CINXE.COM

Search results for: Support Vector Machine

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Support Vector Machine</title> <meta name="description" content="Search results for: Support Vector Machine"> <meta name="keywords" content="Support Vector Machine"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Support Vector Machine" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Support Vector Machine"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3276</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Support Vector Machine</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3276</span> Protein Residue Contact Prediction using Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chan%20Weng%20Howe">Chan Weng Howe</a>, <a href="https://publications.waset.org/search?q=Mohd%20Saberi%20Mohamad"> Mohd Saberi Mohamad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=contact%20map" title="contact map">contact map</a>, <a href="https://publications.waset.org/search?q=protein%20residue%20contact" title=" protein residue contact"> protein residue contact</a>, <a href="https://publications.waset.org/search?q=support%20vector%0Amachine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=protein%20structure%20prediction" title=" protein structure prediction"> protein structure prediction</a> </p> <a href="https://publications.waset.org/8901/protein-residue-contact-prediction-using-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/8901/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/8901/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/8901/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/8901/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/8901/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/8901/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/8901/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/8901/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/8901/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/8901/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/8901.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1896</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3275</span> On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tatjana%20Eitrich">Tatjana Eitrich</a>, <a href="https://publications.waset.org/search?q=Bruno%20Lang"> Bruno Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine%20Training" title="Support Vector Machine Training">Support Vector Machine Training</a>, <a href="https://publications.waset.org/search?q=Multi-ParameterKernels" title=" Multi-ParameterKernels"> Multi-ParameterKernels</a>, <a href="https://publications.waset.org/search?q=Shared%20Memory%20Parallel%20Computing" title=" Shared Memory Parallel Computing"> Shared Memory Parallel Computing</a>, <a href="https://publications.waset.org/search?q=Large%20Data" title=" Large Data"> Large Data</a> </p> <a href="https://publications.waset.org/11353/on-the-efficient-implementation-of-a-serial-and-parallel-decomposition-algorithm-for-fast-support-vector-machine-training-including-a-multi-parameter-kernel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11353/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11353/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11353/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11353/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11353/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11353/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11353/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11353/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11353/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11353/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1443</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3274</span> Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Djamila%20Benhaddouche">Djamila Benhaddouche</a>, <a href="https://publications.waset.org/search?q=Abdelkader%20Benyettou"> Abdelkader Benyettou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=A%20classifier" title="A classifier">A classifier</a>, <a href="https://publications.waset.org/search?q=Algorithms%20decision%20tree" title=" Algorithms decision tree"> Algorithms decision tree</a>, <a href="https://publications.waset.org/search?q=knowledge%0D%0Aextraction" title=" knowledge extraction"> knowledge extraction</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <a href="https://publications.waset.org/10000925/data-mining-in-medicine-domain-using-decision-trees-and-vector-support-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000925/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000925/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000925/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000925/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000925/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000925/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000925/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000925/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000925/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000925/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000925.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1870</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3273</span> Support Vector Fuzzy Based Neural Networks For Exchange Rate Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Prof.%20Chokri%20SLIM">Prof. Chokri SLIM</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>A Novel fuzzy neural network combining with support vector learning mechanism called support-vector-based fuzzy neural networks (SVBFNN) is proposed. The SVBFNN combine the capability of minimizing the empirical risk (training error) and expected risk (testing error) of support vector learning in high dimensional data spaces and the efficient human-like reasoning of FNN.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Neural%20network" title="Neural network">Neural network</a>, <a href="https://publications.waset.org/search?q=fuzzy%20inference" title=" fuzzy inference"> fuzzy inference</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=fuzzy%20modeling%20and%20rule%20extraction" title=" fuzzy modeling and rule extraction"> fuzzy modeling and rule extraction</a>, <a href="https://publications.waset.org/search?q=support%20vector%20regression." title=" support vector regression."> support vector regression.</a> </p> <a href="https://publications.waset.org/10715/support-vector-fuzzy-based-neural-networks-for-exchange-rate-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10715/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10715/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10715/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10715/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10715/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10715/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10715/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10715/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10715/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10715/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">16687</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3272</span> Wavelet Transform and Support Vector Machine Approach for Fault Location in Power Transmission Line</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=V.