CINXE.COM

Search results for: survival and hazard functions

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: survival and hazard functions</title> <meta name="description" content="Search results for: survival and hazard functions"> <meta name="keywords" content="survival and hazard functions"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="survival and hazard functions" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="survival and hazard functions"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4119</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: survival and hazard functions</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4119</span> Bayesian Using Markov Chain Monte Carlo and Lindley&#039;s Approximation Based on Type-I Censored Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20Omari%20Moahmmed%20Ahmed">Al Omari Moahmmed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weibull%20distribution" title="weibull distribution">weibull distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=bayesian%20method" title=" bayesian method"> bayesian method</a>, <a href="https://publications.waset.org/abstracts/search?q=markov%20chain%20mote%20carlo" title=" markov chain mote carlo"> markov chain mote carlo</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions" title=" survival and hazard functions"> survival and hazard functions</a> </p> <a href="https://publications.waset.org/abstracts/31291/bayesian-using-markov-chain-monte-carlo-and-lindleys-approximation-based-on-type-i-censored-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4118</span> A Discrete Logit Survival Model with a Smooth Baseline Hazard for Age at First Alcohol Intake among Students at Tertiary Institutions in Thohoyandou, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Bere">A. Bere</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20G.%20Sithuba"> H. G. Sithuba</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Kyei"> K. Kyei</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Sigauke"> C. Sigauke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We employ a discrete logit survival model to investigate the risk factors for early alcohol intake among students at two tertiary institutions in Thohoyandou, South Africa. Data were collected from a sample of 744 students using a self-administered questionnaire. Significant covariates were arrived at through a regularization algorithm implemented using the glmmLasso package. The tuning parameter was determined using a five-fold cross-validation algorithm. The baseline hazard was modelled as a smooth function of time through the use of spline functions. The results show that the hazard of initial alcohol intake peaks at the age of about 16 years and that at any given time, being of a male gender, prior use of other drugs, having drinking peers, having experienced negative life events and physical abuse are associated with a higher risk of alcohol intake debut. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-validation" title="cross-validation">cross-validation</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20hazard%20model" title=" discrete hazard model"> discrete hazard model</a>, <a href="https://publications.waset.org/abstracts/search?q=LASSO" title=" LASSO"> LASSO</a>, <a href="https://publications.waset.org/abstracts/search?q=smooth%20baseline%20hazard" title=" smooth baseline hazard"> smooth baseline hazard</a> </p> <a href="https://publications.waset.org/abstracts/92744/a-discrete-logit-survival-model-with-a-smooth-baseline-hazard-for-age-at-first-alcohol-intake-among-students-at-tertiary-institutions-in-thohoyandou-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4117</span> Survival and Hazard Maximum Likelihood Estimator with Covariate Based on Right Censored Data of Weibull Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al%20Omari%20Mohammed%20Ahmed">Al Omari Mohammed Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on Maximum Likelihood Estimator with Covariate. Covariates are incorporated into the Weibull model. Under this regression model with regards to maximum likelihood estimator, the parameters of the covariate, shape parameter, survival function and hazard rate of the Weibull regression distribution with right censored data are estimated. The mean square error (MSE) and absolute bias are used to compare the performance of Weibull regression distribution. For the simulation comparison, the study used various sample sizes and several specific values of the Weibull shape parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=weibull%20regression%20distribution" title="weibull regression distribution">weibull regression distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimator" title=" maximum likelihood estimator"> maximum likelihood estimator</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20function" title=" survival function"> survival function</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20rate" title=" hazard rate"> hazard rate</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20censoring" title=" right censoring"> right censoring</a> </p> <a href="https://publications.waset.org/abstracts/40164/survival-and-hazard-maximum-likelihood-estimator-with-covariate-based-on-right-censored-data-of-weibull-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40164.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4116</span> Competing Risk Analyses in Survival Trials During COVID-19 Pandemic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ping%20Xu">Ping Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Gregory%20T.%20Golm"> Gregory T. Golm</a>, <a href="https://publications.waset.org/abstracts/search?q=Guanghan%20%28Frank%29%20Liu"> Guanghan (Frank) Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the presence of competing events, traditional survival analysis may not be appropriate and can result in biased estimates, as it assumes independence between competing events and the event of interest. Instead, competing risk analysis should be considered to correctly estimate the survival probability of the event of interest and the hazard ratio between treatment groups. The COVID-19 pandemic has provided a potential source of competing risks in clinical trials, as participants in trials may experienceCOVID-related competing events before the occurrence of the event of interest, for instance, death due to COVID-19, which can affect the incidence rate of the event of interest. We have performed simulation studies to compare multiple competing risk analysis models, including the cumulative incidence function, the sub-distribution hazard function, and the cause-specific hazard function, to the traditional survival analysis model under various scenarios. We also provide a general recommendation on conducting competing risk analysis in randomized clinical trials during the era of the COVID-19 pandemic based on the extensive simulation results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competing%20risk" title="competing risk">competing risk</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations" title=" simulations"> simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=randomized%20clinical%20trial" title=" randomized clinical trial"> randomized clinical trial</a>, <a href="https://publications.waset.org/abstracts/search?q=COVID-19%20pandemic" title=" COVID-19 pandemic"> COVID-19 pandemic</a> </p> <a href="https://publications.waset.org/abstracts/145123/competing-risk-analyses-in-survival-trials-during-covid-19-pandemic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4115</span> Classical and Bayesian Inference of the Generalized Log-Logistic Distribution with Applications to Survival Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdisalam%20Hassan%20Muse">Abdisalam Hassan Muse</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Mwalili"> Samuel Mwalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Ngesa"> Oscar Ngesa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A generalized log-logistic distribution with variable shapes of the hazard rate was introduced