=" axial and lateral resolution"> axial and lateral resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20reflector" title=" asymmetric reflector"> asymmetric reflector</a>, <a href="https://publications.waset.org/abstracts/search?q=Arduino%20software" title=" Arduino software"> Arduino software</a> </p> <a href="https://publications.waset.org/abstracts/22856/development-of-ultrasounf-probe-holder-for-automatic-scanning-asymmetric-reflector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Aspects Concerning Flame Propagation of Various Fuels in Combustion Chamber of Four Valve Engines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Jovanovic">Zoran Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoran%20Masonicic"> Zoran Masonicic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dragutinovic"> S. Dragutinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sakota"> Z. Sakota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, results concerning flame propagation of various fuels in a particular combustion chamber with four tilted valves were elucidated. Flame propagation was represented by the evolution of spatial distribution of temperature in various cut-planes within combustion chamber while the flame front location was determined by dint of zones with maximum temperature gradient. The results presented are only a small part of broader on-going scrutinizing activity in the field of multidimensional modeling of reactive flows in combustion chambers with complicated geometries encompassing various models of turbulence, different fuels and combustion models. In the case of turbulence two different models were applied i.e. standard k-&epsilon; model of turbulence and k-&xi;-f model of turbulence. In this paper flame propagation results were analyzed and presented for two different hydrocarbon fuels, such as CH4 and C8H18. In the case of combustion all differences ensuing from different turbulence models, obvious for non-reactive flows are annihilated entirely. Namely the interplay between fluid flow pattern and flame propagation is invariant as regards turbulence models and fuels applied. Namely the interplay between fluid flow pattern and flame propagation is entirely invariant as regards fuel variation indicating that the flame propagation through unburned mixture of CH4 and C8H18 fuels is not chemically controlled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20flows" title="automotive flows">automotive flows</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20propagation" title=" flame propagation"> flame propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20modelling" title=" combustion modelling"> combustion modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=CNG" title=" CNG"> CNG</a> </p> <a href="https://publications.waset.org/abstracts/47372/aspects-concerning-flame-propagation-of-various-fuels-in-combustion-chamber-of-four-valve-engines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47372.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hosein%20Faramarzpour">Hosein Faramarzpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermophotovoltaic%20generator" title="thermophotovoltaic generator">thermophotovoltaic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20combustor" title=" micro combustor"> micro combustor</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20power%20generator" title=" micro power generator"> micro power generator</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20regimes" title=" combustion regimes"> combustion regimes</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20dynamic" title=" flame dynamic"> flame dynamic</a> </p> <a href="https://publications.waset.org/abstracts/165921/hydrogen-fueled-micro-thermophotovoltaic-power-generator-flame-regimes-and-flame-stability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165921.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Semilocal Convergence of a Three Step Fifth Order Iterative Method under Hölder Continuity Condition in Banach Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ramandeep%20Behl">Ramandeep Behl</a>, <a href="https://publications.waset.org/abstracts/search?q=Prashanth%20Maroju"> Prashanth Maroju</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Motsa"> S. S. Motsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Holder%20continuity%20condition" title="Holder continuity condition">Holder continuity condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Frechet%20derivative" title=" Frechet derivative"> Frechet derivative</a>, <a href="https://publications.waset.org/abstracts/search?q=fifth%20order%20convergence" title=" fifth order convergence"> fifth order convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrence%20relations" title=" recurrence relations"> recurrence relations</a> </p> <a href="https://publications.waset.org/abstracts/57605/semilocal-convergence-of-a-three-step-fifth-order-iterative-method-under-holder-continuity-condition-in-banach-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">612</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Sequential Covering Algorithm for Nondifferentiable Global Optimization Problem and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Rahal">Mohamed Rahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Djaouida%20Guetta"> Djaouida Guetta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the one-dimensional unconstrained global optimization problem of continuous functions satifying a Hölder condition is