%20Malathi">V. Malathi</a>, <a href="https://publications.waset.org/search?q=N.S.Marimuthu"> N.S.Marimuthu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a wavelet transform and Support Vector Machine (SVM) based algorithm for estimating fault location on transmission lines. The Discrete wavelet transform (DWT) is used for data pre-processing and this data are used for training and testing SVM. Five types of mother wavelet are used for signal processing to identify a suitable wavelet family that is more appropriate for use in estimating fault location. The results demonstrated the ability of SVM to generalize the situation from the provided patterns and to accurately estimate the location of faults with varying fault resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fault%20location" title="Fault location">Fault location</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=supportvector%20regression" title=" supportvector regression"> supportvector regression</a>, <a href="https://publications.waset.org/search?q=transmission%20lines" title=" transmission lines"> transmission lines</a>, <a href="https://publications.waset.org/search?q=wavelet%20transform." title=" wavelet transform."> wavelet transform.</a> </p> <a href="https://publications.waset.org/14768/wavelet-transform-and-support-vector-machine-approach-for-fault-location-in-power-transmission-line" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14768/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14768/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14768/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14768/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14768/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14768/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14768/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14768/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14768/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14768/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2184</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3271</span> A Cognitive Model of Character Recognition Using Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Freedman">K. Freedman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Character%20recognition" title="Character recognition">Character recognition</a>, <a href="https://publications.waset.org/search?q=cognitive%20model" title=" cognitive model"> cognitive model</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine%20learning." title=" support vector machine learning."> support vector machine learning.</a> </p> <a href="https://publications.waset.org/12765/a-cognitive-model-of-character-recognition-using-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12765/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12765/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12765/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12765/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12765/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12765/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12765/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12765/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12765/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12765/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1878</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3270</span> Voltage Problem Location Classification Using Performance of Least Squares Support Vector Machine LS-SVM and Learning Vector Quantization LVQ</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Khaled%20Abduesslam.%20M">Khaled Abduesslam. M</a>, <a href="https://publications.waset.org/search?q=Mohammed%20Ali"> Mohammed Ali</a>, <a href="https://publications.waset.org/search?q=Basher%20H%20Alsdai"> Basher H Alsdai</a>, <a href="https://publications.waset.org/search?q=Muhammad%20Nizam"> Muhammad Nizam</a>, <a href="https://publications.waset.org/search?q=Inayati"> Inayati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents the voltage problem location classification using performance of Least Squares Support Vector Machine (LS-SVM) and Learning Vector Quantization (LVQ) in electrical power system for proper voltage problem location implemented by IEEE 39 bus New- England. The data was collected from the time domain simulation by using Power System Analysis Toolbox (PSAT). Outputs from simulation data such as voltage, phase angle, real power and reactive power were taken as input to estimate voltage stability at particular buses based on Power Transfer Stability Index (PTSI).The simulation data was carried out on the IEEE 39 bus test system by considering load bus increased on the system. To verify of the proposed LS-SVM its performance was compared to Learning Vector Quantization (LVQ). The results showed that LS-SVM is faster and better as compared to LVQ. The results also demonstrated that the LS-SVM was estimated by 0% misclassification whereas LVQ had 7.69% misclassification.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=IEEE%2039%20bus" title="IEEE 39 bus">IEEE 39 bus</a>, <a href="https://publications.waset.org/search?q=Least%20Squares%20Support%20Vector%20Machine" title=" Least Squares Support Vector Machine"> Least Squares Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Learning%20Vector%20Quantization" title=" Learning Vector Quantization"> Learning Vector Quantization</a>, <a href="https://publications.waset.org/search?q=Voltage%20Collapse." title=" Voltage Collapse."> Voltage Collapse.</a> </p> <a href="https://publications.waset.org/9999499/voltage-problem-location-classification-using-performance-of-least-squares-support-vector-machine-ls-svm-and-learning-vector-quantization-lvq" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9999499/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9999499/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9999499/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9999499/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9999499/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9999499/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9999499/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9999499/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9999499/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9999499/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9999499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2405</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3269</span> Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Essam%20Al-Daoud">Essam Al-Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=AdaBoost" title="AdaBoost">AdaBoost</a>, <a href="https://publications.waset.org/search?q=Bayesian%20neural%20network" title=" Bayesian neural network"> Bayesian neural network</a>, <a href="https://publications.waset.org/search?q=Signal-to-Noise" title=" Signal-to-Noise"> Signal-to-Noise</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=MCMC." title=" MCMC."> MCMC.</a> </p> <a href="https://publications.waset.org/11562/integration-of-support-vector-machine-and-bayesian-neural-network-for-data-mining-and-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11562/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11562/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11562/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11562/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11562/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11562/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11562/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11562/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11562/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11562/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2020</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3268</span> Glass Bottle Inspector Based on Machine Vision</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Huanjun%20Liu">Huanjun Liu</a>, <a href="https://publications.waset.org/search?q=Yaonan%20Wang"> Yaonan Wang</a>, <a href="https://publications.waset.org/search?q=Feng%20Duan"> Feng Duan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This text studies glass bottle intelligent inspector based machine vision instead of manual inspection. The system structure is illustrated in detail in this paper. The text presents the method based on watershed transform methods to segment the possible defective regions and extract features of bottle wall by rules. Then wavelet transform are used to exact features of bottle finish from images. After extracting features, the fuzzy support vector machine ensemble is putted forward as classifier. For ensuring that the fuzzy support vector machines have good classification ability, the GA based ensemble method is used to combining the several fuzzy support vector machines. The experiments demonstrate that using this inspector to inspect glass bottles, the accuracy rate may reach above 97.