and studied, extending the log-logistic distribution by adding an extra parameter to the classical distribution, leading to greater flexibility in analysing and modeling various data types. The proposed distribution has a large number of well-known lifetime special sub-models such as; Weibull, log-logistic, exponential, and Burr XII distributions. Its basic mathematical and statistical properties were derived. The method of maximum likelihood was adopted for estimating the unknown parameters of the proposed distribution, and a Monte Carlo simulation study is carried out to assess the behavior of the estimators. The importance of this distribution is that its tendency to model both monotone (increasing and decreasing) and non-monotone (unimodal and bathtub shape) or reversed “bathtub” shape hazard rate functions which are quite common in survival and reliability data analysis. Furthermore, the flexibility and usefulness of the proposed distribution are illustrated in a real-life data set and compared to its sub-models; Weibull, log-logistic, and BurrXII distributions and other parametric survival distributions with 3-parmaeters; like the exponentiated Weibull distribution, the 3-parameter lognormal distribution, the 3- parameter gamma distribution, the 3-parameter Weibull distribution, and the 3-parameter log-logistic (also known as shifted log-logistic) distribution. The proposed distribution provided a better fit than all of the competitive distributions based on the goodness-of-fit tests, the log-likelihood, and information criterion values. Finally, Bayesian analysis and performance of Gibbs sampling for the data set are also carried out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20rate%20function" title="hazard rate function">hazard rate function</a>, <a href="https://publications.waset.org/abstracts/search?q=log-logistic%20distribution" title=" log-logistic distribution"> log-logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20likelihood%20estimation" title=" maximum likelihood estimation"> maximum likelihood estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20log-logistic%20distribution" title=" generalized log-logistic distribution"> generalized log-logistic distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20data" title=" survival data"> survival data</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a> </p> <a href="https://publications.waset.org/abstracts/139326/classical-and-bayesian-inference-of-the-generalized-log-logistic-distribution-with-applications-to-survival-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4114</span> Sparse Modelling of Cancer Patients’ Survival Based on Genomic Copy Number Alterations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20M.%20Alqahtani">Khaled M. Alqahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copy number alterations (CNA) are variations in the structure of the genome, where certain regions deviate from the typical two chromosomal copies. These alterations are pivotal in understanding tumor progression and are indicative of patients' survival outcomes. However, effectively modeling patients' survival based on their genomic CNA profiles while identifying relevant genomic regions remains a statistical challenge. Various methods, such as the Cox proportional hazard (PH) model with ridge, lasso, or elastic net penalties, have been proposed but often overlook the inherent dependencies between genomic regions, leading to results that are hard to interpret. In this study, we enhance the elastic net penalty by incorporating an additional penalty that accounts for these dependencies. This approach yields smooth parameter estimates and facilitates variable selection, resulting in a sparse solution. Our findings demonstrate that this method outperforms other models in predicting survival outcomes, as evidenced by our simulation study. Moreover, it allows for a more meaningful interpretation of genomic regions associated with patients' survival. We demonstrate the efficacy of our approach using both real data from a lung cancer cohort and simulated datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copy%20number%20alterations" title="copy number alterations">copy number alterations</a>, <a href="https://publications.waset.org/abstracts/search?q=cox%20proportional%20hazard" title=" cox proportional hazard"> cox proportional hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=regression" title=" regression"> regression</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20solution" title=" sparse solution"> sparse solution</a> </p> <a href="https://publications.waset.org/abstracts/185477/sparse-modelling-of-cancer-patients-survival-based-on-genomic-copy-number-alterations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4113</span> Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noora%20Al-Shanfari">Noora Al-Shanfari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mazharul%20Islam"> M. Mazharul Islam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=competing%20risks" title="competing risks">competing risks</a>, <a href="https://publications.waset.org/abstracts/search?q=cumulative%20incidence%20function" title=" cumulative incidence function"> cumulative incidence function</a>, <a href="https://publications.waset.org/abstracts/search?q=improper%20distribution" title=" improper distribution"> improper distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20modeling" title=" parametric modeling"> parametric modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a> </p> <a href="https://publications.waset.org/abstracts/162228/parametric-modeling-for-survival-data-with-competing-risks-using-the-generalized-gompertz-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4112</span> Interaction of Racial and Gender Disparities in Salivary Gland Cancer Survival in the United States: A Surveillance Epidemiology and End Results Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarpong%20Boateng">Sarpong Boateng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rohit%20Balasundaram"> Rohit Balasundaram</a>, <a href="https://publications.waset.org/abstracts/search?q=Akua%20Afrah%20Amoah"> Akua Afrah Amoah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Racial and Gender disparities have been found to be independently associated with Salivary Gland Cancers (SGCs) survival; however, to our best knowledge, there are no previous studies on the interplay of these social determinants on the prognosis of SGCs. The objective of this study was to examine the joint effect of race and gender on the survival of SGCs. Methods: We analyzed survival outcomes of 13,547 histologically confirmed cases of SGCs using the Surveillance Epidemiology and End Results (SEER) database (2004 to 2015). Multivariable Cox regression analysis and Kaplan-Meier curves were used to estimate hazard ratios (HR) after controlling for age, tumor characteristics, treatment type and year of diagnosis. Results: 73.5% of the participants were whites, 8.5% were blacks, 10.1% were Hispanics and 58.5% were males. Overall, males had poorer survival than females (HR = 1.16, p=0.003). In the adjusted multivariable model, there were no significant differences in survival by race. However, the interaction of gender and race was statistically significant (p=0.01) in Hispanic males. Thus, compared to White females (reference), Hispanic females had significantly better survival (HR=0.53), whiles Hispanic males had worse survival outcomes (HR=1.82) for SGCs. Conclusions: Our results show significant interactions between race and gender, with racial disparities varying across the different genders for SGCs survival. This study indicates that racial and gender differences are crucial factors to be considered in the prognostic counseling and management of patients with SGCs. Biologic factors, tumor genetic characteristics, chemotherapy, lifestyle, environmental exposures, and socioeconomic and dietary factors are potential yet proven reasons that could account for racial and gender differences in the survival of