CINXE.COM
Search results for: working memory model
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: working memory model</title> <meta name="description" content="Search results for: working memory model"> <meta name="keywords" content="working memory model"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="working memory model" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="working memory model"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 20199</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: working memory model</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20199</span> The Involvement of Visual and Verbal Representations Within a Quantitative and Qualitative Visual Change Detection Paradigm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laura%20Jenkins">Laura Jenkins</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Eschle"> Tim Eschle</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Ciafone"> Joanne Ciafone</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Hamilton"> Colin Hamilton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An original working memory model suggested the separation of visual and verbal systems in working memory architecture, in which only visual working memory components were used during visual working memory tasks. It was later suggested that the visuo spatial sketch pad was the only memory component at use during visual working memory tasks, and components such as the phonological loop were not considered. In more recent years, a contrasting approach has been developed with the use of an executive resource to incorporate both visual and verbal representations in visual working memory paradigms. This was supported using research demonstrating the use of verbal representations and an executive resource in a visual matrix patterns task. The aim of the current research is to investigate the working memory architecture during both a quantitative and a qualitative visual working memory task. A dual task method will be used. Three secondary tasks will be used which are designed to hit specific components within the working memory architecture – Dynamic Visual Noise (visual components), Visual Attention (spatial components) and Verbal Attention (verbal components). A comparison of the visual working memory tasks will be made to discover if verbal representations are at use, as the previous literature suggested. This direct comparison has not been made so far in the literature. Considerations will be made as to whether a domain specific approach should be employed when discussing visual working memory tasks, or whether a more domain general approach could be used instead. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=semantic%20organisation" title="semantic organisation">semantic organisation</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20memory" title=" visual memory"> visual memory</a>, <a href="https://publications.waset.org/abstracts/search?q=change%20detection" title=" change detection"> change detection</a> </p> <a href="https://publications.waset.org/abstracts/22696/the-involvement-of-visual-and-verbal-representations-within-a-quantitative-and-qualitative-visual-change-detection-paradigm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22696.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">595</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20198</span> Short-Term and Working Memory Differences Across Age and Gender in Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Badinloo">Farzaneh Badinloo</a>, <a href="https://publications.waset.org/abstracts/search?q=Niloufar%20Jalali-Moghadam"> Niloufar Jalali-Moghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Kormi-Nouri"> Reza Kormi-Nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to explore the short-term and working memory performances across age and gender in school aged children. Most of the studies have been interested in looking into memory changes in adult subjects. This study was instead focused on exploring both short-term and working memories of children over time. Totally 410 school child participants belonging to four age groups (approximately 8, 10, 12 and 14 years old) among which were 201 girls and 208 boys were employed in the study. digits forward and backward tests of the Wechsler children intelligence scale-revised were conducted respectively as short-term and working memory measures. According to results, there was found a general increment in both short-term and working memory scores across age (p ˂ .05) by which whereas short-term memory performance was shown to increase up to 12 years old, working memory scores showed no significant increase after 10 years old of age. No difference was observed in terms of gender (p ˃ .05). In conclusion, this study suggested that both short-term and working memories improve across age in children where 12 and 10 years of old are likely the crucial age periods in terms of short-term and working memories development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=age" title="age">age</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=short-term%20memory" title=" short-term memory"> short-term memory</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/30471/short-term-and-working-memory-differences-across-age-and-gender-in-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20197</span> Working Memory Growth from Kindergarten to First Grade: Considering Impulsivity, Parental Discipline Methods and Socioeconomic Status</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayse%20Cobanoglu">Ayse Cobanoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Working memory can be defined as a workspace that holds and regulates active information in mind. This study investigates individual changes in children's working memory from kindergarten to first grade. The main purpose of the study is whether parental discipline methods and child impulsive/overactive behaviors affect children's working memory initial status and growth rate, controlling for gender, minority status, and socioeconomic status (SES). A linear growth curve model with the first four waves of the Early Childhood Longitudinal Study-Kindergarten Cohort of 2011 (ECLS-K:2011) is performed to analyze the individual growth of children's working memory longitudinally (N=3915). Results revealed that there is a significant variation among students' initial status in the kindergarten fall semester as well as the growth rate during the first two years of schooling. While minority status, SES, and children's overactive/impulsive behaviors influenced children's initial status, only SES and minority status were significantly associated with the growth rate of working memory. For parental discipline methods, such as giving a warning and ignoring the child's negative behavior, are also negatively associated with initial working memory scores. Following that, students' working memory growth rate is examined, and students with lower SES as well as minorities showed a faster growth pattern during the first two years of schooling. However, the findings of parental disciplinary methods on working memory growth rates were mixed. It can be concluded that schooling helps low-SES minority students to develop their working memory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=growth%20curve%20modeling" title="growth curve modeling">growth curve modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsive%2Foveractive%20behaviors" title=" impulsive/overactive behaviors"> impulsive/overactive behaviors</a>, <a href="https://publications.waset.org/abstracts/search?q=parenting" title=" parenting"> parenting</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/114758/working-memory-growth-from-kindergarten-to-first-grade-considering-impulsivity-parental-discipline-methods-and-socioeconomic-status" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20196</span> The Relationship between Life Event Stress, Depressive Thoughts, and Working Memory Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eid%20Abo%20Hamza">Eid Abo Hamza</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Helal"> Ahmed Helal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: The objective is to measure the capacity of the working memory, ie. the maximum number of elements that can be retrieved and processed, by measuring the basic functions of working memory (inhibition/transfer/update), and also to investigate its relationship to life stress and depressive thoughts. Methods: The study sample consisted of 50 students from Egypt. A cognitive task was designed to measure the working memory capacity based on the determinants found in previous research, which showed that cognitive tasks are the best measurements of the functions and capacity of working memory. Results: The results indicated that there were statistically significant differences in the level of life stress events (high/low) on the task of measuring the working memory capacity. The results also showed that there were no statistically significant differences between males and females or between academic major on the task of measuring the working memory capacity. Furthermore, the results reported that there was no statistically significant effect