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intelligent%20Inspection" title="Intelligent Inspection">Intelligent Inspection</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machines" title=" Support Vector Machines"> Support Vector Machines</a>, <a href="https://publications.waset.org/search?q=Ensemble%20Methods" title="Ensemble Methods">Ensemble Methods</a>, <a href="https://publications.waset.org/search?q=watershed%20transform" title=" watershed transform"> watershed transform</a>, <a href="https://publications.waset.org/search?q=Wavelet%20Transform" title=" Wavelet Transform"> Wavelet Transform</a> </p> <a href="https://publications.waset.org/12415/glass-bottle-inspector-based-on-machine-vision" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/12415/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/12415/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/12415/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/12415/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/12415/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/12415/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/12415/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/12415/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/12415/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/12415/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/12415.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3896</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3267</span> Intrusion Detection Using a New Particle Swarm Method and Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Essam%20Al%20Daoud">Essam Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrusion detection is a mechanism used to protect a system and analyse and predict the behaviours of system users. An ideal intrusion detection system is hard to achieve due to nonlinearity, and irrelevant or redundant features. This study introduces a new anomaly-based intrusion detection model. The suggested model is based on particle swarm optimisation and nonlinear, multi-class and multi-kernel support vector machines. Particle swarm optimisation is used for feature selection by applying a new formula to update the position and the velocity of a particle; the support vector machine is used as a classifier. The proposed model is tested and compared with the other methods using the KDD CUP 1999 dataset. The results indicate that this new method achieves better accuracy rates than previous methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20selection" title="Feature selection">Feature selection</a>, <a href="https://publications.waset.org/search?q=Intrusion%20detection" title=" Intrusion detection"> Intrusion detection</a>, <a href="https://publications.waset.org/search?q=Support%20vector%20machine" title=" Support vector machine"> Support vector machine</a>, <a href="https://publications.waset.org/search?q=Particle%20swarm." title=" Particle swarm."> Particle swarm.</a> </p> <a href="https://publications.waset.org/13220/intrusion-detection-using-a-new-particle-swarm-method-and-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13220/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13220/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13220/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13220/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13220/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13220/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13220/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13220/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13220/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13220/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1990</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3266</span> One-Class Support Vector Machine for Sentiment Analysis of Movie Review Documents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chothmal">Chothmal</a>, <a href="https://publications.waset.org/search?q=Basant%20Agarwal"> Basant Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sentiment analysis means to classify a given review document into positive or negative polar document. Sentiment analysis research has been increased tremendously in recent times due to its large number of applications in the industry and academia. Sentiment analysis models can be used to determine the opinion of the user towards any entity or product. E-commerce companies can use sentiment analysis model to improve their products on the basis of users’ opinion. In this paper, we propose a new One-class Support Vector Machine (One-class SVM) based sentiment analysis model for movie review documents. In the proposed approach, we initially extract features from one class of documents, and further test the given documents with the one-class SVM model if a given new test document lies in the model or it is an outlier. Experimental results show the effectiveness of the proposed sentiment analysis model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20selection%20methods" title="Feature selection methods">Feature selection methods</a>, <a href="https://publications.waset.org/search?q=Machine%20learning" title=" Machine learning"> Machine learning</a>, <a href="https://publications.waset.org/search?q=NB" title=" NB"> NB</a>, <a href="https://publications.waset.org/search?q=One-class%20SVM" title=" One-class SVM"> One-class SVM</a>, <a href="https://publications.waset.org/search?q=Sentiment%20Analysis" title=" Sentiment Analysis"> Sentiment Analysis</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <a href="https://publications.waset.org/10003083/one-class-support-vector-machine-for-sentiment-analysis-of-movie-review-documents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003083/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003083/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003083/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003083/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003083/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003083/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003083/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003083/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003083/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003083/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3303</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3265</span> Indonesian News Classification using Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dewi%20Y.%20Liliana">Dewi Y. Liliana</a>, <a href="https://publications.waset.org/search?q=Agung%20Hardianto"> Agung Hardianto</a>, <a href="https://publications.waset.org/search?q=M.