SGCs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salivary" title="salivary">salivary</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=disparity" title=" disparity"> disparity</a>, <a href="https://publications.waset.org/abstracts/search?q=race" title=" race"> race</a>, <a href="https://publications.waset.org/abstracts/search?q=gender" title=" gender"> gender</a>, <a href="https://publications.waset.org/abstracts/search?q=SEER" title=" SEER"> SEER</a> </p> <a href="https://publications.waset.org/abstracts/149055/interaction-of-racial-and-gender-disparities-in-salivary-gland-cancer-survival-in-the-united-states-a-surveillance-epidemiology-and-end-results-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4111</span> Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town, Enrolled From 2011 to 2021</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getahun%20Nigusie">Getahun Nigusie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: To assess incidence and predictors of mortality among HIV positive children on ART in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus-positive%20children" title="human immunodeficiency virus-positive children">human immunodeficiency virus-positive children</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-retroviral%20therapy" title=" anti-retroviral therapy"> anti-retroviral therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/189562/incidence-and-predictors-of-mortality-among-hiv-positive-children-on-art-in-public-hospitals-of-harer-town-enrolled-from-2011-to-2021" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4110</span> Survival Analysis Based Delivery Time Estimates for Display FAB</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Han">Paul Han</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun-Geol%20Baek"> Jun-Geol Baek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the flat panel display industry, the scheduler and dispatching system to meet production target quantities and the deadline of production are the major production management system which controls each facility production order and distribution of WIP (Work in Process). In dispatching system, delivery time is a key factor for the time when a lot can be supplied to the facility. In this paper, we use survival analysis methods to identify main factors and a forecasting model of delivery time. Of survival analysis techniques to select important explanatory variables, the cox proportional hazard model is used to. To make a prediction model, the Accelerated Failure Time (AFT) model was used. Performance comparisons were conducted with two other models, which are the technical statistics model based on transfer history and the linear regression model using same explanatory variables with AFT model. As a result, the Mean Square Error (MSE) criteria, the AFT model decreased by 33.8% compared to the existing prediction model, decreased by 5.3% compared to the linear regression model. This survival analysis approach is applicable to implementing a delivery time estimator in display manufacturing. And it can contribute to improve the productivity and reliability of production management system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delivery%20time" title="delivery time">delivery time</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Cox%20PH%20model" title=" Cox PH model"> Cox PH model</a>, <a href="https://publications.waset.org/abstracts/search?q=accelerated%20failure%20time%20model" title=" accelerated failure time model"> accelerated failure time model</a> </p> <a href="https://publications.waset.org/abstracts/4881/survival-analysis-based-delivery-time-estimates-for-display-fab" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4881.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">543</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4109</span> Assessment of Incidence and Predictors of Mortality Among HIV Positive Children on Art in Public Hospitals of Harer Town Who Were Enrolled From 2011 to 2021</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Getahun%20Nigusie%20Demise">Getahun Nigusie Demise</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background; antiretroviral treatment reduce HIV-related morbidity, and prolonged survival of patients however, there is lack of up-to-date information concerning the treatment long term effect on the survival of HIV positive children especially in the study area. Objective: The aim of this study is to assess the incidence and predictors of mortality among HIV positive children on antiretroviral therapy (ART) in public hospitals of Harer town who were enrolled from 2011 to 2021. Methodology: Institution based retrospective cohort study was conducted among 429 HIV positive children enrolled in ART clinic from January 1st 2011 to December30th 2021. Data were collected from medical cards by using a data extraction form, Descriptive analyses were used to Summarized the results, and life table was used to estimate survival probability at specific point of time after introduction of ART. Kaplan Meier survival curve together with log rank test was used to compare survival between different categories of covariates, and Multivariate Cox-proportional hazard regression model was used to estimate adjusted Hazard rate. Variables with p-values ≤0.25 in bivariable analysis were candidates to the multivariable analysis. Finally, variables with p-values < 0.05 were considered as significant variables. Results: The study participants had followed for a total of 2549.6 child-years (30596 child months) with an overall mortality rate of 1.5 (95% CI: 1.1, 2.04) per 100 child-years. Their median survival time was 112 months (95% CI: 101–117). There were 38 children with unknown outcome, 39 deaths, and 55 children transfer out to different facility. The overall survival at 6, 12, 24, 48 months were 98%, 96%, 95%, 94% respectively. being in WHO clinical Stage four (AHR=4.55, 95% CI:1.36, 15.24), having anemia(AHR=2.56, 95% CI:1.11, 5.93), baseline low absolute CD4 count (AHR=2.95, 95% CI: 1.22, 7.12), stunting (AHR=4.1, 95% CI: 1.11, 15.42), wasting (AHR=4.93, 95% CI: 1.31, 18.76), poor adherence to treatment (AHR=3.37, 95% CI: 1.25, 9.11), having TB infection at enrollment (AHR=3.26, 95% CI: 1.25, 8.49),and no history of change their regimen(AHR=7.1, 95% CI: 2.74, 18.24), were independent predictors of death. Conclusion: more than half of death occurs within 2 years. Prevalent tuberculosis, anemia, wasting, and stunting nutritional status, socioeconomic factors, and baseline opportunistic infection were independent predictors of death. Increasing early screening and managing those predictors are required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20immunodeficiency%20virus-positive%20children" title="human immunodeficiency virus-positive children">human immunodeficiency virus-positive children</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-retroviral%20therapy" title=" anti-retroviral therapy"> anti-retroviral therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=survival" title=" survival"> survival</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/185290/assessment-of-incidence-and-predictors-of-mortality-among-hiv-positive-children-on-art-in-public-hospitals-of-harer-town-who-were-enrolled-from-2011-to-2021" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185290.