CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 76 results for author: <span class="mathjax">Manoj, P</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Manoj%2C+P">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Manoj, P"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Manoj%2C+P&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Manoj, P"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13701">arXiv:2411.13701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.13701">pdf</a>, <a href="https://arxiv.org/format/2411.13701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Revisiting Constraints on Resonant Axion-Photon Conversions from CMB Spectral Distortions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Cyr%2C+B">Bryce Cyr</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chluba%2C+J">Jens Chluba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P+B+G">Pranav Bharadwaj Gangrekalve Manoj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13701v1-abstract-short" style="display: inline;"> Axions and axion-like particles (ALPs) remain highly motivated extensions to the standard model due to their ability to address open questions such as the relic abundance of dark matter and the strong CP problem. Axions are also capable of undergoing a resonant mixing with photons when the masses of the two fields are roughly equal, producing a wide array of phenomenological consequences. Here, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13701v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13701v1-abstract-full" style="display: none;"> Axions and axion-like particles (ALPs) remain highly motivated extensions to the standard model due to their ability to address open questions such as the relic abundance of dark matter and the strong CP problem. Axions are also capable of undergoing a resonant mixing with photons when the masses of the two fields are roughly equal, producing a wide array of phenomenological consequences. Here, we revisit constraints coming from conversions of the cosmic microwave background (CMB) into axions, which will induce a distortion to the frequency spectrum of the background photons. We introduce a more detailed description for the modeling of the plasma mass of the photon, showcasing how the inclusion of Helium recombination can alter the conversion probability for photons in the Wien tail. Our results include an updated analytic framework, which allows us to define the precise spectral shape of the axion distortion, as well as a numeric component which utilized the code \texttt{CosmoTherm} to fully characterize the distortion, providing a slight increase in the constraining power over the analytics. We also treat for the first time the large-distortion regime for resonant axion-photon conversions. Under the assumption of large-scale primordial magnetic fields near the limit obtained from CMB observations, we find that spectral distortions can probe previously unexplored regions of the axion parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13701v1-abstract-full').style.display = 'none'; document.getElementById('2411.13701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures, comments welcome!</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13084">arXiv:2406.13084</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13084">pdf</a>, <a href="https://arxiv.org/format/2406.13084">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Why are (almost) all the protostellar outflows aligned in Serpens Main? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">Joel D. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pontoppidan%2C+K+M">Klaus M. Pontoppidan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reiter%2C+M">Megan Reiter</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shenoy%2C+S+S">Sachindev S. Shenoy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13084v3-abstract-short" style="display: inline;"> We present deep 1.4-4.8 um JWST-NIRCam imaging of the Serpens Main star-forming region and identify 20 candidate protostellar outflows, most with bipolar structure and identified driving sources. The outflow position angles (PAs) are strongly correlated, and aligned within +/- 24 degrees of the major axis of the Serpens filament. These orientations are further aligned with the angular momentum vec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13084v3-abstract-full').style.display = 'inline'; document.getElementById('2406.13084v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13084v3-abstract-full" style="display: none;"> We present deep 1.4-4.8 um JWST-NIRCam imaging of the Serpens Main star-forming region and identify 20 candidate protostellar outflows, most with bipolar structure and identified driving sources. The outflow position angles (PAs) are strongly correlated, and aligned within +/- 24 degrees of the major axis of the Serpens filament. These orientations are further aligned with the angular momentum vectors of the two disk shadows in this region. We estimate that the probability of this number of young stars being co-aligned if sampled from a uniform PA distribution is 10^-4. This in turn suggests that the aligned protostars, which seem to be at similar evolutionary stages based on their outflow dynamics, formed at similar times with a similar spin inherited from a local cloud filament. Further, there is tentative evidence for a systematic change in average position angle between the north-western and south-eastern cluster, as well as increased scatter in the PAs of the south-eastern protostars. SOFIA-HAWC+ archival dust polarization observations of Serpens Main at 154 and 214 um are perpendicular to the dominant jet orientation in NW region in particular. We measure and locate shock knots and edges for all of the outflows and provide an identifying catalog. We suggest that Serpens main is a cluster that formed from an isolated filament, and due to its youth retains its primordial outflow alignment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13084v3-abstract-full').style.display = 'none'; document.getElementById('2406.13084v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16499">arXiv:2404.16499</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.16499">pdf</a>, <a href="https://arxiv.org/format/2404.16499">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Host star properties of hot, warm and cold Jupiters in the solar neighborhood from \textit{Gaia} DR3: clues to formation pathways </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Bihan Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Thomas Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surya%2C+A">Arun Surya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K. Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tripathi%2C+M">Mihir Tripathi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16499v1-abstract-short" style="display: inline;"> Giant planets exhibit diverse orbital properties, hinting at their distinct formation and dynamic histories. In this paper, using $\textit{Gaia}$ DR3, we investigate if and how the orbital properties of Jupiters are linked to their host star properties, particularly their metallicity and age. We obtain metallicities for main sequence stars of spectral type F, G, and K, hosting hot, warm, and cold&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16499v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16499v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16499v1-abstract-full" style="display: none;"> Giant planets exhibit diverse orbital properties, hinting at their distinct formation and dynamic histories. In this paper, using $\textit{Gaia}$ DR3, we investigate if and how the orbital properties of Jupiters are linked to their host star properties, particularly their metallicity and age. We obtain metallicities for main sequence stars of spectral type F, G, and K, hosting hot, warm, and cold Jupiters with varying eccentricities. We compute the velocity dispersion of host stars of these three groups using kinematic information from $\textit{Gaia}$ DR3 and obtain average ages using velocity dispersion-age relation. We find that host stars of hot Jupiters are relatively metal-rich ([Fe/H]=$0.18 \pm 0.13$) and young ( median age $3.97 \pm 0.51$ Gyr) compared to the host stars of cold Jupiters in nearly circular orbits, which are relatively metal-poor ($0.03 \pm 0.18$) and older (median age $6.07 \pm 0.79$ Gyr). Host stars of cold Jupiters in high eccentric orbits, on the other hand, show metallicities similar to that of the hosts of hot Jupiters, but are older, on average (median age $6.25 \pm 0.92$ Gyr). The similarity in metallicity between hosts of hot Jupiters and hosts of cold Jupiters in high eccentric orbits supports high eccentricity migration as the potential origin of hot Jupiters, with the latter serving as the progenitors. However, the average age difference between them suggests that the older hot Jupiters may have been engulfed by the star in a timescale of $\sim 6$ Gyr. This allows us to estimate the value of stellar tidal quality factor $Q&#39;_\ast\sim10^{6\pm1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16499v1-abstract-full').style.display = 'none'; document.getElementById('2404.16499v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.15399">arXiv:2404.15399</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.15399">pdf</a>, <a href="https://arxiv.org/format/2404.15399">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202449785">10.1051/0004-6361/202449785 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST detections of amorphous and crystalline HDO ice toward massive protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+%C5%81">艁ukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yuan Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.15399v1-abstract-short" style="display: inline;"> This work aims to utilize the increased sensitivity and resolution of the JWST to quantify the HDO/H$_{2}$O ratio in ices toward young stellar objects (YSOs) and to determine if the HDO/H$_{2}$O ratios measured in the gas phase toward massive YSOs (MYSOs) are representative of the ratios in their ice envelopes. Two protostars observed in the Investigating Protostellar Accretion (IPA) program using&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15399v1-abstract-full').style.display = 'inline'; document.getElementById('2404.15399v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.15399v1-abstract-full" style="display: none;"> This work aims to utilize the increased sensitivity and resolution of the JWST to quantify the HDO/H$_{2}$O ratio in ices toward young stellar objects (YSOs) and to determine if the HDO/H$_{2}$O ratios measured in the gas phase toward massive YSOs (MYSOs) are representative of the ratios in their ice envelopes. Two protostars observed in the Investigating Protostellar Accretion (IPA) program using JWST NIRSpec were analyzed: HOPS 370, an intermediate-mass YSO (IMYSO), and IRAS 20126+4104, a MYSO. The HDO ice toward these sources was detected above the 3$蟽$ level and quantified via its 4.1 $渭$m band. The contributions from the CH$_{3}$OH combination modes to the observed optical depth in this spectral region were constrained via the CH$_{3}$OH 3.53 $渭$m band to ensure that the integrated optical depth of the HDO feature was not overestimated. H$_{2}$O ice was quantified via its 3 $渭$m band. From these fits, ice HDO/H$_{2}$O abundance ratios of 4.6$\pm$1.8$\times$10$^{-3}$ and 2.6$\pm$1.2$\times$10$^{-3}$ are obtained for HOPS 370 and IRAS 20126+4104, respectively. The simultaneous detections of both crystalline HDO and crystalline H$_{2}$O corroborate the assignment of the observed feature at 4.1 $渭$m to HDO ice. The ice HDO/H$_{2}$O ratios are similar to the highest reported gas HDO/H$_{2}$O ratios measured toward MYSOs as well as the hot inner regions of isolated low-mass protostars, suggesting that at least some of the gas HDO/H$_{2}$O ratios measured toward massive hot cores are representative of the HDO/H$_{2}$O ratios in ices. The need for an H$_{2}$O-rich CH$_{3}$OH component in the CH$_{3}$OH ice analysis supports recent experimental and observational results that indicate that some CH$_{3}$OH ice may form prior to the CO freeze-out stage in H$_{2}$O-rich ice layers. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.15399v1-abstract-full').style.display = 'none'; document.getElementById('2404.15399v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 23 pages, 17 figures, 10 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 688, A29 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.07299">arXiv:2404.07299</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.07299">pdf</a>, <a href="https://arxiv.org/ps/2404.07299">ps</a>, <a href="https://arxiv.org/format/2404.07299">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> JWST/MIRI detection of suprathermal OH rotational emissions: probing the dissociation of the water by Lyman alpha photons near the protostar HOPS 370 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Van+Dishoeck%2C+E+F">Ewine F. Van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y">Yao-Lun Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tychoniec%2C+L">Lukasz Tychoniec</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolk%2C+S">Scott Wolk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.07299v1-abstract-short" style="display: inline;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative str&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'inline'; document.getElementById('2404.07299v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.07299v1-abstract-full" style="display: none;"> Using the MIRI/MRS spectrometer on JWST, we have detected pure rotational, suprathermal OH emissions from the vicinity of the intermediate-mass protostar HOPS 370 (OMC2/FIR3). These emissions are observed from shocked knots in a jet/outflow, and originate in states of rotational quantum number as high as 46 that possess excitation energies as large as $E_U/k = 4.65 \times 10^4$ K. The relative strengths of the observed OH lines provide a powerful diagnostic of the ultraviolet radiation field in a heavily-extinguished region ($A_V \sim 10 - 20$) where direct UV observations are impossible. To high precision, the OH line strengths are consistent with a picture in which the suprathermal OH states are populated following the photodissociation of water in its $\tilde B - X$ band by ultraviolet radiation produced by fast ($\sim 80\,\rm km\,s^{-1}$) shocks along the jet. The observed dominance of emission from symmetric ($A^\prime$) OH states over that from antisymmetric ($A^{\prime\prime}$) states provides a distinctive signature of this particular population mechanism. Moreover, the variation of intensity with rotational quantum number suggests specifically that Ly$伪$ radiation is responsible for the photodissociation of water, an alternative model with photodissociation by a 10$^4$ K blackbody being disfavored at a high level of significance. Using measurements of the Br$伪$ flux to estimate the Ly$伪$ production rate, we find that $\sim 4\%$ of the Ly$伪$ photons are absorbed by water. Combined with direct measurements of water emissions in the $谓_2 = 1 -0$ band, the OH observations promise to provide key constraints on future models for the diffusion of Ly$伪$ photons in the vicinity of a shock front. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.07299v1-abstract-full').style.display = 'none'; document.getElementById('2404.07299v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 7 figures. Accepted for publication in ApJ Letters</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03403">arXiv:2404.03403</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03403">pdf</a>, <a href="https://arxiv.org/format/2404.03403">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> </div> <p class="title is-5 mathjax"> Chandra X-ray Analysis of Herbig Ae/Be Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Anilkumar%2C+H">Hema Anilkumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jithesh%2C+V">V. Jithesh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chavali%2C+M">Mahathi Chavali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03403v1-abstract-short" style="display: inline;"> Herbig Ae/Be (HAeBe) stars are intermediate-mass pre-main sequence stars, characterized by infrared excess and emission lines. They are observed to emit X-rays, whose origin is a matter of discussion and not settled yet. X-ray emission is not expected in HAeBe stars, as they lack the sub-surface convective zone. In this study, we retrieved observations from the Chandra archive for 62 HAeBe stars,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03403v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03403v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03403v1-abstract-full" style="display: none;"> Herbig Ae/Be (HAeBe) stars are intermediate-mass pre-main sequence stars, characterized by infrared excess and emission lines. They are observed to emit X-rays, whose origin is a matter of discussion and not settled yet. X-ray emission is not expected in HAeBe stars, as they lack the sub-surface convective zone. In this study, we retrieved observations from the Chandra archive for 62 HAeBe stars, among which 44 sources (detection fraction $\sim$71%) were detected in X-rays, with 7 being new detections. We use this sample as a test bed to conduct a comparative analysis of the X-ray properties of HAeBe stars and their low-mass counterparts, T Tauri Stars (TTSs). Further, we compare the X-ray properties of HAeBe stars and TTSs with optical and IR properties to constrain the X-ray emission mechanism in HAeBe stars. We found no correlation between X-ray emission and disk properties of HAeBe stars, confirming that X-rays are not related to accretion shocks. About 56% of HAeBe stars without any known sub-arcsec companions have lower plasma temperatures (kT $\leq$ 2 keV). We observe flaring/variability in HAeBe stars with confirmed low-mass companions. These stars show plasma temperatures &gt; 2 keV, similar to TTSs. Guided by this information we discuss the role of a T Tauri companion for X-ray emission seen in our sample of HAeBe stars. From the results obtained in this paper, we suggest that X-ray emission from HAeBe stars may not be related to accretion shocks or hidden TTS, but rather can be due to magnetically driven coronal emission. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03403v1-abstract-full').style.display = 'none'; document.getElementById('2404.03403v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.19478">arXiv:2403.19478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.19478">pdf</a>, <a href="https://arxiv.org/format/2403.19478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> UVIT/AstroSat observation of TW Hya </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K. Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ojha%2C+D+K">D. K. Ojha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baug%2C+T">T. Baug</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+S">S. Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vig%2C+S">S. Vig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamath%2C+U+S">U. S. Kamath</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.19478v1-abstract-short" style="display: inline;"> The paper demonstrates the spectroscopic and photometric capabilities of the Ultra-Violet Imaging Telescope (UVIT) to study T-Tauri stars (TTSs). We present the first UVIT/Far-UV spectrum of a TTS, TW Hya. Based on C IV line luminosity, we estimated accretion luminosity (0.1 $L_\odot$) and mass accretion rate (2.2 $\times$ $10^{-8} M_\odot /yr$) of TW Hya, and compared these values with the accret&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19478v1-abstract-full').style.display = 'inline'; document.getElementById('2403.19478v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.19478v1-abstract-full" style="display: none;"> The paper demonstrates the spectroscopic and photometric capabilities of the Ultra-Violet Imaging Telescope (UVIT) to study T-Tauri stars (TTSs). We present the first UVIT/Far-UV spectrum of a TTS, TW Hya. Based on C IV line luminosity, we estimated accretion luminosity (0.1 $L_\odot$) and mass accretion rate (2.2 $\times$ $10^{-8} M_\odot /yr$) of TW Hya, and compared these values with the accretion luminosity (0.03 $L_\odot$) and mass accretion rate (0.6 $\times$ $10^{-8} M_\odot /yr$) derived from spectral energy distribution (SED). From the SED, we derive best-fitted parameters for TW Hya: $T_{eff}$ = 3900$\pm$50 K, radius = 1.2$\pm$0.03 $R_\odot$, $\mathrm{log}\, g = 4.0$ and equivalent black-body temperatures corresponding to accretion luminosity as 14100$\pm$25 K. The parameters of TW Hya derived from UVIT observations were found to be matched well with the literature. Comparison with IUE spectra also suggests that UVIT can be used to study the spectroscopic variability of young stars. This study proposes leveraging the FUV spectroscopic capabilities of UVIT to contribute to the advancement of upcoming UV spectroscopic missions, including the Indian Spectroscopic Imaging Space Telescope (INSIST). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.19478v1-abstract-full').style.display = 'none'; document.getElementById('2403.19478v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 3 figures, 2 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.01935">arXiv:2403.01935</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.01935">pdf</a>, <a href="https://arxiv.org/format/2403.01935">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Simultaneous FUV and NUV observations of T Tauri stars with UVIT/AstroSat: probing accretion process in young stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K. Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gorti%2C+U">Uma Gorti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Subramaniam%2C+A">Annapurni Subramaniam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=George%2C+N">Nayana George</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mondal%2C+C">Chayan Mondal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.01935v2-abstract-short" style="display: inline;"> We present results from simultaneous FUV and NUV observations of T-Tauri stars (TTSs) in the Taurus molecular cloud with UVIT/AstroSat. This is the very first UVIT study of TTSs. From the spectral energy distribution of TTSs from FUV to near-IR, we show that classical TTSs (CTTSs) emit significantly higher UV excess compared to weak-line TTSs (WTTSs). The equivalent black-body temperatures corresp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01935v2-abstract-full').style.display = 'inline'; document.getElementById('2403.01935v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.01935v2-abstract-full" style="display: none;"> We present results from simultaneous FUV and NUV observations of T-Tauri stars (TTSs) in the Taurus molecular cloud with UVIT/AstroSat. This is the very first UVIT study of TTSs. From the spectral energy distribution of TTSs from FUV to near-IR, we show that classical TTSs (CTTSs) emit significantly higher UV excess compared to weak-line TTSs (WTTSs). The equivalent black-body temperatures corresponding to the UV excess in CTTSs ($&gt;10^4$ K) are also found to be relatively higher than that in WTTSs ($&lt;9250$ K). From the UV excess, we have re-classified two WTTSs (BS Tau, V836 Tau) as CTTSs, which has been supported by the follow-up optical spectroscopic study using the Himalayan Chandra Telescope (HCT), showing strong H$伪$ line emission. We find that CTTSs show strong excess emission in both FUV ($&gt;$10$^7$) and NUV ($&gt;$10$^3$) bands, while WTTSs show strong excess only in the FUV ($\lesssim$10$^5$), suggesting that excess emission in NUV can be used as a tool to classify the TTSs. We also find a linear correlation between UV luminosity (a primary indicator of mass accretion) and H$伪$ luminosity (a secondary indicator of mass accretion) with a slope of 1.20$\pm$0.22 and intercept of 2.16$\pm$0.70. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.01935v2-abstract-full').style.display = 'none'; document.getElementById('2403.01935v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, 4 tables.Accepted to Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.11182">arXiv:2402.11182</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.11182">pdf</a>, <a href="https://arxiv.org/format/2402.11182">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> A uGMRT search for radio emission from planets around evolved stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chandra%2C+I">Ishwara Chandra</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Bihan Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tamura%2C+M">Motohide Tamura</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Thomas Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lazio%2C+J">Joseph Lazio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surya%2C+A">Arun Surya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K. Nayak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.11182v1-abstract-short" style="display: inline;"> In this work, we present the results from a study using the Giant Meterwave Radio Telescope (GMRT) to search for radio {emission} from planets around three evolved stars namely $伪$~Tau, $尾$~UMi, and $尾$~Gem. Both $伪$~Tau and $尾$~UMi host massive $\sim$ 6 $M_J$ mass planets at about $\sim$1.4 au from the central star, while $尾$~Gem is host to a 2.9 $M_J$ mass planet at 1.7 au from the host star. We&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11182v1-abstract-full').style.display = 'inline'; document.getElementById('2402.11182v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.11182v1-abstract-full" style="display: none;"> In this work, we present the results from a study using the Giant Meterwave Radio Telescope (GMRT) to search for radio {emission} from planets around three evolved stars namely $伪$~Tau, $尾$~UMi, and $尾$~Gem. Both $伪$~Tau and $尾$~UMi host massive $\sim$ 6 $M_J$ mass planets at about $\sim$1.4 au from the central star, while $尾$~Gem is host to a 2.9 $M_J$ mass planet at 1.7 au from the host star. We observe $伪$~Tau and $尾$~ UMi at two u(upgraded)GMRT bands; band~3 (250-500~MHz) and band~4 (550-900~MHz). We also analyzed the archival observations from $尾$ Gem at 150~MHz from GMRT. We did not detect any radio signals from these systems. At 400~MHz, the 3$蟽$ upper limit is 87 $渭$Jy/beam for $伪$~Tau~{b} and 77.4 $渭$Jy/beam for $尾$~UMi~{b}. From our observations at 650~MHz, we place a 3$蟽$ upper limit of 28.2 $渭$Jy/beam for $伪$~Tau~b and 33.6 $渭$Jy/beam for $尾$~UMi~b. For $尾$ Gem b, at 150~MHz, we place an upper limit of 2.5 mJy. At 400~MHz and 650~MHz, our observations are the deepest radio images for any exoplanetary system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.11182v1-abstract-full').style.display = 'none'; document.getElementById('2402.11182v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 6 figures, accepted at MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.04314">arXiv:2402.04314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.04314">pdf</a>, <a href="https://arxiv.org/format/2402.04314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348718">10.1051/0004-6361/202348718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> JWST observations of $^{13}$CO$_{2}$ ice: Tracing the chemical environment and thermal history of ices in protostellar envelopes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linnartz%2C+H">Harold Linnartz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C+A">Charles A. Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.04314v2-abstract-short" style="display: inline;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viab&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'inline'; document.getElementById('2402.04314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.04314v2-abstract-full" style="display: none;"> The structure and composition of simple ices can be modified during stellar evolution by protostellar heating. Key to understanding the involved processes are thermal and chemical tracers that can diagnose the history and environment of the ice. The 15.2 $渭$m bending mode of $^{12}$CO$_2$ has proven to be a valuable tracer of ice heating events but suffers from grain shape and size effects. A viable alternative tracer is the weaker $^{13}$CO$_2$ isotopologue band at 4.39 $渭$m which has now become accessible at high S/N with the $\textit{James Webb}$ Space Telescope (JWST). We present JWST NIRSpec observations of $^{13}$CO$_2$ ice in five deeply embedded Class 0 sources spanning a wide range in luminosities (0.2 - 10$^4$ L$_{\odot}$ ) taken as part of the Investigating Protostellar Accretion Across the Mass Spectrum (IPA) program. The band profiles vary significantly, with the most luminous sources showing a distinct narrow peak at 4.38 $渭$m. We first apply a phenomenological approach and show that a minimum of 3-4 Gaussian profiles are needed to fit the $^{13}$CO$_2$ absorption feature. We then combine these findings with laboratory data and show that a 15.2 $渭$m $^{12}$CO$_2$ band inspired five-component decomposition can be applied for the isotopologue band where each component is representative of CO$_2$ ice in a specific molecular environment. The final solution consists of cold mixtures of CO$_2$ with CH$_3$OH, H$_2$O and CO as well as segregated heated pure CO$_2$ ice. Our results are in agreement with previous studies of the $^{12}$CO$_2$ ice band, further confirming that $^{13}$CO$_{2}$ is a useful alternative tracer of protostellar heating events. We also propose an alternative solution consisting only of heated CO$_2$:CH$_3$OH and CO$_2$:H$_2$O ices and warm pure CO$_2$ ice for decomposing the ice profiles of the two most luminous sources in our sample. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.04314v2-abstract-full').style.display = 'none'; document.getElementById('2402.04314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 685, A27 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.07901">arXiv:2401.07901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.07901">pdf</a>, <a href="https://arxiv.org/format/2401.07901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348695">10.1051/0004-6361/202348695 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hunt for complex cyanides in protostellar ices with JWST: Tentative detection of CH$_3$CN and C$_2$H$_5$CN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">P. Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">W. R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">A. E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">K. Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rachid%2C+M+G">M. G. Rachid</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">E. F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">R. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">H. Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">N. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">M. Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">D. M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">N. J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">S. Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+J+M">J. Muzerolle Page</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">H. Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">P. Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">L. W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">M. Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">T. Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+Y+-">Y. -L. Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.07901v1-abstract-short" style="display: inline;"> Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07901v1-abstract-full').style.display = 'inline'; document.getElementById('2401.07901v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.07901v1-abstract-full" style="display: none;"> Nitrogen-bearing complex organic molecules have been commonly detected in the gas phase but not yet in interstellar ices. This has led to the long-standing question of whether these molecules form in the gas phase or in ices. $\textit{James Webb}$ Space Telescope ($\textit{JWST}$) offers the sensitivity, spectral resolution, and wavelength coverage needed to detect them in ices and investigate whether their abundance ratios are similar in gas and ice. We report the first tentative detection of CH$_3$CN, C$_2$H$_5$CN, and the simple molecule, N$_2$O, based on the CN-stretch band in interstellar ices toward three (HOPS 153, HOPS 370, and IRAS 20126+4104) out of the five protostellar systems observed as part of the Investigating Protostellar Accretion (IPA) GO program with $\textit{JWST}$-NIRSpec. We also provide upper limits for the two other sources with smaller luminosities in the sample. We detect OCN$^-$ in the ices of all sources with typical CH$_3$CN/OCN$^-$ ratios of around 1. Ice and gas column density ratios of the nitrogen-bearing species with respect to each other are better matched than those with respect to methanol, which are a factor of ${\sim}5$ larger in the ices than the gas. We attribute the elevated ice column densities with respect to methanol to the difference in snowline locations of nitrogen-bearing molecules and of methanol, biasing the gas-phase observations toward fewer nitrogen-bearing molecules. Moreover, we find tentative evidence for enhancement of OCN$^-$, CH$_3$CN, and C$_2$H$_5$CN in warmer ices, although formation of these molecules likely starts along with methanol in the cold prestellar phase. Future surveys combining NIRSpec and MIRI, and additional laboratory spectroscopic measurements of C$_2$H$_5$CN ice, are necessary for robust detection and conclusions on the formation history of complex cyanides. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.07901v1-abstract-full').style.display = 'none'; document.getElementById('2401.07901v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 686, A71 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.07807">arXiv:2312.07807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.07807">pdf</a>, <a href="https://arxiv.org/format/2312.07807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> IPA: Class 0 Protostars Viewed in CO Emission Using JWST </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nazari%2C+P">Pooneh Nazari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">Joel D. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha%2C+W+R+M">Will R. M. Rocha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N+G+C">Nashanty G. C. Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Slavicinska%2C+K">Katerina Slavicinska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=van+Dishoeck%2C+E+F">Ewine F. van Dishoeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muzerolle%2C+J">James Muzerolle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.07807v2-abstract-short" style="display: inline;"> We investigate the bright CO fundamental emission in the central regions of five protostars in their primary mass assembly phase using new observations from JWST&#39;s Near-Infrared Spectrograph (NIRSpec) and Mid-Infrared Instrument (MIRI). CO line emission images and fluxes are extracted for a forest of $\sim$150 ro-vibrational transitions from two vibrational bands, $v=1-0$ and $v=2-1$. However,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07807v2-abstract-full').style.display = 'inline'; document.getElementById('2312.07807v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.07807v2-abstract-full" style="display: none;"> We investigate the bright CO fundamental emission in the central regions of five protostars in their primary mass assembly phase using new observations from JWST&#39;s Near-Infrared Spectrograph (NIRSpec) and Mid-Infrared Instrument (MIRI). CO line emission images and fluxes are extracted for a forest of $\sim$150 ro-vibrational transitions from two vibrational bands, $v=1-0$ and $v=2-1$. However, ${}^{13}$CO is undetected, indicating that ${}^{12}$CO emission is optically thin. We use H$_2$ emission lines to correct fluxes for extinction and then construct rotation diagrams for the CO lines with the highest spectral resolution and sensitivity to estimate rotational temperatures and numbers of CO molecules. Two distinct rotational temperature components are required for $v=1$ ($\sim600$ to 1000 K and 2000 to $\sim 10^4$ K), while one hotter component is required for $v=2$ ($\gtrsim 3500$ K). ${}^{13}$CO is depleted compared to the abundances found in the ISM, indicating selective UV photodissociation of ${}^{13}$CO; therefore, UV radiative pumping may explain the higher rotational temperatures in $v=2$. The average vibrational temperature is $\sim 1000$ K for our sources and is similar to the lowest rotational temperature components. Using the measured rotational and vibrational temperatures to infer a total number of CO molecules, we find that the total gas masses range from lower limits of $\sim10^{22}$ g for the lowest mass protostars to $\sim 10^{26}$ g for the highest mass protostars. Our gas mass lower limits are compatible with those in more evolved systems, which suggest the lowest rotational temperature component comes from the inner disk, scattered into our line of sight, but we also cannot exclude the contribution to the CO emission from disk winds for higher mass targets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.07807v2-abstract-full').style.display = 'none'; document.getElementById('2312.07807v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 7 figures, 4 tables, received to ApJ December 10 2023, accepted to ApJ August 4 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.04089">arXiv:2311.04089</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.04089">pdf</a>, <a href="https://arxiv.org/format/2311.04089">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> First measurement of the low-energy direct capture in 20Ne(p, 纬)21Na and improved energy and strength of the Ecm = 368 keV resonance </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Masha%2C+E">E. Masha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbieri%2C+L">L. Barbieri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Skowronski%2C+J">J. Skowronski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aliotta%2C+M">M. Aliotta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ananna%2C+C">C. Ananna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barile%2C+F">F. Barile</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bemmerer%2C+D">D. Bemmerer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Best%2C+A">A. Best</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Boeltzig%2C+A">A. Boeltzig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Broggini%2C+C">C. Broggini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bruno%2C+C+G">C. G. Bruno</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Caciolli%2C+A">A. Caciolli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Campostrini%2C+M">M. Campostrini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casaburo%2C+F">F. Casaburo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cavanna%2C+F">F. Cavanna</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciani%2C+G+F">G. F. Ciani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciapponi%2C+A">A. Ciapponi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Colombetti%2C+P">P. Colombetti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Compagnucci%2C+A">A. Compagnucci</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corvisiero%2C+P">P. Corvisiero</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Csedreki%2C+L">L. Csedreki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Davinson%2C+T">T. Davinson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Depalo%2C+R">R. Depalo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Leva%2C+A">A. Di