%20Ridok"> M. Ridok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/search?q=Indonesian%20news" title=" Indonesian news"> Indonesian news</a>, <a href="https://publications.waset.org/search?q=text%20processing" title=" text processing"> text processing</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title="support vector machine">support vector machine</a> </p> <a href="https://publications.waset.org/10009/indonesian-news-classification-using-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3489</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3264</span> Support Vector Machine Prediction Model of Early-stage Lung Cancer Based on Curvelet Transform to Extract Texture Features of CT Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Guo%20Xiuhua">Guo Xiuhua</a>, <a href="https://publications.waset.org/search?q=Sun%20Tao"> Sun Tao</a>, <a href="https://publications.waset.org/search?q=Wu%20Haifeng"> Wu Haifeng</a>, <a href="https://publications.waset.org/search?q=He%20Wen"> He Wen</a>, <a href="https://publications.waset.org/search?q=Liang%20Zhigang"> Liang Zhigang</a>, <a href="https://publications.waset.org/search?q=Zhang%20Mengxia"> Zhang Mengxia</a>, <a href="https://publications.waset.org/search?q=Guo%20Aimin"> Guo Aimin</a>, <a href="https://publications.waset.org/search?q=Wang%0AWei"> Wang Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To explore the use of Curvelet transform to extract texture features of pulmonary nodules in CT image and support vector machine to establish prediction model of small solitary pulmonary nodules in order to promote the ratio of detection and diagnosis of early-stage lung cancer. Methods: 2461 benign or malignant small solitary pulmonary nodules in CT image from 129 patients were collected. Fourteen Curvelet transform textural features were as parameters to establish support vector machine prediction model. Results: Compared with other methods, using 252 texture features as parameters to establish prediction model is more proper. And the classification consistency, sensitivity and specificity for the model are 81.5%, 93.8% and 38.0% respectively. Conclusion: Based on texture features extracted from Curvelet transform, support vector machine prediction model is sensitive to lung cancer, which can promote the rate of diagnosis for early-stage lung cancer to some extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=CT%20image" title="CT image">CT image</a>, <a href="https://publications.waset.org/search?q=Curvelet%20transform" title=" Curvelet transform"> Curvelet transform</a>, <a href="https://publications.waset.org/search?q=Small%0Apulmonary%20nodules" title=" Small pulmonary nodules"> Small pulmonary nodules</a>, <a href="https://publications.waset.org/search?q=Support%20vector%20machines" title=" Support vector machines"> Support vector machines</a>, <a href="https://publications.waset.org/search?q=Texture%0Aextraction." title=" Texture extraction."> Texture extraction.</a> </p> <a href="https://publications.waset.org/14387/support-vector-machine-prediction-model-of-early-stage-lung-cancer-based-on-curvelet-transform-to-extract-texture-features-of-ct-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/14387/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/14387/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/14387/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/14387/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/14387/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/14387/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/14387/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/14387/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/14387/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/14387/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/14387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2766</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3263</span> Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Elham%20Serkani">Elham Serkani</a>, <a href="https://publications.waset.org/search?q=Hossein%20Gharaee%20Garakani"> Hossein Gharaee Garakani</a>, <a href="https://publications.waset.org/search?q=Naser%20Mohammadzadeh"> Naser Mohammadzadeh</a>, <a href="https://publications.waset.org/search?q=Elaheh%20Vaezpour"> Elaheh Vaezpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Intrusion%20detection%20system" title="Intrusion detection system">Intrusion detection system</a>, <a href="https://publications.waset.org/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=feature%20selection." title=" feature selection."> feature selection.</a> </p> <a href="https://publications.waset.org/10009167/hybrid-anomaly-detection-using-decision-tree-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009167/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009167/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009167/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009167/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009167/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009167/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009167/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009167/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009167/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009167/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1240</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3262</span> Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Karin%20Kandananond">Karin Kandananond</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20network%20%28ANN%29" title="Artificial neural network (ANN)">Artificial neural network (ANN)</a>, <a href="https://publications.waset.org/search?q=Bullwhip%20effect" title=" Bullwhip effect"> Bullwhip effect</a>, <a href="https://publications.waset.org/search?q=Consumer%20products" title=" Consumer products"> Consumer products</a>, <a href="https://publications.waset.org/search?q=Demand%20forecasting" title=" Demand forecasting"> Demand forecasting</a>, <a href="https://publications.waset.org/search?q=Supply%20chain" title=" Supply chain"> Supply chain</a>, <a href="https://publications.waset.org/search?q=Support%0Avector%20machine%20%28SVM%29." title=" Support vector machine (SVM)."> Support vector machine (SVM).</a> </p> <a href="https://publications.waset.org/7938/consumer-product-demand-forecasting-based-on-artificial-neural-network-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7938/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7938/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7938/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7938/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7938/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7938/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7938/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7938/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7938/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7938/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3009</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3261</span> Fuzzy Rules Generation and Extraction from Support Vector Machine Based on Kernel Function Firing Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Prasan%20Pitiranggon">Prasan Pitiranggon</a>, <a href="https://publications.waset.org/search?q=Nunthika%20Benjathepanun"> Nunthika Benjathepanun</a>, <a href="https://publications.waset.org/search?q=Somsri%20Banditvilai"> Somsri Banditvilai</a>, <a href="https://publications.waset.org/search?q=Veera%20Boonjing"> Veera Boonjing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our study proposes an alternative method in building Fuzzy Rule-Based System (FRB) from Support Vector Machine (SVM). The first set of fuzzy IF-THEN rules is obtained through an equivalence of the SVM decision