CINXE.COM
hom-functor (changes) in nLab
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0 plus SVG 1.1//EN" "http://www.w3.org/2002/04/xhtml-math-svg/xhtml-math-svg-flat.dtd" > <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title> hom-functor (changes) in nLab </title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta name="robots" content="noindex,nofollow" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <link href="/stylesheets/instiki.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/mathematics.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/syntax.css?1660229990" media="all" rel="stylesheet" type="text/css" /> <link href="/stylesheets/nlab.css?1676280126" media="all" rel="stylesheet" type="text/css" /> <link rel="stylesheet" type="text/css" href="https://cdn.jsdelivr.net/gh/dreampulse/computer-modern-web-font@master/fonts.css"/> <style type="text/css"> h1#pageName, div.info, .newWikiWord a, a.existingWikiWord, .newWikiWord a:hover, [actiontype="toggle"]:hover, #TextileHelp h3 { color: #226622; } a:visited.existingWikiWord { color: #164416; } </style> <style type="text/css"><!--/*--><![CDATA[/*><!--*/ .toc ul {margin: 0; padding: 0;} .toc ul ul {margin: 0; padding: 0 0 0 10px;} .toc li > p {margin: 0} .toc ul li {list-style-type: none; position: relative;} .toc div {border-top:1px dotted #ccc;} .rightHandSide h2 {font-size: 1.5em;color:#008B26} table.plaintable { border-collapse:collapse; margin-left:30px; border:0; } .plaintable td {border:1px solid #000; padding: 3px;} .plaintable th {padding: 3px;} .plaintable caption { font-weight: bold; font-size:1.1em; text-align:center; margin-left:30px; } /* Query boxes for questioning and answering mechanism */ div.query{ background: #f6fff3; border: solid #ce9; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; max-height: 20em; overflow: auto; } /* Standout boxes for putting important text */ div.standout{ background: #fff1f1; border: solid black; border-width: 2px 1px; padding: 0 1em; margin: 0 1em; overflow: auto; } /* Icon for links to n-category arXiv documents (commented out for now i.e. disabled) a[href*="http://arxiv.org/"] { background-image: url(../files/arXiv_icon.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 22px; } */ /* Icon for links to n-category cafe posts (disabled) a[href*="http://golem.ph.utexas.edu/category"] { background-image: url(../files/n-cafe_5.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pdf files (disabled) a[href$=".pdf"] { background-image: url(../files/pdficon_small.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ /* Icon for links to pages, etc. -inside- pdf files (disabled) a[href*=".pdf#"] { background-image: url(../files/pdf_entry.gif); background-repeat: no-repeat; background-position: right bottom; padding-right: 25px; } */ a.existingWikiWord { color: #226622; } a.existingWikiWord:visited { color: #226622; } a.existingWikiWord[title] { border: 0px; color: #aa0505; text-decoration: none; } a.existingWikiWord[title]:visited { border: 0px; color: #551111; text-decoration: none; } a[href^="http://"] { border: 0px; color: #003399; } a[href^="http://"]:visited { border: 0px; color: #330066; } a[href^="https://"] { border: 0px; color: #003399; } a[href^="https://"]:visited { border: 0px; color: #330066; } div.dropDown .hide { display: none; } div.dropDown:hover .hide { display:block; } div.clickDown .hide { display: none; } div.clickDown:focus { outline:none; } div.clickDown:focus .hide, div.clickDown:hover .hide { display: block; } div.clickDown .clickToReveal, div.clickDown:focus .clickToHide { display:block; } div.clickDown:focus .clickToReveal, div.clickDown .clickToHide { display:none; } div.clickDown .clickToReveal:after { content: "A(Hover to reveal, click to "hold")"; font-size: 60%; } div.clickDown .clickToHide:after { content: "A(Click to hide)"; font-size: 60%; } div.clickDown .clickToHide, div.clickDown .clickToReveal { white-space: pre-wrap; } .un_theorem, .num_theorem, .un_lemma, .num_lemma, .un_prop, .num_prop, .un_cor, .num_cor, .un_defn, .num_defn, .un_example, .num_example, .un_note, .num_note, .un_remark, .num_remark { margin-left: 1em; } span.theorem_label { margin-left: -1em; } .proof span.theorem_label { margin-left: 0em; } :target { background-color: #BBBBBB; border-radius: 5pt; } /*]]>*/--></style> <script src="/javascripts/prototype.js?1660229990" type="text/javascript"></script> <script src="/javascripts/effects.js?1660229990" type="text/javascript"></script> <script src="/javascripts/dragdrop.js?1660229990" type="text/javascript"></script> <script src="/javascripts/controls.js?1660229990" type="text/javascript"></script> <script src="/javascripts/application.js?1660229990" type="text/javascript"></script> <script src="/javascripts/page_helper.js?1660229990" type="text/javascript"></script> <script src="/javascripts/thm_numbering.js?1660229990" type="text/javascript"></script> <script type="text/x-mathjax-config"> <!--//--><![CDATA[//><!-- MathJax.Ajax.config.path["Contrib"] = "/MathJax"; MathJax.Hub.Config({ MathML: { useMathMLspacing: true }, "HTML-CSS": { scale: 90, extensions: ["handle-floats.js"] } }); MathJax.Hub.Queue( function () { var fos = document.getElementsByTagName('foreignObject'); for (var i = 0; i < fos.length; i++) { MathJax.Hub.Typeset(fos[i]); } }); //--><!]]> </script> <script type="text/javascript"> <!--//--><![CDATA[//><!-- window.addEventListener("DOMContentLoaded", function () { var div = document.createElement('div'); var math = document.createElementNS('http://www.w3.org/1998/Math/MathML', 'math'); document.body.appendChild(div); div.appendChild(math); // Test for MathML support comparable to WebKit version https://trac.webkit.org/changeset/203640 or higher. div.setAttribute('style', 'font-style: italic'); var mathml_unsupported = !