CINXE.COM

Search results for: Mirna Febriani

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Mirna Febriani</title> <meta name="description" content="Search results for: Mirna Febriani"> <meta name="keywords" content="Mirna Febriani"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Mirna Febriani" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Mirna Febriani"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 81</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Mirna Febriani</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Diagnostic Evaluation of Micro Rna (miRNA-21, miRNA-215 and miRNA-378) in Patients with Colorectal Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ossama%20Abdelmotaal">Ossama Abdelmotaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Olfat%20Shaker"> Olfat Shaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Salman"> Tarek Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamiaa%20Nabeel"> Lamiaa Nabeel</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Shabayek"> Mostafa Shabayek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal Cancer (CRC) is an important worldwide health problem. Colonoscopy is used in detecting CRC suffer from drawbacks where colonoscopy is an invasive method. This study validates easier and less time-consuming techniques to evaluate the usefulness of detecting miRNA-21, miRNA-215 and miRNA-378 in the sera of colorectal cancer patients as new diagnostic tools. This study includes malignant (Colo Rectal Cancer patients, n= 64)) and healthy (n=27) groups. The studied groups were subjected to colonoscopic examination and estimation of miRNA-21, miRNA-215 and miRNA-378 in sera by RT-PCR. miRNA-21 showed the statistically significantly highest median fold change. miRNA-378 showed statistically significantly lower value (Both showed over-expression). miRNA-215 showed the statistically significantly lowest median fold change (It showed down-regulation). Overall the miRNA (21-215 and 378) appear to be promising method of detecting CRC and evaluating its stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA-21" title=" miRNA-21"> miRNA-21</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA-215" title=" miRNA-215"> miRNA-215</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA-378" title=" miRNA-378"> miRNA-378</a> </p> <a href="https://publications.waset.org/abstracts/69931/diagnostic-evaluation-of-micro-rna-mirna-21-mirna-215-and-mirna-378-in-patients-with-colorectal-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Identification of miRNA-miRNA Interactions between Virus and Host in Human Cytomegalovirus Infection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai-Yao%20Huang">Kai-Yao Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzong-Yi%20Lee"> Tzong-Yi Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Pin-Hao%20Ho"> Pin-Hao Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=Tzu-Hao%20Chang"> Tzu-Hao Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Wei%20Chang"> Cheng-Wei Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Human cytomegalovirus (HCMV) infects much people around the world, and there were many researches mention that many diseases were caused by HCMV. To understand the mechanism of HCMV lead to diseases during infection. We observe a microRNA (miRNA) – miRNA interaction between HCMV and host during infection. We found HCMV miRNA sequence component complementary with host miRNA precursors, and we also found that the host miRNA abundances were decrease in HCMV infection. Hence, we focus on the host miRNA which may target by the other HCMV miRNA to find theirs target mRNAs expression and analysis these mRNAs affect what kind of signaling pathway. Interestingly, we found the affected mRNA play an important role in some diseases related pathways, and these diseases had been annotated by HCMV infection. Results: From our analysis procedure, we found 464 human miRNAs might be targeted by 26 HCMV miRNAs and there were 291 human miRNAs shows the concordant decrease trend during HCMV infection. For case study, we found hcmv-miR-US22-5p may regulate hsa-mir-877 and we analysis the KEGG pathway which built by hsa-mir-877 validate target mRNA. Additionally, through survey KEGG Disease database found that these mRNA co-regulate some disease related pathway for instance cancer, nerve disease. However, there were studies annotated that HCMV infection casuse cancer and Alzheimer. Conclusions: This work supply a different scenario of miRNA target interactions(MTIs). In previous study assume miRNA only target to other mRNA. Here we wonder there is possibility that miRNAs might regulate non-mRNA targets, like other miRNAs. In this study, we not only consider the sequence similarity with HCMV miRNAs and human miRNA precursors but also the expression trend of these miRNAs. Then we analysis the human miRNAs validate target mRNAs and its associated KEGG pathway. Finally, we survey related works to validate our investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=human%20cytomegalovirus" title="human cytomegalovirus">human cytomegalovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=HCMV" title=" HCMV"> HCMV</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a> </p> <a href="https://publications.waset.org/abstracts/43139/identification-of-mirna-mirna-interactions-between-virus-and-host-in-human-cytomegalovirus-infection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> MiRNA Regulation of CXCL12β during Inflammation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raju%20Ranjha">Raju Ranjha</a>, <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Aggarwal"> Surbhi Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Inflammation plays an important role in infectious and non-infectious diseases. MiRNA is also reported to play role in inflammation and associated cancers. Chemokine CXCL12 is also known to play role in inflammation and various cancers. CXCL12/CXCR4 chemokine axis was involved in pathogenesis of IBD specially UC. Supplementation of CXCL12 induces homing of dendritic cells to spleen and enhances control of plasmodium parasite in BALB/c mice. We looked at the regulation of CXCL12β by miRNA in UC colitis. Prolonged inflammation of colon in UC patient increases the risk of developing colorectal cancer. We looked at the expression differences of CXCl12β and its targeting miRNA in cancer susceptible area of colon of UC patients. Aim: Aim of this study was to find out the expression regulation of CXCL12β by miRNA in inflammation. Materials and Methods: Biopsy samples and blood samples were collected from UC patients and non-IBD controls. mRNA expression was analyzed using microarray and real-time PCR. CXCL12β targeting miRNA were looked by using online target prediction tools. Expression of CXCL12β in blood samples and cell line supernatant was analyzed using ELISA. miRNA target was validated using dual luciferase assay. Results and conclusion: We found miR-200a regulate the expression of CXCL12β in UC. Expression of CXCL12β was increased in cancer susceptible part of colon and expression of its targeting miRNA was decreased in the same part of colon. miR-200a regulate CXCL12β expression in inflammation and may be an important therapeutic target in inflammation associated cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=regulation" title=" regulation"> regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=CXCL12" title=" CXCL12"> CXCL12</a> </p> <a href="https://publications.waset.org/abstracts/69823/mirna-regulation-of-cxcl12v-during-inflammation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> The Comparison of Chromium Ions Release for Stainless Steel between Artificial Saliva and Breadfruit Leaf Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is the leaves of breadfruit. The method used for this research using Atomic Absorption Spectrophotometric test. The results showed that the difference of chromium ion releases on soaking in saliva and breadfruit leaf extracts on days 1, 3, 7 and 14. Statically calculation with independent T-test with p < 0,05 showed the significant difference. The conclusion of this study shows that breadfruit leaf extract can inhibit the corrosion rate of stainless steel wires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20saliva" title=" artificial saliva"> artificial saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=breadfruit%20leaf" title=" breadfruit leaf"> breadfruit leaf</a> </p> <a href="https://publications.waset.org/abstracts/87086/the-comparison-of-chromium-ions-release-for-stainless-steel-between-artificial-saliva-and-breadfruit-leaf-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Water Sorption of Self Cured Resin Acrylic Soaked in Clover Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermanto%20J.