network and the zero-ordered Sugeno FRB type of the Adaptive Network Fuzzy Inference System (ANFIS). The second set of rules is generated by combining the first set based on strength of firing signals of support vectors using Gaussian kernel. The final set of rules is then obtained from the second set through input scatter partitioning. A distinctive advantage of our method is the guarantee that the number of final fuzzy IFTHEN rules is not more than the number of support vectors in the trained SVM. The final FRB system obtained is capable of performing classification with results comparable to its SVM counterpart, but it has an advantage over the black-boxed SVM in that it may reveal human comprehensible patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fuzzy%20Rule%20Base" title="Fuzzy Rule Base">Fuzzy Rule Base</a>, <a href="https://publications.waset.org/search?q=Rule%20Extraction" title=" Rule Extraction"> Rule Extraction</a>, <a href="https://publications.waset.org/search?q=Rule%20Generation" title=" Rule Generation"> Rule Generation</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title="Support Vector Machine.">Support Vector Machine.</a> </p> <a href="https://publications.waset.org/4759/fuzzy-rules-generation-and-extraction-from-support-vector-machine-based-on-kernel-function-firing-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4759/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4759/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4759/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4759/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4759/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4759/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4759/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4759/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4759/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4759/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1902</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3260</span> Evolutionary Feature Selection for Text Documents using the SVM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Daniel%20I.%20Morariu">Daniel I. Morariu</a>, <a href="https://publications.waset.org/search?q=Lucian%20N.%20Vintan"> Lucian N. Vintan</a>, <a href="https://publications.waset.org/search?q=Volker%20Tresp"> Volker Tresp</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Text categorization is the problem of classifying text documents into a set of predefined classes. After a preprocessing step, the documents are typically represented as large sparse vectors. When training classifiers on large collections of documents, both the time and memory restrictions can be quite prohibitive. This justifies the application of feature selection methods to reduce the dimensionality of the document-representation vector. In this paper, we present three feature selection methods: Information Gain, Support Vector Machine feature selection called (SVM_FS) and Genetic Algorithm with SVM (called GA_SVM). We show that the best results were obtained with GA_SVM method for a relatively small dimension of the feature vector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20Selection" title="Feature Selection">Feature Selection</a>, <a href="https://publications.waset.org/search?q=Learning%20with%20Kernels" title=" Learning with Kernels"> Learning with Kernels</a>, <a href="https://publications.waset.org/search?q=Support%0AVector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Genetic%20Algorithm" title=" Genetic Algorithm"> Genetic Algorithm</a>, <a href="https://publications.waset.org/search?q=and%20Classification." title=" and Classification."> and Classification.</a> </p> <a href="https://publications.waset.org/15879/evolutionary-feature-selection-for-text-documents-using-the-svm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15879/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15879/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15879/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15879/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15879/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15879/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15879/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15879/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15879/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15879/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1706</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3259</span> Pattern Recognition as an Internalized Motor Programme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20J%C3%A4ndel">M. Jändel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new conceptual architecture for low-level neural pattern recognition is presented. The key ideas are that the brain implements support vector machines and that support vectors are represented as memory patterns in competitive queuing memories. A binary classifier is built from two competitive queuing memories holding positive and negative valence training examples respectively. The support vector machine classification function is calculated in synchronized evaluation cycles. The kernel is computed by bisymmetric feed-forward networks feed by sensory input and by competitive queuing memories traversing the complete sequence of support vectors. Temporary summation generates the output classification. It is speculated that perception apparatus in the brain reuses structures that have evolved for enabling fluent execution of prepared action sequences so that pattern recognition is built on internalized motor programmes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Competitive%20queuing%20model" title="Competitive queuing model">Competitive queuing model</a>, <a href="https://publications.waset.org/search?q=Olfactory%20system" title=" Olfactory system"> Olfactory system</a>, <a href="https://publications.waset.org/search?q=Pattern%20recognition" title="Pattern recognition">Pattern recognition</a>, <a href="https://publications.waset.org/search?q=Support%20vector%20machine" title=" Support vector machine"> Support vector machine</a>, <a href="https://publications.waset.org/search?q=Thalamus" title=" Thalamus"> Thalamus</a> </p> <a href="https://publications.waset.org/4785/pattern-recognition-as-an-internalized-motor-programme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4785/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4785/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4785/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4785/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4785/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4785/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4785/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4785/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4785/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4785/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1369</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3258</span> Face Recognition with PCA and KPCA using Elman Neural Network and SVM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hossein%20Esbati">Hossein Esbati</a>, <a href="https://publications.waset.org/search?q=Jalil%20Shirazi"> Jalil Shirazi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to categorize ORL database face pictures, principle Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) methods by using Elman neural network and Support Vector Machine (SVM) categorization methods are used. Elman network as a recurrent neural network is proposed for modeling storage systems and also it is used for reviewing the effect of using PCA numbers on system categorization precision rate and database pictures categorization time. Categorization stages are conducted with various components numbers and the obtained results of both Elman neural network categorization and support vector machine are compared. In optimum manner 97.41% recognition accuracy is obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Face%20recognition" title="Face recognition">Face recognition</a>, <a href="https://publications.waset.org/search?q=Principal%20Component%20Analysis" title=" Principal Component Analysis"> Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Kernel%20Principal%20Component%20Analysis" title=" Kernel Principal Component Analysis"> Kernel Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Neural%20network" title=" Neural network"> Neural network</a>, <a href="https://publications.waset.org/search?q=Support%0AVector%20Machine." title=" Support Vector Machine."