of the interaction of the level of life stress (high/low) and gender (male/female) on the task of measuring working memory capacity. Finally, the results showed that there were significant differences in the level of depressive thoughts (high/low) on the task of measuring working memory. Conclusions: The current research concludes that neither the interaction of stressful life events, gender, and academic major, nor the interaction of depressive thoughts, gender, and academic major, influence on working memory capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title="working memory">working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=depression" title=" depression"> depression</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20event" title=" life event "> life event </a> </p> <a href="https://publications.waset.org/abstracts/133300/the-relationship-between-life-event-stress-depressive-thoughts-and-working-memory-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20195</span> Relation between Sensory Processing Patterns and Working Memory in Autistic Children</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Nesayan">Abbas Nesayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: In recent years, autism has been under consideration in public and research area. Autistic children have dysfunction in communication, socialization, repetitive and stereotyped behaviors. In addition, they clinically suffer from difficulty in attention, challenge with familiar behaviors and sensory processing problems. Several variables are linked to sensory processing problems in autism, one of these variables is working memory. Working memory is part of the executive function which provides the necessary ability to completing multiple stages tasks. Method: This study has categorized in correlational research methods. After determining of entry criteria, according to purposive sampling method, 50 children were selected. Dunn’s sensory profile school companion was used for assessment of sensory processing patterns; behavioral rating inventory of executive functions was used (BRIEF) for assessment of working memory. Pearson correlation coefficient and linear regression were used for data analyzing. Results: The results showed the significant relationship between sensory processing patterns (low registration, sensory seeking, sensory sensitivity and sensory avoiding) with working memory in autistic children. Conclusion: According to the findings, there is the significant relationship between the patterns of sensory processing and working memory. So, in order to improve the working memory could be used some interventions based on the sensory processing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sensory%20processing%20patterns" title="sensory processing patterns">sensory processing patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=autism" title=" autism"> autism</a>, <a href="https://publications.waset.org/abstracts/search?q=autistic%20children" title=" autistic children"> autistic children</a> </p> <a href="https://publications.waset.org/abstracts/75706/relation-between-sensory-processing-patterns-and-working-memory-in-autistic-children" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20194</span> The Effects of Emotional Working Memory Training on Trait Anxiety</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabrielle%20Veloso">Gabrielle Veloso</a>, <a href="https://publications.waset.org/abstracts/search?q=Welison%20Ty"> Welison Ty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Trait anxiety is a pervasive tendency to attend to and experience fears and worries to a disproportionate degree, across various situations. This study sought to determine if participants who undergo emotional working memory training will have significantly lower scores on the trait anxiety scales post-intervention. The study also sought to determine if emotional regulation mediated the relationship between working memory training and trait anxiety. Forty-nine participants underwent 20 days of computerized emotional working memory training called Emotional Dual n-back, which involves viewing a continuous stream of emotional content on a grid, and then remembering the location and color of items presented on the grid. Participants of the treatment group had significantly lower trait anxiety compared to controls post-intervention. Mediation analysis determined that working memory training had no significant relationship to anxiety as measured by the Beck’s Anxiety Inventory-Trait (BAIT), but was significantly related to anxiety as measured by form Y2 of the Spielberger State-Trait Anxiety Inventory (STAI-Y2). Emotion regulation, as measured by the Emotional Regulation Questionnaire (ERQ), was found not to mediate between working memory training and trait anxiety reduction. Results suggest that working memory training may be useful in reducing psychoemotional symptoms rather than somatic symptoms of trait anxiety. Moreover, it proposes for future research to further look into the mediating role of emotion regulation via neuroimaging and the development of more comprehensive measures of emotion regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anxiety" title="anxiety">anxiety</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20regulation" title=" emotion regulation"> emotion regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=working-memory" title=" working-memory"> working-memory</a>, <a href="https://publications.waset.org/abstracts/search?q=working-memory%20training" title=" working-memory training"> working-memory training</a> </p> <a href="https://publications.waset.org/abstracts/124425/the-effects-of-emotional-working-memory-training-on-trait-anxiety" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20193</span> Working Memory Capacity and Motivation in Japanese English as a Foreign Language Learners' Speaking Skills</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akiko%20Kondo">Akiko Kondo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although the effects of working memory capacity on second/foreign language speaking skills have been researched in depth, few studies have focused on Japanese English as a foreign language (EFL) learners as compared to other languages (Indo-European languages), and the sample sizes of the relevant Japanese studies have been relatively small. Furthermore, comparing the effects of working memory capacity and motivation which is another kind of frequently researched individual factor on L2 speaking skills would add to the scholarly literature in the field of second language acquisition research. Therefore, the purposes of this study were to investigate whether working memory capacity and motivation have significant relationships with Japanese EFL learners’ speaking skills and to investigate the degree to which working memory capacity and motivation contribute to their English speaking skills. One-hundred and ten Japanese EFL students aged 18 to 26 years participated in this study. All of them are native Japanese speakers and have learned English as s foreign language for 6 to 15. They completed the Versant English speaking test, which has been widely used to measure non-native speakers’ English speaking skills, two types of working memory tests (the L1-based backward digit span test and the L1-based listening span test), and the language learning motivation survey. The researcher designed the working memory tests and the motivation survey. To investigate the relationship between the variables (English speaking skills, working memory capacity, and language learning motivation), a correlation analysis was conducted, which showed that L2 speaking test scores were significantly related to both working memory capacity and language learning motivation, although the correlation coefficients were weak. Furthermore, a multiple regression analysis was performed, with L2 speaking skills as the dependent variable and working memory capacity and language learning motivation as the independent variables. The results showed that working memory capacity and motivation significantly explained the variance in L2 speaking skills and that the L2 motivation had slightly larger effects on the L2 speaking skills than the working memory capacity. Although this study includes several limitations, the results could contribute to the generalization of the effects of individual differences, such as working memory and motivation on L2 learning, in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=individual%20differences" title="individual differences">individual differences</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a>, <a href="https://publications.waset.org/abstracts/search?q=speaking%20skills" title=" speaking skills"> speaking skills</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/89988/working-memory-capacity-and-motivation-in-japanese-english-as-a-foreign-language-learners-speaking-skills" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89988.