(window.getComputedStyle(div.firstChild).getPropertyValue('font-style') === 'normal'); div.parentNode.removeChild(div); if (mathml_unsupported) { // MathML does not seem to be supported... var s = document.createElement('script'); s.src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=MML_HTMLorMML-full"; document.querySelector('head').appendChild(s); } else { document.head.insertAdjacentHTML("beforeend", '<style>svg[viewBox] {max-width: 100%}</style>'); } }); //--><!]]> </script> <link href="https://ncatlab.org/nlab/atom_with_headlines" rel="alternate" title="Atom with headlines" type="application/atom+xml" /> <link href="https://ncatlab.org/nlab/atom_with_content" rel="alternate" title="Atom with full content" type="application/atom+xml" /> <script type="text/javascript"> document.observe("dom:loaded", function() { generateThmNumbers(); }); </script> </head> <body> <div id="Container"> <div id="Content"> <h1 id="pageName"> <span style="float: left; margin: 0.5em 0.25em -0.25em 0"> <svg xmlns="http://www.w3.org/2000/svg" width="1.872em" height="1.8em" viewBox="0 0 190 181"> <path fill="#226622" d="M72.8 145c-1.6 17.3-15.7 10-23.6 20.2-5.6 7.3 4.8 15 11.4 15 11.5-.2 19-13.4 26.4-20.3 3.3-3 8.2-4 11.2-7.2a14 14 0 0 0 2.9-11.1c-1.4-9.6-12.4-18.6-16.9-27.2-5-9.6-10.7-27.4-24.1-27.7-17.4-.3-.4 26 4.7 30.7 2.4 2.3 5.4 4.1 7.3 6.9 1.6 2.3 2.1 5.8-1 7.2-5.9 2.6-12.4-6.3-15.5-10-8.8-10.6-15.5-23-26.2-31.8-5.2-4.3-11.8-8-18-3.7-7.3 4.9-4.2 12.9.2 18.5a81 81 0 0 0 30.7 23c3.3 1.5 12.8 5.6 10 10.7-2.5 5.2-11.7 3-15.6 1.1-8.4-3.8-24.3-21.3-34.4-13.7-3.5 2.6-2.3 7.6-1.2 11.1 2.8 9 12.2 17.2 20.9 20.5 17.3 6.7 34.3-8 50.8-12.1z"/> <path fill="#a41e32" d="M145.9 121.3c-.2-7.5 0-19.6-4.5-26-5.4-7.5-12.9-1-14.1 5.8-1.4 7.8 2.7 14.1 4.8 21.3 3.4 12 5.8 29-.8 40.1-3.6-6.7-5.2-13-7-20.4-2.1-8.2-12.8-13.2-15.1-1.9-2 9.7 9 21.2 12 30.1 1.2 4 2 8.8 6.4 10.3 6.9 2.3 13.3-4.7 17.7-8.8 12.2-11.5 36.6-20.7 43.4-36.4 6.7-15.7-13.7-14-21.3-7.2-9.1 8-11.9 20.5-23.6 25.1 7.5-23.7 31.8-37.6 38.4-61.4 2-7.3-.8-29.6-13-19.8-14.5 11.6-6.6 37.6-23.3 49.2z"/> <path fill="#193c78" d="M86.3 47.5c0-13-10.2-27.6-5.8-40.4 2.8-8.4 14.1-10.1 17-1 3.8 11.6-.3 26.3-1.8 38 11.7-.7 10.5-16 14.8-24.3 2.1-4.2 5.7-9.1 11-6.7 6 2.7 7.4 9.2 6.6 15.1-2.2 14-12.2 18.8-22.4 27-3.4 2.7-8 6.6-5.9 11.6 2 4.4 7 4.5 10.7 2.8 7.4-3.3 13.4-16.5 21.7-16 14.6.7 12 21.9.9 26.2-5 1.9-10.2 2.3-15.2 3.9-5.8 1.8-9.4 8.7-15.7 8.9-6.1.1-9-6.9-14.3-9-14.4-6-33.3-2-44.7-14.7-3.7-4.2-9.6-12-4.9-17.4 9.3-10.7 28 7.2 35.7 12 2 1.1 11 6.9 11.4 1.1.4-5.2-10-8.2-13.5-10-11.1-5.2-30-15.3-35-27.3-2.5-6 2.8-13.8 9.4-13.6 6.9.2 13.4 7 17.5 12C70.9 34 75 43.8 86.3 47.4z"/> </svg> </span> <span class="webName">nLab</span> hom-functor (changes) </h1> <div class="navigation"> <span class="skipNav"><a href='#navEnd'>Skip the Navigation Links</a> | </span> <span style="display:inline-block; width: 0.3em;"></span> <a href="/nlab/show/diff/HomePage" accesskey="H" title="Home page">Home Page</a> | <a href="/nlab/all_pages" accesskey="A" title="List of all pages">All Pages</a> | <a href="/nlab/latest_revisions" accesskey="U" title="Latest edits and page creations">Latest Revisions</a> | <a href="https://nforum.ncatlab.org/discussion/1314/#Item_13" title="Discuss this page in its dedicated thread on the nForum" style="color: black">Discuss this page</a> | <form accept-charset="utf-8" action="/nlab/search" id="navigationSearchForm" method="get"> <fieldset class="search"><input type="text" id="searchField" name="query" value="Search" style="display:inline-block; float: left;" onfocus="this.value == 'Search' ? this.value = '' : true" onblur="this.value == '' ? this.value = 'Search' : true" /></fieldset> </form> <span id='navEnd'></span> </div> <div id="revision"> <p class="show_diff"> Showing changes from revision #22 to #23: <ins class="diffins">Added</ins> | <del class="diffdel">Removed</del> | <del class="diffmod">Chan</del><ins class="diffmod">ged</ins> </p> <div class='rightHandSide'> <div class='toc clickDown' tabindex='0'> <h3 id='context'>Context</h3> <h4 id='category_theory'>Category theory</h4> <div class='hide'> <p><strong><a class='existingWikiWord' href='/nlab/show/diff/category+theory'>category theory</a></strong></p> <h2 id='sidebar_concepts'>Concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/category'>category</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/functor'>functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/natural+transformation'>natural transformation</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Cat'>Cat</a></p> </li> </ul> <h2 id='sidebar_universal_constructions'>Universal constructions</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/universal+construction'>universal construction</a></p> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/representable+functor'>representable functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+functor'>adjoint functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/limit'>limit</a>/<a class='existingWikiWord' href='/nlab/show/diff/colimit'>colimit</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/weighted+limit'>weighted limit</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/end'>end</a>/<a class='existingWikiWord' href='/nlab/show/diff/end'>coend</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Kan+extension'>Kan extension</a></p> </li> </ul> </li> </ul> <h2 id='sidebar_theorems'>Theorems</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Yoneda+lemma'>Yoneda lemma</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Isbell+duality'>Isbell duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Grothendieck+construction'>Grothendieck