> Support Vector Machine.</a> </p> <a href="https://publications.waset.org/3148/face-recognition-with-pca-and-kpca-using-elman-neural-network-and-svm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3148/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3148/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3148/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3148/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3148/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3148/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3148/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3148/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3148/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3148/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1930</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3257</span> Dissolved Oxygen Prediction Using Support Vector Machine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Sorayya%20Malek">Sorayya Malek</a>, <a href="https://publications.waset.org/search?q=Mogeeb%20Mosleh"> Mogeeb Mosleh</a>, <a href="https://publications.waset.org/search?q=Sharifah%20M.%20Syed"> Sharifah M. Syed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Dissolved%20oxygen" title="Dissolved oxygen">Dissolved oxygen</a>, <a href="https://publications.waset.org/search?q=Water%20quality" title=" Water quality"> Water quality</a>, <a href="https://publications.waset.org/search?q=predication%20DO" title="predication DO">predication DO</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine." title=" Support Vector Machine. "> Support Vector Machine. </a> </p> <a href="https://publications.waset.org/9997153/dissolved-oxygen-prediction-using-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9997153/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9997153/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9997153/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9997153/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9997153/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9997153/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9997153/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9997153/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9997153/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9997153/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9997153.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2217</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3256</span> Tongue Diagnosis System Based on PCA and SVM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jin-Woong%20Park">Jin-Woong Park</a>, <a href="https://publications.waset.org/search?q=Sun-Kyung%20Kang"> Sun-Kyung Kang</a>, <a href="https://publications.waset.org/search?q=Sung-Tae%20Jung"> Sung-Tae Jung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Active%20Shape%20Model" title="Active Shape Model">Active Shape Model</a>, <a href="https://publications.waset.org/search?q=Principal%20Component%20Analysis" title=" Principal Component Analysis"> Principal Component Analysis</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Tongue%20diagnosis" title=" Tongue diagnosis"> Tongue diagnosis</a> </p> <a href="https://publications.waset.org/6060/tongue-diagnosis-system-based-on-pca-and-svm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6060/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6060/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6060/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6060/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6060/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6060/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6060/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6060/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6060/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6060/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1867</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3255</span> Offline Signature Recognition using Radon Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.Radmehr">M.Radmehr</a>, <a href="https://publications.waset.org/search?q=S.M.Anisheh"> S.M.Anisheh</a>, <a href="https://publications.waset.org/search?q=I.Yousefian"> I.Yousefian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work a new offline signature recognition system based on Radon Transform, Fractal Dimension (FD) and Support Vector Machine (SVM) is presented. In the first step, projections of original signatures along four specified directions have been performed using radon transform. Then, FDs of four obtained vectors are calculated to construct a feature vector for each signature. These vectors are then fed into SVM classifier for recognition of signatures. In order to evaluate the effectiveness of the system several experiments are carried out. Offline signature database from signature verification competition (SVC) 2004 is used during all of the tests. Experimental result indicates that the proposed method achieved high accuracy rate in signature recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Fractal%20Dimension" title="Fractal Dimension">Fractal Dimension</a>, <a href="https://publications.waset.org/search?q=Offline%20Signature%20Recognition" title=" Offline Signature Recognition"> Offline Signature Recognition</a>, <a href="https://publications.waset.org/search?q=Radon%20Transform" title=" Radon Transform"> Radon Transform</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a> </p> <a href="https://publications.waset.org/6517/offline-signature-recognition-using-radon-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/6517/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/6517/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/6517/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/6517/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/6517/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/6517/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/6517/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/6517/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/6517/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/6517/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/6517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2601</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3254</span> Comparison of Performance between Different SVM Kernels for the Identification of Adult Video</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Hajar%20Bouirouga">Hajar Bouirouga</a>, <a href="https://publications.waset.org/search?q=Sanaa%20El%20Fkihi"> Sanaa El Fkihi </a>, <a href="https://publications.waset.org/search?q=Abdeilah%20Jilbab"> Abdeilah Jilbab</a>, <a href="https://publications.waset.org/search?q=Driss%20Aboutajdine"> Driss Aboutajdine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Skin%20detection" title="Skin detection">Skin detection</a>, <a href="https://publications.waset.org/search?q=Support%20vector%20machine" title=" Support vector machine"> Support vector machine</a>, <a href="https://publications.waset.org/search?q=Pornographic%20videos" title=" Pornographic videos"> Pornographic videos</a>, <a href="https://publications.waset.org/search?q=Feature%20extraction" title=" Feature extraction"> Feature extraction</a>, <a href="https://publications.waset.org/search?q=Video%20filtering" title=" Video filtering"> Video filtering</a>, <a href="https://publications.waset.org/search?q=Classification." title=" Classification."