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20192</span> Emotional Awareness and Working Memory as Predictive Factors for the Habitual Use of Cognitive Reappraisal among Adolescents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Kitahara">Yuri Kitahara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cognitive reappraisal refers to an emotion regulation strategy in which one changes the interpretation of emotion-eliciting events. Numerous studies show that cognitive reappraisal is associated with mental health and better social functioning. However the examination of the predictive factors of adaptive emotion regulation remains as an issue. The present study examined the factors contributing to the habitual use of cognitive reappraisal, with a focus on emotional awareness and working memory. Methods: Data was collected from 30 junior high school students, using a Japanese version of the Emotion Regulation Questionnaire (ERQ), the Levels of Emotional Awareness Scale for Children (LEAS-C), and N-back task. Results: A positive correlation between emotional awareness and cognitive reappraisal was observed in the high-working-memory group (r = .54, p < .05), whereas no significant relationship was found in the low-working-memory group. In addition, the results of the analysis of variance (ANOVA) showed a significant interaction between emotional awareness and working memory capacity (F(1, 26) = 7.74, p < .05). Subsequent analysis of simple main effects confirmed that high working memory capacity significantly increases the use of cognitive reappraisal for high-emotional-awareness subjects, and significantly decreases the use of cognitive reappraisal for low-emotional-awareness subjects. Discussion: These results indicate that under the condition when one has an adequate ability for simultaneous processing of information, explicit understanding of emotion would contribute to adaptive cognitive emotion regulation. The findings are discussed along with neuroscientific claims. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20reappraisal" title="cognitive reappraisal">cognitive reappraisal</a>, <a href="https://publications.waset.org/abstracts/search?q=emotional%20awareness" title=" emotional awareness"> emotional awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=emotion%20regulation" title=" emotion regulation"> emotion regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/76079/emotional-awareness-and-working-memory-as-predictive-factors-for-the-habitual-use-of-cognitive-reappraisal-among-adolescents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76079.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20191</span> Visual Working Memory, Reading Abilities, and Vocabulary in Mexican Deaf Signers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mondaca">A. Mondaca</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Mendoza"> E. Mendoza</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Jackson-Maldonado"> D. Jackson-Maldonado</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Garc%C3%ADa-Obreg%C3%B3n"> A. García-Obregón</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deaf signers usually show lower scores in Auditory Working Memory (AWM) tasks and higher scores in Visual Working Memory (VWM) tasks than their hearing pairs. Further, Working Memory has been correlated with reading abilities and vocabulary in Deaf and Hearing individuals. The aim of the present study is to compare the performance of Mexican Deaf signers and hearing adults in VWM, reading and Vocabulary tasks and observe if the latter are correlated to the former. 15 Mexican Deaf signers were assessed using the Corsi block test for VWM, four different subtests of PROLEC (Batería de Evaluación de los Procesos Lectores) for reading abilities, and the LexTale in its Spanish version for vocabulary. T-tests show significant differences between groups for VWM and Vocabulary but not for all the PROLEC subtests. A significant Pearson correlation was found between VWM and Vocabulary but not between VWM and reading abilities. This work is part of a larger research study and results are not yet conclusive. A discussion about the use of PROLEC as a tool to explore reading abilities in a Deaf population is included. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deaf%20signers" title="deaf signers">deaf signers</a>, <a href="https://publications.waset.org/abstracts/search?q=visual%20working%20memory" title=" visual working memory"> visual working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=reading" title=" reading"> reading</a>, <a href="https://publications.waset.org/abstracts/search?q=Mexican%20sign%20language" title=" Mexican sign language"> Mexican sign language</a> </p> <a href="https://publications.waset.org/abstracts/147842/visual-working-memory-reading-abilities-and-vocabulary-in-mexican-deaf-signers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20190</span> Spatial Working Memory Is Enhanced by the Differential Outcome Procedure in a Group of Participants with Mild Cognitive Impairment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20B.%20Vivas">Ana B. Vivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonia%20Ypsilanti"> Antonia Ypsilanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Aristea%20I.%20Ladas"> Aristea I. Ladas</a>, <a href="https://publications.waset.org/abstracts/search?q=Angeles%20F.%20Estevez"> Angeles F. Estevez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mild Cognitive Impairment (MCI) is considered an intermediate stage between normal and pathological aging, as a substantial percentage of people diagnosed with MCI converts later to dementia of the Alzheimer’s type. Memory is of the first cognitive processes to deteriorate in this condition. In the present study we employed the differential outcomes procedure (DOP) to improve visuospatial memory in a group of participants with MCI. The DOP requires the structure of a conditional discriminative learning task in which a correct choice response to a specific stimulus-stimulus association is reinforced with a particular reinforcer or outcome. A group of 10 participants with MCI, and a matched control group had to learn and keep in working memory four target locations out of eight possible locations where a shape could be presented. Results showed that participants with MCI had a statistically significant better terminal accuracy when a unique outcome was paired with a location (76% accuracy) as compared to a non differential outcome condition (64%). This finding suggests that the DOP is useful in improving working memory in MCI patients, which may delay their conversion to dementia. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mild%20cognitive%20impairment" title="mild cognitive impairment">mild cognitive impairment</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=differential%20outcomes" title=" differential outcomes"> differential outcomes</a>, <a href="https://publications.waset.org/abstracts/search?q=cognitive%20process" title=" cognitive process"> cognitive process</a> </p> <a href="https://publications.waset.org/abstracts/27461/spatial-working-memory-is-enhanced-by-the-differential-outcome-procedure-in-a-group-of-participants-with-mild-cognitive-impairment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20189</span> Investigating the Effect of Executive Functions on Young Children’s Drawing of Familiar and Unfamiliar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reshaa%20Alruwaili">Reshaa Alruwaili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was inspired by previous studies with young children that found (a) that they need both inhibitory control and working memory when drawing an unfamiliar subject (e.g., animals) by adapting their schema of the human figure and (b) that when drawing something familiar (e.g., a person) they use inhibitory control mediated through fine motor control to execute their drawing. This study, therefore, systematically investigated whether direct effects for both working memory and inhibitory control and/or effects mediated through fine motor control existed when drawing both familiar and unfamiliar subjects. Participants were 95 children (41-66 months old) required to draw both a man and a dog, scored respectively for how representational they were and for differences from a human figure. Regression and mediation analyses showed that inhibitory control alone predicted drawing a recognizable man while working memory alone predicted drawing a dog that was not human-like when fine motor control, age, and gender were controlled. Contrasting with some previous studies, these results suggest that the roles of working memory and inhibitory control are sensitive to the familiarity of the drawing task and are not necessarily mediated through fine motor control. Implications for research on drawing development are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=child%20drawing" title="child drawing">child drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibitory%20control" title=" inhibitory control"> inhibitory control</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20motor%20control" title=" fine motor control"> fine motor control</a>, <a href="https://publications.waset.org/abstracts/search?q=mediation" title=" mediation"> mediation</a>, <a href="https://publications.waset.org/abstracts/search?q=familiar%20and%20unfamiliar%20subjects" title=" familiar and unfamiliar subjects"> familiar and unfamiliar subjects</a> </p> <a href="https://publications.waset.org/abstracts/145793/investigating-the-effect-of-executive-functions-on-young-childrens-drawing-of-familiar-and-unfamiliar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145793.