construction</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+functor+theorem'>adjoint functor theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/monadicity+theorem'>monadicity theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/adjoint+lifting+theorem'>adjoint lifting theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Tannaka+duality'>Tannaka duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Gabriel%E2%80%93Ulmer+duality'>Gabriel-Ulmer duality</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/small+object+argument'>small object argument</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/Freyd-Mitchell+embedding+theorem'>Freyd-Mitchell embedding theorem</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/relation+between+type+theory+and+category+theory'>relation between type theory and category theory</a></p> </li> </ul> <h2 id='sidebar_extensions'>Extensions</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/sheaf+and+topos+theory'>sheaf and topos theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/enriched+category+theory'>enriched category theory</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/higher+category+theory'>higher category theory</a></p> </li> </ul> <h2 id='sidebar_applications'>Applications</h2> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/applications+of+%28higher%29+category+theory'>applications of (higher) category theory</a></li> </ul> <div> <p> <a href='/nlab/edit/category+theory+-+contents'>Edit this sidebar</a> </p> </div></div> </div> </div> <h1 id='contents'>Contents</h1> <div class='maruku_toc'><ul><li><a href='#definition'>Definition</a><ins class='diffins'><ul><li><a href='#in_homotopy_type_theory'>In homotopy type theory</a></li></ul></ins></li><li><a href='#properties'>Properties</a><ul><li><a href='#representable_functors'>Representable functors</a></li><li><a href='#preservation_of_limits'>Preservation of limits</a></li><li><a href='#relation_to_profunctors'>Relation to profunctors</a></li></ul></li><li><a href='#examples'>Examples</a></li><li><a href='#related_concepts'>Related concepts</a></li></ul></div> <h2 id='definition'>Definition</h2> <p>For <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_1' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/diff/locally+small+category'>locally small category</a>, its <strong>hom-functor</strong> is the <a class='existingWikiWord' href='/nlab/show/diff/functor'>functor</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_2' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'> hom : C^{op} \times C \to Set </annotation></semantics></math></div> <p>from the <a class='existingWikiWord' href='/nlab/show/diff/product+category'>product category</a> of the category <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_3' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> with its <a class='existingWikiWord' href='/nlab/show/diff/opposite+category'>opposite category</a> to the category <a class='existingWikiWord' href='/nlab/show/diff/Set'>Set</a> of <a class='existingWikiWord' href='/nlab/show/diff/set'>sets</a>, which sends</p> <ul> <li> <p>an <a class='existingWikiWord' href='/nlab/show/diff/object'>object</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_4' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>∈</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>(c, c') \in C^{op} \times C</annotation></semantics></math>, i.e. a pair of objects in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_5' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>, to the <a class='existingWikiWord' href='/nlab/show/diff/hom-set'>hom-set</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_6' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Hom_C(c,c')</annotation></semantics></math> in Set, the set of <a class='existingWikiWord' href='/nlab/show/diff/morphism'>morphisms</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_7' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>q</mi><mo>:</mo><mi>c</mi><mo>→</mo><mi>c</mi><mo>′</mo></mrow><annotation encoding='application/x-tex'>q : c \to c'</annotation></semantics></math> in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_8' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>;</p> </li> <li> <p>a morphism <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_9' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mover><mo>→</mo><mrow /></mover><mo stretchy='false'>(</mo><mi>d</mi><mo>,</mo><mi>d</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(c,c') \stackrel{}{\to} (d,d')</annotation></semantics></math>, i.e. a pair of morphisms</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_10' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mi>c</mi></mtd> <mtd><mi>c</mi><mo>′</mo></mtd></mtr> <mtr><mtd><msup><mo stretchy='false'>↓</mo> <mpadded width='0'><mrow><msup><mi>f</mi> <mi>op</mi></msup></mrow></mpadded></msup></mtd> <mtd><msup><mo stretchy='false'>↓</mo> <mpadded width='0'><mi>g</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd><mi>d</mi><mo>′</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> \array{ c & c' \\ \downarrow^{\mathrlap{f^{op}}} & \downarrow^{\mathrlap{g}} \\ d & d' } </annotation></semantics></math></div> <p>in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_11' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> to the <a class='existingWikiWord' href='/nlab/show/diff/function'>function</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_12' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>→</mo><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>d</mi><mo>,</mo><mi>d</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>Hom_C(c,c') \to Hom_C(d,d')</annotation></semantics></math> that