> Classification.</a> </p> <a href="https://publications.waset.org/13745/comparison-of-performance-between-different-svm-kernels-for-the-identification-of-adult-video" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13745/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13745/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13745/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13745/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13745/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13745/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13745/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13745/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13745/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13745/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2306</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3253</span> One-Class Support Vector Machines for Aerial Images Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Chih-Hung%20Wu">Chih-Hung Wu</a>, <a href="https://publications.waset.org/search?q=Chih-Chin%20Lai"> Chih-Chin Lai</a>, <a href="https://publications.waset.org/search?q=Chun-Yen%20Chen"> Chun-Yen Chen</a>, <a href="https://publications.waset.org/search?q=Yan-He%20Chen"> Yan-He Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpretation of aerial images is an important task in various applications. Image segmentation can be viewed as the essential step for extracting information from aerial images. Among many developed segmentation methods, the technique of clustering has been extensively investigated and used. However, determining the number of clusters in an image is inherently a difficult problem, especially when a priori information on the aerial image is unavailable. This study proposes a support vector machine approach for clustering aerial images. Three cluster validity indices, distance-based index, Davies-Bouldin index, and Xie-Beni index, are utilized as quantitative measures of the quality of clustering results. Comparisons on the effectiveness of these indices and various parameters settings on the proposed methods are conducted. Experimental results are provided to illustrate the feasibility of the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Aerial%20imaging" title="Aerial imaging">Aerial imaging</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title="support vector machine">support vector machine</a>, <a href="https://publications.waset.org/search?q=cluster%20validity%20index" title=" cluster validity index"> cluster validity index</a> </p> <a href="https://publications.waset.org/690/one-class-support-vector-machines-for-aerial-images-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/690/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/690/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/690/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/690/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/690/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/690/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/690/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/690/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/690/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/690/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1939</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3252</span> Hybrid Approach for Country’s Performance Evaluation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=C.%20Slim">C. Slim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country&rsquo;s competitiveness.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Artificial%20neural%20networks" title="Artificial neural networks">Artificial neural networks</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a>, <a href="https://publications.waset.org/search?q=aggregations" title=" aggregations"> aggregations</a>, <a href="https://publications.waset.org/search?q=indicators%20of%20performance." title=" indicators of performance."> indicators of performance.</a> </p> <a href="https://publications.waset.org/10005686/hybrid-approach-for-countrys-performance-evaluation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005686/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005686/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005686/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005686/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005686/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005686/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005686/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005686/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005686/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005686/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005686.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1061</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3251</span> Support Vector Machine Approach for Classification of Cancerous Prostate Regions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Metehan%20Makinac%C4%B1">Metehan Makinacı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The objective of this paper, is to apply support vector machine (SVM) approach for the classification of cancerous and normal regions of prostate images. Three kinds of textural features are extracted and used for the analysis: parameters of the Gauss- Markov random field (GMRF), correlation function and relative entropy. Prostate images are acquired by the system consisting of a microscope, video camera and a digitizing board. Cross-validated classification over a database of 46 images is implemented to evaluate the performance. In SVM classification, sensitivity and specificity of 96.2% and 97.0% are achieved for the 32x32 pixel block sized data, respectively, with an overall accuracy of 96.6%. Classification performance is compared with artificial neural network and k-nearest neighbor classifiers. Experimental results demonstrate that the SVM approach gives the best performance.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computer-aided%20diagnosis" title="Computer-aided diagnosis">Computer-aided diagnosis</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machines" title=" support vector machines"> support vector machines</a>, <a href="https://publications.waset.org/search?q=Gauss-Markov%20random%20fields" title=" Gauss-Markov random fields"> Gauss-Markov random fields</a>, <a href="https://publications.waset.org/search?q=texture%20classification." title=" texture classification."> texture classification.</a> </p> <a href="https://publications.waset.org/11474/support-vector-machine-approach-for-classification-of-cancerous-prostate-regions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/11474/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/11474/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/11474/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/11474/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/11474/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/11474/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/11474/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/11474/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/11474/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/11474/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/11474.