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20188</span> Cognitive Benefits of Being Bilingual: The Effect of Language Learning on the Working Memory in Emerging Miao-Mandarin Juveniles in Rural Regions of China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peien%20Ma">Peien Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bilingual effect/advantage theorized the positive effect of being bilingual on general cognitive abilities, but it was unknown which factors tend to modulate these bilingualism effects on working memory capacity. This study imposed empirical field research on a group of low-SES emerging bilinguals, Miao people, in the hill tribes of rural China to investigate whether bilingualism affected their verbal working memory performance. 20 Miao-Chinese bilinguals (13 girls and 7 boys with a mean age of 11.45, SD=1.67) and 20 Chinese monolingual peers (13 girls and 7 boys with a mean age of 11.6, SD=0.68) were recruited. These bilingual and monolingual juveniles, matched on age, sex, socioeconomic status, and educational status, completed a language background questionnaire and a standard forward and backward digit span test adapted from Wechsler Adult Intelligence Scale-Revised (WAIS-R). The results showed that bilinguals earned a significantly higher overall mean score of the task, suggesting the superiority of working memory ability over the monolinguals. And bilingual cognitive benefits were independent of proficiency levels in learners’ two languages. The results suggested that bilingualism enhances working memory in sequential bilinguals from low SES backgrounds and shed light on our understanding of the bilingual advantage from a psychological and social perspective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilingual%20effects" title="bilingual effects">bilingual effects</a>, <a href="https://publications.waset.org/abstracts/search?q=heritage%20language" title=" heritage language"> heritage language</a>, <a href="https://publications.waset.org/abstracts/search?q=Miao%2FHmong%20language%20Mandarin" title=" Miao/Hmong language Mandarin"> Miao/Hmong language Mandarin</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/130579/cognitive-benefits-of-being-bilingual-the-effect-of-language-learning-on-the-working-memory-in-emerging-miao-mandarin-juveniles-in-rural-regions-of-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20187</span> Formal Verification of Cache System Using a Novel Cache Memory Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guowei%20Hou">Guowei Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Yu"> Lixin Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Zhuang"> Wei Zhuang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hui%20Qin"> Hui Qin</a>, <a href="https://publications.waset.org/abstracts/search?q=Xue%20Yang"> Xue Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cache%20system" title="cache system">cache system</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20verification" title=" formal verification"> formal verification</a>, <a href="https://publications.waset.org/abstracts/search?q=novel%20model" title=" novel model"> novel model</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20on%20chip%20%28SoC%29" title=" system on chip (SoC)"> system on chip (SoC)</a> </p> <a href="https://publications.waset.org/abstracts/26581/formal-verification-of-cache-system-using-a-novel-cache-memory-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20186</span> Effects of Listening to Pleasant Thai Classical Music on Increasing Working Memory in Elderly: An Electroencephalogram Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anchana%20Julsiri">Anchana Julsiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Seree%20Chadcham"> Seree Chadcham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study determined the effects of listening to pleasant Thai classical music on increasing working memory in elderly. Thai classical music without lyrics that made participants feel fun and aroused was used in the experiment for 3.19-5.40 minutes. The accuracy scores of Counting Span Task (CST), upper alpha ERD%, and theta ERS% were used to assess working memory of participants both before and after listening to pleasant Thai classical music. The results showed that the accuracy scores of CST and upper alpha ERD% in the frontal area of participants after listening to Thai classical music were significantly higher than before listening to Thai classical music (p < .05). Theta ERS% in the fronto-parietal network of participants after listening to Thai classical music was significantly lower than before listening to Thai classical music (p < .05). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain%20wave" title="brain wave">brain wave</a>, <a href="https://publications.waset.org/abstracts/search?q=elderly" title=" elderly"> elderly</a>, <a href="https://publications.waset.org/abstracts/search?q=pleasant%20Thai%20classical%20music" title=" pleasant Thai classical music"> pleasant Thai classical music</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/4391/effects-of-listening-to-pleasant-thai-classical-music-on-increasing-working-memory-in-elderly-an-electroencephalogram-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">459</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20185</span> Effectiveness of Working Memory Training on Cognitive Flexibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Maleki">Leila Maleki</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezatollah%20Ahmadi"> Ezatollah Ahmadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the effectiveness of memory training exercise on cognitive flexibility. The method of this study was experimental. The statistical population selected 40 students 14 years old, samples were chosen by available sampling method and then they were replaced in experimental (training program) group and control group randomly and answered to Wisconsin Card Sorting Test; covariance test results indicated that there were a significant in post-test scores of experimental group (p<0.005). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20flexibility" title="cognitive flexibility">cognitive flexibility</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory%20exercises" title=" working memory exercises"> working memory exercises</a>, <a href="https://publications.waset.org/abstracts/search?q=problem%20solving" title=" problem solving"> problem solving</a>, <a href="https://publications.waset.org/abstracts/search?q=reaction%20time" title=" reaction time"> reaction time</a> </p> <a href="https://publications.waset.org/abstracts/36509/effectiveness-of-working-memory-training-on-cognitive-flexibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36509.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20184</span> Rheological Modeling for Shape-Memory Thermoplastic Polymers </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Hosseini">H. Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20V.%20Berdyshev"> B. V. Berdyshev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Iskopintsev"> I. Iskopintsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a rheological model for producing shape-memory thermoplastic polymers. Shape-memory occurs as a result of internal rearrangement of the structural elements of a polymer. A non-linear viscoelastic model was developed that allows qualitative and quantitative prediction of the stress-strain behavior of shape-memory polymers during heating. This research was done to develop a technique to determine the maximum possible change in size of heat-shrinkable products during heating. The rheological model used in this work was particularly suitable for defining process parameters and constructive parameters of the processing equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20deformation" title="elastic deformation">elastic deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=heating" title=" heating"> heating</a>, <a href="https://publications.waset.org/abstracts/search?q=shape-memory%20polymers" title=" shape-memory polymers"> shape-memory polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=stress-strain%20behavior" title=" stress-strain behavior"> stress-strain behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20model" title=" viscoelastic model"> viscoelastic model</a> </p> <a href="https://publications.waset.org/abstracts/34080/rheological-modeling-for-shape-memory-thermoplastic-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20183</span> Constructing a Co-Working Innovation Model for Multiple Art Integration: A Case Study of Children's Musical</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nai-Chia%20Chao">Nai-Chia Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Chi%20Shih"> Meng-Chi Shih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Under today’s fast technology and massive data era, the working method start to change. In this study, based under literature meaning of “Co-working” we had implemented the new “Co-working innovation model”. Research concluded that co-working innovation model shall not be limited in co-working space but use under different field when applying multiple art integration stragies. Research show co-working should not be limited in special field or group, should be use or adapt whenever different though or ideas where found, it should be use under different field and plans. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arts%20integration" title="arts integration">arts integration</a>, <a href="https://publications.waset.org/abstracts/search?q=co-working" title=" co-working"> co-working</a>, <a href="https://publications.waset.org/abstracts/search?q=children%27s%20musical" title=" children's musical"> children's musical</a> </p> <a href="https://publications.waset.org/abstracts/40936/constructing-a-co-working-innovation-model-for-multiple-art-integration-a-case-study-of-childrens-musical" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40936.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20182</span> Testing the Impact of Formal Interpreting Training on Working Memory Capacity: Evidence from Turkish-English Student-Interpreters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elena%20%20Antonova%20Unlu">Elena Antonova Unlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cigdem%20Sagin%20Simsek"> Cigdem Sagin Simsek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research presents two studies examining the impact of formal interpreting training (FIT) on Working Memory Capacity (WMC) of student-interpreters. In Study 1, the storage and processing capacities of the working memory (WM) of last-year student-interpreters were compared with those of last-year Foreign Language Education (FLE) students. In Study 2, the impact of FIT on the WMC of student-interpreters was examined via comparing their results on WM tasks at the beginning and the end of their FIT. In both studies, Digit Span Task (DST) and Reading Span Task (RST) were utilized for testing storage and processing capacities of WM. The results of Study 1 revealed that the last-year student-interpreters outperformed the control groups on the RST but not on the DST. The findings of Study 2 were consistent with Study 1 showing that after FIT, the student-interpreters performed better on the RST but not on the DST. Our findings can be considered as evidence supporting the view that FIT has a beneficial effect not only on the interpreting skills of student-interpreters but also on the central executive and processing capacity of their WM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=working%20memory%20capacity" title="working memory capacity">working memory capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=formal%20interpreting%20training" title=" formal interpreting training"> formal interpreting training</a>, <a href="https://publications.waset.org/abstracts/search?q=student-interpreters" title=" student-interpreters"> student-interpreters</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20and%20longitudinal%20data" title=" cross-sectional and longitudinal data"> cross-sectional and longitudinal data</a> </p> <a href="https://publications.waset.org/abstracts/79705/testing-the-impact-of-formal-interpreting-training-on-working-memory-capacity-evidence-from-turkish-english-student-interpreters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79705.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20181</span> Selective Effect of Occipital Alpha Transcranial Alternating Current Stimulation in Perception and Working Memory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreina%20Giustiniani">Andreina Giustiniani</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20Oliveri"> Massimiliano Oliveri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhythmic activity in different frequencies could subserve distinct functional roles during visual perception and visual mental imagery. In particular, alpha band activity is thought to play a role in active inhibition of both task-irrelevant regions and processing of non-relevant information. In the present blind placebo-controlled study we applied alpha transcranial alternating current stimulation (tACS) in the occipital cortex both during a basic visual perception and a visual working memory task. To understand if the role of alpha is more related to a general inhibition of distractors or to an inhibition of task-irrelevant regions, we added a non visual distraction to both the tasks.Sixteen adult volunteers performed both a simple perception and a working memory task during 10 Hz tACS. The electrodes were placed over the left and right occipital cortex, the current intensity was 1 mA peak-to-baseline. Sham stimulation was chosen as control condition and in order to elicit the skin sensation similar to the real stimulation, electrical stimulation was applied for short periods (30 s) at the beginning of the session and then turned off. The tasks were split in two sets, in one set distracters were included and in the other set, there were no distracters. Motor interference was added by changing the answer key after subjects completed the first set of trials.The results show that alpha tACS improves working memory only when no motor distracters are added, suggesting a role of alpha tACS in inhibiting non-relevant regions rather than in a general inhibition of distractors. Additionally, we found that alpha tACS does not affect accuracy and hit rates during the visual perception task. These results suggest that alpha activity in the occipital cortex plays a different role in perception and working memory and it could optimize performance in tasks in which attention is internally directed, as in this working memory paradigm, but only when there is not motor distraction. Moreover, alpha tACS improves working memory performance by means of inhibition of task-irrelevant regions while it does not affect perception. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alpha%20activity" title="alpha activity">alpha activity</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/76939/selective-effect-of-occipital-alpha-transcranial-alternating-current-stimulation-in-perception-and-working-memory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20180</span> Explaining Listening Comprehension among L2 Learners of English: The Contribution of Vocabulary Knowledge and Working Memory Capacity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Masrai">Ahmed Masrai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Listening comprehension constitutes a considerable challenge for the second language (L2) learners, but a little is known about the explanatory power of different variables in explaining variance in listening comprehension. Since research in this area, to the researcher's knowledge, is relatively small in comparison to that focusing on the relationship between reading comprehension and factors such as vocabulary and working memory, there is a need for studies that are seeking to fill the gap in our knowledge about the specific contribution of working memory capacity (WMC), aural vocabulary knowledge and written vocabulary knowledge to explaining listening comprehension. Among 130 English as foreign language learners, the present study examines what proportion of the variance in listening comprehension is explained by aural vocabulary knowledge, written vocabulary knowledge, and WMC. Four measures were used to collect the required data for the study: (1) A-Lex, a measure of aural vocabulary knowledge; (2) XK-Lex, a measure of written vocabulary knowledge; (3) Listening Span Task, a measure of WMC and; (4) IELTS Listening Test, a measure of listening comprehension. The results show that aural vocabulary knowledge is the strongest predictor of listening comprehension, followed by WMC, while written vocabulary knowledge is the weakest predictor. The study discusses implications for the explanatory power of aural vocabulary knowledge and WMC to listening comprehension and pedagogical practice in L2 classrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=listening%20comprehension" title="listening comprehension">listening comprehension</a>, <a href="https://publications.waset.org/abstracts/search?q=second%20language" title=" second language"> second language</a>, <a href="https://publications.waset.org/abstracts/search?q=vocabulary%20knowledge" title=" vocabulary knowledge"> vocabulary knowledge</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/78914/explaining-listening-comprehension-among-l2-learners-of-english-the-contribution-of-vocabulary-knowledge-and-working-memory-capacity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20179</span> A Randomized Controlled Intervention Study of the Effect of Music Training on Mathematical and Working Memory Performances</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ingo%20Roden">Ingo Roden</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefana%20Lupu"> Stefana Lupu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mara%20Krone"> Mara Krone</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasmin%20Chantah"> Jasmin Chantah</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunter%20Kreutz"> Gunter Kreutz</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephan%20Bongard"> Stephan