%20M">Hermanto J. M</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani"> Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Resin acrylic, which is widely used, has the physical properties that can absorb liquids. This can lead to a change in the dimensions of the acrylic resin material. If repeated immersions were done, its strength would be affected. Disinfectant solutions have been widely used to reduce microorganisms both inside and outside the patient's mouth. One of the disinfecting materials that can be used is a clover solution. The purpose of this research is to find the ratio of water absorption of the acrylic resin material of self-cured type, soaked in clover solution for 10 minutes. The results showed that the average value obtained before soaked in clover solution was 0.0692 mg/cm3 and after soaked, in clover solution, the value was 0.090 mg/cm3. The conclusion of this research shows that the values of water sorption of acrylic resin before and after soaked in clover solution is still in ISO standard 1567/2001. Differences in water sorption value of self-cured acrylic resin before and after the immersion are caused by the process of liquid diffusion into the acrylic resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorption%20of%20fluid" title="absorption of fluid">absorption of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=self-cured%20acrylic%20resin" title=" self-cured acrylic resin"> self-cured acrylic resin</a>, <a href="https://publications.waset.org/abstracts/search?q=soaked" title=" soaked"> soaked</a>, <a href="https://publications.waset.org/abstracts/search?q=clover%20solution" title=" clover solution"> clover solution</a> </p> <a href="https://publications.waset.org/abstracts/87144/water-sorption-of-self-cured-resin-acrylic-soaked-in-clover-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87144.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> The Effect of Cassava Starch on Compressive Strength and Tear Strength of Alginate Impression Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani">Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of problem. Alginate impression material is an imported material and a dentist always used this material to make impression of teeth and oral cavity tissues. Purpose. The aim of this study was to compare about compressive strength and tear strength of alginate impression material and alginate impression material combined with cassava. Material and methods.Property measured included compressive strength and tear strength. Results.The compressive strength and tear strength of the impression materials tested of a comparable ANSI/ADA standard no.18.The compressive strength and tear strength alginate impression material combined with cassava have lower than the compressive strength and tear strength alginate impression material. The alginate impression material combined with cassava has more water and silica content more decrease than alginate impression material. Conclusions.We concluded that compressive strength and tear strength of alginate impression material combined with cassava has lower than alginate impression material without cassava starch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tear%20strength" title=" tear strength"> tear strength</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20starch" title=" Cassava starch"> Cassava starch</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate" title=" alginate"> alginate</a> </p> <a href="https://publications.waset.org/abstracts/64938/the-effect-of-cassava-starch-on-compressive-strength-and-tear-strength-of-alginate-impression-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64938.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surajit%20Bhattacharya">Surajit Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Veltri"> Daniel Veltri</a>, <a href="https://publications.waset.org/abstracts/search?q=Atit%20A.%20Patel"> Atit A. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20N.%20Cox"> Daniel N. Cox</a> </p> <p class="card-text"><strong>Abstract:</strong></p> miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=miRNA" title="miRNA">miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20target%20prediction" title=" miRNA:mRNA target prediction"> miRNA:mRNA target prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20methods" title=" statistical methods"> statistical methods</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA%3AmRNA%20interaction%20network" title=" miRNA:mRNA interaction network"> miRNA:mRNA interaction network</a> </p> <a href="https://publications.waset.org/abstracts/27427/intra-mir-explorer-a-novel-bioinformatics-platform-for-integrated-discovery-of-mirnamrna-gene-regulatory-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27427.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">510</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Rasyadan%20Arshad">Ahmad Rasyadan Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Rahman%20A.%20Jamal"> A. Rahman A. Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Mohamed%20Ibrahim"> N. Mohamed Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Nor%20Azian%20Abdul%20Murad"> Nor Azian Abdul Murad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=early%20onset%20PD" title="early onset PD">early onset PD</a>, <a href="https://publications.waset.org/abstracts/search?q=late%20onset%20PD" title=" late onset PD"> late onset PD</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20%28miRNA%29" title=" microRNA (miRNA)"> microRNA (miRNA)</a>, <a href="https://publications.waset.org/abstracts/search?q=microarray" title=" microarray"> microarray</a> </p> <a href="https://publications.waset.org/abstracts/58919/identification-of-micrornas-in-early-and-late-onset-of-parkinsons-disease-patient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Micro-Ribonucleic Acid-21 as High Potential Prostate Cancer Biomarker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20R.%20Gunawan">Regina R. Gunawan</a>, <a href="https://publications.waset.org/abstracts/search?q=Indwiani%20Astuti"> Indwiani Astuti</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Raden%20Danarto"> H. Raden Danarto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is the leading cause of death worldwide. Cancer is caused by mutations that alter the function of normal human genes and give rise to cancer genes. MicroRNA (miRNA) is a small non-coding RNA that regulates the gen through complementary bond towards mRNA target and cause mRNA degradation. miRNA works by either promoting or suppressing cell proliferation. miRNA level expression in cancer may offer another value of miRNA as a biomarker in cancer diagnostic. miRNA-21 is believed to have a role in carcinogenesis by enhancing proliferation, anti-apoptosis, cell cycle progression and invasion of tumor cells. Hsa-miR-21-5p marker has been identified in Prostate Cancer (PCa) and Benign Prostatic Hyperplasia (BPH) patient’s urine. This research planned to explore the diagnostic performance of miR-21 to differentiate PCa and BPH patients. In this study, urine samples were collected from 20 PCa patients and 20 BPH patients. miR-21 relative expression against the reference gene was analyzed and compared between the two. miRNA expression was analyzed using the comparative quantification method to find the fold change. miR-21 validity in identifying PCa patients was performed by quantifying the sensitivity and specificity with the contingency table. miR-21 relative expression against miR-16 in PCa patient and in BPH patient has 12,98 differences in fold change. From a contingency table of Cq expression of miR-21 in identifying PCa patients from BPH patient, Cq miR-21 has 100% sensitivity and 75% specificity. miR-21 relative expression can be used in discriminating PCa from BPH by using a urine sample. Furthermore, the expression of miR-21 has higher sensitivity compared to PSA (Prostate specific antigen), therefore miR-21 has a high potential to be analyzed and developed more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benign%20prostate%20hyperplasia" title="benign prostate hyperplasia">benign prostate hyperplasia</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA-21" title=" miRNA-21"> miRNA-21</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a> </p> <a href="https://publications.waset.org/abstracts/120043/micro-ribonucleic-acid-21-as-high-potential-prostate-cancer-biomarker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Comparison of Extracellular miRNA from Different Lymphocyte Cell Lines and Isolation Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christelle%20E.%20Chua">Christelle E. Chua</a>, <a href="https://publications.waset.org/abstracts/search?q=Alicia%20L.%20Ho"> Alicia L. Ho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of a panel of differential gene expression signatures has been of interest in the field of biomarker discovery for radiation exposure. In the absence of the availability of exposed human subjects, lymphocyte cell lines have often been used as a surrogate to human whole blood, when performing ex vivo irradiation studies. The extent of variation between different lymphocyte cell lines is currently unclear, especially with regard to the expression of extracellular miRNA. This study compares the expression profile of extracellular miRNA isolated from different lymphocyte cell lines. It also compares the profile of miRNA obtained when different exosome isolation kits are used. Lymphocyte cell lines were created using lymphocytes isolated from healthy adult males of similar racial descent (Chinese American and Chinese Singaporean) and immortalised with Epstein-Barr virus. The cell lines were cultured in exosome-free cell culture media for 72h and the cell culture supernatant was removed for exosome isolation. Two exosome isolation kits were used. Total exosome isolation reagent (TEIR, ThermoFisher) is a polyethylene glycol (PEG)-based exosome precipitation kit, while ExoSpin (ES, Cell Guidance Systems) is a PEG-based exosome precipitation kit that includes an additional size exclusion chromatography step. miRNA from the isolated exosomes were isolated using miRNEASY minikit (Qiagen) and analysed using nCounter miRNA assay (Nanostring). Principal component analysis (PCA) results suggested that the overall extracellular miRNA expression profile differed between the lymphocyte cell line originating from the Chinese American donor and the cell line originating from the Chinese Singaporean donor. As the gender, age and racial origins of both donors are similar, this may suggest that there are other genetic or epigenetic differences that account for the variation in extracellular miRNA gene expression in lymphocyte cell lines. However, statistical analysis showed that only 3 miRNA genes had a fold difference > 2 at p < 0.05, suggesting that the differences may not be of that great a significance as to impact overall conclusions drawn from different cell lines. Subsequent analysis using cell lines from other donors will give further insight into the reproducibility of results when difference cell lines are used. PCA results also suggested that the method of exosome isolation impacted the expression profile. 