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">49</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4108</span> Infant and Child Mortality among the Low Socio-Economic Households in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narendra%20Kumar">Narendra Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study uses data from the ‘National Family Health Survey (NFHS-3) 2005-06’ to investigate the predictors of infant and child mortality among low economic households in East and Northeast region. The cross tabulation, life table survival estimates and Cox proportional hazard model techniques have been used to estimate the predictors of infant and child mortality. The life table survival estimates for infant and child mortality shows that infant mortality in female child is lower in comparison to male child but with child mortality, the rates are higher for female in comparison to male child and the Cox proportional hazard model also give highly significant in female in comparison to male child. The infant and child mortality rates among poor households highest in the Central region followed by North and Northeast region and the lowest in South region in comparison to all regions of India. Education of respondent has been found a significant characteristics in both analyzes, further birth interval, respondent occupation, caste/tribe and place of delivery has substantial impact on infant and child mortality among low economic households in East and Northeast region. Finally these findings specified that an increase in parents’ education, improve health care services and improve socioeconomic conditions of low economic households which should in turn raise infant and child survival and should decrease child mortality among low economic households in India. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infant" title="infant">infant</a>, <a href="https://publications.waset.org/abstracts/search?q=child" title=" child"> child</a>, <a href="https://publications.waset.org/abstracts/search?q=mortality" title=" mortality"> mortality</a>, <a href="https://publications.waset.org/abstracts/search?q=socio-economic" title=" socio-economic"> socio-economic</a>, <a href="https://publications.waset.org/abstracts/search?q=India" title=" India"> India</a> </p> <a href="https://publications.waset.org/abstracts/40650/infant-and-child-mortality-among-the-low-socio-economic-households-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4107</span> Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nozar%20Kishi">Nozar Kishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Babak%20Kamrani"> Babak Kamrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Filmon%20Habte"> Filmon Habte</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=typhoon" title="typhoon">typhoon</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a>, <a href="https://publications.waset.org/abstracts/search?q=catastrophe%20modelling" title=" catastrophe modelling"> catastrophe modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20modeling" title=" stochastic modeling"> stochastic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=stratified%20sampling" title=" stratified sampling"> stratified sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20model" title=" loss model"> loss model</a>, <a href="https://publications.waset.org/abstracts/search?q=ERM" title=" ERM"> ERM</a> </p> <a href="https://publications.waset.org/abstracts/68230/development-of-earthquake-and-typhoon-loss-models-for-japan-specifically-designed-for-underwriting-and-enterprise-risk-management-cycles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4106</span> Preliminary Seismic Hazard Mapping of Papua New Guinea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Ghasemi">Hadi Ghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Leonard"> Mark Leonard</a>, <a href="https://publications.waset.org/abstracts/search?q=Spiliopoulos%20Spiro"> Spiliopoulos Spiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Phil%20Cummins"> Phil Cummins</a>, <a href="https://publications.waset.org/abstracts/search?q=Mathew%20Moihoi"> Mathew Moihoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20Taranu"> Felix Taranu</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Buri"> Eric Buri</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Mckee"> Chris Mckee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study the level of seismic hazard in terms of Peak Ground Acceleration (PGA) was calculated for return period of 475 years, using modeled seismic sources and assigned ground-motion equations. The calculations were performed for bedrock site conditions (Vs30=760 m/s). From the results it is evident that the seismic hazard reaches its maximum level (i.e. PGA≈1g for 475 yr return period) at the Huon Peninsula and southern New Britain regions. Disaggregation analysis revealed that moderate to large earthquakes occurring along the New Britain Trench mainly control the level of hazard at these locations. The open-source computer program OpenQuake developed by Global Earthquake Model foundation was used for the seismic hazard computations. It should be emphasized that the presented results are still preliminary and should not be interpreted as our final assessment of seismic hazard in PNG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20seismic%20hazard%20assessment" title="probabilistic seismic hazard assessment">probabilistic seismic hazard assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Papua%20New%20Guinea" title=" Papua New Guinea"> Papua New Guinea</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20code" title=" building code"> building code</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenQuake" title=" OpenQuake"> OpenQuake</a> </p> <a href="https://publications.waset.org/abstracts/21189/preliminary-seismic-hazard-mapping-of-papua-new-guinea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21189.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">556</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4105</span> A Modified Estimating Equations in Derivation of the Causal Effect on the Survival Time with Time-Varying Covariates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yemane%20Hailu%20Fissuh">Yemane Hailu Fissuh</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongzhan%20Zhang"> Zhongzhan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> a systematic observation from a defined time of origin up to certain failure or censor is known as survival data. Survival analysis is a major area of interest in biostatistics and biomedical researches. At the heart of understanding, the most scientific and medical research inquiries lie for a causality analysis. Thus, the main concern of this study is to investigate the causal effect of treatment on survival time conditional to the possibly time-varying covariates. The theory of causality often differs from the simple association between the response variable and predictors. A causal estimation is a scientific concept to compare a pragmatic effect between two or more experimental arms. To evaluate an average treatment effect on survival outcome, the estimating equation was adjusted for time-varying covariates under the semi-parametric transformation models. The proposed model intuitively obtained the consistent estimators for unknown parameters and unspecified monotone transformation functions. In this article, the proposed method estimated an unbiased average causal effect of treatment on survival time of interest. The modified estimating equations of semiparametric transformation models have the advantage to include the time-varying effect in the model. Finally, the finite sample performance characteristics of the estimators proved through the simulation and Stanford heart transplant real data. To this end, the average effect of a treatment on survival time estimated after adjusting for biases raised due to the high correlation of the left-truncation and possibly time-varying covariates. The bias in covariates was restored, by estimating density function for left-truncation. Besides, to relax the independence assumption between failure time and truncation time, the model incorporated the left-truncation variable as a covariate. Moreover, the expectation-maximization (EM) algorithm iteratively obtained unknown parameters and unspecified monotone transformation functions. To summarize idea, the ratio of cumulative hazards functions between the treated and untreated experimental group has a sense of the average causal effect for the entire population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a%20modified%20estimation%20equation" title="a modified estimation equation">a modified estimation equation</a>, <a href="https://publications.waset.org/abstracts/search?q=causal%20effect" title=" causal effect"> causal effect</a>, <a href="https://publications.waset.org/abstracts/search?q=semiparametric%20transformation%20models" title=" semiparametric