considered. We extend the algorithm of sequential covering SCA for Lipschitz functions to a large class of Hölder functions. The convergence of the method is studied and the algorithm can be applied to systems of nonlinear equations. Finally, some numerical examples are presented and illustrate the efficiency of the present approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=global%20optimization" title="global optimization">global optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%B6lder%20functions" title=" Hölder functions"> Hölder functions</a>, <a href="https://publications.waset.org/abstracts/search?q=sequential%20covering%20method" title=" sequential covering method"> sequential covering method</a>, <a href="https://publications.waset.org/abstracts/search?q=systems%20of%20nonlinear%20equations" title=" systems of nonlinear equations"> systems of nonlinear equations</a> </p> <a href="https://publications.waset.org/abstracts/6507/sequential-covering-algorithm-for-nondifferentiable-global-optimization-problem-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Eco-Ways to Reduce Environmental Impacts of Flame Retardant Textiles at the End of Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Yasin">Sohail Yasin</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimo%20Curti"> Massimo Curti</a>, <a href="https://publications.waset.org/abstracts/search?q=Nemeshwaree%20Behary"> Nemeshwaree Behary</a>, <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Rovero"> Giorgio Rovero</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well-known that the presence of discarded textile products in municipal landfills poses environmental problems due to leaching of chemical products from the textile to the environment. Incineration of such textiles is considered to be an efficient way to produce energy and reduce environmental impacts of textile materials at their end-of life stage. However, the presence of flame retardant products on textiles would decrease the energy yield and emit toxic gases during incineration stage. While some non-durable flame retardants can be removed by wet treatments (e.g. washing), these substances pollute water and pose concerns towards environmental health. Our study shows that infrared radiation can be used efficiently to degrade flame retardant products on the textiles. This method is finalized to minimize the decrease in energy yield during the incineration or gasification processes of flame retardant cotton fabrics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title=" flame retardant"> flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20radiation" title=" infrared radiation"> infrared radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton" title=" cotton"> cotton</a>, <a href="https://publications.waset.org/abstracts/search?q=incineration" title=" incineration"> incineration</a> </p> <a href="https://publications.waset.org/abstracts/47864/eco-ways-to-reduce-environmental-impacts-of-flame-retardant-textiles-at-the-end-of-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhe-Hao%20Huang">Jhe-Hao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Kun-Da%20Wu"> Kun-Da Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Cheng%20Shih"> Wei-Cheng Shih</a>, <a href="https://publications.waset.org/abstracts/search?q=Jui-Pin%20Hung"> Jui-Pin Hung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20stiffness" title="contact stiffness">contact stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20characteristics" title=" dynamic characteristics"> dynamic characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=spindle" title=" spindle"> spindle</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20holder%20interface" title=" tool holder interface"> tool holder interface</a> </p> <a href="https://publications.waset.org/abstracts/75188/modeling-of-the-dynamic-characteristics-of-a-spindle-with-experimental-validation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Flame Acceleration of Premixed Natural Gas/Air Explosion in Closed Pipe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mat%20Kiah">H. Mat Kiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiziana%20M.%20Kasmani"> Rafiziana M. Kasmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Norazana%20Ibrahim"> Norazana Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshafima%20R.%20Ali"> Roshafima R. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Aziatul%20N.Sadikin"> Aziatul N.Sadikin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental study has been done to investigate the flame acceleration in a closed pipe. A horizontal steel pipe, 2m long and 0.1 m in diameter (L/D of 20), was used in this work. For tests with 90 degree bends, the bend had a radius of 0.1 m and thus, the pipe was lengthened 1 m (based on the centreline length of the segment). Ignition was affected one end of the vessel while the other end was closed. Only stoichiometric concentration (Ф, = 1.0) of natural gas/air mixtures will be reported in this paper. It was demonstrated that bend pipe configuration gave three times higher in maximum over-pressure (5.5 bars) compared to straight pipe (2.0 bars). From the results, the highest flame speed of 63 m s-1 was observed in a gas explosion with bent pipe, greater by a factor of ~3 as compared with straight pipe (23 m s-1). This occurs because bending acts similar to an obstacle, in which this mechanism can induce more turbulence, initiating combustion in an unburned pocket at the corner region and causing a high mass burning rate which increases the flame speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20explosion" title=" gas explosion"> gas explosion</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20acceleration" title=" flame acceleration"> flame acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=over-pressure" title=" over-pressure"> over-pressure</a> </p> <a href="https://publications.waset.org/abstracts/3266/flame-acceleration-of-premixed-natural-gasair-explosion-in-closed-pipe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3266.