107 miRNA had a fold difference > 2 at p < 0.05. This suggests that the inclusion of an additional size exclusion chromatography step altered the subset of the extracellular vesicles that were isolated. In conclusion, these results suggest that extracellular miRNA can be isolated and analysed from exosomes derived from lymphocyte cell lines. However, care must be taken in the choice of cell line and method of exosome isolation used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarker" title="biomarker">biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=extracellular%20miRNA" title=" extracellular miRNA"> extracellular miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=isolation%20methods" title=" isolation methods"> isolation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=lymphocyte%20cell%20line" title=" lymphocyte cell line"> lymphocyte cell line</a> </p> <a href="https://publications.waset.org/abstracts/78941/comparison-of-extracellular-mirna-from-different-lymphocyte-cell-lines-and-isolation-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Expression of miRNA 335 in Gall Bladder Cancer: A Correlative Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naseem%20Fatima">Naseem Fatima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Srivastava"> A. N. Srivastava</a>, <a href="https://publications.waset.org/abstracts/search?q=Tasleem%20Raza"> Tasleem Raza</a>, <a href="https://publications.waset.org/abstracts/search?q=Vijay%20Kumar"> Vijay Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Carcinoma gallbladder is third most common gastrointestinal lethal disease with the highest incidence and mortality rate among women in Northern India. Scientists have found several risk factors that make a person more likely to develop gallbladder cancer; among these risk factors, deregulation of miRNAs has been demonstrated to be one of the most crucial factors. The changes in the expression of specific miRNA genes result in the control of inflammation, cell cycle regulation, stress response, proliferation, differentiation, apoptosis and invasion thus mediate the process in tumorgenesis. The aim of this study was to investigate the role of MiRNA-335 and may as a molecular marker in early detection of gallbladder cancer in suspected cases. Material and Methods: A total of 20 consecutive patients with gallbladder cancer aged between 30-75 years were registered for the study. Total RNA was extracted from tissue by using the mirVANA MiRNA isolation Kit according to the manufacturer’s protocol. The MiRNA- 335 and U6 snRNA-specific cDNA were reverse-transcribed from total RNA using Taqman microRNA reverse-transcription kit according to the manufacturer’s protocol. TaqMan MiRNA probes hsa-miR-335 and Taqman Master Mix without AmpEase UNG, Individual real-time PCR assays were performed in a 20 μL reaction volume on a Real-Time PCR system (Applied Biosystems StepOnePlus™) to detect MiRNA-335 expression in tissue. Relative quantification of target MiRNA expression was evaluated using the comparative cycle threshold (CT) method. The correlation was done in between cycle threshold (CT Value) of target MiRNA in gallbladder cancer with respect to non-cancerous Cholelithiasis gallbladder. Each sample was examined in triplicate. The Newman-Keuls Multiple Comparison Test was used to determine the expression of miR-335. Results: MiRNA335 was found to be significantly downregulated in the gallbladder cancer tissue (P<0.001), when compared with non-cancerous Cholelithiasis gallbladder cases. Out of 20 cases, 75% showed reduced expression of MiRNA335, were at last stage of disease with low overall survival rate and remaining 25% were showed up-regulated expression of MiRNA335 with high survival rate. Conclusion: The present study showed that reduced expression of MiRNA335 is associated with the advancement of the disease, and its deregulation may provide important clues to understanding it as a prognostic marker and opportunities for future research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcinoma%20gallbladder" title="carcinoma gallbladder">carcinoma gallbladder</a>, <a href="https://publications.waset.org/abstracts/search?q=downregulation" title=" downregulation"> downregulation</a>, <a href="https://publications.waset.org/abstracts/search?q=MiRNA-335" title=" MiRNA-335"> MiRNA-335</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-PCR%20assay" title=" RT-PCR assay"> RT-PCR assay</a> </p> <a href="https://publications.waset.org/abstracts/46961/expression-of-mirna-335-in-gall-bladder-cancer-a-correlative-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Modeling the Intricate Relationship between miRNA Dysregulation and Breast Cancer Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajed%20Sarabandi">Sajed Sarabandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Rostampour%20Vajari"> Mostafa Rostampour Vajari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Breast cancer is the most frequent form of cancer among women and the fifth-leading cause of cancer-related deaths. A common feature of cancer cells is their ability to survive and evade apoptosis. Understanding the mechanisms of these pathways and their regulatory factors can lead to the development of effective treatment strategies. In this study, we aim to model the effect of key miRNAs, which are significant regulatory factors in breast cancer. We designed a Petri net focusing on two crucial pathways, proliferation, and apoptosis, and identified the role of miRNAs in these pathways. Our analysis indicates that the upregulation of miRNAs 99a and 372 can effectively increase apoptosis and decrease proliferation. Moreover, we demonstrate that miRNA-600, previously reported as a potential candidate for treatment, may not be a suitable target due to its dual activity in proliferation. Therefore, further research is required to investigate the potential of this miRNA in cancer treatment. Our model shows that a combination of miRNA upregulation and knockdown can efficiently influence key genes such as MDM2 and PTEN, leading to the activation of apoptosis in cancer cells. Ultimately, our model successfully simulates the connection between regulatory miRNAs and key genes in breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNAs" title=" microRNAs"> microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=bio-modeling" title=" bio-modeling"> bio-modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=Petri%20net" title=" Petri net"> Petri net</a> </p> <a href="https://publications.waset.org/abstracts/192992/modeling-the-intricate-relationship-between-mirna-dysregulation-and-breast-cancer-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">28</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> The Comparison of Chromium Ions Release Stainless Steel 18-8 between Artificial Saliva and Black Tea Leaves Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nety%20Trisnawaty">Nety Trisnawaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani"> Mirna Febriani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of stainless steel wires in the field of dentistry is widely used, especially for orthodontic and prosthodontic treatment using stainless steel wire. The oral cavity is the ideal environment for corrosion, which can be caused by saliva. Prevention of corrosion on stainless steel wires can be done by using an organic or non-organic corrosion inhibitor. One of the organic inhibitors that can be used to prevent corrosion is black tea leaves extracts. To explain the comparison of chromium ions release for stainlees steel between artificial saliva and black tea leaves extracts. In this research we used artificial saliva, black tea leaves extracts, stainless steel wire and using Atomic Absorption Spectrophometric testing machine. The samples were soaked for 1, 3, 7 and 14 days in the artificial saliva and black tea leaves extracts. The results showed the difference of chromium ion release soaked in artificial saliva and black tea leaves extracts on days 1, 3, 7 and 14. Statistically, calculation with independent T-test with p < 0,05 showed a significant difference. The longer the duration of days, the more ion chromium were released. The conclusion of this study shows that black tea leaves extracts can inhibit the corrosion rate of stainless steel wires. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chromium%20ion" title="chromium ion">chromium ion</a>, <a href="https://publications.waset.org/abstracts/search?q=stainless%20steel" title=" stainless steel"> stainless steel</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20saliva" title=" artificial saliva"> artificial saliva</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20tea%20leaves%20extracts" title=" black tea leaves extracts"> black tea leaves extracts</a> </p> <a href="https://publications.waset.org/abstracts/94605/the-comparison-of-chromium-ions-release-stainless-steel-18-8-between-artificial-saliva-and-black-tea-leaves-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> Increase in Specificity of MicroRNA Detection by RT-qPCR Assay Using a Specific Extension Sequence </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Jin%20Kim">Kyung Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Kwak"> Jiwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hoon%20Lee"> Jae-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Suk%20Lee"> Soo Suk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We describe an innovative method for highly specific detection of miRNAs using a specially modified method of poly(A) adaptor RT-qPCR. We use uniquely designed specific extension sequence, which plays important role in providing an opportunity to affect high specificity of miRNA detection. This method involves two steps of reactions as like previously reported and which are poly(A) tailing and reverse-transcription followed by real-time PCR. Firstly, miRNAs are extended by a poly(A) tailing reaction and then converted into cDNA. Here, we remarkably reduced the reaction time by the application of short length of poly(T) adaptor. Next, cDNA is hybridized to the 3’-end of a specific extension sequence which contains miRNA sequence and results in producing a novel PCR template. Thereafter, the SYBR Green-based RT-qPCR progresses with a universal poly(T) adaptor forward primer and a universal reverse primer. The target miRNA, miR-106b in human brain total RNA, could be detected quantitatively in the range of seven orders of magnitude, which demonstrate that the assay displays a dynamic range of at least 7 logs. In addition, the better specificity of this novel extension-based assay against well known poly(A) tailing method for miRNA detection was confirmed by melt curve analysis of real-time PCR product, clear gel electrophoresis and sequence chromatogram images of amplified DNAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA%28miRNA%29" title="microRNA(miRNA)">microRNA(miRNA)</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20extension%20sequence" title=" specific extension sequence"> specific extension sequence</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-qPCR" title=" RT-qPCR"> RT-qPCR</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28A%29%20tailing%20assay" title=" poly(A) tailing assay"> poly(A) tailing assay</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20transcription" title=" reverse transcription"> reverse transcription</a> </p> <a href="https://publications.waset.org/abstracts/66836/increase-in-specificity-of-microrna-detection-by-rt-qpcr-assay-using-a-specific-extension-sequence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">67</span> A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niousha%20Bagheri%20Khulenjani">Niousha Bagheri Khulenjani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saniee%20Abadeh"> Mohammad Saniee Abadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20classification" title="cancer classification">cancer classification</a>, <a href="https://publications.waset.org/abstracts/search?q=feature%20selection" title=" feature selection"> feature selection</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/113624/a-hybrid-feature-selection-and-deep-learning-algorithm-for-cancer-disease-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">66</span> In Silico Analysis of Salivary miRNAs to Identify the Diagnostic Biomarkers for Oral Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andleeb%20Zahra">Andleeb Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Itrat%20Rubab"> Itrat Rubab</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaira%20Malik"> Sumaira Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Khan"> Amina Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Jawad%20Khan"> Muhammad Jawad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Qaiser%20Fatmi"> M. Qaiser Fatmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oral squamous cell carcinoma (OSCC) is one of the most common cancers worldwide. Recent studies have highlighted the role of miRNA in disease pathology, indicating its potential use in an early diagnostic tool. miRNAs are small, double stranded, non-coding RNAs that regulate gene expression by deregulating mRNAs. miRNAs play important roles in modifying various cellular processes such as cell growth, differentiation, apoptosis, and immune response. Dis-regulated expression of miRNAs is known to affect the cell growth, and this may function as tumor suppressors or oncogenes in various cancers. Objectives: The main objectives of this study were to characterize the extracellular miRNAs involved in oral cancer (OC) to assist early detection of cancer as well as to propose a list of genes that can potentially be used as biomarkers of OC. We used gene expression data by microarrays already available in literature. Materials and Methods: In the first step, a total of 318 miRNAs involved in oral carcinoma were shortlisted followed by the prediction of their target genes. Simultaneously, the differentially expressed genes (DEGs) of oral carcinoma from all experiments were identified. The common genes between lists of DEGs of OC based on experimentally proven data and target genes of each miRNA were identified. These common genes are the targets of specific miRNA, which is involved in OC. Finally, a list of genes was generated which may be used as biomarker of OC. Results and Conclusion: In results, we included some of pathways in cancer to show the change in gene expression under the control of specific miRNA. Ingenuity pathway analysis (IPA) provided a list of major biomarkers like CDH2, CDK7 and functional enrichment analysis identified the role of miRNA in major pathways like cell adhesion molecules pathway affected by cancer. We observed that at least 25 genes are regulated by maximum number of miRNAs, and thereby, they can be used as biomarkers of OC. To better understand the role of miRNA with respect to their target genes further experiments are required, and our study provides a platform to better understand the miRNA-OC relationship at genomics level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20carcinoma" title=" oral carcinoma"> oral carcinoma</a> </p> <a href="https://publications.waset.org/abstracts/39983/in-silico-analysis-of-salivary-mirnas-to-identify-the-diagnostic-biomarkers-for-oral-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39983.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">65</span> In Vivo Investigation of microRNA Expression and Function at the Mammalian Synapse by AGO-APP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Surbhi%20Surbhi">Surbhi Surbhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Erni"> Andrea Erni</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunter%20Meister"> Gunter Meister</a>, <a href="https://publications.waset.org/abstracts/search?q=Harold%20Cremer"> Harold Cremer</a>, <a href="https://publications.waset.org/abstracts/search?q=Christophe%20Beclin"> Christophe Beclin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are short 20-23 nucleotide long non-coding RNAs; there are 2605 miRNA in humans and 1936 miRNA in mouse in total (miRBase). The nervous system expresses the most abundant miRNA and most diverse. MiRNAs play a role in many steps during neurogenesis, like cell proliferation, differentiation, neural patterning, axon pathfinding, etc. Moreover, in vitro studies suggested a role in the regulation of local translation at the synapse, thus controlling neuronal plasticity. However, due to the specific structure of miRNA molecules, an in-vivo confirmation of the general role of miRNAs in the control of neuronal plasticity is still pending. For example, their small size and their high level of sequence homology make difficult the analysis of their cellular and sub-cellular localization in-vivo by in-situ hybridization. Moreover, it was found that only 40% of the expressed miRNA molecules in a cell are included in RNA-Induced Silencing Complexes (RISC) and, therefore, involved in inhibitory interactions while the rest is silent. Definitively, the development of new tools is needed to have a better understanding of the cellular function of miRNAs, in particular their role in neuronal plasticity. Here we describe a new technique called in-vivo AGO-APP designed to investigate miRNA expression and function in-vivo. This technique is based on the expression of a small peptide derived from the human RISC-complex protein TNRC6B, called T6B, which binds all known Argonaute (Ago) proteins with high affinity allowing the efficient immunoprecipitation of AGO-bound miRNAs. We have generated two transgenic mouse lines conditionally expressing T6B either ubiquitously in the cell or targeted at the synapse. A comparison of the repertoire of miRNAs immuno-precipitated from mature neurons of both mouse lines will provide us with a list of miRNAs showing a specific activity at the synapse. The physiological role of these miRNAs will be subsequently addressed through gain and loss of function experiments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RNA-induced%20silencing%20complexes" title="RNA-induced silencing complexes">RNA-induced silencing complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=TNRC6B" title=" TNRC6B"> TNRC6B</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=argonaute" title=" argonaute"> argonaute</a>, <a href="https://publications.waset.org/abstracts/search?q=synapse" title=" synapse"> synapse</a>, <a href="https://publications.waset.org/abstracts/search?q=neuronal%20plasticity" title=" neuronal plasticity"> neuronal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurogenesis" title=" neurogenesis"> neurogenesis</a> </p> <a href="https://publications.waset.org/abstracts/155817/in-vivo-investigation-of-microrna-expression-and-function-at-the-mammalian-synapse-by-ago-app" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155817.