transformation models"> semiparametric transformation models</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=time-varying%20covariate" title=" time-varying covariate"> time-varying covariate</a> </p> <a href="https://publications.waset.org/abstracts/107135/a-modified-estimating-equations-in-derivation-of-the-causal-effect-on-the-survival-time-with-time-varying-covariates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4104</span> Moral Hazard under the Effect of Bailout and Bailin Events: A Markov Switching Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amira%20Kaddour">Amira Kaddour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To curb the problem of liquidity in times of financial crises, two cases arise; the Bailout or Bailin, two opposite choices that elicit the analysis of their effect on moral hazard. This paper attempts to empirically analyze the effect of these two types of events on the behavior of investors. For this end, we use the Emerging Market Bonds Index (EMBI-JP Morgan), and its excess of return, to detect the change in the risk premia through a Markov switching model. The results showed the transition to two types of regime and an effect on moral hazard; Bailout is an incentive of moral hazard, Bailin effectiveness remains subject of credibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bailout" title="Bailout">Bailout</a>, <a href="https://publications.waset.org/abstracts/search?q=Bailin" title=" Bailin"> Bailin</a>, <a href="https://publications.waset.org/abstracts/search?q=Moral%20hazard" title=" Moral hazard"> Moral hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=financial%20crisis" title=" financial crisis"> financial crisis</a>, <a href="https://publications.waset.org/abstracts/search?q=Markov%20switching" title=" Markov switching"> Markov switching</a> </p> <a href="https://publications.waset.org/abstracts/27085/moral-hazard-under-the-effect-of-bailout-and-bailin-events-a-markov-switching-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4103</span> Cognitive Characteristics of Industrial Workers in Fuzzy Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyeon-Kyo%20Lim">Hyeon-Kyo Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Hun%20Byun"> Sang-Hun Byun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Risk assessment is carried out in most industrial plants for accident prevention, but there exists insufficient data for statistical decision making. It is commonly said that risk can be expressed as a product of consequence and likelihood of a corresponding hazard factor. Eventually, therefore, risk assessment involves human decision making which cannot be objective per se. This study was carried out to comprehend perceptive characteristics of human beings in industrial plants. Subjects were shown a set of illustrations describing scenes of industrial plants, and were asked to assess the risk of each scene with not only linguistic variables but also numeric scores in the aspect of consequence and likelihood. After that, their responses were formulated as fuzzy membership functions, and compared with those of university students who had no experience of industrial works. The results showed that risk level of industrial workers were lower than those of any other groups, which implied that the workers might generally have a tendency to neglect more hazard factors in their work fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title="fuzzy">fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard" title=" hazard"> hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=linguistic%20variable" title=" linguistic variable"> linguistic variable</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/90930/cognitive-characteristics-of-industrial-workers-in-fuzzy-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90930.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4102</span> Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padma%20Chutoo">Padma Chutoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20%20Kulinskaya"> Elena Kulinskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyas%20Bakbergenuly"> Ilyas Bakbergenuly</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Steel"> Nicholas Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitri%20Pchejetski"> Dmitri Pchejetski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20practice" title="general practice">general practice</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20ratio" title=" hazard ratio"> hazard ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20improvement%20network%20%28THIN%29" title=" health improvement network (THIN)"> health improvement network (THIN)</a>, <a href="https://publications.waset.org/abstracts/search?q=ischaemic%20stroke" title=" ischaemic stroke"> ischaemic stroke</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20imputation" title=" multiple imputation"> multiple imputation</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull-Cox%20model." title=" Weibull-Cox model."> Weibull-Cox model.</a> </p> <a href="https://publications.waset.org/abstracts/136984/survival-analysis-after-a-first-ischaemic-stroke-event-a-case-control-study-in-the-adult-population-of-england" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4101</span> Some Results on Generalized Janowski Type Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fuad%20Al%20Sarari">Fuad Al Sarari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of the present paper is to study subclasses of analytic functions which generalize the classes of Janowski functions introduced by Polatoglu. We study certain convolution conditions. This leads to a study of the sufficient condition and the neighborhood results related to the functions in the class S (T; H; F ): and a study of new subclasses of analytic functions that are defined using notions of the generalized Janowski classes and -symmetrical functions. In the quotient of analytical representations of starlikeness and convexity with respect to symmetric points, certain inherent properties are pointed out. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution%20conditions" title="convolution conditions">convolution conditions</a>, <a href="https://publications.waset.org/abstracts/search?q=subordination" title=" subordination"> subordination</a>, <a href="https://publications.waset.org/abstracts/search?q=Janowski%20functions" title=" Janowski functions"> Janowski functions</a>, <a href="https://publications.waset.org/abstracts/search?q=starlike%20functions" title=" starlike functions"> starlike functions</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20functions" title=" convex functions"> convex functions</a> </p> <a href="https://publications.waset.org/abstracts/170335/some-results-on-generalized-janowski-type-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4100</span> Machine Learning Methods for Flood Hazard Mapping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Zappacosta">Stefano Zappacosta</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Bove"> Cristiano Bove</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Carmela%20Marinelli"> Maria Carmela Marinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Paola%20di%20Lauro"> Paola di Lauro</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarina%20Spasenovic"> Katarina Spasenovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Lorenzo%20Ostano"> Lorenzo Ostano</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Aiello"> Giuseppe Aiello</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Pietrosanto"> Marco Pietrosanto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a novel neural network approach for assessing flood hazard mapping. The core of the model is a machine learning component fed by frequency ratios, namely statistical correlations between flood event occurrences and a selected number of topographic properties. The proposed hybrid model can be used to classify four different increasing levels of hazard. The classification capability was compared with the flood hazard mapping River