sends</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_13' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>q</mi><mo>:</mo><mi>c</mi><mover><mo>→</mo><mrow /></mover><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mspace width='thickmathspace' /><mspace width='thickmathspace' /><mspace width='thickmathspace' /><mo>↦</mo><mspace width='thickmathspace' /><mspace width='thickmathspace' /><mspace width='thinmathspace' /><mrow><mo>(</mo><mi>g</mi><mo>∘</mo><mi>q</mi><mo>∘</mo><mi>f</mi><mspace width='thickmathspace' /><mo>:</mo><mspace width='thickmathspace' /><mrow><mtable><mtr><mtd><mi>c</mi></mtd> <mtd><mover><mo>→</mo><mi>q</mi></mover></mtd> <mtd><mi>c</mi><mo>′</mo></mtd></mtr> <mtr><mtd><msup><mo stretchy='false'>↑</mo> <mpadded width='0'><mi>f</mi></mpadded></msup></mtd> <mtd /> <mtd><msup><mo stretchy='false'>↓</mo> <mpadded width='0'><mi>g</mi></mpadded></msup></mtd></mtr> <mtr><mtd><mi>d</mi></mtd> <mtd /> <mtd><mi>d</mi><mo>′</mo></mtd></mtr></mtable></mrow><mo>)</mo></mrow><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> (q : c \stackrel{}{\to} c') \;\;\; \mapsto \;\;\, \left( g \circ q \circ f \; : \; \array{ c &\stackrel{q}{\to}& c' \\ \uparrow^{\mathrlap{f}} && \downarrow^{\mathrlap{g}} \\ d && d' } \right) \,. </annotation></semantics></math></div></li> </ul> <div class='query'> <p>Note: when the symbol <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_14' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∘</mo></mrow><annotation encoding='application/x-tex'>\circ</annotation></semantics></math> is used, it denotes traditional right-to-left order of composition. For those who prefer the left-to-right order, the symbol <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_15' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>;</mo></mrow><annotation encoding='application/x-tex'>;</annotation></semantics></math> may be used in place of <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_16' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo>∘</mo></mrow><annotation encoding='application/x-tex'>\circ</annotation></semantics></math>. Further discussion of this should go to the nForum page <a href='https://nforum.ncatlab.org/discussion/7239/realigned-arrows-for-clarification-and-fixed-composition-order/'>here</a>.</p> </div> <p>More generally, for <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_17' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math> a <a class='existingWikiWord' href='/nlab/show/diff/closed+monoidal+category'>closed</a> <a class='existingWikiWord' href='/nlab/show/diff/symmetric+monoidal+category'>symmetric monoidal category</a> and <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_18' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> a <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_19' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>V</mi></mrow><annotation encoding='application/x-tex'>V</annotation></semantics></math>-<a class='existingWikiWord' href='/nlab/show/diff/enriched+category'>enriched category</a>, its <em><a class='existingWikiWord' href='/nlab/show/diff/enriched+hom-functor'>enriched hom-functor</a></em> is the <a class='existingWikiWord' href='/nlab/show/diff/enriched+functor'>enriched functor</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_20' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'> C(-,-) : C^{op} \times C \to V </annotation></semantics></math></div> <p>that sends objects <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_21' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo>∈</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>c,c' \in C</annotation></semantics></math> to the <a class='existingWikiWord' href='/nlab/show/diff/hom-object'>hom-object</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_22' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>∈</mo><mi>V</mi></mrow><annotation encoding='application/x-tex'>C(c,c') \in V</annotation></semantics></math>.</p> <p>Some categories <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_23' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> are equipped with an operation that behaves like a hom-functor, but takes values in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_24' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> itself</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_25' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>C</mi><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> [-,-] : C^{op} \times C \to C \,. </annotation></semantics></math></div> <p>Such an operation is called an <a class='existingWikiWord' href='/nlab/show/diff/internal+hom'>internal hom</a> functor, and categories carrying this are called <a class='existingWikiWord' href='/nlab/show/diff/closed+category'>closed categories</a>.</p> <ins class='diffins'><h3 id='in_homotopy_type_theory'>In homotopy type theory</h3></ins><ins class='diffins'> </ins><ins class='diffins'><p>Note: the <a class='existingWikiWord' href='/nlab/show/diff/Homotopy+Type+Theory+--+Univalent+Foundations+of+Mathematics'>HoTT book</a> calls a <a class='existingWikiWord' href='/nlab/show/diff/category'>category</a> a “precategory” and a <a class='existingWikiWord' href='/nlab/show/diff/univalent+category'>univalent category</a> a “category”, but here we shall refer to the standard terminology of “category” and “univalent category” respectively.