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">64</span> MicroRNA Differential Profiling in Hepatitis C Patients Undergoing Major Surgeries: Propofol versus Sevoflurane Anesthesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hala%20Demerdash">Hala Demerdash</a>, <a href="https://publications.waset.org/abstracts/search?q=Ola%20M.%20Zanaty"> Ola M. Zanaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Emad%20Eldin%20Arida"> Emad Eldin Arida</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: This study investigated the micoRNA expression changes induced by Sevoflurane and Propofol and their effects on liver functions. Patients and methods: The study was designed as randomized controlled study, carried out on 200 adult patients, scheduled for major surgeries under general anesthesia (GA). Patients were randomly divided into four groups; groups SC and PC included chronic hepatitis C (CHC) patients where SC group are patients receiving Sevoflurane, and PC group are patients receiving Propofol anesthesia. While S and P groups included non- hepatitis patients; S group are patients receiving Sevoflurane and P group are patients receiving Propofol. Anesthesia in Group S and SC patients was maintained by sevoflurane, while anesthesia in Group P and PC patients was maintained by propofol infusion. Blood samples were analyzed for PT, PTT and liver enzymes. Serum samples were analyzed for microRNA before and after surgery. Results: Results show miRNA-122 and miRNA-21 were absent in serum of S and P groups in pre-operative samples. However, they were expressed in SC and PC groups. In post-operative samples; miRNA-122 revealed an increased expression in all groups; with more exaggerated response in SC group. On the other hand miRNA-21 revealed increased expression in both SC and PC groups; a slight expression in S group with absent expression in P group. There was a post-operative negative correlation between miR-122 and ALT (r=-0.46) in SC group and (r=-0.411) in PC group and positive correlation between ALT and miR-21 (r=0.335) in SC group and (r=0.379) in PC group. The amount of blood loss was positively correlated with miR-122 (r=0.366) in SC group and (r=0.384) in PC group. Conclusion: Propofol anesthesia is safer than Sevoflurane anesthesia in patients with CHC. Sevoflurane and Propofol anesthesia affect miRNA expression in both CHC and non-hepatitis patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anesthesia" title="anesthesia">anesthesia</a>, <a href="https://publications.waset.org/abstracts/search?q=chronic%20hepatitis%20C" title=" chronic hepatitis C"> chronic hepatitis C</a>, <a href="https://publications.waset.org/abstracts/search?q=micoRNA" title=" micoRNA"> micoRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=propofol" title=" propofol"> propofol</a>, <a href="https://publications.waset.org/abstracts/search?q=sevoflurane" title=" sevoflurane"> sevoflurane</a> </p> <a href="https://publications.waset.org/abstracts/42677/microrna-differential-profiling-in-hepatitis-c-patients-undergoing-major-surgeries-propofol-versus-sevoflurane-anesthesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42677.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">63</span> A Kernel-Based Method for MicroRNA Precursor Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Liu">Bin Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gapped%20k-mer" title="gapped k-mer">gapped k-mer</a>, <a href="https://publications.waset.org/abstracts/search?q=imiRNA-GSSC" title=" imiRNA-GSSC"> imiRNA-GSSC</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20precursor" title=" microRNA precursor"> microRNA precursor</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a> </p> <a href="https://publications.waset.org/abstracts/77955/a-kernel-based-method-for-microrna-precursor-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">62</span> Aza-Flavanones as Small Molecule Inhibitors of MicroRNA-10b in MDA-MB-231 Breast Cancer Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debasmita%20Mukhopadhyay">Debasmita Mukhopadhyay</a>, <a href="https://publications.waset.org/abstracts/search?q=Manika%20Pal%20Bhadra"> Manika Pal Bhadra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MiRNAs contribute to oncogenesis either as tumor suppressors or oncogenes. Hence, discovery of miRNA-based therapeutics are imperative to ameliorate cancer. Modulation of miRNA maturation is accomplished via several therapeutic agents, including small molecules and oligonucleotides. Due to the attractive pharmacokinetic properties of small molecules over oligonucleotides, we set to identify small molecule inhibitors of a metastasis-inducing microRNA. Cytotoxicity profile of aza-flavanone C1 was analyzed in a panel of breast cancer cells employing the NCI-60 screen protocols. Flow cytometry, immunofluorescence and western blotting of apoptotic or EMT markers were performed to analyze the effect of C1. A dual luciferase assay unequivocally suggested that C1 repressed endogenous miR-10b in MDA-MB-231 cells. A derivative of aza-flavanone C1 is shown as a strong inhibitor miR-10b. Blockade of miR-10b by C1 resulted in decreased expression of miR-10b targets in an aggressive breast cancer cell line model, MDA-MB-231. Abrogation of TWIST1, an EMT-inducing transcription factor also contributed to C1 mediated apoptosis. Moreover C1 exhibited a specific and selective down-regulation of miR-10b and did not function as a general inhibitor of miRNA biogenesis or other oncomiRs of breast carcinoma. Aza-flavanone congener C1 functions as a potent inhibitor of the metastasis-inducing microRNA, miR-10b. Our present study provides evidence for targeting metastasis-inducing microRNA, miR-10b with a derivative of Aza-flavanone. Better pharmacokinetic properties of small molecules place them as attractive agents compared to nucleic acids based therapies to target miRNA. Further work, in generating analogues based on aza-flavanone moieties will significantly improve the affinity of the small molecules to bind miR-10b. Finally, it is imperative to develop small molecules as novel miRNA-therapeutics in the fight against cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA" title=" microRNA"> microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=metastasis" title=" metastasis"> metastasis</a>, <a href="https://publications.waset.org/abstracts/search?q=EMT" title=" EMT "> EMT </a> </p> <a href="https://publications.waset.org/abstracts/23183/aza-flavanones-as-small-molecule-inhibitors-of-microrna-10b-in-mda-mb-231-breast-cancer-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">564</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">61</span> MicroRNA-1246 Expression Associated with Resistance to Oncogenic BRAF Inhibitors in Mutant BRAF Melanoma Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Hyeon%20Kim">Jae-Hyeon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Lee"> Michael Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Intrinsic and acquired resistance limits the therapeutic benefits of oncogenic BRAF inhibitors in melanoma. MicroRNAs (miRNA) regulate the expression of target mRNAs by repressing their translation. Thus, we investigated miRNA expression patterns in melanoma cell lines to identify candidate biomarkers for acquired resistance to BRAF inhibitor. Here, we used Affymetrix miRNA V3.0 microarray profiling platform to compare miRNA expression levels in three cell lines containing BRAF inhibitor-sensitive A375P BRAF V600E cells, their BRAF inhibitor-resistant counterparts (A375P/Mdr), and SK-MEL-2 BRAF-WT cells with intrinsic resistance to BRAF inhibitor. The miRNAs with at least a two-fold change in expression between BRAF inhibitor-sensitive and –resistant cell lines, were identified as differentially expressed. Averaged intensity measurements identified 138 and 217 miRNAs that were differentially expressed by 2 fold or more between: 1) A375P and A375P/Mdr; 2) A375P and SK-MEL-2, respectively. The hierarchical clustering revealed differences in miRNA expression profiles between BRAF inhibitor-sensitive and –resistant cell lines for miRNAs involved in intrinsic and acquired resistance to BRAF inhibitor. In particular, 43 miRNAs were identified whose expression was consistently altered in two BRAF inhibitor-resistant cell lines, regardless of intrinsic and acquired resistance. Twenty five miRNAs were consistently upregulated and 18 downregulated more than 