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Enhancing of Flame Retardancy and Hydrophobicity of Cotton by Coating a Phosphorous, Silica, Nitrogen Containing Bio-Flame Retardant Liquid for Upholstery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%20Maksym">Li Maksym</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabhakar%20M.%20N."> Prabhakar M. N.</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Il%20Song"> Jung-Il Song</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a flame retardant and hydrophobic cotton textile were prepared by utilizing a renewable halogen-free bio-based solution based on chitosan, urea, and phytic acid, named bio-flame retardant liquid (BFL), through facile dip-coating technology. Deposition of BFL on the surface of the cotton was confirmed by Fourier-transform infrared spectroscopy and scanning electron microscope coupled with energy-dispersive X-ray spectrometer. Thermal and flame retardant properties of the cottons were studied with thermogravimetric analysis, differential scanning calorimetry, vertical flame test, cone calorimeter test. Only with 8.8% of dry weight gain treaded cotton showed self-extinguish properties during fire test. Cone calorimeter test revealed a reduction of peak heat release rate from 203.2 to 21 kW/m2 and total heat release from 20.1 to 2.8 MJ/m2. Incidentally, BFL remarkably improved the thermal stability of flame retardant cotton from expressed in an enhanced amount of char at 700 °C (6.7 vs. 33.5%). BFL initiates the formation of phosphorous and silica contain char layer whichrestrains the propagation of heat and oxygen to unburned materialstrengthen by the liberation of non-combustible gases, which reduce the concentration of flammable volatiles and oxygen hence reducing the flammability of cotton. In addition, hydrophobicity and specific ignition test for upholstery application were performed. In conjunction, the proposed flame retardant cotton is potentially translatable to be utilized as upholstery materials in public transport. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20farbic" title="cotton farbic">cotton farbic</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardancy" title=" flame retardancy"> flame retardancy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20coating" title=" surface coating"> surface coating</a>, <a href="https://publications.waset.org/abstracts/search?q=intumescent%20mechanism" title=" intumescent mechanism"> intumescent mechanism</a> </p> <a href="https://publications.waset.org/abstracts/150303/enhancing-of-flame-retardancy-and-hydrophobicity-of-cotton-by-coating-a-phosphorous-silica-nitrogen-containing-bio-flame-retardant-liquid-for-upholstery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timine%20Suoware">Timine Suoware</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvester%20%20Edelugo"> Sylvester Edelugo</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Amgbari"> Charles Amgbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title="flame retardant">flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20regression" title=" flame regression"> flame regression</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20fibre" title=" oil palm fibre"> oil palm fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20panel" title=" composite panel"> composite panel</a> </p> <a href="https://publications.waset.org/abstracts/128764/characterization-of-the-ignitability-and-flame-regression-behaviour-of-flame-retarded-natural-fibre-composite-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Discrete Sliding Modes Regulator with Exponential Holder for Non-Linear Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Obregon-Pulido">G. Obregon-Pulido </a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20C.%20Solis-Perales"> G. C. Solis-Perales</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Meda-Campa%C3%B1a"> J. A. Meda-Campaña</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present a sliding mode controller in discrete time. The design of the controller is based on the theory of regulation for nonlinear systems. In the problem of disturbance rejection and/or output tracking, it is known that in discrete time, a controller that uses the zero-order holder only guarantees tracking at the sampling instances but not between instances. It is shown that using the so-called exponential holder, it is possible to guarantee asymptotic zero output tracking error, also between the sampling instant. For stabilizing the problem of close loop system we introduce the sliding mode approach relaxing the requirements of the existence of a linear stabilizing control law. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regulation%20theory" title="regulation theory">regulation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20modes" title=" sliding modes"> sliding modes</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20controller" title=" discrete controller"> discrete controller</a>, <a href="https://publications.waset.org/abstracts/search?q=ripple-free%20tracking" title=" ripple-free tracking"> ripple-free tracking</a> </p> <a href="https://publications.waset.org/abstracts/178771/discrete-sliding-modes-regulator-with-exponential-holder-for-non-linear-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Cooperative Game Theory and Small Hold Farming: Towards A Conceptual Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abel%20Kahuni">Abel Kahuni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cooperative game theory (CGT) postulates that groups of players are crucial units of the decision-making and impose cooperative behaviour. Accordingly, cooperative games are regarded as competition between coalitions of players, rather than between individual players. However, the basic supposition in CGT is that the cooperative is formed by all players. One of the emerging questions in CGT is how to develop cooperatives and fairly allocate the payoff. Cooperative Game Theory (CGT) may provide a framework and insights into the ways small holder farmers in rural resettlements may develop competitive advantage through marketing cooperatives. This conceptual paper proposes a non-competition model for small holder farmers of homogenous agri-commodity under CGT conditions. This paper will also provide brief insights into to the theory of cooperative games in-order to generate an understanding of CGT, cooperative marketing gains and its application in small holder farming arrangements. Accordingly, the objective is to provide a basic introduction to this theory in connection with economic competitive theories in the context of small holder farmers. The key value proposition of CGT is the equitable and fair sharing of cooperative gains. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=game%20theory" title="game theory">game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperative%20game%20theory" title=" cooperative game theory"> cooperative game theory</a>, <a href="https://publications.waset.org/abstracts/search?q=cooperatives" title=" cooperatives"> cooperatives</a>, <a href="https://publications.waset.org/abstracts/search?q=competition" title=" competition"> competition</a> </p> <a href="https://publications.waset.org/abstracts/168075/cooperative-game-theory-and-small-hold-farming-towards-a-conceptual-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Flame Retardant Study of Methylol Melamine Phosphate-Treated Cotton Fibre</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurudeen%20Afolami%20Ayeni">Nurudeen Afolami Ayeni</a>, <a href="https://publications.waset.org/abstracts/search?q=Kasali%20Bello"> Kasali Bello</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Methylolmelamine with increasing degree of methylol substitution and the phosphates derivatives were used to resinate cotton fabric (CF). The resination was carried out at different curing time and curing temperature. Generally, the results show a reduction in the flame propagation rate of the treated fabrics compared to the untreated cotton fabric (CF). While the flame retardancy of methylolmelamine-treated fibre could be attributed to the degree of crosslinking of fibre-resin network which promotes stability, the methylolmelamine phosphate-treated fabrics show better retardancy due to the intumescences action of the phosphate resin upon decomposition in the resin – fabric network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cotton%20fabric" title="cotton fabric">cotton fabric</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20retardant" title=" flame retardant"> flame retardant</a>, <a href="https://publications.waset.org/abstracts/search?q=methylolmelamine" title=" methylolmelamine"> methylolmelamine</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinking" title=" crosslinking"> crosslinking</a>, <a href="https://publications.waset.org/abstracts/search?q=resination" title=" resination "> resination </a> </p> <a href="https://publications.waset.org/abstracts/18392/flame-retardant-study-of-methylol-melamine-phosphate-treated-cotton-fibre" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ejaz%20Ahmed">Ejaz Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Huang%20Yong"> Huang Yong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine%20combustor" title=" gas turbine combustor"> gas turbine combustor</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20blowout" title=" lean blowout"> lean blowout</a> </p> <a href="https://publications.waset.org/abstracts/54345/flame-volume-prediction-and-validation-for-lean-blowout-of-gas-turbine-combustor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54345.