</p></ins><ins class='diffins'> </ins><ins class='diffins'><p>For any <a class='existingWikiWord' href='/nlab/show/diff/category'>category</a> <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>A</mi></mrow><annotation encoding='application/x-tex'>A</annotation></semantics></math>, we have a hom-functor</p></ins><ins class='diffins'> </ins><ins class='diffins'><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>hom</mi> <mi>A</mi></msub><mo>:</mo><msup><mi>A</mi> <mi>op</mi></msup><mo>×</mo><mi>A</mi><mo>→</mo><mstyle mathvariant='italic'><mi>Set</mi></mstyle></mrow><annotation encoding='application/x-tex'>hom_A : A^{op} \times A \to \mathit{Set}</annotation></semantics></math></div></ins><ins class='diffins'> </ins><ins class='diffins'><p>It takes a pair <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>:</mo><mo stretchy='false'>(</mo><msup><mi>A</mi> <mi>op</mi></msup><msub><mo stretchy='false'>)</mo> <mn>0</mn></msub><mo>×</mo><msub><mi>A</mi> <mn>0</mn></msub><mo>≡</mo><msub><mi>A</mi> <mn>0</mn></msub><mo>×</mo><msub><mi>A</mi> <mn>0</mn></msub></mrow><annotation encoding='application/x-tex'>(a,b):(A^{op})_0 \times A_0 \equiv A_0\times A_0</annotation></semantics></math> to the set <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>hom</mi> <mi>A</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>hom_A(a,b)</annotation></semantics></math>. For a morphism <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mi>f</mi><mo>,</mo><mi>f</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>:</mo><msub><mi>hom</mi> <mrow><msup><mi>A</mi> <mi>op</mi></msup><mo>×</mo><mi>A</mi></mrow></msub><mo stretchy='false'>(</mo><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>,</mo><mo stretchy='false'>(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy='false'>)</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(f,f') : hom_{A^{op} \times A}((a,b),(a',b'))</annotation></semantics></math>, by definition we have <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo>:</mo><msub><mi>hom</mi> <mi>A</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>a</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>f:hom_A(a',a)</annotation></semantics></math> and <math class='maruku-mathml' display='inline' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>f</mi><mo>′</mo><mo>:</mo><msub><mi>hom</mi> <mi>A</mi></msub><mo stretchy='false'>(</mo><mi>b</mi><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>f': hom_A(b,b')</annotation></semantics></math>, so we can define</p></ins><ins class='diffins'> </ins><ins class='diffins'><div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_157b51e1b60eff4502133054bc616523a90650f6_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><msub><mi>hom</mi> <mi>A</mi></msub><msub><mo stretchy='false'>)</mo> <mrow><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>,</mo><mo stretchy='false'>(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow></msub><mo stretchy='false'>(</mo><mi>f</mi><mo>,</mo><mi>f</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>≡</mo><mo stretchy='false'>(</mo><mi>g</mi><mo>↦</mo><mi>f</mi><mo>′</mo><mi>g</mi><mi>f</mi><mo stretchy='false'>)</mo><mo>:</mo><msub><mi>hom</mi> <mi>A</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo stretchy='false'>)</mo><mo>→</mo><msub><mi>hom</mi> <mi>A</mi></msub><mo stretchy='false'>(</mo><mi>a</mi><mo>′</mo><mo>,</mo><mi>b</mi><mo>′</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>(hom_A)_{(a,b),(a',b')}(f,f') \equiv (g\mapsto f' g f) : hom_A(a,b) \to hom_A(a',b')</annotation></semantics></math></div></ins><ins class='diffins'> </ins><h2 id='properties'>Properties</h2> <h3 id='representable_functors'>Representable functors</h3> <p>Given a hom-functor <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_26' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>hom:C^{op}\times C\to Set</annotation></semantics></math>, for any object <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_27' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>c \in C</annotation></semantics></math> one obtains a functor</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_28' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>h</mi> <mi>c</mi></msup><mo>:</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'> h^c: C \to Set </annotation></semantics></math></div> <p>given by <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_29' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>h</mi> <mi>c</mi></msup><mo>≔</mo><mi>hom</mi><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>h^c\coloneqq hom(c,-)</annotation></semantics></math> and a functor</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_30' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>h</mi> <mi>c</mi></msub><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'> h_c : C^{op} \to Set </annotation></semantics></math></div> <p>given by <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_31' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mi>h</mi> <mi>c</mi></msub><mo>≔</mo><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>h_c\coloneqq hom(-,c)</annotation></semantics></math>, i.e. by fixing one of the arguments of <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_32' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>hom: C^{op} \times C \to Set</annotation></semantics></math> to be <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_33' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi></mrow><annotation encoding='application/x-tex'>c</annotation></semantics></math>.