2-fold. Although some discrepancies were detected when miRNA microarray data were compared with qPCR-measured expression levels, qRT-PCR for five miRNAs (miR-3617, miR-92a1, miR-1246, miR-1936-3p, and miR-17-3p) results showed excellent agreement with microarray experiments. To further investigate cellular functions of miRNAs, we examined effects on cell proliferation. Synthetic oligonucleotide miRNA mimics were transfected into three cell lines, and proliferation was quantified using a colorimetric assay. Of the 5 miRNAs tested, only miR-1246 altered cell proliferation of A375P/Mdr cells. The transfection of miR-1246 mimic strongly conferred PLX-4720 resistance to A375P/Mdr cells, implying that miR-1246 upregulation confers acquired resistance to BRAF inhibition. We also found that PLX-4720 caused much greater G2/M arrest in A375P/Mdr cells transfected with miR-1246mimic than that seen in scrambled RNA-transfected cells. Additionally, miR-1246 mimic partially caused a resistance to autophagy induction by PLX-4720. These results indicate that autophagy does play an essential death-promoting role inPLX-4720-induced cell death. Taken together, these results suggest that miRNA expression profiling in melanoma cells can provide valuable information for a network of BRAF inhibitor resistance-associated miRNAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA" title="microRNA">microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=BRAF%20inhibitor" title=" BRAF inhibitor"> BRAF inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/50223/microrna-1246-expression-associated-with-resistance-to-oncogenic-braf-inhibitors-in-mutant-braf-melanoma-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">60</span> Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Kellner">Kevin Kellner</a>, <a href="https://publications.waset.org/abstracts/search?q=Nga%20Lao"> Nga Lao</a>, <a href="https://publications.waset.org/abstracts/search?q=Orla%20Coleman"> Orla Coleman</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Meleady"> Paula Meleady</a>, <a href="https://publications.waset.org/abstracts/search?q=Niall%20Barron"> Niall Barron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20Hamster%20ovary%20cells" title="Chinese Hamster ovary cells">Chinese Hamster ovary cells</a>, <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title=" CRISPR/Cas9"> CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNAs" title=" microRNAs"> microRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge%20decoy%20technology" title=" sponge decoy technology"> sponge decoy technology</a> </p> <a href="https://publications.waset.org/abstracts/75484/improving-the-bioprocess-phenotype-of-chinese-hamster-ovary-cells-using-crisprcas9-and-sponge-decoy-mediated-mirna-knockdowns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75484.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">59</span> miCoRe: Colorectal Cancer miRNAs Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Agarwal">Rahul Agarwal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Singh"> Ashutosh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Colorectal cancer (CRC) also refers as bowel cancer or colon cancer. It involves the development of abnormal growth of cells in colon or rectum part of the body. This work leads to the development of a miRNA database in colorectal cancer. We named this database- miCoRe. This database comprises of all validated colon-rectal cancer miRNAs information from various published literature with an effectual knowledge based information retrieval system. miRNAs have been collected from various published literature reports. MySQL is used for main-framework of miCoRe while the front-end was developed in PHP script. The aim of developing miCoRe is to create a comprehensive central repository of colorectal carcinoma miRNAs with all germane information of miRNAs and their target genes. The current version of miCoRe consists of 238 miRNAs which are known to be implicated in malignancy of CRC. Alongside with miRNA information, miCoRe also contains the information related to the target genes of these miRNA. miCoRe furnishes the information about the mechanism of incidence and progression of the disease, which would further help the researchers to look for colorectal specific miRNAs therapies and CRC specific targeted drug designing. Moreover, it will also help in development of biomarkers for the better and early detection of CRC and will help in better clinical management of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=colorectal%20cancer" title="colorectal cancer">colorectal cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=database" title=" database"> database</a>, <a href="https://publications.waset.org/abstracts/search?q=miCoRe" title=" miCoRe"> miCoRe</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/72940/micore-colorectal-cancer-mirnas-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">58</span> Breast Cancer: The Potential of miRNA for Diagnosis and Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Pourreza">Abbas Pourreza</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=HER2%20positive" title=" HER2 positive"> HER2 positive</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=TNBC" title=" TNBC"> TNBC</a> </p> <a href="https://publications.waset.org/abstracts/145673/breast-cancer-the-potential-of-mirna-for-diagnosis-and-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145673.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">57</span> Serum MicroRNA and Inflammatory Mediators: Diagnostic Biomarkers for Endometritis in Arabian Mares</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sally%20Ibrahim">Sally Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hedia"> Mohamed Hedia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Taqi"> Mohamed Taqi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Derbala"> Mohamed Derbala</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Mahmoud"> Karima Mahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20%20Ahmed"> Youssef Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Ismail"> Sayed Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20El-Belely"> Mohamed El-Belely</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The identification and quantification of serum microRNA (miRNA) from mares with endometritis might serve as useful and implementable clinical biomarkers for the early diagnosis of endometiritis. Aims of the current study were (I) to study the expression pattern of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205, and (II) to determine the levels of interleukin 6 (IL-6), prostaglandins (PGF₂α and PGE₂), in the serum of Arabian mares with healthy and abnormal uterine status (endometritis). This study was conducted on 80 Arabian mares (4-14 years old). Mares were divided into 48 sub-fertile mares suspected of endometritis and 32 fertile at stud farms. The criteria for mares to be enrolled in the endometritis group were that they had been bred three or more times unsuccessfully in the breeding season or had a history of more than one year of reproductive failure. In addition, two or more of the following criteria on a checklist were present: abnormal clinical findings, transrectal ultrasonographic uterine examination showed abnormal fluid in the uterus (echogenic or ≥2 cm in diameter), positive endometrial cytology; and bacterial and/or fungal growth. Serum samples were collected for measuring IL-6, PGF₂α, and PGE₂ concentrations, as well as serum miRNA isolation and quantitative real-time PCR. Serum concentrations of IL-6, PGE₂, and PGF₂α were higher (P ≤ 0.001) in mares with endometritis compared to the control healthy ones. The expression profile of eca-miR-155, eca-miR-223, eca-miR-17, eca-miR-200a, and eca-miR-205 increased (P≤0.001) in mares with endometritis compared to the control ones. To the best of our knowledge, this is the first study that revealed that serum miRNA and serum inflammatory mediators (IL-6, PGE₂, and PGF₂α) could be used as non-invasive gold standard biomarkers, and therefore might be served as an important additional diagnostic tool for endometritis in Arabian mares. Moreover, estimation of the serum concentrations of serum miRNA, IL-6, PGE₂, and PGF₂α is a promising recommended tool during the breeding soundness examination in mares. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arabian%20Mares" title="Arabian Mares">Arabian Mares</a>, <a href="https://publications.waset.org/abstracts/search?q=endometritis" title=" endometritis"> endometritis</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammatory%20mediators" title=" inflammatory mediators"> inflammatory mediators</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20miRNA" title=" serum miRNA "> serum miRNA </a> </p> <a href="https://publications.waset.org/abstracts/134942/serum-microrna-and-inflammatory-mediators-diagnostic-biomarkers-for-endometritis-in-arabian-mares" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134942.