Bongard</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietmar%20Grube"> Dietmar Grube</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present experimental study examined the effects of music and math training on mathematical skills and visuospatial working memory capacity in kindergarten children. For this purpose, N = 54 children (mean age: 5.46 years; SD = .29) were randomly assigned to three groups. Children in the music group (n = 18) received weekly sessions of 60 min music training over a period of eight weeks, whereas children in the math group (n = 18) received the same amount of training focusing on mathematical basic skills, such as numeracy skills, quantity comparison, and counting objectives. The third group of children (n = 18) served as waiting controls. The groups were matched for sex, age, IQ and previous music experiences at baseline. Pre-Post intervention measurements revealed a significant interaction effect of group x time, showing that children in both music and math groups significantly improved their early numeracy skills, whereas children in the control group did not. No significant differences between groups were observed for the visuospatial working memory performances. These results confirm and extend previous findings on transfer effects of music training on mathematical abilities and visuospatial working memory capacity. They show that music and math interventions are similarly effective to enhance children’s mathematical skills. More research is necessary to establish, whether cognitive transfer effects arising from music interventions might facilitate children’s transition from kindergarten to first-grade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=music%20training" title="music training">music training</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20skills" title=" mathematical skills"> mathematical skills</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a> </p> <a href="https://publications.waset.org/abstracts/98097/a-randomized-controlled-intervention-study-of-the-effect-of-music-training-on-mathematical-and-working-memory-performances" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20178</span> A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minho%20Lee">Minho Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Donghyun%20Back"> Donghyun Back</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaemoon%20Jung"> Jaemoon Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Woojin%20Park"> Woojin Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baseball" title="baseball">baseball</a>, <a href="https://publications.waset.org/abstracts/search?q=memory-based" title=" memory-based"> memory-based</a>, <a href="https://publications.waset.org/abstracts/search?q=posture%20prediction" title=" posture prediction"> posture prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=reaching%20area" title=" reaching area"> reaching area</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20digital%20human%20models" title=" 3D digital human models"> 3D digital human models</a> </p> <a href="https://publications.waset.org/abstracts/52549/a-3-dimensional-memory-based-model-for-planning-working-postures-reaching-specific-area-with-postural-constraints" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20177</span> Verbal Working Memory in Sequential and Simultaneous Bilinguals: An Exploratory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Archana%20Rao%20R.">Archana Rao R.</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepak%20P."> Deepak P.</a>, <a href="https://publications.waset.org/abstracts/search?q=Chayashree%20P.%20D."> Chayashree P. D.</a>, <a href="https://publications.waset.org/abstracts/search?q=Darshan%20H.%20S."> Darshan H. S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cognitive abilities in bilinguals have been widely studied over the last few decades. Bilingualism has been found to extensively facilitate the ability to store and manipulate information in Working Memory (WM). The mechanism of WM includes primary memory, attentional control, and secondary memory, each of which makes a contribution to WM. Many researches have been done in an attempt to measure WM capabilities through both verbal (phonological) and nonverbal tasks (visuospatial). Since there is a lot of speculations regarding the relationship between WM and bilingualism, further investigation is required to understand the nature of WM in bilinguals, i.e., with respect to sequential and simultaneous bilinguals. Hence the present study aimed to highlight the verbal working memory abilities in sequential and simultaneous bilinguals with respect to the processing and recall abilities of nouns and verbs. Two groups of bilinguals aged between 18-30 years were considered for the study. Group 1 consisted of 20 (10 males and 10 females) sequential bilinguals who had acquired L1 (Kannada) before the age of 3 and had exposure to L2 (English) for a period of 8-10 years. Group 2 consisted of 20 (10 males and 10 females) simultaneous bilinguals who have acquired both L1 and L2 before the age of 3. Working memory abilities were assessed using two tasks, and a set of stimuli which was presented in gradation of complexity and the stimuli was inclusive of frequent and infrequent nouns and verbs. The tasks involved the participants to judge the correctness of the sentence and simultaneously remember the last word of each sentence and the participants are instructed to recall the words at the end of each set. The results indicated no significant difference between sequential and simultaneous bilinguals in processing the nouns and verbs, and this could be attributed to the proficiency level of the participants in L1 and the alike cognitive abilities between the groups. And recall of nouns was better compared to verbs, maybe because of the complex argument structure involved in verbs. Similarly, authors found a frequency of occurrence of nouns and verbs also had an effect on WM abilities. The difference was also found across gradation due to the load imposed on the central executive function and phonological loop. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bilinguals" title="bilinguals">bilinguals</a>, <a href="https://publications.waset.org/abstracts/search?q=nouns" title=" nouns"> nouns</a>, <a href="https://publications.waset.org/abstracts/search?q=verbs" title=" verbs"> verbs</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/101663/verbal-working-memory-in-sequential-and-simultaneous-bilinguals-an-exploratory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20176</span> The Importance of Working Memory, Executive and Attention Functions in Attention Deficit Hyperactivity Disorder and Learning Disabilities Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dorottya%20Horv%C3%A1th">Dorottya Horváth</a>, <a href="https://publications.waset.org/abstracts/search?q=T%C3%ADmea%20Harmath-T%C3%A1nczos"> Tímea Harmath-Tánczos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Attention deficit hyperactivity disorder (ADHD) and learning disabilities are common neurocognitive disorders that can have a significant impact on a child's academic performance. ADHD is characterized by inattention, hyperactivity, and impulsivity, while learning disabilities are characterized by difficulty with specific academic skills, such as reading, writing, or math. The aim of this study was to investigate the working memory, executive, and attention functions of neurotypical children and children with ADHD and learning disabilities in order to fill the gaps in the Hungarian mean test scores of these cognitive functions in children with neurocognitive disorders. Another aim was to specify the neuropsychological differential diagnostic toolkit in terms of the relationships and peculiarities between these cognitive functions. The research question addressed in this study was: How do the working memory, executive, and attention functions of neurotypical children compare to those of children with ADHD and learning disabilities? A self-administered test battery was used as a research tool. Working memory was measured with the Non-Word Repetition Test, the Listening Span Test, the Digit Span Test, and the Reverse Digit Span Test; executive function with the Letter Fluency, Semantic Fluency, and Verb Fluency Tests; and attentional concentration with the d2-R Test. The data for this study was collected from 115 children aged 9-14 years. The children were divided into three groups: neurotypical children (n = 44), children with ADHD without learning disabilities (n = 23), and children with ADHD with learning disabilities (n = 48). The data was analyzed using a variety of statistical methods, including t-tests, ANOVAs, and correlational analyses. The results showed that the performance of children with neurocognitive involvement in working memory, executive functions, and attention was significantly lower than the performance of neurotypical children. However, the results of children with ADHD and ADHD with learning disabilities did not show a significant difference. The findings of this study are important because they provide new insights into the cognitive profiles of children with ADHD and learning disabilities and suggest that working memory, executive functions, and attention are all impaired in children with neurocognitive involvement, regardless of whether they have ADHD or learning disabilities. This information can be used to develop more effective diagnostic and treatment strategies for these disorders. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADHD" title="ADHD">ADHD</a>, <a href="https://publications.waset.org/abstracts/search?q=attention%20functions" title=" attention functions"> attention functions</a>, <a href="https://publications.waset.org/abstracts/search?q=executive%20functions" title=" executive functions"> executive functions</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20disabilities" title=" learning disabilities"> learning disabilities</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a> </p> <a href="https://publications.waset.org/abstracts/167664/the-importance-of-working-memory-executive-and-attention-functions-in-attention-deficit-hyperactivity-disorder-and-learning-disabilities-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167664.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20175</span> Effect of Blood Sugar Levels on Short Term and Working Memory Status in Type 2 Diabetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mythri%20G.">Mythri G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Manjunath%20ML"> Manjunath ML</a>, <a href="https://publications.waset.org/abstracts/search?q=Girish%20Babu%20M."> Girish Babu M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Shireen%20Swaliha%20Quadri"> Shireen Swaliha Quadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The increase in diabetes among the elderly is of concern because in addition to the wide range of traditional diabetes complications, evidence has been growing that diabetes is associated with increased risk of cognitive decline. Aims and Objectives: To find out if there is any association between blood sugar levels and short-term and working memory status in patients of type 2 diabetes. Materials and Methods: The study was carried out in 200 individuals aged between 40-65 years consisting of 100 diagnosed cases of Type 2 Diabetes Mellitus and 100 non-diabetics from OPD of Mc Gann Hospital, Shivamogga. Rye’s Auditory Verbal Learning Test, Verbal Fluency Test and Visual Reproduction Test, Working Digit Span Test and Validation Span Test were used to assess short-term and working memory. Fasting and Post Prandial blood sugar levels were estimated. Statistical analysis was done using SPSS 21. Results: Memory test scores of type 2 diabetics were significantly reduced (p < 0.001) when compared to the memory scores of age and gender matched non-diabetics. Fasting blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.837), VFT (r=-0.888), VRT(r=-0.787), WDST (r=-0.795) and VST (r=-0.943). Post- Prandial blood sugar levels were found to have a negative correlation with memory scores for all 5 tests: AVLT (r=-0.922), VFT (r=-0.848), VRT(r=-0.707),WDST (r=-0.729) and VST (r=-0.880) Memory scores in all 5 tests were found to be negatively correlated with the FBS and PPBS levels in diabetic patients (p < 0.001). Conclusion: The decreased memory status in diabetic patients may be due to many factors like hyperglycemia, vascular disease, insulin resistance, amyloid deposition and also some of the factor combine to produce additive effects like, type of diabetes, co-morbidities, age of onset, duration of the disease and type of therapy. These observed effects of blood sugar levels of diabetics on memory status are of potential clinical importance because even mild cognitive impairment could interfere with todays’ activities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabetes" title="diabetes">diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=cognition" title=" cognition"> cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV" title=" HRV"> HRV</a>, <a href="https://publications.waset.org/abstracts/search?q=respiratory%20medicine" title=" respiratory medicine"> respiratory medicine</a> </p> <a href="https://publications.waset.org/abstracts/71368/effect-of-blood-sugar-levels-on-short-term-and-working-memory-status-in-type-2-diabetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71368.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20174</span> Dual-Network Memory Model for Temporal Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motonobu%20Hattori">Motonobu Hattori</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudo patterns. Because, temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catastrophic%20forgetting" title="catastrophic forgetting">catastrophic forgetting</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-network" title=" dual-network"> dual-network</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20sequences" title=" temporal sequences"> temporal sequences</a>, <a href="https://publications.waset.org/abstracts/search?q=hippocampal" title=" hippocampal "> hippocampal </a> </p> <a href="https://publications.waset.org/abstracts/2908/dual-network-memory-model-for-temporal-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2908.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20173</span> Effectiveness of Medication and Non-Medication Therapy on Working Memory of Children with Attention Deficit and Hyperactivity Disorder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohaammad%20Ahmadpanah">Mohaammad Ahmadpanah</a>, <a href="https://publications.waset.org/abstracts/search?q=Amineh%20Akhondi"> Amineh Akhondi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Haghighi"> Mohammad Haghighi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Ghaleiha"> Ali Ghaleiha</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Jahangard"> Leila Jahangard</a>, <a href="https://publications.waset.org/abstracts/search?q=Elham%20Salari"> Elham Salari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Working memory includes the capability to keep and manipulate information in a short period of time. This capability is the basis of complicated judgments and has been attended to as the specific and constant character of individuals. Children with attention deficit and hyperactivity are among the people suffering from deficiency in the active memory, and this deficiency has been attributed to the problem of frontal lobe. This study utilizes a new approach with suitable tasks and methods for training active memory and assessment of the effects of the trainings. Participants: The children participating in this study were of 7-15 year age, who were diagnosed by the psychiatrist and psychologist as hyperactive and attention deficit based on DSM-IV criteria. The intervention group was consisted of 8 boys and 6 girls with the average age of 11 years and standard deviation of 2, and the control group was consisted of 2 girls and 5 boys with an average age of 11.4 and standard deviation of 3. Three children in the test group and two in the control group were under medicinal therapy. Results: Working memory training meaningfully improved the performance in not-trained areas as visual-spatial working memory as well as the performance in Raven progressive tests which are a perfect example of non-verbal, complicated reasoning tasks. In addition, motional activities – measured based on the number of head movements during computerized measuring program – was meaningfully reduced in the medication group. The results of the second test showed that training similar exercise to teenagers and adults results in the improvement of cognition functions, as in hyperactive people. Discussion: The results of this study showed that the performance of working memory is improved through training, and these trainings are extended and generalized in other areas of cognition functions not receiving any training. Trainings resulted in the improvement of performance in the tasks related to prefrontal. They had also a positive and meaningful impact on the moving activities of hyperactive children. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention%20deficit%20hyperactivity%20disorder" title="attention deficit hyperactivity disorder">attention deficit hyperactivity disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=working%20memory" title=" working memory"> working memory</a>, <a href="https://publications.waset.org/abstracts/search?q=non-medical%20treatment" title=" non-medical treatment"> non-medical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/40209/effectiveness-of-medication-and-non-medication-therapy-on-working-memory-of-children-with-attention-deficit-and-hyperactivity-disorder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20172</span> Memory and Narratives Rereading before and after One Week</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abigail%20M.%20Csik">Abigail M. Csik</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20A.