</p> <p>Formally this is</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_34' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>:</mo><mi>C</mi><mover><mo>→</mo><mo>≃</mo></mover><mo>*</mo><mo>×</mo><mi>C</mi><mover><mo>→</mo><mrow><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>Id</mi><mo stretchy='false'>)</mo></mrow></mover><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mover><mo>→</mo><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></mover><mi>Set</mi></mrow><annotation encoding='application/x-tex'> hom(c,-) : C \stackrel{\simeq}{\to} * \times C \stackrel{(c,Id)}{\to} C^{op} \times C \stackrel{hom(-,-)}{\to} Set </annotation></semantics></math></div> <p>and</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_35' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>c</mi><mo stretchy='false'>)</mo><mo>:</mo><mi>C</mi><mover><mo>→</mo><mo>≃</mo></mover><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mo>*</mo><mover><mo>→</mo><mrow><mo stretchy='false'>(</mo><mi>Id</mi><mo>,</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow></mover><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mover><mo>→</mo><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow></mover><mi>Set</mi><mspace width='thinmathspace' /><mo>.</mo></mrow><annotation encoding='application/x-tex'> hom(-,c) : C \stackrel{\simeq}{\to} C^{op} \times * \stackrel{(Id,c)}{\to} C^{op} \times C \stackrel{hom(-,-)}{\to} Set \,. </annotation></semantics></math></div> <p>Functors of the form <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_36' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>C^{op} \to Set</annotation></semantics></math> are called <a class='existingWikiWord' href='/nlab/show/diff/presheaf'>presheaves</a> on <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_37' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>, and functors <a class='existingWikiWord' href='/nlab/show/diff/natural+isomorphism'>naturally isomorphic</a> to <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_38' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>c</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>hom(-,c)</annotation></semantics></math> are called <a class='existingWikiWord' href='/nlab/show/diff/representable+functor'>representable functors</a> or <strong>representable presheaves</strong> on <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_39' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>.</p> <p>Functors of the form <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_40' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>C \to Set</annotation></semantics></math> are called <a class='existingWikiWord' href='/nlab/show/diff/copresheaf'>copresheaves</a> on <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_41' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>, and functors naturally isomorphic to <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_42' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>hom(c,-)</annotation></semantics></math> are called co<a class='existingWikiWord' href='/nlab/show/diff/representable+functor'>representable functors</a> or <strong>representable copresheaves</strong> on <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_43' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>.</p> <h3 id='preservation_of_limits'>Preservation of limits</h3> <p>The <a class='existingWikiWord' href='/nlab/show/diff/hom-functor+preserves+limits'>hom-functor preserves limits</a> in both arguments separately. This means:</p> <ul> <li> <p>for fixed object <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_44' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>c \in C</annotation></semantics></math> the functor <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_45' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>:</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>hom(c,-) : C \to Set</annotation></semantics></math> sends limit <a class='existingWikiWord' href='/nlab/show/diff/diagram'>diagrams</a> in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_46' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> to limit diagrams in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_47' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Set</mi></mrow><annotation encoding='application/x-tex'>Set</annotation></semantics></math>;</p> </li> <li> <p>for fixed object <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_48' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>′</mo><mo>∈</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>c' \in C</annotation></semantics></math> the functor <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_49' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>c</mi><mo>′</mo><mo stretchy='false'>)</mo><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>hom(-,c') : C^{op} \to Set</annotation></semantics></math> sends limit diagrams in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_50' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msup><mi>C</mi> <mi>op</mi></msup></mrow><annotation encoding='application/x-tex'>C^{op}</annotation></semantics></math> – which are <a class='existingWikiWord' href='/nlab/show/diff/colimit'>colimit</a> <a class='existingWikiWord' href='/nlab/show/diff/diagram'>diagrams</a> in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_51' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math>! – to limit diagrams in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_52' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>Set</mi></mrow><annotation encoding='application/x-tex'>Set</annotation></semantics></math>.