Basin Plans (PAI) designed by the Italian Institute for Environmental Research and Defence, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). The study area of Piemonte, an Italian region, has been considered without loss of generality. The frequency ratios may be used as a standalone block to model the flood hazard mapping. Nevertheless, the mixture with a neural network improves the classification power of several percentage points, and may be proposed as a basic tool to model the flood hazard map in a wider scope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flood%20modeling" title="flood modeling">flood modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20map" title=" hazard map"> hazard map</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20networks" title=" neural networks"> neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogeological%20risk" title=" hydrogeological risk"> hydrogeological risk</a>, <a href="https://publications.waset.org/abstracts/search?q=flood%20risk%20assessment" title=" flood risk assessment"> flood risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/140468/machine-learning-methods-for-flood-hazard-mapping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4099</span> The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hazem%20M.%20Al-Mofleh">Hazem M. Al-Mofleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bimodality" title="bimodality">bimodality</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20function" title=" hazard function"> hazard function</a>, <a href="https://publications.waset.org/abstracts/search?q=moments" title=" moments"> moments</a>, <a href="https://publications.waset.org/abstracts/search?q=Shannon%E2%80%99s%20entropy" title=" Shannon’s entropy"> Shannon’s entropy</a> </p> <a href="https://publications.waset.org/abstracts/62567/the-normal-generalized-hyperbolic-secant-distribution-properties-and-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4098</span> Factors Associated with Recurrence and Long-Term Survival in Younger and Postmenopausal Women with Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sopit%20Tubtimhin">Sopit Tubtimhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Chaliya%20Wamaloon"> Chaliya Wamaloon</a>, <a href="https://publications.waset.org/abstracts/search?q=Anchalee%20Supattagorn"> Anchalee Supattagorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Significance: Breast cancer is the most frequently diagnosed and leading cause of cancer death among women. This study aims to determine factors potentially predicting recurrence and long-term survival after the first recurrence in surgically treated patients between postmenopausal and younger women. Methods and Analysis: A retrospective cohort study was performed on 498 Thai women with invasive breast cancer, who had undergone mastectomy and been followed-up at Ubon Ratchathani Cancer Hospital, Thailand. We collected based on a systematic chart audit from medical records and pathology reports between January 1, 2002, and December 31, 2011. The last follow-up time point for surviving patients was December 31, 2016. A Cox regression model was used to calculate hazard ratios of recurrence and death. Findings: The median age was 49 (SD ± 9.66) at the time of diagnosis, 47% was post-menopausal women ( ≥ 51years and not experienced any menstrual flow for a minimum of 12 months), and 53 % was younger women ( ˂ 51 years and have menstrual period). Median time from the diagnosis to the last follow-up or death was 10.81 [95% CI = 9.53-12.07] years in younger cases and 8.20 [95% CI = 6.57-9.82] years in postmenopausal cases. The recurrence-free survival (RFS) for younger estimates at 1, 5 and 10 years of 95.0 %, 64.0% and 58.93% respectively, appeared slightly better than the 92.7%, 58.1% and 53.1% for postmenopausal women [HRadj = 1.25, 95% CI = 0.95-1.64]. Regarding overall survival (OS) for younger at 1, 5 and 10 years were 97.7%, 72.7 % and 52.7% respectively, for postmenopausal patients, OS at 1, 5 and 10 years were 95.7%, 70.0% and 44.5 respectively, there were no significant differences in survival [HRadj = 1.23, 95% CI = 0.94 -1.64]. Multivariate analysis identified five risk factors for negatively impacting on survival were triple negative [HR= 2.76, 95% CI = 1.47-5.19], Her2-enriched [HR = 2.59, 95% CI = 1.37-4.91], luminal B [HR = 2.29, 95 % CI=1.35-3.89], not free margin [HR = 1.98, 95%CI=1.00-3.96] and patients who received only adjuvant chemotherapy [HR= 3.75, 95% CI = 2.00-7.04]. Statistically significant risks of overall cancer recurrence were Her2-enriched [HR = 5.20, 95% CI = 2.75-9.80], triple negative [HR = 3.87, 95% CI = 1.98-7.59], luminal B [HR= 2.59, 95% CI = 1.48-4.54,] and patients who received only adjuvant chemotherapy [HR= 2.59, 95% CI = 1.48-5.66]. Discussion and Implications: Outcomes from this studies have shown that postmenopausal women have been associated with increased risk of recurrence and mortality. As the results, it provides useful information for planning the screening and treatment of early-stage breast cancer in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=menopause%20status" title=" menopause status"> menopause status</a>, <a href="https://publications.waset.org/abstracts/search?q=recurrence-free%20survival" title=" recurrence-free survival"> recurrence-free survival</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20survival" title=" overall survival"> overall survival</a> </p> <a href="https://publications.waset.org/abstracts/100206/factors-associated-with-recurrence-and-long-term-survival-in-younger-and-postmenopausal-women-with-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4097</span> Assessing the Survival Time of Hospitalized Patients in Eastern Ethiopia During 2019–2020 Using the Bayesian Approach: A Retrospective Cohort Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chalachew%20Gashu">Chalachew Gashu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoseph%20Kassa"> Yoseph Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Habtamu%20Geremew"> Habtamu Geremew</a>, <a href="https://publications.waset.org/abstracts/search?q=Mengestie%20Mulugeta"> Mengestie Mulugeta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background and Aims: Severe acute malnutrition remains a significant health challenge, particularly in low‐ and middle‐income countries. The aim of this study was to determine the survival time of under‐five children with severe acute malnutrition. Methods: A retrospective cohort study was conducted at a hospital, focusing on under‐five children with severe acute malnutrition. The study included 322 inpatients admitted to the Chiro hospital in Chiro, Ethiopia, between September 2019 and August 2020, whose data was obtained from medical records. Survival functions were analyzed using Kaplan‒Meier plots and log‐rank tests. The survival time of severe acute malnutrition was further analyzed using the Cox proportional hazards model and Bayesian parametric survival models, employing integrated nested Laplace approximation methods. Results: Among the 322 patients, 118 (36.6%) died as a result of severe acute malnutrition. The estimated median survival time for inpatients was found to be 2 weeks. Model selection criteria favored the Bayesian Weibull accelerated failure time model, which demonstrated that age, body temperature, pulse rate, nasogastric (NG) tube usage, hypoglycemia, anemia, diarrhea, dehydration, malaria, and pneumonia significantly influenced the survival time of severe acute malnutrition. Conclusions: This study revealed that children below 24 months, those with altered body temperature and pulse rate, NG tube usage, hypoglycemia, and comorbidities such as anemia, diarrhea, dehydration, malaria, and pneumonia had a shorter survival time when affected by severe acute malnutrition under the age of five. To reduce the death rate of children under 5 years of age, it is necessary to design community management for acute malnutrition to ensure early detection and improve access to and coverage for children who are malnourished. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20analysis" title="Bayesian analysis">Bayesian analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=severe%20acute%20malnutrition" title=" severe acute malnutrition"> severe acute malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20data%20analysis" title=" survival data analysis"> survival data analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20time" title=" survival time"> survival time</a> </p> <a href="https://publications.waset.org/abstracts/186983/assessing-the-survival-time-of-hospitalized-patients-in-eastern-ethiopia-during-2019-2020-using-the-bayesian-approach-a-retrospective-cohort-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">47</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4096</span> Flight Safety Hazard: An Investigation into Bird Strike Prevention in the Vicinity of Suvarnabhumi Airport, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chantarat%20Manvichien">Chantarat Manvichien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research paper was aimed to examine the bird strike prevention in the vicinity of Suvarnabhumi Airport, Thailand. A bird strike event occurs when a bird or a flock of birds collide with an operating airplane and results in flight interruption. This is the reason why International Civil Aviation Organization (ICAO), a part of the United Nations, has an assumption that birds, including other wildlife, are a serious hazard to aircraft and attempts should be accomplished to overcome this hazard. ICAO requires all airports worldwide to set up proactive countermeasures in order to reduce the risk from bird strike and wildlife hazard. In Thailand, the Airports of Thailand Public Company Limited which manages Suvarnabhumi Airport, also known as Bangkok International Airport, responds to the requirements and spends a lot of effort to ensure this hazard is manageable. An intensive study on the countermeasures to prevent aircraft accident from bird strike and other wildlife have been continuously executed since the early construction of the Airport until nowadays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bird%20strike" title="bird strike">bird strike</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20safety" title=" flight safety"> flight safety</a>, <a href="https://publications.waset.org/abstracts/search?q=wildlife%20hazard" title=" wildlife hazard"> wildlife hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=Suvarnabhumi%20airport" title=" Suvarnabhumi airport"> Suvarnabhumi airport</a> </p> <a href="https://publications.waset.org/abstracts/82545/flight-safety-hazard-an-investigation-into-bird-strike-prevention-in-the-vicinity-of-suvarnabhumi-airport-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4095</span> Developing Improvements to Multi-Hazard Risk Assessments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Fathianpour">A. Fathianpour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Jelodar"> M. B. Jelodar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wilkinson"> S. Wilkinson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascading%20hazards" title="cascading hazards">cascading hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20assessment" title=" disaster assessment"> disaster assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=mullti-hazards" title=" mullti-hazards"> mullti-hazards</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/115603/developing-improvements-to-multi-hazard-risk-assessments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115603.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4094</span> Application of Gamma Frailty Model in Survival of Liver Cirrhosis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elnaz%20Saeedi">Elnaz Saeedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamileh%20Abolaghasemi"> Jamileh Abolaghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Nasiri%20Tousi"> Mohsen Nasiri Tousi</a>, <a href="https://publications.waset.org/abstracts/search?q=Saeedeh%20Khosravi"> Saeedeh Khosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Goals and Objectives: A typical analysis of survival data involves the modeling of time-to-event data, such as the time till death. A frailty model is a random effect model for time-to-event data, where the random effect has a multiplicative influence on the baseline hazard function. This article aims to investigate the use of gamma frailty model with concomitant variable in order to individualize the prognostic factors that influence the liver cirrhosis patients&rsquo; survival times. Methods: During the one-year study period (May 2008-May 2009), data have been used from the recorded information of patients with liver cirrhosis who were scheduled for liver transplantation and were followed up for at least seven years in Imam Khomeini Hospital in Iran. In order to determine the effective factors for cirrhotic patients&rsquo; survival in the presence of latent variables, the gamma frailty distribution has been applied. In this article, it was considering the parametric model, such as Exponential and Weibull distributions for survival time. Data analysis is performed using R software, and the error level of 0.05 was considered for all tests. Results: 305 patients with liver cirrhosis including 180 (59%) men and 125 (41%) women were studied. The age average of patients was 39.8 years. At the end of the study, 82 (26%) patients died, among them 48 (58%) were men and 34 (42%) women. The main cause of liver cirrhosis was found hepatitis &#39;B&#39; with 23%, followed by cryptogenic with 22.6% were identified as the second factor. Generally, 7-year&rsquo;s survival was 28.44 months, for dead patients and for censoring was 19.33 and 31.79 months, respectively. Using multi-parametric survival models of progressive and regressive, Exponential and Weibull models with regard to the gamma frailty distribution were fitted to the cirrhosis data. In both models, factors including, age, bilirubin serum, albumin serum, and encephalopathy had a significant effect on survival time of cirrhotic patients. Conclusion: To investigate the effective factors for the time of patients&rsquo; death with liver cirrhosis in the presence of latent variables, gamma frailty model with parametric distributions seems desirable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frailty%20model" title="frailty model">frailty model</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20variables" title=" latent variables"> latent variables</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20cirrhosis" title=" liver cirrhosis"> liver cirrhosis</a>, <a href="https://publications.waset.org/abstracts/search?q=parametric%20distribution" title=" parametric distribution"> parametric distribution</a> </p> <a href="https://publications.waset.org/abstracts/58300/application-of-gamma-frailty-model-in-survival-of-liver-cirrhosis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4093</span> Long Term Survival after a First Transient Ischemic Attack in England: A Case-Control Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Padma%20Chutoo">Padma Chutoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Kulinskaya"> Elena Kulinskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilyas%20Bakbergenuly"> Ilyas Bakbergenuly</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Steel"> Nicholas Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitri%20Pchejetski"> Dmitri Pchejetski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Transient ischaemic attacks (TIAs) are warning signs for future strokes. TIA patients are at increased risk of stroke and cardio-vascular events after a first episode. A majority of studies on TIA focused on the occurrence of these ancillary events after a TIA. Long-term mortality after TIA received only limited attention. We undertook this study to determine the long-term hazards of all-cause mortality following a first episode of a TIA using anonymised electronic health records (EHRs). We used a retrospective case-control study using electronic primary health care records from The Health Improvement Network (THIN) database. Patients born prior to or in year 1960, resident in England, with a first diagnosis of TIA between January 1986 and January 2017 were matched to three controls on age, sex and general medical practice. The primary outcome was all-cause mortality. The hazards of all-cause mortality were estimated using a time-varying Weibull-Cox survival model which included both scale and shape effects and a random frailty effect of GP practice. 