%20Radvansky"> Gabriel A. Radvansky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As people read through event-based narratives, they construct an event model that captures information about the characters, goals, location, time, and causality. For many reasons, memory for such narratives is represented at different levels, namely, the surface form, textbase, and event model levels. Rereading has been shown to decrease surface form memory, while, at the same time, increasing textbase and event model memories. More generally, distributed practice has consistently shown memory benefits over massed practice for different types of materials, including texts. However, little research has investigated distributed practice of narratives at different inter-study intervals and these effects on these three levels of memory. Recent work in our lab has indicated that there may be dramatic changes in patterns of forgetting around one week, which may affect the three levels of memory. The present experiment aimed to determine the effects of rereading on the three levels of memory as a factor of whether the texts were reread before versus after one week. Participants (N = 42) read a set of stories, re-read them either before or after one week (with an inter-study interval of three days, seven days, or fourteen days), and then took a recognition test, from which the three levels of representation were derived. Signal detection results from this study reveal that differential patterns at the three levels as a factor of whether the narratives were re-read prior to one week or after one week. In particular, an ANOVA revealed that surface form memory was lower (p = .08) while textbase (p = .02) and event model memory (p = .04) were greater if narratives were re-read 14 days later compared to memory when narratives were re-read 3 days later. These results have implications for what type of memory benefits from distributed practice at various inter-study intervals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=memory" title="memory">memory</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20cognition" title=" event cognition"> event cognition</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20practice" title=" distributed practice"> distributed practice</a>, <a href="https://publications.waset.org/abstracts/search?q=consolidation" title=" consolidation"> consolidation</a> </p> <a href="https://publications.waset.org/abstracts/80409/memory-and-narratives-rereading-before-and-after-one-week" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20171</span> Attention and Memory in the Music Learning Process in Individuals with Visual Impairments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Burmistrova">Lana Burmistrova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The influence of visual impairments on several cognitive processes used in the music learning process is an increasingly important area in special education and cognitive musicology. Many children have several visual impairments due to the refractive errors and irreversible inhibitors. However, based on the compensatory neuroplasticity and functional reorganization, congenitally blind (CB) and early blind (EB) individuals use several areas of the occipital lobe to perceive and process auditory and tactile information. CB individuals have greater memory capacity, memory reliability, and less false memory mechanisms are used while executing several tasks, they have better working memory (WM) and short-term memory (STM). Blind individuals use several strategies while executing tactile and working memory n-back tasks: verbalization strategy (mental recall), tactile strategy (tactile recall) and combined strategies. Methods and design: The aim of the pilot study was to substantiate similar tendencies while executing attention, memory and combined auditory tasks in blind and sighted individuals constructed for this study, and to investigate attention, memory and combined mechanisms used in the music learning process. For this study eight (n=8) blind and eight (n=8) sighted individuals aged 13-20 were chosen. All respondents had more than five years music performance and music learning experience. In the attention task, all respondents had to identify pitch changes in tonal and randomized melodic pairs. The memory task was based on the mismatch negativity (MMN) proportion theory: 80 percent standard (not changed) and 20 percent deviant (changed) stimuli (sequences). Every sequence was named (na-na, ra-ra, za-za) and several items (pencil, spoon, tealight) were assigned for each sequence. Respondents had to recall the sequences, to associate them with the item and to detect possible changes. While executing the combined task, all respondents had to focus attention on the pitch changes and had to detect and describe these during the recall. Results and conclusion: The results support specific features in CB and EB, and similarities between late blind (LB) and sighted individuals. While executing attention and memory tasks, it was possible to observe the tendency in CB and EB by using more precise execution tactics and usage of more advanced periodic memory, while focusing on auditory and tactile stimuli. While executing memory and combined tasks, CB and EB individuals used passive working memory to recall standard sequences, active working memory to recall deviant sequences and combined strategies. Based on the observation results, assessment of blind respondents and recording specifics, following attention and memory correlations were identified: reflective attention and STM, reflective attention and periodic memory, auditory attention and WM, tactile attention and WM, auditory tactile attention and STM. The results and the summary of findings highlight the attention and memory features used in the music learning process in the context of blindness, and the tendency of the several attention and memory types correlated based on the task, strategy and individual features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attention" title="attention">attention</a>, <a href="https://publications.waset.org/abstracts/search?q=blindness" title=" blindness"> blindness</a>, <a href="https://publications.waset.org/abstracts/search?q=memory" title=" memory"> memory</a>, <a href="https://publications.waset.org/abstracts/search?q=music%20learning" title=" music learning"> music learning</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/95997/attention-and-memory-in-the-music-learning-process-in-individuals-with-visual-impairments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20170</span> An Educational Application of Online Games for Learning Difficulties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20Margoudi">Maria Margoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zacharoula%20Smyraniou"> Zacharoula Smyraniou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current paper presents the results of a conducted case study, which was part of the author’s master thesis. During the past few years the number of children diagnosed with Learning Difficulties has drastically augmented and especially the cases of ADHD (Attention Deficit Hyperactivity Disorder). One of the core characteristics of ADHD is a deficit in working memory functions. The review of the literature indicates a plethora of educational software that aim at training and enhancing the working memory. Nevertheless, in the current paper, the possibility of using for the same purpose free, online games will be explored. Another issue of interest is the potential effect of the working memory training to the core symptoms of ADHD. In order to explore the abovementioned research questions, three digital tests are employed, all of which are developed on the E-slate platform by the author, in order to check the level of ADHD’s symptoms and to be used as diagnostic tools, both in the beginning and in the end of the case study. The tools used during the main intervention of the research are free online games for the training of working memory. The research and the data analysis focus on the following axes: a) the presence and the possible change in two of the core symptoms of ADHD, attention and impulsivity and b) a possible change in the general cognitive abilities of the individual. The case study was conducted with the participation of a thirteen year-old, female student, diagnosed with ADHD, during after-school hours. The results of the study indicate positive changes both in the levels of attention and impulsivity. Therefore we conclude that the training of working memory through the use of free, online games has a positive impact on the characteristics of ADHD. Finally, concerning the second research question, the change in general cognitive abilities, no significant changes were noted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ADHD" title="ADHD">ADHD</a>, <a href="https://publications.waset.org/abstracts/search?q=attention" title=" attention"> attention</a>, <a href="https://publications.waset.org/abstracts/search?q=impulsivity" title=" impulsivity"> impulsivity</a>, <a href="https://publications.waset.org/abstracts/search?q=online%20games" title=" online games"> online games</a> </p> <a href="https://publications.waset.org/abstracts/33683/an-educational-application-of-online-games-for-learning-difficulties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=673">673</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=674">674</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=working%20memory%20model&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>