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">56</span> Testicular Differential MicroRNA Expression Derived Occupational Risk Factor Assessment in Idiopathic Non-obstructive Azoospermia Cases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nisha%20Sharma">Nisha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mili%20Kaur"> Mili Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Halder"> Ashutosh Halder</a>, <a href="https://publications.waset.org/abstracts/search?q=Seema%20Kaushal"> Seema Kaushal</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Kumar"> Manoj Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Manish%20Jain"> Manish Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To investigate microRNAs (miRNA) as an epigenomic etiological factor in idiopathic non-obstructive azoospermia (NOA). In order to achieve the same, an association was seen between occupational exposure to radiation, thermal, and chemical factors and idiopathic cases of non-obstructive azoospermia, and later, testicular differential miRNA expression profiling was done in exposure group NOA cases. Method: It is a prospective study in which 200 apparent idiopathic male factor infertility cases, who have been advised to undergo testicular fine needle aspiration (FNA) evaluation, are recruited. A detailed occupational history was taken to understand the possible type of exposure due to the nature and duration of work. A total of 26 patients were excluded upon XY-FISH and Yq microdeletion tests due to the presence of genetic causes of infertility, 6 hypospermatogeneis (HS), six Sertoli cell-only syndrome (SCOS), and six normospermatogeneis patients testicular FNA samples were used for RNA isolation followed by small RNA sequencing and nCounter miRNA expression analysis. Differential miRNA expression profile of HS and SCOS patients was done. A web-based tool, miRNet, was used to predict the interacting compounds or chemicals using the shortlisted miRNAs with high fold change. The major limitation encountered in this study was the insufficient quantity of testicular FNA sample used for total RNA isolation, which resulted in a low yield and RNA integrity number (RIN) value. Therefore, the number of RNA samples admissible for differential miRNA expression analysis was very small in comparison to the total number of patients recruited. Results: Differential expression analysis revealed 69 down-regulated and 40 up-regulated miRNAs in HS and 66 down-regulated and 33 up-regulated miRNAs in SCOS in comparison to normospermatogenesis controls. The miRNA interaction analysis using the miRNet tool showed that the differential expression profiles of HS and SCOS patients were associated with arsenic trioxide, bisphenol-A, calcium sulphate, lithium, and cadmium. These compounds are reproductive toxins and might be responsible for miRNA-mediated epigenetic deregulation leading to NOA. The association between occupational risk factor exposure and the non-exposure group of NOA patients was not statistically significant, with ꭓ2 (3, N= 178) = 6.70, p= 0.082. The association between individual exposure groups (radiation, thermal, and chemical) and various sub-types of NOA is also not significant, with ꭓ2 (9, N= 178) = 15.06, p= 0.089. Functional analysis of HS and SCOS patients' miRNA profiles revealed some important miR-family members in terms of male fertility. The miR-181 family plays a role in the differentiation of spermatogonia and spermatocytes, as well as the transcriptional regulation of haploid germ cells. The miR-34 family is expressed in spermatocytes and round spermatids and is involved in the regulation of SSCs differentiation. Conclusion: The reproductive toxins might adopt the miRNA-mediated mechanism of disease development in idiopathic cases of NOA. Chemical compound induced; miRNA-mediated epigenetic deregulation can give a future perspective on the etiopathogenesis of the disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA" title="microRNA">microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=non-obstructive%20azoospermia%20%28NOA%29" title=" non-obstructive azoospermia (NOA)"> non-obstructive azoospermia (NOA)</a>, <a href="https://publications.waset.org/abstracts/search?q=occupational%20exposure" title=" occupational exposure"> occupational exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=hypospermatogenesis%20%28HS%29" title=" hypospermatogenesis (HS)"> hypospermatogenesis (HS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Sertoli%20cell%20only%20syndrome%20%28SCOS%29" title=" Sertoli cell only syndrome (SCOS)"> Sertoli cell only syndrome (SCOS)</a> </p> <a href="https://publications.waset.org/abstracts/163213/testicular-differential-microrna-expression-derived-occupational-risk-factor-assessment-in-idiopathic-non-obstructive-azoospermia-cases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163213.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">55</span> Real-Time Quantitative Polymerase Chain Reaction Assay for the Detection of microRNAs Using Bi-Directional Extension Sequences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung%20Jin%20Kim">Kyung Jin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Kwak"> Jiwon Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hoon%20Lee"> Jae-Hoon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Soo%20Suk%20Lee"> Soo Suk Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs (miRNA) are a class of endogenous, single-stranded, small, and non-protein coding RNA molecules typically 20-25 nucleotides long. They are thought to regulate the expression of other genes in a broad range by binding to 3’- untranslated regions (3’-UTRs) of specific mRNAs. The detection of miRNAs is very important for understanding of the function of these molecules and in the diagnosis of variety of human diseases. However, detection of miRNAs is very challenging because of their short length and high sequence similarities within miRNA families. So, a simple-to-use, low-cost, and highly sensitive method for the detection of miRNAs is desirable. In this study, we demonstrate a novel bi-directional extension (BDE) assay. In the first step, a specific linear RT primer is hybridized to 6-10 base pairs from the 3’-end of a target miRNA molecule and then reverse transcribed to generate a cDNA strand. After reverse transcription, the cDNA was hybridized to the 3’-end which is BDE sequence; it played role as the PCR template. The PCR template was amplified in an SYBR green-based quantitative real-time PCR. To prove the concept, we used human brain total RNA. It could be detected quantitatively in the range of seven orders of magnitude with excellent linearity and reproducibility. To evaluate the performance of BDE assay, we contrasted sensitivity and specificity of the BDE assay against a commercially available poly (A) tailing method using miRNAs for let-7e extracted from A549 human epithelial lung cancer cells. The BDE assay displayed good performance compared with a poly (A) tailing method in terms of specificity and sensitivity; the CT values differed by 2.5 and the melting curve showed a sharper than poly (A) tailing methods. We have demonstrated an innovative, cost-effective BDE assay that allows improved sensitivity and specificity in detection of miRNAs. Dynamic range of the SYBR green-based RT-qPCR for miR-145 could be represented quantitatively over a range of 7 orders of magnitude from 0.1 pg to 1.0 μg of human brain total RNA. Finally, the BDE assay for detection of miRNA species such as let-7e shows good performance compared with a poly (A) tailing method in terms of specificity and sensitivity. Thus BDE proves a simple, low cost, and highly sensitive assay for various miRNAs and should provide significant contributions in research on miRNA biology and application of disease diagnostics with miRNAs as targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bi-directional%20extension%20%28BDE%29" title="bi-directional extension (BDE)">bi-directional extension (BDE)</a>, <a href="https://publications.waset.org/abstracts/search?q=microRNA%20%28miRNA%29" title=" microRNA (miRNA)"> microRNA (miRNA)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28A%29%20tailing%20assay" title=" poly (A) tailing assay"> poly (A) tailing assay</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20transcription" title=" reverse transcription"> reverse transcription</a>, <a href="https://publications.waset.org/abstracts/search?q=RT-qPCR" title=" RT-qPCR"> RT-qPCR</a> </p> <a href="https://publications.waset.org/abstracts/84518/real-time-quantitative-polymerase-chain-reaction-assay-for-the-detection-of-micrornas-using-bi-directional-extension-sequences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84518.