Leva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elekes%2C+Z">Z. Elekes</a> , et al. (26 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.04089v1-abstract-short" style="display: inline;"> The $\mathrm{^{20}Ne(p, 纬)^{21}Na}$ reaction is the slowest in the NeNa cycle and directly affects the abundances of the Ne and Na isotopes in a variety of astrophysical sites. Here we report the measurement of its direct capture contribution, for the first time below $E\rm_{cm} = 352$~keV, and of the contribution from the $E^{\rm }_{cm} = 368$~keV resonance, which dominates the reaction rate at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04089v1-abstract-full').style.display = 'inline'; document.getElementById('2311.04089v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.04089v1-abstract-full" style="display: none;"> The $\mathrm{^{20}Ne(p, 纬)^{21}Na}$ reaction is the slowest in the NeNa cycle and directly affects the abundances of the Ne and Na isotopes in a variety of astrophysical sites. Here we report the measurement of its direct capture contribution, for the first time below $E\rm_{cm} = 352$~keV, and of the contribution from the $E^{\rm }_{cm} = 368$~keV resonance, which dominates the reaction rate at $T=0.03-1.00$~GK. The experiment was performed deep underground at the Laboratory for Underground Nuclear Astrophysics, using a high-intensity proton beam and a windowless neon gas target. Prompt $纬$ rays from the reaction were detected with two high-purity germanium detectors. We obtain a resonance strength $蠅纬~=~(0.112 \pm 0.002_{\rm stat}~\pm~0.005_{\rm sys})$~meV, with an uncertainty a factor of $3$ smaller than previous values. Our revised reaction rate is 20\% lower than previously adopted at $T &lt; 0.1$~GK and agrees with previous estimates at temperatures $T \geq 0.1$~GK. Initial astrophysical implications are presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.04089v1-abstract-full').style.display = 'none'; document.getElementById('2311.04089v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 4 figures, accepted to PRC (letter)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.03803">arXiv:2310.03803</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.03803">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad2fa0">10.3847/1538-4357/ad2fa0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Investigating Protostellar Accretion-Driven Outflows Across the Mass Spectrum: JWST NIRSpec IFU 3-5~$渭$m Spectral Mapping of Five Young Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rubinstein%2C+A+E">Adam E. Rubinstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beuther%2C+H">Henrik Beuther</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bourke%2C+T+L">Tyler L. Bourke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brunken%2C+N">Nashanty Brunken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garatti%2C+A+C+o">Alessio Caratti o Garatti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">Neal J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J">Joel Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N">Nolan Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Klaassen%2C+P">Pamela Klaassen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Linz%2C+H">Hendrik Linz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Looney%2C+L+W">Leslie W. Looney</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Page%2C+J+M">James Muzerolle Page</a> , et al. (13 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.03803v2-abstract-short" style="display: inline;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'inline'; document.getElementById('2310.03803v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.03803v2-abstract-full" style="display: none;"> Investigating Protostellar Accretion is a Cycle 1 JWST program using the NIRSpec+MIRI integral field units to obtain 2.9--28 $渭$m spectral cubes of five young protostars with luminosities of 0.2-10,000 L$_{\odot}$ in their primary accretion phase. This paper introduces the NIRSpec 2.9--5.3 $渭$m data of the inner 840-9000 au with spatial resolutions from 28-300 au. The spectra show rising continuum emission; deep ice absorption; emission from H$_{2}$, H~I, and [Fe~II]; and the CO fundamental series in emission and absorption. Maps of the continuum emission show scattered light cavities for all five protostars. In the cavities, collimated jets are detected in [Fe~II] for the four $&lt; 320$~L$_{\odot}$ protostars, two of which are additionally traced in Br-$伪$. Knots of [Fe~II] emission are detected toward the most luminous protostar, and knots of [FeII] emission with dynamical times of $&lt; 30$~yrs are found in the jets of the others. While only one jet is traced in H$_2$, knots of H$_2$ and CO are detected in the jets of four protostars. H$_2$ is seen extending through the cavities, showing that they are filled by warm molecular gas. Bright H$_2$ emission is seen along the walls of a single cavity, while in three cavities narrow shells of H$_2$ emission are found, one of which has an [Fe~II] knot at its apex. These data show cavities containing collimated jets traced in atomic/ionic gas surrounded by warm molecular gas in a wide-angle wind and/or gas accelerated by bow shocks in the jets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.03803v2-abstract-full').style.display = 'none'; document.getElementById('2310.03803v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 12 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 966 41 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.00063">arXiv:2309.00063</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.00063">pdf</a>, <a href="https://arxiv.org/format/2309.00063">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> A compact cryogenic configurable slit unit for a multi-object infrared spectrograph:Design and Development of a prototype at TIFR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Madhwani%2C+P+P">P. P. Madhwani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kutty%2C+A+P+K">A. P. K. Kutty</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mookerjea%2C+B">B. Mookerjea</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Parmar%2C+J+V">J. V. Parmar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kurhade%2C+V+N">V. N. Kurhade</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Costa%2C+S+L">S. L. D&#39;Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surya%2C+A">A. Surya</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.00063v1-abstract-short" style="display: inline;"> We present a cryogenic configurable slit unit (CSU) for a multi object infrared spectrograph with an effective field of view of 9.1 arcmin x 9.1 arcmin that was completely conceived and designed in the laboratory at TIFR. Several components of the CSU including the controller for the commercially procured piezo-walkers, controlled loop position sensing mechanism using digital slide callipers and a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00063v1-abstract-full').style.display = 'inline'; document.getElementById('2309.00063v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.00063v1-abstract-full" style="display: none;"> We present a cryogenic configurable slit unit (CSU) for a multi object infrared spectrograph with an effective field of view of 9.1 arcmin x 9.1 arcmin that was completely conceived and designed in the laboratory at TIFR. Several components of the CSU including the controller for the commercially procured piezo-walkers, controlled loop position sensing mechanism using digital slide callipers and a cryogenic test facility for the assembled prototype were also developed in-house. The principle of the CSU involves division of the field of view of the spectrometer into contiguous and parallel spatial bands, each one associated with two opposite sliding metal bars that can be positioned to create a slit needed to make spectroscopic observations of one astronomical object. A three-slit prototype of the newly designed CSU was built and tested extensively at ambient and cryogenic temperatures. The performance of the CSU was found to be as per specifications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.00063v1-abstract-full').style.display = 'none'; document.getElementById('2309.00063v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, Accepted for publication in the Journal of Astronomical Instrumentation</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.11442">arXiv:2307.11442</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.11442">pdf</a>, <a href="https://arxiv.org/format/2307.11442">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ace782">10.3847/1538-3881/ace782 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Age distribution of exoplanet host stars: Chemical and Kinematics age proxies from GAIA DR3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swastik%2C+C">C. Swastik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banyal%2C+R+K">Ravinder K. Banyal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Unni%2C+A">Athira Unni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Bihan Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">T. Sivarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.11442v1-abstract-short" style="display: inline;"> The GAIA space mission is impacting astronomy in many significant ways by providing a uniform, homogeneous and precise data set for over 1 billion stars and other celestial objects in the Milky Way and beyond. Exoplanet science has greatly benefited from the unprecedented accuracy of stellar parameters obtained from GAIA. In this study, we combine photometric, astrometric, and spectroscopic data f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11442v1-abstract-full').style.display = 'inline'; document.getElementById('2307.11442v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.11442v1-abstract-full" style="display: none;"> The GAIA space mission is impacting astronomy in many significant ways by providing a uniform, homogeneous and precise data set for over 1 billion stars and other celestial objects in the Milky Way and beyond. Exoplanet science has greatly benefited from the unprecedented accuracy of stellar parameters obtained from GAIA. In this study, we combine photometric, astrometric, and spectroscopic data from the most recent Gaia DR3 to examine the kinematic and chemical age proxies for a large sample of 2611 exoplanets hosting stars whose parameters have been determined uniformly. Using spectroscopic data from the Radial Velocity Spectrometer (RVS) onboard GAIA, we show that stars hosting massive planets are metal-rich and $伪$-poor in comparison to stars hosting small planets. The kinematic analysis of the sample reveals that the stellar systems with small planets and those with giant planets differ in key aspects of galactic space velocity and orbital parameters, which are indicative of age. We find that the galactic orbital parameters have a statistically significant difference of 0.06 kpc for $Z_{max}$ and 0.03 for eccentricity respectively. Furthermore, we estimated the stellar ages of the sample using the MIST-MESA isochrone models. The ages and its proxies for the planet-hosting stars indicate that the hosts of giant planetary systems are younger compared to the population of stars harboring small planets. These age trends are also consistent with the chemical evolution of the galaxy and the formation of giant planets from the core-accretion process. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.11442v1-abstract-full').style.display = 'none'; document.getElementById('2307.11442v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for Publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.00871">arXiv:2307.00871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.00871">pdf</a>, <a href="https://arxiv.org/format/2307.00871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346811">10.1051/0004-6361/202346811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Disentangling the two sub-populations of early Herbig Be stars using VLT/X-Shooter spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shridharan%2C+B">B. Shridharan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cysil%2C+T+B">T. B. Cysil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Subramaniam%2C+A">A. Subramaniam</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sudheesh%2C+T+P">T. P. Sudheesh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.00871v1-abstract-short" style="display: inline;"> Early Herbig Be (HBe) stars are massive, young stars accreting through the Boundary Layer mechanism. However, given the rapid ($&lt;$ 2 Myr) evolution of early Herbig stars to the main-sequence phase, studying the evolution of the circumstellar medium around these stars can be a cumbersome exercise. In this work, we study the sample of early (B0-B5) HBe stars using the correlation between H$伪$ emissi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00871v1-abstract-full').style.display = 'inline'; document.getElementById('2307.00871v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.00871v1-abstract-full" style="display: none;"> Early Herbig Be (HBe) stars are massive, young stars accreting through the Boundary Layer mechanism. However, given the rapid ($&lt;$ 2 Myr) evolution of early Herbig stars to the main-sequence phase, studying the evolution of the circumstellar medium around these stars can be a cumbersome exercise. In this work, we study the sample of early (B0-B5) HBe stars using the correlation between H$伪$ emission strength and near--infrared excess, complemented by the analysis of various emission features in the X-Shooter spectra. We segregate the sample of 37 early HBe stars based on the median values of H$伪$ equivalent width (EW) and near--infrared index (n(J$-$H)) distributions. The stars with |H$伪$ EW| $&gt;$ 50 脜 and n(J$-$H) $&gt;$ -2 are classified as intense HBe stars and stars with |H$伪$ EW| $&lt;$ 50 脜 and n(J$-$H) $&lt;$ -2 as weak HBe stars. Using the VLT/X--Shooter spectra of five intense and eight weak HBe stars, we visually checked for the differences in intensity and profiles of various H{\sc I} and metallic emission lines commonly observed in Herbig stars. We propose that the intense HBe stars possess an inner disk close to the star (as apparent from the high near-infrared excess) and an active circumstellar environment (as seen from high H$伪$ EW value and presence of emission lines belonging to Fe{\sc II}, Ca{\sc II}, O{\sc I} and [O{\sc I}]). However, for weak HBe stars, the inner disk has cleared, and the circumstellar environment appears more evolved than for intense HBe stars. Furthermore, we compiled a sample of $\sim$58,000 emission-line stars published in \textit{Gaia DR3} to identify more intense HBe candidates. Further spectroscopic studies of these candidates will help us to understand the evolution of the inner ($\sim$a few au) disk in early HBe stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.00871v1-abstract-full').style.display = 'none'; document.getElementById('2307.00871v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics journal. 14 pages, 7 figures and 2 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 679, A71 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.09491">arXiv:2305.09491</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.09491">pdf</a>, <a href="https://arxiv.org/format/2305.09491">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1511">10.1093/mnras/stad1511 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fullerenes in the circumstellar medium of Herbig Ae/Be stars: Insights from the Spitzer mid-infrared spectral catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shridharan%2C+B">B. Shridharan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.09491v1-abstract-short" style="display: inline;"> This study presents the largest mid-infrared spectral catalog of Herbig Ae/Be stars to date, containing the Spitzer Infrared Spectrograph spectra of 126 stars. Based on the catalog analysis, two prominent infrared vibrational modes of C\textsubscript{60} bands at 17.4 $渭m$ and 18.9 $渭m$ are detected in the spectra of nine sources, while 7.0 $渭m$ feature is identified in the spectra of HD 319896. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09491v1-abstract-full').style.display = 'inline'; document.getElementById('2305.09491v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.09491v1-abstract-full" style="display: none;"> This study presents the largest mid-infrared spectral catalog of Herbig Ae/Be stars to date, containing the Spitzer Infrared Spectrograph spectra of 126 stars. Based on the catalog analysis, two prominent infrared vibrational modes of C\textsubscript{60} bands at 17.4 $渭m$ and 18.9 $渭m$ are detected in the spectra of nine sources, while 7.0 $渭m$ feature is identified in the spectra of HD 319896. The spectral index analysis and the comparison of the known sources with C\textsubscript{60} features indicated that there exist two different types of emission classes among the sample of stars. The infrared spectra of six Herbig Ae/Be stars in this study resemble that of reflection nebulae, and their association with previously known reflection nebulae is confirmed. In the case of three Herbig Ae/Be stars we report the tentative evidence of C\textsubscript{60} emission features originating from the circumstellar disk or nearby diffused emission region. The detection fraction of C\textsubscript{60} in the total HAeBe star sample is $\sim$ 7\%, whereas the detection fraction is 30\% for HAeBe stars associated with nebulosity. In the catalog, C\textsubscript{60} is exclusively present in the circumstellar regions of B type Herbig Ae/Be stars, with no evidence of its presence detected in stars with later spectral types. The present study has increased the number of young stellar objects and reflection nebulae detected with C\textsubscript{60} multifold, which can help in understanding the excitation and formation pathway of the species. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.09491v1-abstract-full').style.display = 'none'; document.getElementById('2305.09491v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages,2 tables, 6 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17269">arXiv:2303.17269</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17269">pdf</a>, <a href="https://arxiv.org/format/2303.17269">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1027">10.1093/mnras/stad1027 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> uGMRT observations of the hot-Saturn WASP 69b: Radio-Loud Exoplanet-Exomoon Survey II (RLEES II) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Oza%2C+A+V">Apurva V. Oza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hakim%2C+K">Kaustubh Hakim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tyagi%2C+H">Himanshu Tyagi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Bihan Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surya%2C+A">Arun Surya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K. Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banyal%2C+R+K">Ravinder K. Banyal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thorngren%2C+D+P">Daniel P. Thorngren</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17269v1-abstract-short" style="display: inline;"> Exomoons have so far eluded ongoing searches. Several studies have exploited transit and transit timing variations and high-resolution spectroscopy to identify potential exomoon candidates. One method of detecting and confirming these exomoons is to search for signals of planet-moon interactions. In this work, we present the first radio observations of the exomoon candidate system WASP 69b. Based&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17269v1-abstract-full').style.display = 'inline'; document.getElementById('2303.17269v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17269v1-abstract-full" style="display: none;"> Exomoons have so far eluded ongoing searches. Several studies have exploited transit and transit timing variations and high-resolution spectroscopy to identify potential exomoon candidates. One method of detecting and confirming these exomoons is to search for signals of planet-moon interactions. In this work, we present the first radio observations of the exomoon candidate system WASP 69b. Based on the detection of alkali metals in the transmission spectra of WASP-69b, it was deduced that the system might be hosting an exomoon. WASP 69b is also one of the exoplanet systems that will be observed as part of JWST cycle-1 GTO. This makes the system an excellent target to observe and follow up. We observed the system for 32 hrs at 150 MHz and 218 MHz using the upgraded Giant Metrewave Radio Telescope (uGMRT). Though we do not detect radio emission from the systems, we place strong $3蟽$ upper limits of 3.3 mJy at 150 MHz and 0.9 mJy at 218 MHz. We then use these upper limits to estimate the maximum mass loss from the exomoon candidate. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17269v1-abstract-full').style.display = 'none'; document.getElementById('2303.17269v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in MNRAS, 8 pages, 4 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13221">arXiv:2209.13221</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13221">pdf</a>, <a href="https://arxiv.org/format/2209.13221">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202244353">10.1051/0004-6361/202244353 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emission line star catalogues post-Gaia DR3: A validation of Gaia DR3 data using LAMOST OBA emission catalogue </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shridharan%2C+B">B. Shridharan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhattacharyya%2C+S">Suman Bhattacharyya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robin%2C+T">T. Robin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nidhi%2C+S">S. Nidhi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheshwar%2C+G">G. Maheshwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paul%2C+K+T">K. T. Paul</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Himanshu%2C+T">T. Himanshu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13221v1-abstract-short" style="display: inline;"> Gaia DR3 and further releases have the potential to identify and categorise new emission-line stars in the Galaxy. We perform a comprehensive validation of astrophysical parameters from Gaia DR3 with the spectroscopically estimated emission-line star parameters from LAMOST OBA emission catalogue. We compare different astrophysical parameters provided by Gaia DR3 with those estimated using LAMOST s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13221v1-abstract-full').style.display = 'inline'; document.getElementById('2209.13221v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13221v1-abstract-full" style="display: none;"> Gaia DR3 and further releases have the potential to identify and categorise new emission-line stars in the Galaxy. We perform a comprehensive validation of astrophysical parameters from Gaia DR3 with the spectroscopically estimated emission-line star parameters from LAMOST OBA emission catalogue. We compare different astrophysical parameters provided by Gaia DR3 with those estimated using LAMOST spectra. By using a larger sample of emission-line stars, we perform a global polynomial and piece-wise linear fit to update the empirical relation to convert Gaia DR3 pseudo-equivalent width to observed equivalent width, after removing the weak emitters from the analysis. We find that the emission-line source classifications given by DR3 is in reasonable agreement with the classification from LAMOST OBA emission catalogue. The astrophysical parameters estimated by esphs module from Gaia DR3 provides a better estimate when compared to gspphot and gspspec. A second-degree polynomial relation is provided along with piece-wise linear fit parameters for the equivalent width conversion. We notice that the LAMOST stars with weak H伪 emission are not identified to be in emission from BP/RP spectra. This suggests that emission-line sources identified by Gaia DR3 is incomplete. In addition, Gaia DR3 provides valuable information about the binary and variable nature of a sample of emission-line stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13221v1-abstract-full').style.display = 'none'; document.getElementById('2209.13221v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures and 1 table. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 668, A156 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12090">arXiv:2209.12090</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.12090">pdf</a>, <a href="https://arxiv.org/format/2209.12090">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/acbfac">10.3847/1538-4365/acbfac <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Extension of HOPS Out to 500 ParSecs (eHOPS). I. Identification and Modeling of Protostars in the Aquila Molecular Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pokhrel%2C+R">Riwaj Pokhrel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R+A">Robert A. Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Samuel Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Atnagulov%2C+P">Prabhani Atnagulov</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N">Nolan Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zakri%2C+W">Wafa Zakri</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12090v2-abstract-short" style="display: inline;"> We present a Spitzer/Herschel focused survey of the Aquila molecular clouds ($d \sim 436$~pc) as part of the eHOPS (extension of HOPS Out to 500 ParSecs) census of nearby protostars. For every source detected in the Herschel/PACS bands, the eHOPS-Aquila catalog contains 1-850~$渭$m SEDs assembled from 2MASS, Spitzer, Herschel, WISE, and JCMT/SCUBA-2 data. Using a newly developed set of criteria, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12090v2-abstract-full').style.display = 'inline'; document.getElementById('2209.12090v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12090v2-abstract-full" style="display: none;"> We present a Spitzer/Herschel focused survey of the Aquila molecular clouds ($d \sim 436$~pc) as part of the eHOPS (extension of HOPS Out to 500 ParSecs) census of nearby protostars. For every source detected in the Herschel/PACS bands, the eHOPS-Aquila catalog contains 1-850~$渭$m SEDs assembled from 2MASS, Spitzer, Herschel, WISE, and JCMT/SCUBA-2 data. Using a newly developed set of criteria, we classify objects by their SEDs as protostars, pre-ms sequence stars with disks, and galaxies. A total of 172 protostars are found in Aquila, tightly concentrated in the molecular filaments that thread the clouds. Of these, 71 (42\%) are Class 0 protostars, 54 (31\%) are Class I protostars, 43 (25\%) are flat-spectrum protostars, and 4 (2\%) are Class II sources. Ten of the Class 0 protostars are young PACS Bright Red Sources similar to those discovered in Orion. We compare the SEDs to a grid of radiative transfer models to constrain the luminosities, envelope densities, and envelope masses of the protostars. A comparison of the eHOPS-Aquila to the HOPS protostars in Orion finds that the protostellar luminosity functions in the two star-forming regions are statistically indistinguishable, the bolometric temperatures/envelope masses of eHOPS-Aquila protostars are shifted to cooler temperatures/higher masses, and the eHOPS-Aquila protostars do not show the decline in luminosity with evolution found in Orion. We briefly discuss whether these differences are due to biases between the samples, diverging star formation histories, or the influence of environment on protostellar evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12090v2-abstract-full').style.display = 'none'; document.getElementById('2209.12090v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in ApJS. NASA IPAC/IRSA Data Release DOI: 10.26131/IRSA553</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.07878">arXiv:2207.07878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.07878">pdf</a>, <a href="https://arxiv.org/format/2207.07878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1538-3873/ac81eb">10.1088/1538-3873/ac81eb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> TANSPEC: TIFR-ARIES Near Infrared Spectrometer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Sharma%2C+S">Saurabh Sharma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ojha%2C+D+K">Devendra K. Ojha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+A">Arpan Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ninan%2C+J+P">Joe P. Ninan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S">Supriyo Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S+K">Swarna K. Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Naik%2C+M+B">Milind B. Naik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Costa%2C+S+L+A">Savio L. A. D&#39;Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reddy%2C+B+K">B. Krishna Reddy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nanjappa%2C+N">Nandish Nanjappa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+R">Rakesh Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sinha%2C+T">Tirthendu Sinha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Panwar%2C+N">Neelam Panwar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Antony%2C+S">Susmitha Antony</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaur%2C+H">Harmeen Kaur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sahu%2C+S">Sanjit Sahu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bangia%2C+T">Tarun Bangia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poojary%2C+S+S">Satheesha S. Poojary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jadhav%2C+R+B">Rajesh B. Jadhav</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhagat%2C+S+B">Shailesh B. Bhagat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meshram%2C+G+S">Ganesh S. Meshram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shah%2C+H">Harshit Shah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rayner%2C+J+T">John T. Rayner</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Toomey%2C+D+W">Douglas W. Toomey</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.07878v1-abstract-short" style="display: inline;"> We present the design and performance of the TANSPEC, a medium-resolution $0.55-2.5~渭$m cryogenic spectrometer and imager, now in operation at the 3.6-m Devasthal Optical Telescope (DOT), Nainital, India. The TANSPEC provides three modes of operation which include, photometry with broad- and narrow-band filters, spectroscopy with short slits of 20$^{\prime \prime}$ length and different widths (fro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07878v1-abstract-full').style.display = 'inline'; document.getElementById('2207.07878v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.07878v1-abstract-full" style="display: none;"> We present the design and performance of the TANSPEC, a medium-resolution $0.55-2.5~渭$m cryogenic spectrometer and imager, now in operation at the 3.6-m Devasthal Optical Telescope (DOT), Nainital, India. The TANSPEC provides three modes of operation which include, photometry with broad- and narrow-band filters, spectroscopy with short slits of 20$^{\prime \prime}$ length and different widths (from 0.5$^{\prime \prime}$ to 4.0$^{\prime \prime}$) in cross-dispersed mode at a resolving power R of $\sim$2750, and spectroscopy with long slits of 60$^{\prime \prime}$ length and different widths (from 0.5$^{\prime \prime}$ to 4.0$^{\prime \prime}$) in prism mode at a resolving power R of $\sim$100-350. TANSPEC&#39;s imager mode provides a field of view of 60$^{\prime \prime} \times 60^{\prime \prime}$ with a plate scale of 0.245$^{\prime \prime}$/pixel on the 3.6-m DOT. The TANSPEC was successfully commissioned during April-May 2019 and the subsequent characterization and astronomical observations are presented here. The TANSPEC has been made available to the worldwide astronomical community for science observations from October 2020. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.07878v1-abstract-full').style.display = 'none'; document.getElementById('2207.07878v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, Accepted for publication in - Publications of the Astronomical Society of the Pacific (PASP)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.15793">arXiv:2205.15793</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.15793">pdf</a>, <a href="https://arxiv.org/format/2205.15793">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac756a">10.3847/1538-3881/ac756a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galactic chemical evolution of exoplanet host stars: Are high-mass planetary systems young? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swastik%2C+C">C. Swastik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banyal%2C+R+K">Ravinder K. Banyal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">T. Sivarani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajaguru%2C+S+P">S. P. Rajaguru</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Unni%2C+A">Athira Unni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+B">Bihan Banerjee</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.15793v2-abstract-short" style="display: inline;"> The imprints of stellar nucleosynthesis and chemical evolution of the galaxy can be seen in different stellar populations, with older generation stars showing higher $伪$-element abundances while the later generations becoming enriched with iron-peak elements. The evolutionary connections and chemical characteristics of circumstellar disks, stars, and their planetary companions can be inferred by s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15793v2-abstract-full').style.display = 'inline'; document.getElementById('2205.15793v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.15793v2-abstract-full" style="display: none;"> The imprints of stellar nucleosynthesis and chemical evolution of the galaxy can be seen in different stellar populations, with older generation stars showing higher $伪$-element abundances while the later generations becoming enriched with iron-peak elements. The evolutionary connections and chemical characteristics of circumstellar disks, stars, and their planetary companions can be inferred by studying the interdependence of planetary and host star properties. Numerous studies in the past have confirmed that high-mass giant planets are commonly found around metal-rich stars, while the stellar hosts of low-mass planets have a wide range of metallicity. In this work, we analyzed the detailed chemical abundances for a sample of $&gt;900$ exoplanet hosting stars drawn from different radial velocity and transit surveys. We correlate the stellar abundance trends for $伪$ and iron-peak elements with the planets&#39; mass. We find the planet mass-abundance correlation to be primarily negative for $伪$-elements and marginally positive or zero for the iron-peak elements, indicating that stars hosting giant planets are relatively younger. This is further validated by the age of the host stars obtained from isochrone fitting. The later enrichment of protoplanetary material with iron and iron-peak elements is also consistent with the formation of the giant planets via the core accretion process. A higher metal fraction in the protoplanetary disk is conducive to rapid core growth, thus providing a plausible route for the formation of giant planets. This study, therefore, indicates the observed trends in stellar abundances and planet mass are most likely a natural consequence of Galactic chemical evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.15793v2-abstract-full').style.display = 'none'; document.getElementById('2205.15793v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The Astronomical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astronomical Journal, 164:60 (16pp), 2022 August </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.00202">arXiv:2203.00202</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.00202">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Evaluation of Controllers and Development of a new in-house Controller for the Teledyne HxRG Focal Plane Array for the IRSIS satellite payload </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Naik%2C+M+B">M. B. Naik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ojha%2C+D+K">D. K. Ojha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S+K">S. K. Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ninan%2C+J+P">J. P. Ninan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ghosh%2C+S">S. Ghosh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=D%27Costa%2C+S+L+A">S. L. A. D&#39;Costa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poojary%2C+S+S">S. S. Poojary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhagat%2C+S+B">S. B. Bhagat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sandimani%2C+P+R">P. R. Sandimani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shah%2C+H">H. Shah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jadhav%2C+R+B">R. B. Jadhav</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gharat%2C+S+M">S. M. Gharat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Meshram%2C+G+S">G. S. Meshram</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bagade%2C+B+G">B. G. Bagade</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.00202v1-abstract-short" style="display: inline;"> The Infrared Astronomy Group (Department of Astronomy and Astrophysics) at Tata Institute of Fundamental Research (TIFR) is presently developing controllers for the Teledyne HxRG Focal Plane Arrays (FPAs) to be used on board the Infrared Spectroscopic Imaging Survey (IRSIS) satellite payload. In this manuscript we discuss the results of our tests with different FPA controllers like the Astronomica&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00202v1-abstract-full').style.display = 'inline'; document.getElementById('2203.00202v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.00202v1-abstract-full" style="display: none;"> The Infrared Astronomy Group (Department of Astronomy and Astrophysics) at Tata Institute of Fundamental Research (TIFR) is presently developing controllers for the Teledyne HxRG Focal Plane Arrays (FPAs) to be used on board the Infrared Spectroscopic Imaging Survey (IRSIS) satellite payload. In this manuscript we discuss the results of our tests with different FPA controllers like the Astronomical Research Cameras (ARC) controller, Teledyne&#39;s SIDECAR ASIC as well as our new in-house designed Array controller. As part of the development phase of the IRSIS instrument, which is an optical fibre based Integral Field Unit (IFU) Near-Infrared (NIR) Spectrometer, a laboratory model with limited NIR bandwidth was built which consisted of various subsystems like a Ritchey-Chretien (RC) 30 cm telescope, optical fibre IFU, spectrometer optics, and the Teledyne H2RG detector module. We discuss the various developments during the building and testing of the IRSIS laboratory model and the technical aspects of the prototype in-house H2RG controller. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.00202v1-abstract-full').style.display = 'none'; document.getElementById('2203.00202v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 28 figures, 2 tables, Accepted for publication in The Journal of Astronomical Instrumentation (JAI)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.05608">arXiv:2202.05608</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.05608">pdf</a>, <a href="https://arxiv.org/format/2202.05608">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac5632">10.3847/1538-4357/ac5632 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dissecting the different components of the modest accretion bursts of the very young protostar HOPS 373 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yoon%2C+S">Sung-Yong Yoon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herczeg%2C+G+J">Gregory J. Herczeg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+J">Jeong-Eun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+H">Ho-Gyu Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnstone%2C+D">Doug Johnstone</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Varricatt%2C+W">Watson Varricatt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pe%C3%B1a%2C+C+C">Carlos Contreras Pe帽a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mairs%2C+S">Steve Mairs</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hodapp%2C+K">Klaus Hodapp</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Team%2C+t+J+T">the JCMT Transient Team</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.05608v1-abstract-short" style="display: inline;"> Observed changes in protostellar brightness can be complicated to interpret. In our JCMT~Transient monitoring survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest $30\%$ brightness increase at 850 $渭$m, caused by a factor of 1.8$-$3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then shallower decay. A secon&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05608v1-abstract-full').style.display = 'inline'; document.getElementById('2202.05608v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.05608v1-abstract-full" style="display: none;"> Observed changes in protostellar brightness can be complicated to interpret. In our JCMT~Transient monitoring survey, we discovered that a young binary protostar, HOPS 373, is undergoing a modest $30\%$ brightness increase at 850 $渭$m, caused by a factor of 1.8$-$3.3 enhancement in the accretion rate. The initial burst occurred over a few months, with a sharp rise and then shallower decay. A second rise occurred soon after the decay, and the source is still bright one year later. The mid-IR emission, the small-scale CO outflow mapped with ALMA, and the location of variable maser emission indicate that the variability is associated with the SW component. The near-infrared and NEOWISE $W1$ and $W2$ emission is located along the blueshifted CO outflow, spatially offset by $\sim3$ to $4^{\prime\prime}$ from the SW component. The $K$-band emission imaged by UKIRT shows a compact H$_2$ emission source at the edge of the outflow, with a tail tracing the outflow back to the source. The $W1$ emission, likely dominated by scattered light, brightens by 0.7 mag, consistent with expectations based on the sub-mm lightcurve. The signal of continuum variability in $K$-band and $W2$ is masked by stable H$_2$ emission, as seen in our Gemini/GNIRS spectrum, and perhaps by CO emission. These differences in emission sources complicate infrared searches for variability of the youngest protostars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.05608v1-abstract-full').style.display = 'none'; document.getElementById('2202.05608v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 14 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2201.04647">arXiv:2201.04647</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2201.04647">pdf</a>, <a href="https://arxiv.org/format/2201.04647">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ac46ae">10.3847/2041-8213/ac46ae <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Rate, Amplitude and Duration of Outbursts from Class 0 Protostars in Orion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zakri%2C+W">W. Zakri</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">W. J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gutermuth%2C+R">Robert Gutermuth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karnath%2C+N">Nicole Karnath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Safron%2C+E">Emily Safron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+T+S">Thomas S. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Federman%2C+S">Sam Federman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N">Nolan Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pokhrel%2C+R">Riwaj Pokhrel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rebull%2C+L">Luisa Rebull</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P+D">Patrick D. Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2201.04647v1-abstract-short" style="display: inline;"> At least half of a protostar&#39;s mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with $\ge 2$ mag changes at 3.6 or 4.5 $渭$m. T&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04647v1-abstract-full').style.display = 'inline'; document.getElementById('2201.04647v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2201.04647v1-abstract-full" style="display: none;"> At least half of a protostar&#39;s mass is accreted in the Class 0 phase, when the central protostar is deeply embedded in a dense, infalling envelope. We present the first systematic search for outbursts from Class 0 protostars in the Orion clouds. Using photometry from Spitzer/IRAC spanning 2004 to 2017, we detect three outbursts from Class 0 protostars with $\ge 2$ mag changes at 3.6 or 4.5 $渭$m. This is comparable to the magnitude change of a known protostellar FU Ori outburst. Two are newly detected bursts from the protostars HOPS 12 and 124. The number of detections implies that Class 0 protostars burst every 438 yr, with a 95% confidence interval of 161 to 1884 yr. Combining Spitzer and WISE/NEOWISE data spanning 2004-2019, we show that the bursts persist for more than nine years with significant variability during each burst. Finally, we use $19-100$ $渭$m photometry from SOFIA, Spitzer and Herschel to measure the amplitudes of the bursts. Based on the burst interval, a duration of 15 yr, and the range of observed amplitudes, 3-100% of the mass accretion during the Class 0 phase occurs during bursts. In total, we show that bursts from Class 0 protostars are as frequent, or even more frequent, than those from more evolved protostars. This is consistent with bursts being driven by instabilities in disks triggered by rapid mass infall. Furthermore, we find that bursts may be a significant, if not dominant, mode of mass accretion during the Class 0 phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2201.04647v1-abstract-full').style.display = 'none'; document.getElementById('2201.04647v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.08693">arXiv:2107.08693</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.08693">pdf</a>, <a href="https://arxiv.org/format/2107.08693">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2088">10.1093/mnras/stab2088 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Clustering of low mass stars around Herbig Be star IL Cep -- Evidence of &#34;Rocket Effect&#34; using Gaia EDR3 ? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Baug%2C+T">T. Baug</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Selvakumar%2C+G">G. Selvakumar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shridharan%2C+B">B. Shridharan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anusha%2C+R">R. Anusha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.08693v1-abstract-short" style="display: inline;"> We study the formation and the kinematic evolution of the early type Herbig Be star IL Cep and its environment. The young star is a member of the Cep OB3 association, at a distance of 798$\pm$9 pc, and has a &#34;cavity&#34; associated with it. We found that the B0V star HD 216658, which is astrometrically associated with IL Cep, is at the center of the cavity. From the evaluation of various pressure comp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08693v1-abstract-full').style.display = 'inline'; document.getElementById('2107.08693v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.08693v1-abstract-full" style="display: none;"> We study the formation and the kinematic evolution of the early type Herbig Be star IL Cep and its environment. The young star is a member of the Cep OB3 association, at a distance of 798$\pm$9 pc, and has a &#34;cavity&#34; associated with it. We found that the B0V star HD 216658, which is astrometrically associated with IL Cep, is at the center of the cavity. From the evaluation of various pressure components created by HD 216658, it is established that the star is capable of creating the cavity. We identified 79 co-moving stars of IL Cep at 2 pc radius from the analysis of {\textit Gaia} EDR3 astrometry. The transverse velocity analysis of the co-moving stars shows that they belong to two different populations associated with IL Cep and HD 216658, respectively. Further analysis confirms that all the stars in the IL Cep population are mostly coeval ($\sim$ 0.1 Myr). Infrared photometry revealed that there are 26 Class II objects among the co-moving stars. The stars without circumstellar disk (Class III) are 65\% of all the co-moving stars. There are 9 intense H$伪$ emission candidates identified among the co-moving stars using IPHAS H$伪$ narrow-band photometry. The dendrogram analysis on the Hydrogen column density map identified 11 molecular clump structures on the expanding cavity around IL Cep, making it an active star-forming region. The formation of the IL Cep stellar group due to the &#34;rocket effect&#34; by HD 216658 is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.08693v1-abstract-full').style.display = 'none'; document.getElementById('2107.08693v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages,5 tables, 13 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.07902">arXiv:2106.07902</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2106.07902">pdf</a>, <a href="https://arxiv.org/format/2106.07902">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/abfd35">10.3847/1538-4365/abfd35 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mid-$J$ CO Line Observations of Protostellar Outflows in the Orion Molecular Clouds </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+M">Miju Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+M">Minho Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrowski%2C+F">Friedrich Wyrowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+G">Gwanjeong Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bieging%2C+J+H">John H. Bieging</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+M">Mi-Ryang Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Park%2C+G">Geumsook Park</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Choi%2C+Y">Yunhee Choi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+S">Sung-Ju Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yoo%2C+H">Hyunju Yoo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.07902v1-abstract-short" style="display: inline;"> Ten protostellar outflows in the Orion molecular clouds were mapped in the $^{12}$CO/$^{13}$CO ${J=6\rightarrow5}$ and $^{12}$CO ${J=7\rightarrow6}$ lines. The maps of these mid-$J$ CO lines have an angular resolution of about 10$&#39;&#39;$ and a typical field size of about 100$&#39;&#39;$. Physical parameters of the molecular outflows were derived, including mass transfer rates, kinetic luminosities, and outflo&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07902v1-abstract-full').style.display = 'inline'; document.getElementById('2106.07902v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.07902v1-abstract-full" style="display: none;"> Ten protostellar outflows in the Orion molecular clouds were mapped in the $^{12}$CO/$^{13}$CO ${J=6\rightarrow5}$ and $^{12}$CO ${J=7\rightarrow6}$ lines. The maps of these mid-$J$ CO lines have an angular resolution of about 10$&#39;&#39;$ and a typical field size of about 100$&#39;&#39;$. Physical parameters of the molecular outflows were derived, including mass transfer rates, kinetic luminosities, and outflow forces. The outflow sample was expanded by re-analyzing archival data of nearby low-luminosity protostars, to cover a wide range of bolometric luminosities. Outflow parameters derived from other transitions of CO were compared. The mid-$J$ ($J_{\rm up} \approx 6$) and low-$J$ ($J_{\rm up} \leq 3$) CO line wings trace essentially the same outflow component. By contrast, the high-$J$ (up to $J_{\rm up} \approx 50$) line-emission luminosity of CO shows little correlation with the kinetic luminosity from the ${J=6\rightarrow5}$ line, which suggests that they trace distinct components. The low/mid-$J$ CO line wings trace long-term outflow behaviors while the high-$J$ CO lines are sensitive to short-term activities. The correlations between the outflow parameters and protostellar properties are presented, which shows that the strengths of molecular outflows increase with bolometric luminosity and envelope mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.07902v1-abstract-full').style.display = 'none'; document.getElementById('2106.07902v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 16 figures, Accepted for publication in ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.06717">arXiv:2102.06717</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2102.06717">pdf</a>, <a href="https://arxiv.org/format/2102.06717">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abded8">10.3847/1538-4357/abded8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An HST Survey of Protostellar Outflow Cavities: Does Feedback Clear Envelopes? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Habel%2C+N+M">Nolan M. Habel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booker%2C+J+J">Joseph Jon Booker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kounkel%2C+M">Marina Kounkel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C">Charles Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A">Amelia Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+Z">Zsofia Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pokhrel%2C+R">Riwaj Pokhrel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">Dan Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.06717v1-abstract-short" style="display: inline;"> We study protostellar envelope and outflow evolution using Hubble Space Telescope NICMOS or WFC3 images of 304 protostars in the Orion Molecular clouds. These near-IR images resolve structures in the envelopes delineated by the scattered light of the central protostars with 80 AU resolution and they complement the 1.2-870 micron spectral energy distributions obtained with the Herschel Orion Protos&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06717v1-abstract-full').style.display = 'inline'; document.getElementById('2102.06717v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.06717v1-abstract-full" style="display: none;"> We study protostellar envelope and outflow evolution using Hubble Space Telescope NICMOS or WFC3 images of 304 protostars in the Orion Molecular clouds. These near-IR images resolve structures in the envelopes delineated by the scattered light of the central protostars with 80 AU resolution and they complement the 1.2-870 micron spectral energy distributions obtained with the Herschel Orion Protostar Survey program (HOPS). Based on their 1.60 micron morphologies, we classify the protostars into five categories: non-detections, point sources without nebulosity, bipolar cavity sources, unipolar cavity sources, and irregulars. We find point sources without associated nebulosity are the most numerous, and show through monochromatic Monte Carlo radiative transfer modeling that this morphology occurs when protostars are observed at low inclinations or have low envelope densities. We also find that the morphology is correlated with the SED-determined evolutionary class with Class 0 protostars more likely to be non-detections, Class I protostars to show cavities and flat-spectrum protostars to be point sources. Using an edge detection algorithm to trace the projected edges of the cavities, we fit power-laws to the resulting cavity shapes, thereby measuring the cavity half-opening angles and power-law exponents. We find no evidence for the growth of outflow cavities as protostars evolve through the Class I protostar phase, in contradiction with previous studies of smaller samples. We conclude that the decline of mass infall with time cannot be explained by the progressive clearing of envelopes by growing outflow cavities. Furthermore, the low star formation efficiency inferred for molecular cores cannot be explained by envelope clearing alone. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.06717v1-abstract-full').style.display = 'none'; document.getElementById('2102.06717v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.13694">arXiv:2012.13694</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2012.13694">pdf</a>, <a href="https://arxiv.org/format/2012.13694">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/abd802">10.3847/1538-3881/abd802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Host star metallicity of directly imaged wide-orbit planets: implications for planet formation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Swastik%2C+C">C. Swastik</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banyal%2C+R+K">Ravinder K. Banyal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">T. Sivarani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Reddy%2C+B+E">Bacham E. Reddy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rajaguru%2C+S+P">S. P. Rajaguru</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.13694v2-abstract-short" style="display: inline;"> Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($\sim10\mathrm{s}-1000\mathrm{s}$~AU) and generally are more massive compared to the close-in ($\lesssim 10$~AU) planets. Determining the host star properties of these outstretched planetary systems is important to understand and discern various planet formation and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13694v2-abstract-full').style.display = 'inline'; document.getElementById('2012.13694v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.13694v2-abstract-full" style="display: none;"> Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($\sim10\mathrm{s}-1000\mathrm{s}$~AU) and generally are more massive compared to the close-in ($\lesssim 10$~AU) planets. Determining the host star properties of these outstretched planetary systems is important to understand and discern various planet formation and evolution scenarios. We present the stellar parameters and metallicity ([Fe/H]) for a subsample of 18 stars known to host planets discovered by the direct imaging technique. We retrieved the high-resolution spectra for these stars from public archives and used the synthetic spectral fitting technique and Bayesian analysis to determine the stellar properties in a uniform and consistent way. For eight sources, the metallicities are reported for the first time, while the results are consistent with the previous estimates for the other sources. Our analysis shows that metallicities of stars hosting directly imaged planets are close to solar with a mean [Fe/H] = $-0.04\pm0.27$~dex. The large scatter in metallicity suggests that a metal-rich environment may not be necessary to form massive planets at large orbital distances. We also find that the planet mass-host star metallicity relation for the directly imaged massive planets in wide-orbits is very similar to that found for the well studied population of short period ($\lesssim 1$~yr) super-Jupiters and brown-dwarfs around main-sequence stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.13694v2-abstract-full').style.display = 'none'; document.getElementById('2012.13694v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted in AJ for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> AJ 161 114 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.10222">arXiv:2011.10222</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.10222">pdf</a>, <a href="https://arxiv.org/ps/2011.10222">ps</a>, <a href="https://arxiv.org/format/2011.10222">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa3652">10.1093/mnras/staa3652 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of an M-type Companion to the Herbig Ae Star V1787 Ori </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rengaswamy%2C+S">Sridharan Rengaswamy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.10222v2-abstract-short" style="display: inline;"> The intermediate mass Herbig Ae star V1787 Ori is a member of the L1641 star-forming region in the Orion A molecular cloud. We report the detection of an M-type companion to V1787 Ori at a projected separation of 6.66&#34; (corresponding to 2577 au), from the analysis of VLT/NACO adaptive optics $K_s$-band image. Using astrometric data from Gaia DR2, we show that V1787 Ori A and B share similar distan&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10222v2-abstract-full').style.display = 'inline'; document.getElementById('2011.10222v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.10222v2-abstract-full" style="display: none;"> The intermediate mass Herbig Ae star V1787 Ori is a member of the L1641 star-forming region in the Orion A molecular cloud. We report the detection of an M-type companion to V1787 Ori at a projected separation of 6.66&#34; (corresponding to 2577 au), from the analysis of VLT/NACO adaptive optics $K_s$-band image. Using astrometric data from Gaia DR2, we show that V1787 Ori A and B share similar distance ($d$ $\sim$ 387 pc) and proper motion, indicating that they are physically associated. We estimate the spectral type of V1787 Ori B to be M5 $\pm$ 2 from color--spectral type calibration tables and template matching using SpeX spectral library. By fitting PARSEC models in the Pan-STARRS color-magnitude diagram, we find that V1787 Ori B has an age of 8.1$^{+1.7}_{-1.5}$ Myr and a mass of 0.39$^{+0.02}_{-0.05}$ $M_\odot$. We show that V1787 Ori is a pre-main sequence wide binary system with a mass ratio of 0.23. Such a low mass ratio system is rarely identified in Herbig Ae/Be binary systems. We conclude this work with a discussion on possible mechanisms for the formation of V1787 Ori wide binary system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.10222v2-abstract-full').style.display = 'none'; document.getElementById('2011.10222v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages,3 tables, 5 figures, accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2011.03552">arXiv:2011.03552</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2011.03552">pdf</a>, <a href="https://arxiv.org/format/2011.03552">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abc7cb">10.3847/1538-4357/abc7cb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Herschel Orion Protostar Survey: Far-Infrared Photometry and Colors of Protostars and Their Variations across Orion A and B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Di+Francesco%2C+J">James Di Francesco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+L+E">Lori E. Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+T+L">T. L. Wilson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">Thomas Henning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2011.03552v1-abstract-short" style="display: inline;"> The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough to distinguish individual protostars across a range of environments in terms of both the stellar and gas projected densities. As part of the Herschel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03552v1-abstract-full').style.display = 'inline'; document.getElementById('2011.03552v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2011.03552v1-abstract-full" style="display: none;"> The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough to distinguish individual protostars across a range of environments in terms of both the stellar and gas projected densities. As part of the Herschel Orion Protostar Survey (HOPS), we used the Photodetector Array Camera and Spectrometer (PACS) to map 108 partially overlapping square fields with edge lengths of 5 arcmin or 8 arcmin and measure the 70 micron and 160 micron flux densities of 338 protostars within them. In this paper we examine how these flux densities and their ratio depend on evolutionary state and environment within the Orion complex. We show that Class 0 protostars occupy a region of the 70 micron flux density versus 160 micron to 70 micron flux density ratio diagram that is distinct from their more evolved counterparts. We then present evidence that the Integral-Shaped Filament (ISF) and Orion B contain protostars with more massive envelopes than those in the more sparsely populated LDN 1641 region. This can be interpreted as evidence for increasing star formation rates in the ISF and Orion B or as a tendency for more massive envelopes to be inherited from denser birth environments. We also provide technical details about the map-making and photometric procedures used in the HOPS program. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2011.03552v1-abstract-full').style.display = 'none'; document.getElementById('2011.03552v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.12103">arXiv:2007.12103</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.12103">pdf</a>, <a href="https://arxiv.org/ps/2007.12103">ps</a>, <a href="https://arxiv.org/format/2007.12103">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201937342">10.1051/0004-6361/201937342 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An APEX survey of outflow and infall toward the youngest protostars in Orion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+Z">Z. Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Menechella%2C+A">A. Menechella</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">J. J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booker%2C+J+J">J. J. Booker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">W. J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">T. Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A">A. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrowski%2C+F">F. Wyrowski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.12103v2-abstract-short" style="display: inline;"> We aim to characterize the outflow properties of a sample of early Class 0 phase low-mass protostars in Orion first identified by the Herschel Space Observatory. We also look for signatures of infall in key molecular lines. CO $J$=3-2 and $J$=4-3 maps toward 16 very young Class 0 protostars were obtained using the Atacama Pathfinder EXperiment (APEX) telescope. We search the data for line wings in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12103v2-abstract-full').style.display = 'inline'; document.getElementById('2007.12103v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.12103v2-abstract-full" style="display: none;"> We aim to characterize the outflow properties of a sample of early Class 0 phase low-mass protostars in Orion first identified by the Herschel Space Observatory. We also look for signatures of infall in key molecular lines. CO $J$=3-2 and $J$=4-3 maps toward 16 very young Class 0 protostars were obtained using the Atacama Pathfinder EXperiment (APEX) telescope. We search the data for line wings indicative of outflows and calculate masses, velocities, and dynamical times for the outflows. We use additional HCO$^+$, H$^{13}$CO$^+$, and NH$_3$ lines to look for infall signatures toward the protostars. We estimate the outflow masses, forces, and mass-loss rates based on the CO $J$=3-2 and $J$=4-3 line intensities for 8 sources with detected outflows. We derive upper limits for the outflow masses and forces of sources without clear outflow detections. The total outflow masses for the sources with clear outflow detections are in the range between 0.03 and 0.16 $M_\odot$ for CO $J$=3-2, and in the range between 0.02 and 0.10 $M_\odot$ for CO $J$=4-3. The outflow forces are in the range between $1.57\times10^{-4}$ and $1.16\times10^{-3}$ $M_\odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=3-2 and in the range between $1.14\times10^{-4}$ and $6.92\times10^{-4}$ $M_\odot$ km s$^{-1}$ yr$^{-1}$ for CO $J$=4-3. Nine protostars in our sample show asymmetric line profiles indicative of infall in HCO$^+$, compared to H$^{13}$CO$^+$ or NH$_3$. The outflow forces of the protostars in our sample show no correlation with the bolometric luminosity, unlike those found by some earlier studies for other Class 0 protostars. The derived outflow forces for the sources with detected outflows are similar to those found for other - more evolved - Class 0 protostars, suggesting that outflows develop quickly in the Class 0 phase. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.12103v2-abstract-full').style.display = 'none'; document.getElementById('2007.12103v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 642, A137 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03349">arXiv:2003.03349</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03349">pdf</a>, <a href="https://arxiv.org/format/2003.03349">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab7d3b">10.3847/1538-3881/ab7d3b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A statistical search for Star-Planet Interaction in the UltraViolet using GALEX </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Viswanath%2C+G">Gayathri Viswanath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S Kartha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03349v1-abstract-short" style="display: inline;"> Most (~82%) of the over 4000 confirmed exoplanets known today orbit very close to their host stars, within 0.5 au. Planets at such small orbital distances can result in significant interactions with their host stars, which can induce increased activity levels in them. In this work, we have searched for statistical evidence for Star-Planet Interactions (SPI) in the ultraviolet (UV) using the larges&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03349v1-abstract-full').style.display = 'inline'; document.getElementById('2003.03349v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03349v1-abstract-full" style="display: none;"> Most (~82%) of the over 4000 confirmed exoplanets known today orbit very close to their host stars, within 0.5 au. Planets at such small orbital distances can result in significant interactions with their host stars, which can induce increased activity levels in them. In this work, we have searched for statistical evidence for Star-Planet Interactions (SPI) in the ultraviolet (UV) using the largest sample of 1355 GALEX detected host stars with confirmed exoplanets and making use of the improved host star parameters from Gaia DR2. From our analysis, we do not find any significant correlation between the UV activity of the host stars and their planetary properties. We further compared the UV properties of planet host stars to that of chromospherically active stars from the RAVE survey. Our results indicate that the enhancement in chromospheric activity of host stars due to star-planet interactions may not be significant enough to reflect in their near and far UV broad band flux. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03349v1-abstract-full').style.display = 'none'; document.getElementById('2003.03349v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, 2 tables. Accepted for publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.04801">arXiv:2002.04801</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2002.04801">pdf</a>, <a href="https://arxiv.org/format/2002.04801">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab76d6">10.3847/1538-3881/ab76d6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analysis of membership probability in nearby young moving groups with Gaia DR2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ujjwal%2C+K">K. Ujjwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.04801v1-abstract-short" style="display: inline;"> We analyze the membership probability of young stars belonging to nearby moving groups with $\textit{Gaia}$ DR2 data. The sample of 1429 stars were identified from &#39;The Catalog of Suspected Nearby Young Moving Group Stars&#39;. Good-quality parallax and proper motion values were retrieved for 890 stars from $\textit{Gaia}$ DR2 database. The analysis for membership probability is performed in the frame&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04801v1-abstract-full').style.display = 'inline'; document.getElementById('2002.04801v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.04801v1-abstract-full" style="display: none;"> We analyze the membership probability of young stars belonging to nearby moving groups with $\textit{Gaia}$ DR2 data. The sample of 1429 stars were identified from &#39;The Catalog of Suspected Nearby Young Moving Group Stars&#39;. Good-quality parallax and proper motion values were retrieved for 890 stars from $\textit{Gaia}$ DR2 database. The analysis for membership probability is performed in the framework of LACEwING algorithm. From the analysis it is confirmed that 279 stars do not belong to any of the known moving groups. We estimated the $\textit{ U, V, W}$ space velocity values for 250 moving group members, which were found to be more accurate than previous values listed in the literature. The velocity ellipses of all the moving groups are well constrained within the &#34;good box&#34;, a widely used criterion to identify moving group members. The age of moving group members are uniformly estimated from the analysis of $\textit{Gaia}$ Color-Magnitude Diagram with MIST isochrones. We found a spread in the age distribution of stars belonging to some moving groups, which needs to be understood from further studies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.04801v1-abstract-full').style.display = 'none'; document.getElementById('2002.04801v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 Pages, 5 Figures, 4 Tables, Accepted for publication in AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1903.01070">arXiv:1903.01070</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1903.01070">pdf</a>, <a href="https://arxiv.org/ps/1903.01070">ps</a>, <a href="https://arxiv.org/format/1903.01070">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab0ca1">10.3847/1538-3881/ab0ca1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the mass accretion rate and infrared excess in Herbig Ae/Be Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Arun%2C+R">R. Arun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ujjwal%2C+K">K. Ujjwal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kartha%2C+S+S">Sreeja S. Kartha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Viswanath%2C+G">Gayathri Viswanath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Paul%2C+K+T">K. T. Paul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1903.01070v2-abstract-short" style="display: inline;"> The present study makes use of the unprecedented capability of the Gaia mission to obtain the stellar parameters such as distance, age, and mass of HAeBe stars. The accuracy of Gaia DR2 astrometry is demonstrated from the comparison of the Gaia DR2 distances of 131 HAeBe stars with the previously estimated values from the literature. This is one of the initial studies to estimate the age and mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01070v2-abstract-full').style.display = 'inline'; document.getElementById('1903.01070v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1903.01070v2-abstract-full" style="display: none;"> The present study makes use of the unprecedented capability of the Gaia mission to obtain the stellar parameters such as distance, age, and mass of HAeBe stars. The accuracy of Gaia DR2 astrometry is demonstrated from the comparison of the Gaia DR2 distances of 131 HAeBe stars with the previously estimated values from the literature. This is one of the initial studies to estimate the age and mass of a confirmed sample of HAeBe stars using both the photometry and distance from the Gaia mission. Mass accretion rates are calculated from $H伪$ line flux measurements of 106 HAeBe stars. Since we used distances and the stellar masses derived from the Gaia DR2 data in the calculation of mass accretion rate, our estimates are more accurate than previous studies. The mass accretion rate is found to decay exponentially with age, from which we estimated a disk dissipation timescale of $1.9\pm 0.1$ Myr. Mass accretion rate and stellar mass exhibits a power law relation of the form, $\dot{M}_{acc}$ $\propto$ $M_{*}^{2.8\pm0.2}$. From the distinct distribution in the values of the infrared spectral index, $n_{2-4.6}$, we suggest the possibility of difference in the disk structure between Herbig Be and Herbig Ae stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1903.01070v2-abstract-full').style.display = 'none'; document.getElementById('1903.01070v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 1 table, 6 figures, accepted for publication in AJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.08385">arXiv:1809.08385</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1809.08385">pdf</a>, <a href="https://arxiv.org/format/1809.08385">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/aae391">10.3847/1538-3881/aae391 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Properties and occurrence rates of $Kepler$ exoplanet candidates as a function of host star metallicity from the DR25 catalog </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">M. Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mordasini%2C+C">C. Mordasini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">B. Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banyal%2C+R+K">R. K. Banyal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">T. Sivarani</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.08385v1-abstract-short" style="display: inline;"> Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 $Kepler$ candidates from the latest&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08385v1-abstract-full').style.display = 'inline'; document.getElementById('1809.08385v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.08385v1-abstract-full" style="display: none;"> Correlations between the occurrence rate of exoplanets and their host star properties provide important clues about the planet formation processes. We studied the dependence of the observed properties of exoplanets (radius, mass, and orbital period) as a function of their host star metallicity. We analyzed the planetary radii and orbital periods of over 2800 $Kepler$ candidates from the latest $Kepler$ data release DR25 (Q1-Q17) with revised planetary radii based on $Gaia$~DR2 as a function of host star metallicity (from the Q1-Q17 (DR25) stellar and planet catalog). With a much larger sample and improved radius measurements, we are able to reconfirm previous results in the literature. We show that the average metallicity of the host star increases as the radius of the planet increases. We demonstrate this by first calculating the average host star metallicity for different radius bins and then supplementing these results by calculating the occurrence rate as a function of planetary radius and host star metallicity. We find a similar trend between host star metallicity and planet mass: the average host star metallicity increases with increasing planet mass. This trend, however, reverses for masses $&gt; 4.0\, M_\mathrm{J}$: host star metallicity drops with increasing planetary mass. We further examined the correlation between the host star metallicity and the orbital period of the planet. We find that for planets with orbital periods less than 10 days, the average metallicity of the host star is higher than that for planets with periods greater than 10 days. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.08385v1-abstract-full').style.display = 'none'; document.getElementById('1809.08385v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 Figures, Accepted for publication in The Astronomical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1803.02025">arXiv:1803.02025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1803.02025">pdf</a>, <a href="https://arxiv.org/ps/1803.02025">ps</a>, <a href="https://arxiv.org/format/1803.02025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aab3d8">10.3847/1538-4357/aab3d8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitation mechanism of OI lines in Herbig Ae/Be stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Narang%2C+M">Mayank Narang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Banerjee%2C+D+P+K">D. P. K. Banerjee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P">Pratheeksha Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muneer%2C+S">S. Muneer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vig%2C+S">S. Vig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=S.%2C+P+K">Pramod Kumar S.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=T.%2C+P+K">Paul K. T.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1803.02025v1-abstract-short" style="display: inline;"> We have investigated the role of a few prominent excitation mechanisms viz. collisional excitation, recombination, continuum fluorescence and Lyman beta fluorescence on the OI line spectra in Herbig Ae/Be stars. The aim is to understand which of them is the central mechanism that explains the observed OI line strengths. The study is based on an analysis of the observed optical spectra of 62 Herbig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02025v1-abstract-full').style.display = 'inline'; document.getElementById('1803.02025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1803.02025v1-abstract-full" style="display: none;"> We have investigated the role of a few prominent excitation mechanisms viz. collisional excitation, recombination, continuum fluorescence and Lyman beta fluorescence on the OI line spectra in Herbig Ae/Be stars. The aim is to understand which of them is the central mechanism that explains the observed OI line strengths. The study is based on an analysis of the observed optical spectra of 62 Herbig Ae/Be stars and near-infrared spectra of 17 Herbig Ae/Be stars. The strong correlation observed between the line fluxes of OI $位$8446 and OI $位$11287, as well as a high positive correlation between the line strengths of OI $位$8446 and H$伪$ suggest that Lyman beta fluorescence is the dominant excitation mechanism for the formation of OI emission lines in Herbig Ae/Be stars. Further, from an analysis of the emission line fluxes of OI $位位$7774, 8446, and comparing the line ratios with those predicted by theoretical models, we assessed the contribution of collisional excitation in the formation of OI emission lines. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1803.02025v1-abstract-full').style.display = 'none'; document.getElementById('1803.02025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 tables, 6 figures, accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.00596">arXiv:1712.00596</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1712.00596">pdf</a>, <a href="https://arxiv.org/format/1712.00596">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> HOPS 108: Star-formation triggered by a non-thermal jet? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez%2C+A+K+D">A. K. D铆az Rodr铆guez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">M. Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">G. Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodr%C3%ADguez%2C+L+F">L. F. Rodr铆guez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">J. J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=G%C3%B3mez%2C+J+F">J. F. G贸mez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">A. M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W">W. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez-Garc%C3%ADa%2C+B">B. Gonz谩lez-Garc铆a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">T. Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booker%2C+J">J. Booker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+B">B. Ali</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.00596v1-abstract-short" style="display: inline;"> The nature of the far-IR source HOPS 108 has been a matter of debate in the last years. Previous radio observations detected a 3.6 cm source (VLA 12), coincident with HOPS 108, that was interpreted as a radio jet from this protostar. We present new multi-wavelength (0.7-5 cm), multi-configuration VLA observations as well as archive data (3.6 cm) that reveal VLA 12 as three knots of non-thermal emi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00596v1-abstract-full').style.display = 'inline'; document.getElementById('1712.00596v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.00596v1-abstract-full" style="display: none;"> The nature of the far-IR source HOPS 108 has been a matter of debate in the last years. Previous radio observations detected a 3.6 cm source (VLA 12), coincident with HOPS 108, that was interpreted as a radio jet from this protostar. We present new multi-wavelength (0.7-5 cm), multi-configuration VLA observations as well as archive data (3.6 cm) that reveal VLA 12 as three knots of non-thermal emission, with HOPS 108 close to the central knot. We show that these knots have not been ejected by HOPS 108. We propose that the VLA 12 knots are actually part of a radio jet driven by VLA 11 (HOPS 370), a strong nearby source clearly elongated in the direction of the knots. The position of HOPS 108 in the path of the VLA 11-VLA 12 jet suggests an appealing new scenario: the triggered formation of HOPS 108 by the interaction of the jet with the surrounding medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.00596v1-abstract-full').style.display = 'none'; document.getElementById('1712.00596v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Proceedings of the Star Formation in Different Environments, ICISE, Quy Nhon, Vietnam, 2016, (eds. D. Johnstone, T. Hoang, F. Nakamura, Q. Nguyen-Luong, and J. T. Tranh Van)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> ICISE/SFDE16/14 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1704.05847">arXiv:1704.05847</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1704.05847">pdf</a>, <a href="https://arxiv.org/ps/1704.05847">ps</a>, <a href="https://arxiv.org/format/1704.05847">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa6d69">10.3847/1538-4357/aa6d69 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Herschel Orion Protostar Survey: Luminosity and Envelope Evolution </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+B">Babar Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C+A">Charles A. Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booker%2C+J+J">Joseph J. Booker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">Lee Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+T+L">Thomas L. Wilson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Myers%2C+P+C">Philip C. Myers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1704.05847v1-abstract-short" style="display: inline;"> The Herschel Orion Protostar Survey obtained well-sampled 1.2 - 870 micron spectral energy distributions (SEDs) of over 300 protostars in the Orion molecular clouds, home to most of the young stellar objects (YSOs) in the nearest 500 pc. We plot the bolometric luminosities and temperatures for 330 Orion YSOs, 315 of which have bolometric temperatures characteristic of protostars. The histogram of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05847v1-abstract-full').style.display = 'inline'; document.getElementById('1704.05847v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1704.05847v1-abstract-full" style="display: none;"> The Herschel Orion Protostar Survey obtained well-sampled 1.2 - 870 micron spectral energy distributions (SEDs) of over 300 protostars in the Orion molecular clouds, home to most of the young stellar objects (YSOs) in the nearest 500 pc. We plot the bolometric luminosities and temperatures for 330 Orion YSOs, 315 of which have bolometric temperatures characteristic of protostars. The histogram of bolometric temperature is roughly flat; 29% of the protostars are in Class 0. The median luminosity decreases by a factor of four with increasing bolometric temperature; consequently, the Class 0 protostars are systematically brighter than the Class I protostars, with a median luminosity of 2.3 L_sun as opposed to 0.87 L_sun. At a given bolometric temperature, the scatter in luminosities is three orders of magnitude. Using fits to the SEDs, we analyze how the luminosities corrected for inclination and foreground reddening relate to the mass in the inner 2500 AU of the best-fit model envelopes. The histogram of envelope mass is roughly flat, while the median corrected luminosity peaks at 15 L_sun for young envelopes and falls to 1.7 L_sun for late-stage protostars with remnant envelopes. The spread in luminosity at each envelope mass is three orders of magnitude. Envelope masses that decline exponentially with time explain the flat mass histogram and the decrease in luminosity, while the formation of a range of stellar masses explains the dispersion in luminosity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1704.05847v1-abstract-full').style.display = 'none'; document.getElementById('1704.05847v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJ, 16 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.07877">arXiv:1703.07877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.07877">pdf</a>, <a href="https://arxiv.org/format/1703.07877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/aa6975">10.3847/1538-4357/aa6975 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Star Formation Under the Outflow: The Discovery of a Non-Thermal Jet from OMC-2 FIR 3 and its Relationship to the Deeply Embedded FIR 4 Protostar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">Mayra Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Diaz-Rodriguez%2C+A+K">Ana K. Diaz-Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anglada%2C+G">Guillem Anglada</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+L+F">Luis F. Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gomez%2C+J+F">Jose F. Gomez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez-Garcia%2C+B">Beatriz Gonzalez-Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Loinard%2C+L">Laurent Loinard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavrek%2C+R">Roland Vavrek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrasco-Gonzalez%2C+C">Carlos Carrasco-Gonzalez</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.07877v1-abstract-short" style="display: inline;"> We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free-free core (VLA 11) associated with the Clas&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07877v1-abstract-full').style.display = 'inline'; document.getElementById('1703.07877v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.07877v1-abstract-full" style="display: none;"> We carried out multiwavelength (0.7-5 cm), multiepoch (1994-2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, seven of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free-free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet presents several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ~7,500-12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ~ 100 km/s. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario where the formation of HOPS 108 has been triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 presents a large proper motion velocity of ~ 30 km/s, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and /or opacity effects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.07877v1-abstract-full').style.display = 'none'; document.getElementById('1703.07877v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 4 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1703.05945">arXiv:1703.05945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1703.05945">pdf</a>, <a href="https://arxiv.org/ps/1703.05945">ps</a>, <a href="https://arxiv.org/format/1703.05945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/aa67f6">10.3847/1538-3881/aa67f6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The curious case of PDS 11: a nearby, &gt;10 Myr old, classical T Tauri binary system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Mathew%2C+B">Blesson Mathew</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bhatt%2C+B+C">B. C. Bhatt</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sahu%2C+D+K">D. K. Sahu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maheswar%2C+G">G. Maheswar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muneer%2C+S">S. Muneer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1703.05945v1-abstract-short" style="display: inline;"> We present results of our study of PDS 11 binary system, which belongs to a rare class of isolated, high galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is a M2-M2 binary system with both components showing similar H-alpha emission strength. Both the components appear to be accreting, and are classical T Tauri stars. The lithium doublet Li I 6708 Angstrom, a signatu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05945v1-abstract-full').style.display = 'inline'; document.getElementById('1703.05945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1703.05945v1-abstract-full" style="display: none;"> We present results of our study of PDS 11 binary system, which belongs to a rare class of isolated, high galactic latitude T Tauri stars. Our spectroscopic analysis reveals that PDS 11 is a M2-M2 binary system with both components showing similar H-alpha emission strength. Both the components appear to be accreting, and are classical T Tauri stars. The lithium doublet Li I 6708 Angstrom, a signature of youth, is present in the spectrum of PDS 11A, but not in PDS 11B. From the application of lithium depletion boundary age-dating method and a comparison with the Li I 6708 equivalent width distribution of moving groups, we estimated an age of 10-15 Myr for PDS 11A. Comparison with pre-main sequence evolutionary models indicates that PDS 11A is a 0.4 solar mass T Tauri star at a distance of 114-131 pc. PDS 11 system does not appear to be associated with any known star forming regions or moving groups. PDS 11 is a new addition, after TWA 30 and LDS 5606, to the interesting class of old, dusty, wide binary classical T Tauri systems in which both components are actively accreting. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1703.05945v1-abstract-full').style.display = 'none'; document.getElementById('1703.05945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in The Astronomical Journal (13 pages, 10 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1610.08185">arXiv:1610.08185</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1610.08185">pdf</a>, <a href="https://arxiv.org/ps/1610.08185">ps</a>, <a href="https://arxiv.org/format/1610.08185">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s12036-016-9414-9">10.1007/s12036-016-9414-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Interstellar medium and star formation studies with the Square Kilometre Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vig%2C+S">S. Vig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mahewar%2C+G">G. Mahewar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kamath%2C+U+S">U. S. Kamath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tej%2C+A">A. Tej</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1610.08185v1-abstract-short" style="display: inline;"> Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major rol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08185v1-abstract-full').style.display = 'inline'; document.getElementById('1610.08185v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1610.08185v1-abstract-full" style="display: none;"> Stars and planetary systems are formed out of molecular clouds in the interstellar medium. Although the sequence of steps involved in star formation are generally known, a comprehensive theory which describes the details of the processes that drive formation of stars is still missing. The Square Kilometre Array (SKA), with its unprecedented sensitivity and angular resolution, will play a major role in filling these gaps in our understanding. In this article, we present a few science cases that the Indian star formation community is interested in pursuing with SKA, which include investigation of AU-sized structures in the neutral ISM, the origin of thermal and non-thermal radio jets from protostars and the accretion history of protostars, and formation of massive stars and their effect on the surrounding medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1610.08185v1-abstract-full').style.display = 'none'; document.getElementById('1610.08185v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in Journal of Astrophysics and Astronomy (JOAA) special issue on &#34;Science with the SKA: an Indian perspective&#34; (under review)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04965">arXiv:1608.04965</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.04965">pdf</a>, <a href="https://arxiv.org/format/1608.04965">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The evolution of far-infrared CO emission from protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Green%2C+J+D">J. D. Green</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Evans%2C+N+J">N. J. Evans II</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">A. M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">J. J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">D. M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">W. J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Henning%2C+T">T. Henning</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04965v1-abstract-short" style="display: inline;"> We investigate the evolution of far-IR CO emission from protostars observed with Herschel/PACS for 50 sources from the combined sample of HOPS and DIGIT Herschel key programs. From the uniformly sampled spectral energy distributions, we computed $L_{\rm{bol}}$, $T_{\rm{bol}}$ and $L_{\rm {bol}}/L_{\rm {smm}}$ for these sources to search for correlations between far-IR CO emission and protostellar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04965v1-abstract-full').style.display = 'inline'; document.getElementById('1608.04965v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04965v1-abstract-full" style="display: none;"> We investigate the evolution of far-IR CO emission from protostars observed with Herschel/PACS for 50 sources from the combined sample of HOPS and DIGIT Herschel key programs. From the uniformly sampled spectral energy distributions, we computed $L_{\rm{bol}}$, $T_{\rm{bol}}$ and $L_{\rm {bol}}/L_{\rm {smm}}$ for these sources to search for correlations between far-IR CO emission and protostellar properties. We find a strong and tight correlation between far-IR CO luminosity ($L^{\rm fir}_{\rm CO}$) and the bolometric luminosity ($L_{\rm{bol}}$) of the protostars with $L^{\rm fir}_{\rm CO}$ $\propto$ $L_{\rm{bol}}^{0.7}$. We, however, do not find a strong correlation between $L^{\rm fir}_{\rm CO}$ and protostellar evolutionary indicators, $T_{\rm{bol}}$ and $L_{\rm {bol}}/L_{\rm {smm}}$. FIR CO emission from protostars traces the currently shocked gas by jets/outflows, and $L^{\rm fir}_{\rm CO}$ is proportional to the instantaneous mass loss rate, $\dot{M}_{\rm{out}}$. The correlation between $L^{\rm fir}_{\rm CO}$ and $L_{\rm{bol}}$ is indicative of instantaneous $\dot{M}_{\rm{out}}$ tracking instantaneous $\dot{M}_{\rm{acc}}$. The lack of correlation between $L^{\rm fir}_{\rm CO}$ and evolutionary indicators $T_{\rm{bol}}$ and $L_{\rm {bol}}/L_{\rm {smm}}$ suggests that $\dot{M}_{\rm{out}}$ and, therefore, $\dot{M}_{\rm{acc}}$ do not show any clear evolutionary trend. These results are consistent with mass accretion/ejection in protostars being episodic. Taken together with the previous finding that the time-averaged mass ejection/accretion rate declines during the protostellar phase (e.g., Bontemps et al. 1996), our results suggest that the instantaneous accretion/ejection rate of protostars is highly time variable and episodic, but the amplitude and/or frequency of this variability decreases with time such that the time averaged accretion/ejection rate declines with system age. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04965v1-abstract-full').style.display = 'none'; document.getElementById('1608.04965v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1608.04964">arXiv:1608.04964</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1608.04964">pdf</a>, <a href="https://arxiv.org/format/1608.04964">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/201527186">10.1051/0004-6361/201527186 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Herschel/PACS far-IR spectral imaging of a jet from an intermediate mass protostar in the OMC-2 region </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gonzalez-Garcia%2C+B">B. Gonzalez-Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">D. M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vavrek%2C+R">R. Vavrek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">A. M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">M. Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrowski%2C+F">F. Wyrowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">W. J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">J. J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sanchez-Portal%2C+M">M. Sanchez-Portal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rodriguez%2C+A+K+D">A. K. Diaz Rodriguez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilson%2C+T+L">T. L. Wilson</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1608.04964v1-abstract-short" style="display: inline;"> We present the first detection of a jet in the far-IR [O I] lines from an intermediate mass protostar. We have carried out a Herschel/PACS spectral mapping study in the [O I] lines of OMC-2 FIR 3 and FIR 4, two of the most luminous protostars in Orion outside of the Orion Nebula. The spatial morphology of the fine structure line emission reveals the presence of an extended photodissociation region&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04964v1-abstract-full').style.display = 'inline'; document.getElementById('1608.04964v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1608.04964v1-abstract-full" style="display: none;"> We present the first detection of a jet in the far-IR [O I] lines from an intermediate mass protostar. We have carried out a Herschel/PACS spectral mapping study in the [O I] lines of OMC-2 FIR 3 and FIR 4, two of the most luminous protostars in Orion outside of the Orion Nebula. The spatial morphology of the fine structure line emission reveals the presence of an extended photodissociation region (PDR) and a narrow, but intense jet connecting the two protostars. The jet seen in [O I] emission is spatially aligned with the Spitzer/IRAC 4.5 micron jet and the CO (6-5) molecular outflow centered on FIR 3. The mass loss rate derived from the total [O I] 63 micron line luminosity of the jet is 7.7 x 10^-6 M_sun/yr, more than an order of magnitude higher than that measured for typical low mass class 0 protostars. The implied accretion luminosity is significantly higher than the observed bolometric luminosity of FIR 4, indicating that the [O I] jet is unlikely to be associated with FIR 4. We argue that the peak line emission seen toward FIR 4 originates in the terminal shock produced by the jet driven by FIR 3. The higher mass-loss rate that we find for FIR 3 is consistent with the idea that intermediate mass protostars drive more powerful jets than their low-mass counterparts. Our results also call into question the nature of FIR 4. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1608.04964v1-abstract-full').style.display = 'none'; document.getElementById('1608.04964v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A &amp; A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00787">arXiv:1607.00787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1607.00787">pdf</a>, <a href="https://arxiv.org/format/1607.00787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/831/1/36">10.3847/0004-637X/831/1/36 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterizing the Youngest Herschel-detected Protostars II. Molecular Outflows from the Millimeter and the Far-infrared </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Karska%2C+A">Agata Karska</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nagy%2C+Z">Zsofia Nagy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wyrowski%2C+F">Friedrich Wyrowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W">William Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">Thomas Stanke</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00787v1-abstract-short" style="display: inline;"> We present CARMA CO (J=1-0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS) (Stutz et al. 2013). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00787v1-abstract-full').style.display = 'inline'; document.getElementById('1607.00787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00787v1-abstract-full" style="display: none;"> We present CARMA CO (J=1-0) observations and Herschel PACS spectroscopy, characterizing the outflow properties toward extremely young and deeply embedded protostars in the Orion molecular clouds. The sample comprises a subset of the Orion protostars known as the PACS Bright Red Sources (PBRS) (Stutz et al. 2013). We observed 14 PBRS with CARMA and 8 of these 14 with Herschel, acquiring full spectral scans from 55 micron to 200 micron. Outflows are detected in CO (J=1-0) from 8 of 14 PBRS, with two additional tentative detections; outflows are also detected from the outbursting protostar HOPS 223 (V2775 Ori) and the Class I protostar HOPS 68. The outflows have a range of morphologies, some are spatially compact, &lt;10000 AU in extent, while others extend beyond the primary beam. The outflow velocities and morphologies are consistent with being dominated by intermediate inclination angles (80 deg &gt; i &gt; 20 deg). This confirms the interpretation of the very red 24 micron to 70 micron colors of the PBRS as a signpost of high envelope densities, with only one (possibly two) cases of the red colors resulting from edge-on inclinations. We detect high-J (J_up &gt; 13) CO lines and/or H_2O lines from 5 of 8 PBRS and only for those with detected CO outflows. The far-infrared CO rotation temperatures of the detected PBRS are marginally colder (~230 K) than those observed for most protostars (~300 K), and only one of these 5 PBRS has detected [OI] 63 micron emission. The high envelope densities could be obscuring some [OI] emission and cause a ~20 K reduction to the CO rotation temperatures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00787v1-abstract-full').style.display = 'none'; document.getElementById('1607.00787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ, 62 pages, 19 Figures, 7 Tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1604.07907">arXiv:1604.07907</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1604.07907">pdf</a>, <a href="https://arxiv.org/format/1604.07907">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0067-0049/226/1/8">10.3847/0067-0049/226/1/8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The $Spitzer$ infrared spectrograph survey of protoplanetary disks in Orion A: I. disk properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+K+H">K. H. Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forrest%2C+W+J">W. J. Forrest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">Elise Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Najita%2C+J">Joan Najita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sargent%2C+B">Benjamin Sargent</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hern%C3%A1ndez%2C+J">Jes煤s Hern谩ndez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calvet%2C+N">Nuria Calvet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Adame%2C+L">Luc铆a Adame</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espaillat%2C+C">Catherine Espaillat</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Muzerolle%2C+J">James Muzerolle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=McClure%2C+M+K">M. K. McClure</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1604.07907v1-abstract-short" style="display: inline;"> We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07907v1-abstract-full').style.display = 'inline'; document.getElementById('1604.07907v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1604.07907v1-abstract-full" style="display: none;"> We present our investigation of 319 Class II objects in Orion A observed by $Spitzer$/IRS. We also present the follow-up observation of 120 of these Class II objects in Orion A from IRTF/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks to those of Taurus disks with respect to position within Orion A (ONC and L1641) and to the sub-groups by the inferred radial structures, such as transitional disks vs. radially continuous full disks. Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) Mass accretion rate of transitional disks and that of radially continuous full disks are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in ONC compared to those in Taurus, based on analysis of the shape index of the 10 $渭$m silicate feature ($F_{11.3}/F_{9.8}$). (4) The 20-31 $渭$m continuum spectral index tracks the projected distance from the most luminous Trapezium star, $胃^{1}$ Ori C. A possible explanation is the effect of UV ablation of the outer part of the disks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1604.07907v1-abstract-full').style.display = 'none'; document.getElementById('1604.07907v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 April, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">152 pages, 28 figures, 11 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1602.07314">arXiv:1602.07314</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1602.07314">pdf</a>, <a href="https://arxiv.org/ps/1602.07314">ps</a>, <a href="https://arxiv.org/format/1602.07314">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0067-0049/224/1/5">10.3847/0067-0049/224/1/5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Furlan%2C+E">E. Furlan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">W. J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ali%2C+B">B. Ali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">A. M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stanke%2C+T">T. Stanke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">J. J. Tobin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. T. Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Osorio%2C+M">M. Osorio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+L">L. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calvet%2C+N">N. Calvet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Poteet%2C+C+A">C. A. Poteet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Booker%2C+J">J. Booker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">D. M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+L">L. Allen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1602.07314v2-abstract-short" style="display: inline;"> We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star-formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07314v2-abstract-full').style.display = 'inline'; document.getElementById('1602.07314v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1602.07314v2-abstract-full" style="display: none;"> We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star-formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and sub-millimeter photometry from APEX, our SEDs cover 1.2-870 $渭$m and sample the peak of the protostellar envelope emission at ~100 $渭$m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well-fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1602.07314v2-abstract-full').style.display = 'none'; document.getElementById('1602.07314v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 March, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 February, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by ApJS; 87 pages; 2 online-only figure sets; corrected typos and other minor fixes</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1511.04787">arXiv:1511.04787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1511.04787">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/0004-637X/828/1/52">10.3847/0004-637X/828/1/52 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evolution of Mass Outflow in Protostars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D+M">Dan M. Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calvet%2C+N+P">Nuria P. Calvet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fischer%2C+W+J">William J. Fischer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Forrest%2C+W+J">W. J. Forrest</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Megeath%2C+S+T">S. Thomas Megeath</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Melnick%2C+G+J">Gary J. Melnick</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Najita%2C+J">Joan Najita</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Neufeld%2C+D+A">David A. Neufeld</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sheehan%2C+P+D">Patrick D. Sheehan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stutz%2C+A+M">Amelia M. Stutz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tobin%2C+J+J">John J. Tobin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1511.04787v1-abstract-short" style="display: inline;"> We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04787v1-abstract-full').style.display = 'inline'; document.getElementById('1511.04787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1511.04787v1-abstract-full" style="display: none;"> We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass-flow rates, the different classes of young stellar objects lie in the sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the trend is an evolutionary sequence in which mass outflow and accretion rates decrease together with increasing age, while maintaining rough proportionality. The survey results include two which are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b, and limits on the distribution of outflow speeds. Neither rule out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (0.31) of the sample have branching ratio sufficiently small that only disk winds, launched on scales as large as several AU, have been demonstrated to account for them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1511.04787v1-abstract-full').style.display = 'none'; document.getElementById('1511.04787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Version submitted to ApJ: 36 pages, 3 tables, 8 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1506.05428">arXiv:1506.05428</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1506.05428">pdf</a>, <a href="https://arxiv.org/ps/1506.05428">ps</a>, <a href="https://arxiv.org/format/1506.05428">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> IRS Spectra of Debris Disks in the Scorpius-Centaurus OB Association </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jang-Condell%2C+H">Hannah Jang-Condell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+C+H">Christine H. Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mittal%2C+T">Tushar Mittal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Manoj%2C+P">P. Manoj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Watson%2C+D">Dan Watson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lisse%2C+C+M">Carey M. Lisse</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nesvold%2C+E">Erika Nesvold</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kuchner%2C+M">Marc Kuchner</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1506.05428v2-abstract-short" style="display: inline;"> We analyze Spitzer IRS spectra of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus (ScoCen) OB association. The age of these stars ranges from 11-17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and Spitzer MIPS to simple dust models according to Mie theory. We find that nearly all the objects in our study can be fit by one&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05428v2-abstract-full').style.display = 'inline'; document.getElementById('1506.05428v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1506.05428v2-abstract-full" style="display: none;"> We analyze Spitzer IRS spectra of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus (ScoCen) OB association. The age of these stars ranges from 11-17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and Spitzer MIPS to simple dust models according to Mie theory. We find that nearly all the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with trunction of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1506.05428v2-abstract-full').style.display = 'none'; document.getElementById('1506.05428v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2015; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 June, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ApJ. Updated tables</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Manoj%2C+P&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10