</p> </li> </ul> <p>For instance for</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_53' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><mi>y</mi><msub><mo>×</mo> <mi>x</mi></msub><mi>z</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>y</mi></mtd></mtr> <mtr><mtd><mo stretchy='false'>↓</mo></mtd> <mtd /> <mtd><mo stretchy='false'>↓</mo></mtd></mtr> <mtr><mtd><mi>z</mi></mtd> <mtd><mo>→</mo></mtd> <mtd><mi>x</mi></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> \array{ y \times_x z &\to& y \\ \downarrow && \downarrow \\ z &\to& x } </annotation></semantics></math></div> <p>a <a class='existingWikiWord' href='/nlab/show/diff/pullback'>pullback</a> <a class='existingWikiWord' href='/nlab/show/diff/diagram'>diagram</a> in <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_54' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi></mrow><annotation encoding='application/x-tex'>C</annotation></semantics></math> and for <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_55' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>c</mi><mo>∈</mo><mi>C</mi></mrow><annotation encoding='application/x-tex'>c \in C</annotation></semantics></math> any object, the induced diagram</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_56' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mrow><mtable><mtr><mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo><msub><mo>×</mo> <mrow><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>x</mi><mo stretchy='false'>)</mo></mrow></msub><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>z</mi><mo stretchy='false'>)</mo><mo>≃</mo></mtd> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>y</mi><msub><mo>×</mo> <mi>x</mi></msub><mi>z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>y</mi><mo stretchy='false'>)</mo></mtd></mtr> <mtr><mtd /> <mtd><mo stretchy='false'>↓</mo></mtd> <mtd /> <mtd><mo stretchy='false'>↓</mo></mtd></mtr> <mtr><mtd /> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>z</mi><mo stretchy='false'>)</mo></mtd> <mtd><mo>→</mo></mtd> <mtd><msub><mi>Hom</mi> <mi>C</mi></msub><mo stretchy='false'>(</mo><mi>c</mi><mo>,</mo><mi>x</mi><mo stretchy='false'>)</mo></mtd></mtr></mtable></mrow></mrow><annotation encoding='application/x-tex'> \array{ Hom_C(c,y) \times_{Hom_C(c,x)} Hom_C(c,z)\simeq & Hom_C(c,y \times_x z) &\to& Hom_C(c,y) \\ & \downarrow && \downarrow \\ & Hom_C(c,z) &\to& Hom_C(c,x) } </annotation></semantics></math></div> <p>in <a class='existingWikiWord' href='/nlab/show/diff/Set'>Set</a> is again a pullback diagram. A moment of reflection shows that this statement is <em>equivalent</em> to the very definition of limit.</p> <h3 id='relation_to_profunctors'>Relation to profunctors</h3> <p>The hom-functor <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_57' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>hom</mi><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>hom : C^{op}\times C\to Set</annotation></semantics></math> is also the identity <a class='existingWikiWord' href='/nlab/show/diff/profunctor'>profunctor</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_58' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><msub><mn>1</mn> <mi>C</mi></msub><mo>:</mo><mi>C</mi><mi>⇸</mi><mi>C</mi></mrow><annotation encoding='application/x-tex'>1_C: C &#8696; C</annotation></semantics></math>.</p> <p>One way to see this is to notice that its <a class='existingWikiWord' href='/nlab/show/diff/adjunct'>adjunct</a></p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_59' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mo>→</mo><mo stretchy='false'>[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'> C \to [C^{op}, Set] </annotation></semantics></math></div> <p>under the <a class='existingWikiWord' href='/nlab/show/diff/internal+hom'>internal hom</a> <a class='existingWikiWord' href='/nlab/show/diff/adjunction'>adjunction</a> in the 1-category <a class='existingWikiWord' href='/nlab/show/diff/Cat'>Cat</a> is the functor</p> <div class='maruku-equation'><math class='maruku-mathml' display='block' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_60' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mover><mo>→</mo><mi>id</mi></mover><mi>C</mi><mover><mo>→</mo><mi>j</mi></mover><mo stretchy='false'>[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo><mspace width='thinmathspace' /><mo>,</mo></mrow><annotation encoding='application/x-tex'> C \stackrel{id}{\to} C \stackrel{j}{\to} [C^{op}, Set] \,, </annotation></semantics></math></div> <p>where <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_61' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>j</mi></mrow><annotation encoding='application/x-tex'>j</annotation></semantics></math> is the <a class='existingWikiWord' href='/nlab/show/diff/Yoneda+embedding'>Yoneda embedding</a>. Profunctors <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_62' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mstyle mathvariant='bold'><mi>F</mi></mstyle><mo>:</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>×</mo><mi>C</mi><mo>→</mo><mi>Set</mi></mrow><annotation encoding='application/x-tex'>\mathbf{F} : C^{op} \times C \to Set</annotation></semantics></math> whose hom-adjunct is of the form <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_63' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>C</mi><mover><mo>→</mo><mi>F</mi></mover><mi>C</mi><mover><mo>→</mo><mi>j</mi></mover><mo stretchy='false'>[</mo><msup><mi>C</mi> <mi>op</mi></msup><mo>,</mo><mi>Set</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>C \stackrel{F}{\to} C \stackrel{j}{\to} [C^{op}, Set]</annotation></semantics></math> for <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_64' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>F</mi></mrow><annotation encoding='application/x-tex'>F</annotation></semantics></math> an ordinary functor are those in the inclusion of these ordinary functors into profunctors. So the hom-functor is the image of the identity functor under this inclusion.