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1792</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3250</span> Eclectic Rule-Extraction from Support Vector Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nahla%20Barakat">Nahla Barakat</a>, <a href="https://publications.waset.org/search?q=Joachim%20Diederich"> Joachim Diederich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Data%20mining" title="Data mining">Data mining</a>, <a href="https://publications.waset.org/search?q=hybrid%20rule-extraction%20algorithms" title=" hybrid rule-extraction algorithms"> hybrid rule-extraction algorithms</a>, <a href="https://publications.waset.org/search?q=medical%20diagnosis" title=" medical diagnosis"> medical diagnosis</a>, <a href="https://publications.waset.org/search?q=SVMs" title=" SVMs"> SVMs</a> </p> <a href="https://publications.waset.org/1606/eclectic-rule-extraction-from-support-vector-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1606/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1606/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1606/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1606/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1606/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1606/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1606/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1606/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1606/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1606/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1606.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1708</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3249</span> An Approach for the Prediction of Cardiovascular Diseases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Nebi%20Gedik">Nebi Gedik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Regardless of age or gender, cardiovascular illnesses are a serious health concern because of things like poor eating habits, stress, a sedentary lifestyle, hard work schedules, alcohol use, and weight. It tends to happen suddenly and has a high rate of recurrence. Machine learning models can be implemented to assist healthcare systems in the accurate detection and diagnosis of cardiovascular disease (CVD) in patients. Improved heart failure prediction is one of the primary goals of researchers using the heart disease dataset. The purpose of this study is to identify the feature or features that offer the best classification prediction for CVD detection. The support vector machine classifier is used to compare each feature's performance. It has been determined which feature produces the best results.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Cardiovascular%20disease" title="Cardiovascular disease">Cardiovascular disease</a>, <a href="https://publications.waset.org/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/search?q=supervised%20learning" title=" supervised learning"> supervised learning</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine." title=" support vector machine."> support vector machine.</a> </p> <a href="https://publications.waset.org/10013540/an-approach-for-the-prediction-of-cardiovascular-diseases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10013540/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10013540/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10013540/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10013540/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10013540/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10013540/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10013540/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10013540/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10013540/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10013540/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10013540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3248</span> Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Tatjana%20Eitrich">Tatjana Eitrich</a>, <a href="https://publications.waset.org/search?q=Bruno%20Lang"> Bruno Lang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Support%20Vector%20Machines" title="Support Vector Machines">Support Vector Machines</a>, <a href="https://publications.waset.org/search?q=Shared%20Memory%20Parallel%0D%0AComputing" title=" Shared Memory Parallel Computing"> Shared Memory Parallel Computing</a>, <a href="https://publications.waset.org/search?q=Large%20Data" title=" Large Data"> Large Data</a> </p> <a href="https://publications.waset.org/13987/efficient-implementation-of-serial-and-parallel-support-vector-machine-training-with-a-multi-parameter-kernel-for-large-scale-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13987/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13987/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13987/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13987/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13987/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13987/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13987/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13987/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13987/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13987/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1577</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3247</span> Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Bingchun%20Liu">Bingchun Liu</a>, <a href="https://publications.waset.org/search?q=Pei-Chann%20Chang"> Pei-Chann Chang</a>, <a href="https://publications.waset.org/search?q=Natasha%20Huang"> Natasha Huang</a>, <a href="https://publications.waset.org/search?q=Dun%20Li"> Dun Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China&#39;s Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Machine%20learning" title="Machine learning">Machine learning</a>, <a href="https://publications.waset.org/search?q=air%20quality%20classification" title=" air quality classification"> air quality classification</a>, <a href="https://publications.waset.org/search?q=air%20quality%20index" title=" air quality index"> air quality index</a>, <a href="https://publications.waset.org/search?q=information%20gain" title=" information gain"> information gain</a>, <a href="https://publications.waset.org/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/search?q=cross-validation." title=" cross-validation."> cross-validation.</a> </p> <a href="https://publications.waset.org/10009891/multi-level-air-quality-classification-in-china-using-information-gain-and-support-vector-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009891/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009891/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009891/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009891/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009891/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009891/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009891/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009891/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009891/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009891/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">948</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=109">109</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=110">110</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=Support%0AVector%20Machine&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10