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Laminar Burning Velocity NH₃/H₂+Air Mixtures at Elevated Temperatures and Pressures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Talal%20Hasan">Talal Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Akram%20Mohammad"> Akram Mohammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon-free combustion has great attention in today’s research for its unlimited benefits regarding various factors, and ammonia is considered a potential carbon-free alternative gas despite its flame characteristics. The Shrestha mechanism and Chemkin-Pro software will be used for numerical data. Firstly, experimental and numerical results should show good agreement to move for studying the laminar flame speed of ammonia under various conditions. Ammonia flame speed will be investigated under normal conditions (298 K, 1 atm) as well as under the influence of a range of equivalence ratios (0.6-1.8), elevated temperatures (298,323,373,423, and 473), elevated pressures (1 atm- 70 atm) and finally at varying hydrogen content (0-100%). Therefore, this work will understand the ammonia laminar flame speed characteristics and how and to what extent hydrogen can improve ammonia combustion intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminar%20burning%20velocity" title="laminar burning velocity">laminar burning velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=ammonia" title=" ammonia"> ammonia</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a> </p> <a href="https://publications.waset.org/abstracts/166246/laminar-burning-velocity-nh3h2air-mixtures-at-elevated-temperatures-and-pressures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Experimental Study of LPG Diffusion Flame at Elevated Preheated Air Temperatures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20El-Kafy%20Amer">Ahmed A. El-Kafy Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Gad"> H. M. Gad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Ibrahim"> A. I. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20I.%20Abdel-Mageed"> S. I. Abdel-Mageed</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20M.%20Farag"> T. M. Farag </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper represents an experimental study of LPG diffusion flame at elevated air preheated temperatures. The flame is stabilized in a vertical water-cooled combustor by using air swirler. An experimental test rig was designed to investigate the different operating conditions. The burner head is designed so that the LPG fuel issued centrally and surrounded by the swirling air issues from an air swirler. There are three air swirlers having the same dimensions but having different blade angles to give different swirl numbers of 0.5, 0.87 and 1.5. The combustion air was heated electrically before entering the combustor up to a temperature about 500 K. Three air to fuel mass ratios of 30, 40 and 50 were also studied. The effect of air preheated temperature, swirl number and air to fuel mass ratios on the temperature maps, visible flame length, high temperature region (size) and exhaust species concentrations are studied. Some results show that as the air preheated temperature increases, the volume of high temperature region also increased but the flame length decreased. Increasing the air preheated temperature, EINOx, EICO2 and EIO2 increased, while EICO decreased. Increasing the air preheated temperature from 300 to 500 K, for all air swirl numbers used, the highest increase in EINOx, EICO2 and EIO2 are 141, 4 and 65%, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20preheated%20temperature" title="air preheated temperature">air preheated temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20swirler" title=" air swirler"> air swirler</a>, <a href="https://publications.waset.org/abstracts/search?q=flame%20length" title=" flame length"> flame length</a>, <a href="https://publications.waset.org/abstracts/search?q=emission%20index" title=" emission index"> emission index</a> </p> <a href="https://publications.waset.org/abstracts/30998/experimental-study-of-lpg-diffusion-flame-at-elevated-preheated-air-temperatures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Quartz Crystal Microbalance Holder Design for On-Line Sensing in Liquid Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Amer">M. A. Amer</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20A.%20Ch%C3%A1vez"> J. A. Chávez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20Garc%C3%ADa-Hern%C3%A1ndez"> M. J. García-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Salazar"> J. Salazar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tur%C3%B3"> A. Turó</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the design of a QCM sensor for liquid media measurements in vertical position is described. A rugged and low-cost proof holder has been designed, the cost of which is significantly lower than those of traditional commercial holders. The crystal is not replaceable but it can be easily cleaned. Its small volume permits to be used by dipping it in the liquid with the desired location and orientation. The developed design has been experimentally validated by measuring changes in the resonance frequency and resistance of the QCM sensor immersed vertically in different calibrated aqueous glycerol solutions. The obtained results show a great agreement with the Kanazawa theoretical expression. Consequently, the designed QCM sensor would be appropriate for sensing applications in liquids, and might take part of a future on-line multichannel low-cost QCM-based measurement system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=holder%20design" title="holder design">holder design</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid-media%20measurements" title=" liquid-media measurements"> liquid-media measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-channel%20measurements" title=" multi-channel measurements"> multi-channel measurements</a>, <a href="https://publications.waset.org/abstracts/search?q=QCM" title=" QCM"> QCM</a> </p> <a href="https://publications.waset.org/abstracts/41987/quartz-crystal-microbalance-holder-design-for-on-line-sensing-in-liquid-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flame%20holder&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10