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">166</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">54</span> Prediction of MicroRNA-Target Gene by Machine Learning Algorithms in Lung Cancer Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nilubon%20Kurubanjerdjit">Nilubon Kurubanjerdjit</a>, <a href="https://publications.waset.org/abstracts/search?q=Nattakarn%20Iam-On"> Nattakarn Iam-On</a>, <a href="https://publications.waset.org/abstracts/search?q=Ka-Lok%20Ng"> Ka-Lok Ng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MicroRNAs are small non-coding RNA found in many different species. They play crucial roles in cancer such as biological processes of apoptosis and proliferation. The identification of microRNA-target genes can be an essential first step towards to reveal the role of microRNA in various cancer types. In this paper, we predict miRNA-target genes for lung cancer by integrating prediction scores from miRanda and PITA algorithms used as a feature vector of miRNA-target interaction. Then, machine-learning algorithms were implemented for making a final prediction. The approach developed in this study should be of value for future studies into understanding the role of miRNAs in molecular mechanisms enabling lung cancer formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microRNA" title="microRNA">microRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%C3%AFve%20Bayes" title=" Naïve Bayes"> Naïve Bayes</a>, <a href="https://publications.waset.org/abstracts/search?q=SVM" title=" SVM"> SVM</a> </p> <a href="https://publications.waset.org/abstracts/41904/prediction-of-microrna-target-gene-by-machine-learning-algorithms-in-lung-cancer-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> LncRNA-miRNA-mRNA Networks Associated with BCR-ABL T315I Mutation in Chronic Myeloid Leukemia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adenike%20Adesanya">Adenike Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Nonthaphat%20Wong"> Nonthaphat Wong</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiang-Yun%20Lan"> Xiang-Yun Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shea%20Ping%20Yip"> Shea Ping Yip</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Ling%20Huang"> Chien-Ling Huang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The most challenging mutation of the oncokinase BCR-ABL protein T315I, which is commonly known as the “gatekeeper” mutation and is notorious for its strong resistance to almost all tyrosine kinase inhibitors (TKIs), especially imatinib. Therefore, this study aims to identify T315I-dependent downstream microRNA (miRNA) pathways associated with drug resistance in chronic myeloid leukemia (CML) for prognostic and therapeutic purposes. Methods: T315I-carrying K562 cell clones (K562-T315I) were generated by the CRISPR-Cas9 system. Imatinib-treated K562-T315I cells were subjected to small RNA library preparation and next-generation sequencing. Putative lncRNA-miRNA-mRNA networks were analyzed with (i) DESeq2 to extract differentially expressed miRNAs, using Padj value of 0.05 as cut-off, (ii) STarMir to obtain potential miRNA response element (MRE) binding sites of selected miRNAs on lncRNA H19, (iii) miRDB, miRTarbase, and TargetScan to predict mRNA targets of selected miRNAs, (iv) IntaRNA to obtain putative interactions between H19 and the predicted mRNAs, (v) Cytoscape to visualize putative networks, and (vi) several pathway analysis platforms – Enrichr, PANTHER and ShinyGO for pathway enrichment analysis. Moreover, mitochondria isolation and transcript quantification were adopted to determine the new mechanism involved in T315I-mediated resistance of CML treatment. Results: Verification of the CRISPR-mediated mutagenesis with digital droplet PCR detected the mutation abundance of ≥80%. Further validation showed the viability of ≥90% by cell viability assay, and intense phosphorylated CRKL protein band being detected with no observable change for BCR-ABL and c-ABL protein expressions by Western blot. As reported by several investigations into hematological malignancies, we determined a 7-fold increase of H19 expression in K562-T315I cells. After imatinib treatment, a 9-fold increment was observed. DESeq2 revealed 171 miRNAs were differentially expressed K562-T315I, 112 out of these miRNAs were identified to have MRE binding regions on H19, and 26 out of the 112 miRNAs were significantly downregulated. Adopting the seed-sequence analysis of these identified miRNAs, we obtained 167 mRNAs. 6 hub miRNAs (hsa-let-7b-5p, hsa-let-7e-5p, hsa-miR-125a-5p, hsa-miR-129-5p, and hsa-miR-372-3p) and 25 predicted genes were identified after constructing hub miRNA-target gene network. These targets demonstrated putative interactions with H19 lncRNA and were mostly enriched in pathways related to cell proliferation, senescence, gene silencing, and pluripotency of stem cells. Further experimental findings have also shown the up-regulation of mitochondrial transcript and lncRNA MALAT1 contributing to the lncRNA-miRNA-mRNA networks induced by BCR-ABL T315I mutation. Conclusions: Our results have indicated that lncRNA-miRNA regulators play a crucial role not only in leukemogenesis but also in drug resistance, considering the significant dysregulation and interactions in the K562-T315I cell model generated by CRISPR-Cas9. In silico analysis has further shown that lncRNAs H19 and MALAT1 bear several complementary miRNA sites. This implies that they could serve as a sponge, hence sequestering the activity of the target miRNAs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chronic%20myeloid%20leukemia" title="chronic myeloid leukemia">chronic myeloid leukemia</a>, <a href="https://publications.waset.org/abstracts/search?q=imatinib%20resistance" title=" imatinib resistance"> imatinib resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=lncRNA-miRNA-mRNA" title=" lncRNA-miRNA-mRNA"> lncRNA-miRNA-mRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=T315I%20mutation" title=" T315I mutation"> T315I mutation</a> </p> <a href="https://publications.waset.org/abstracts/148805/lncrna-mirna-mrna-networks-associated-with-bcr-abl-t315i-mutation-in-chronic-myeloid-leukemia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148805.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Mirna Expression Profile is Different in Human Amniotic Mesenchymal Stem Cells Isolated from Obese Respect to Normal Weight Women</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmela%20Nardelli">Carmela Nardelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Iaffaldano"> Laura Iaffaldano</a>, <a href="https://publications.waset.org/abstracts/search?q=Valentina%20Capobianco"> Valentina Capobianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonietta%20Tafuto"> Antonietta Tafuto</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Ferrigno"> Maddalena Ferrigno</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Capone"> Angela Capone</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Maria%20Maruotti"> Giuseppe Maria Maruotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Maddalena%20Raia"> Maddalena Raia</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Di%20Noto"> Rosa Di Noto</a>, <a href="https://publications.waset.org/abstracts/search?q=Luigi%20Del%20Vecchio"> Luigi Del Vecchio</a>, <a href="https://publications.waset.org/abstracts/search?q=Pasquale%20Martinelli"> Pasquale Martinelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucio%20Pastore"> Lucio Pastore</a>, <a href="https://publications.waset.org/abstracts/search?q=Lucia%20Sacchetti"> Lucia Sacchetti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Maternal obesity and nutrient excess in utero increase the risk of future metabolic diseases in the adult life. The mechanisms underlying this process are probably based on genetic, epigenetic alterations and changes in foetal nutrient supply. In mammals, the placenta is the main interface between foetus and mother, it regulates intrauterine development, modulates adaptive responses to sub optimal in uterus conditions and it is also an important source of human amniotic mesenchymal stem cells (hA-MSCs). We previously highlighted a specific microRNA (miRNA) profiling in amnion from obese (Ob) pregnant women, here we compared the miRNA expression profile of hA-MSCs isolated from (Ob) and control (Co) women, aimed to search for any alterations in metabolic pathways that could predispose the new-born to the obese phenotype. Methods: We isolated, at delivery, hA-MSCs from amnion of 16 Ob- and 7 Co-women with pre-pregnancy body mass index (mean/SEM) 40.3/1.8 and 22.4/1.0 kg/m2, respectively. hA-MSCs were phenotyped by flow cytometry. Globally, 384 miRNAs were evaluated by the TaqMan Array Human MicroRNA Panel v 1.0 (Applied Biosystems). By the TargetScan program we selected the target genes of the miRNAs differently expressed in Ob- vs Co-hA-MSCs; further, by KEGG database, we selected the statistical significant biological pathways. Results: The immunophenotype characterization confirmed the mesenchymal origin of the isolated hA-MSCs. A large percentage of the tested miRNAs, about 61.4% (232/378), was expressed in hA-MSCs, whereas 38.6% (146/378) was not. Most of the expressed miRNAs (89.2%, 207/232) did not differ between Ob- and Co-hA-MSCs and were not further investigated. Conversely, 4.8% of miRNAs (11/232) was higher and 6.0% (14/232) was lower in Ob- vs Co-hA-MSCs. Interestingly, 7/232 miRNAs were obesity-specific, being expressed only in hA-MSCs isolated from obese women. Bioinformatics showed that these miRNAs significantly regulated (P<0.001) genes belonging to several metabolic pathways, i.e. MAPK signalling, actin cytoskeleton, focal adhesion, axon guidance, insulin signaling, etc. Conclusions: Our preliminary data highlight an altered miRNA profile in Ob- vs Co-hA-MSCs and suggest that an epigenetic miRNA-based mechanism of gene regulation could affect pathways involved in placental growth and function, thereby potentially increasing the newborn’s risk of metabolic diseases in the adult life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hA-MSCs" title="hA-MSCs">hA-MSCs</a>, <a href="https://publications.waset.org/abstracts/search?q=obesity" title=" obesity"> obesity</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystem" title=" biosystem "> biosystem </a> </p> <a href="https://publications.waset.org/abstracts/23471/mirna-expression-profile-is-different-in-human-amniotic-mesenchymal-stem-cells-isolated-from-obese-respect-to-normal-weight-women" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Mirna%20Febriani&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10