20,633 cases and 58,634 controls were included. Cases aged 39 to 60 years at the first TIA event had the highest hazard ratio (HR) of mortality compared to matched controls (HR = 3.04, 95% CI (2.91 - 3.18)). The HRs for cases aged 61-70 years, 71-76 years and 77+ years were 1.98 (1.55 - 2.30), 1.79 (1.20 - 2.07) and 1.52 (1.15 - 1.97) compared to matched controls. Aspirin provided long-term survival benefits to cases. Cases aged 39-60 years on aspirin had HR of 0.93 (0.84 - 1.00), 0.90 (0.82 - 0.98) and 0.88 (0.80 - 0.96) at 5 years, 10 years and 15 years, respectively, compared to cases in the same age group who were not on antiplatelets. Similar beneficial effects of aspirin were observed in other age groups. There were no significant survival benefits with other antiplatelet options. No survival benefits of antiplatelet drugs were observed in controls. Our study highlights the excess long-term risk of death of TIA patients and cautions that TIA should not be treated as a benign condition. The study further recommends aspirin as the better option for secondary prevention for TIA patients compared to clopidogrel recommended by NICE guidelines. Management of risk factors and treatment strategies should be important challenges to reduce the burden of disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual%20antiplatelet%20therapy%20%28DAPT%29" title="dual antiplatelet therapy (DAPT)">dual antiplatelet therapy (DAPT)</a>, <a href="https://publications.waset.org/abstracts/search?q=General%20Practice" title=" General Practice"> General Practice</a>, <a href="https://publications.waset.org/abstracts/search?q=Multiple%20Imputation" title=" Multiple Imputation"> Multiple Imputation</a>, <a href="https://publications.waset.org/abstracts/search?q=The%20Health%20Improvement%20Network%28THIN%29" title=" The Health Improvement Network(THIN)"> The Health Improvement Network(THIN)</a>, <a href="https://publications.waset.org/abstracts/search?q=hazard%20ratio%20%28HR%29" title=" hazard ratio (HR)"> hazard ratio (HR)</a>, <a href="https://publications.waset.org/abstracts/search?q=Weibull-Cox%20model" title=" Weibull-Cox model"> Weibull-Cox model</a> </p> <a href="https://publications.waset.org/abstracts/136987/long-term-survival-after-a-first-transient-ischemic-attack-in-england-a-case-control-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4092</span> Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Boj%C3%B3rquez">Juan Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Henry%20E.%20Reyes"> Henry E. Reyes</a>, <a href="https://publications.waset.org/abstracts/search?q=Ed%C3%A9n%20Boj%C3%B3rquez"> Edén Bojórquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar"> Alfredo Reyes-Salazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20reliability" title="structural reliability">structural reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20seismic%20hazard%20analysis" title=" probabilistic seismic hazard analysis"> probabilistic seismic hazard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20demand%20hazard%20curves" title=" seismic demand hazard curves"> seismic demand hazard curves</a> </p> <a href="https://publications.waset.org/abstracts/141596/prediction-of-structural-response-of-reinforced-concrete-buildings-using-artificial-intelligence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141596.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4091</span> Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souad%20Romdhane">Souad Romdhane</a>, <a href="https://publications.waset.org/abstracts/search?q=Lotfi%20Belkacem"> Lotfi Belkacem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20insurance-pension%20plan" title="life insurance-pension plan">life insurance-pension plan</a>, <a href="https://publications.waset.org/abstracts/search?q=survival%20analysis" title=" survival analysis"> survival analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20factors" title=" risk factors"> risk factors</a>, <a href="https://publications.waset.org/abstracts/search?q=cox%20proportional%20hazards%20model" title=" cox proportional hazards model"> cox proportional hazards model</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20failure-time%20data" title=" multivariate failure-time data"> multivariate failure-time data</a>, <a href="https://publications.waset.org/abstracts/search?q=shared%20frailty" title=" shared frailty"> shared frailty</a>, <a href="https://publications.waset.org/abstracts/search?q=simulations%20study" title=" simulations study"> simulations study</a> </p> <a href="https://publications.waset.org/abstracts/43197/frailty-models-for-modeling-heterogeneity-simulation-study-and-application-to-quebec-pension-plan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4090</span> Application of Griddization Management to Construction Hazard Management </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lingzhi%20Li">Lingzhi Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiankun%20Zhang"> Jiankun Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiantian%20Gu"> Tiantian Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hazard management that can prevent fatal accidents and property losses is a fundamental process during the buildings’ construction stage. However, due to lack of safety supervision resources and operational pressures, the conduction of hazard management is poor and ineffective in China. In order to improve the quality of construction safety management, it is critical to explore the use of information technologies to ensure that the process of hazard management is efficient and effective. After exploring the existing problems of construction hazard management in China, this paper develops the griddization management model for construction hazard management. First, following the knowledge grid infrastructure, the griddization computing infrastructure for construction hazards management is designed which includes five layers: resource entity layer, information management layer, task management layer, knowledge transformation layer and application layer. This infrastructure will be as the technical support for realizing grid management. Second, this study divides the construction hazards into grids through city level, district level and construction site level according to grid principles. Last, a griddization management process including hazard identification, assessment and control is developed. Meanwhile, all stakeholders of construction safety management, such as owners, contractors, supervision organizations and government departments, should take the corresponding responsibilities in this process. Finally, a case study based on actual construction hazard identification, assessment and control is used to validate the effectiveness and efficiency of the proposed griddization management model. The advantage of this designed model is to realize information sharing and cooperative management between various safety management departments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20hazard" title="construction hazard">construction hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=griddization%20computing" title=" griddization computing"> griddization computing</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20management" title=" grid management"> grid management</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a> </p> <a href="https://publications.waset.org/abstracts/43289/application-of-griddization-management-to-construction-hazard-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=137">137</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=survival%20and%20hazard%20functions&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10