</p> <h2 id='examples'>Examples</h2> <p>…</p> <h2 id='related_concepts'>Related concepts</h2> <ul> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hom-set'>hom-set</a>, <a class='existingWikiWord' href='/nlab/show/diff/hom-object'>hom-object</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/hom-functor'>hom-functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/enriched+hom-functor'>enriched hom-functor</a>, <a class='existingWikiWord' href='/nlab/show/diff/internal+hom'>internal hom-functor</a></p> </li> <li> <p><a class='existingWikiWord' href='/nlab/show/diff/derived+hom-functor'>derived hom-functor</a></p> </li> </ul> <table><thead><tr><th /><th><a class='existingWikiWord' href='/nlab/show/diff/homotopy+%28as+an+operation%29'>homotopy</a></th><th><a class='existingWikiWord' href='/nlab/show/diff/cohomology'>cohomology</a></th><th><a class='existingWikiWord' href='/nlab/show/diff/homology'>homology</a></th></tr></thead><tbody><tr><td style='text-align: left;' /><td style='text-align: left;'><math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_65' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><msup><mi>S</mi> <mi>n</mi></msup><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[S^n,-]</annotation></semantics></math></td><td style='text-align: left;'><math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_66' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>[</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>A</mi><mo stretchy='false'>]</mo></mrow><annotation encoding='application/x-tex'>[-,A]</annotation></semantics></math></td><td style='text-align: left;'><math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_67' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><mo>⊗</mo><mi>A</mi></mrow><annotation encoding='application/x-tex'>(-) \otimes A</annotation></semantics></math></td></tr> <tr><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/category+theory'>category theory</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/functor'>covariant</a> <a class='existingWikiWord' href='/nlab/show/diff/hom-functor'>hom</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/contravariant+functor'>contravariant</a> <a class='existingWikiWord' href='/nlab/show/diff/hom-functor'>hom</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/tensor+product'>tensor product</a></td></tr> <tr><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/homological+algebra'>homological algebra</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/Ext'>Ext</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/Ext'>Ext</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/Tor'>Tor</a></td></tr> <tr><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/enriched+category+theory'>enriched category theory</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/end'>end</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/end'>end</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/end'>coend</a></td></tr> <tr><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/homotopy+theory'>homotopy theory</a></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-categorical+hom-space'>derived hom space</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_68' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℝ</mi><mi>Hom</mi><mo stretchy='false'>(</mo><msup><mi>S</mi> <mi>n</mi></msup><mo>,</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathbb{R}Hom(S^n,-)</annotation></semantics></math></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/cocycle'>cocycles</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_69' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mi>ℝ</mi><mi>Hom</mi><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo>,</mo><mi>A</mi><mo stretchy='false'>)</mo></mrow><annotation encoding='application/x-tex'>\mathbb{R}Hom(-,A)</annotation></semantics></math></td><td style='text-align: left;'><a class='existingWikiWord' href='/nlab/show/diff/derived+tensor+product'>derived tensor product</a> <math class='maruku-mathml' display='inline' id='mathml_3b8505472343a022e00fd5166c882eacdfdb2b50_70' xmlns='http://www.w3.org/1998/Math/MathML'><semantics><mrow><mo stretchy='false'>(</mo><mo lspace='verythinmathspace' rspace='0em'>−</mo><mo stretchy='false'>)</mo><msup><mo>⊗</mo> <mi>𝕃</mi></msup><mi>A</mi></mrow><annotation encoding='application/x-tex'>(-) \otimes^{\mathbb{L}} A</annotation></semantics></math></td></tr> </tbody></table> <ul> <li><a class='existingWikiWord' href='/nlab/show/diff/internal+hom'>internal hom</a>, <a class='existingWikiWord' href='/nlab/show/diff/hom-object'>enriched hom</a>, <a class='existingWikiWord' href='/nlab/show/diff/%28infinity%2C1%29-categorical+hom-space'>derived hom space</a>, <a class='existingWikiWord' href='/nlab/show/diff/Ext'>Ext</a></li> </ul> <p> </p> <p> </p> <p> </p> </div> <div class="revisedby"> <p> Last revised on June 7, 2022 at 15:38:27. See the <a href="/nlab/history/hom-functor" style="color: #005c19">history</a> of this page for a list of all contributions to it. </p> </div> <div class="navigation navfoot"> <a href="/nlab/edit/hom-functor" accesskey="E" class="navlink" id="edit" rel="nofollow">Edit</a><a href="https://nforum.ncatlab.org/discussion/1314/#Item_13">Discuss</a><span class="backintime"><a href="/nlab/revision/diff/hom-functor/22" accesskey="B" class="navlinkbackintime" id="to_previous_revision" rel="nofollow">Previous revision</a></span><a href="/nlab/show/hom-functor" accesskey="C" class="navlink" id="see_changes" rel="nofollow">Hide changes</a><a href="/nlab/history/hom-functor" accesskey="S" class="navlink" id="history" rel="nofollow">History (22 revisions)</a> <a href="/nlab/show/hom-functor/cite" style="color: black">Cite</a> <a href="/nlab/print/hom-functor" accesskey="p" id="view_print" rel="nofollow">Print</a> <a href="/nlab/source/hom-functor" id="view_source" rel="nofollow">Source</a> </div> </div> <!-- Content --> </div> <!-- Container --> </body> </html>