CINXE.COM

Solid State Phenomena Vol. 363 | Scientific.Net

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="description" content="This special edition is dedicated to investigating the properties and processing technologies of some materials and also focuses on the specific methods of their applications. This article collection will be helpful to many researchers and engineers from materials science." /> <link rel="canonical" href="https://www.scientific.net/SSP.363" /> <meta property="og:title" content="Solid State Phenomena Vol. 363 | Scientific.Net" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.scientific.net/SSP.363" /> <meta property="og:image" content="/Content/app/scinet5/images/metadata_logo.png" /> <meta property="og:image:type" content="image/png" /> <meta property="og:image:width" content="261" /> <meta property="og:image:height" content="260" /> <meta property="og:image:alt" content="Scientific.Net Logo" /> <title>Solid State Phenomena Vol. 363 | Scientific.Net</title> <link href="/Content/app/scinet5/images/favicon.ico" rel="shortcut icon" /> <link href="/Content/public.min.css?v=BKBihgCkUm340JBGsNjEPtWz8I22CUsubMPC3V1WYzw" rel="stylesheet" /> <link rel="preconnect" href="https://www.google-analytics.com"> <link rel="preconnect" href="https://www.gstatic.com"> <link rel="preconnect" href="https://www.googletagmanager.com"> <link rel="icon" href="/Content/app/scinet5/images/favicon.ico"> <link rel="apple-touch-icon" href="/Content/app/scinet5/images/apple-touch-icon.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css?family=Open&#x2B;Sans&#x2B;Condensed:300,700%7COpen&#x2B;Sans:300i,400,400i,600,600i,700&amp;display=swap" rel="stylesheet"> <!-- HTML5 shim support of HTML5 elements and media queries --> <!--[if lte IE 9]> <script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script> <![endif]--> <!-- Google Tag Manager --> <script> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-T3VDKWV');</script> <!-- End Google Tag Manager --> </head> <body> <noscript> <!-- Google Tag Manager (noscript) --> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-T3VDKWV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <div class="sc-content-container"> <div class="sc-content"> <div class="header-menu-container"> <div class="identity-menu-container header-menu-container-not-logged-in"> <div class="container"> <div class="row"> <ul class="role-menu"> <li class="user-menu between normal-user-menu"> <div class="hdivider-100"></div> <div class="cart-info"> <a href="https://main.scientific.net/Payment/Cart"> <i class="inline-icon cart-icon-white"></i> <span id="cartInfoTotalItemsCount"></span> </a> </div> <div class="user-menu-login-or-register"> <a href="https://main.scientific.net/Account/Registration?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.363" rel="nofollow"> Registration </a> <a href="https://main.scientific.net/Account/Login?ReturnUrl=https%3A%2F%2Fwww.scientific.net%2FSSP.363" rel="nofollow"> Log In </a> </div> </li> </ul> </div> </div> </div> <div class="header-fluid"> <div class="container"> <div class="row"> <div class="block-header"> <div class="logo-block"> <a href="/" class="application-logo inline-icon logo-icon"></a> <div class="burger-menu-button visible-xs"> <div class="hamburger-box"> <div class="hamburger-inner"></div> </div> </div> </div> <div class="menu-and-search-block"> <div class="burger-menu"> <nav class="burger-menu-items"> <div class="public-menu"> <ul> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/news/all">News</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> </ul> </div> </nav> </div> <div class="header-menu-top"> <div class="header-menu-list"> <a href="/ForLibraries">For Libraries</a> <a href="/ForPublication/Paper">For Publication</a> <a href="/DocuCenter">Downloads</a> <a href="/news/all">News</a> <a href="/Home/AboutUs">About Us</a> <a href="/Home/Contacts">Contact Us</a> </div> </div> <div class="search-block"> <input class="search-control" type="search" placeholder="Search" data-url="/Search"> <button class="button button-95 button-grey search-btn button-simple"> <span class="hidden-xs">Search</span> <i class="inline-icon search-icon-grey visible-xs"></i> </button> </div> </div> </div> </div> </div> </div> </div> <div class="container-fluid"> <div class="row"> <div class="banner-new"></div> </div> </div> <div class="content"> <div class="container"> <div class="row content-container"> <div class="left-content col-md-4 col-sm-5"> <div class="left-content-first-line icon-container mobile-collapse-button"> <div class="page-name-block underline-begin sibling-name-block"> <div class="page-name-block-text"> Volumes <a class="left-content-expand-button"><i class="inline-icon arrow-right-black no-hover-icon on-focus-arrow-down-black"></i></a> </div> </div> </div> <div class="row mobile-collapse-content"> <a href="/SSP.365" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 365</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.364" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 364</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.363" class="normal-large-text icon-container active-element active"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 363</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.362" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 362</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.361" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 361</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.360" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 360</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.359" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 359</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.358" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 358</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.357" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 357</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.356" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 356</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.355" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 355</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.354" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 354</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> <a href="/SSP.353" class="normal-large-text icon-container"> <div class="element-list"> <div class="element-list-text"> Solid State Phenomena <br /> <span class="paper-volume-number">Vol. 353</span> </div> <div class="element-list-arrow"> <i class="inline-icon arrow-right-black no-focus-icon on-hover-arrow-left-red"></i> </div> </div> </a> </div> </div> <div class="right-content col-md-8 col-sm-7 col-xs-12"> <div class="bread-crumbs hidden-xs"> <a class="bread-crumbs-first" href="/">Home</a><i class="inline-icon arrow-breadcrumbs"></i><a class="bread-crumbs-first" href="/SSP">Solid State Phenomena</a><i class="inline-icon arrow-breadcrumbs"></i><span class="bread-crumbs-second">Solid State Phenomena Vol. 363</span></div> <div class="page-name-block underline-begin"> <h1 class="page-name-block-text">Solid State Phenomena Vol. 363</h1> </div> <div class="clearfix title-details"> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>DOI:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="https://doi.org/10.4028/v-vWm3Yg">https://doi.org/10.4028/v-vWm3Yg</a></p> </div> </div> </div> </div> <div id="titleMarcXmlLink" style="display: none" class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>Export:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.363/marc.xml">MARCXML</a></p> </div> </div> </div> </div> <div class="papers-block-info col-lg-12"> <div class="row"> <div class="info-row-name normal-text-gray col-md-2 col-sm-3 col-xs-4"> <div class="row"> <p>ToC:</p> </div> </div> <div class="info-row-content semibold-middle-text col-md-10 col-sm-9 col-xs-8"> <div class="row"> <p><a href="/SSP.363_toc.pdf">Table of Contents</a></p> </div> </div> </div> </div> </div> <div class="volume-tabs"> </div> <div class=""> <div class="volume-papers-page"> <div class="block-search-pagination clearfix"> <div class="block-search-volume"> <input id="paper-search" type="search" placeholder="Search" maxlength="65"> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.363/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.363/2" rel="next">></a></li></ul></div> </div> <div class="block-volume-title normal-text-gray"> <p> Paper Title <span>Page</span> </p> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.-1">Preface</a> </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.3">Roundness Errors Prevention of the Machined Surface in WEDM</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: &#x13D;uboslav Straka, Juraj Hajduk </div> </div> <div id="abstractTextBlock608740" class="volume-info volume-info-text volume-info-description"> Abstract: Progressive electrical discharge machining technology is characterized by a high degree of quality of the machined surface. The high achieved quality of the machined surface not only in terms of roughness parameters but also in terms of geometric shape is practically a matter of course with this machining technology. Nevertheless, in certain specific cases, geometric deviations of the shape occur, even when the most modern and highly sophisticated electrical discharge equipment are used. One of the frequently occurring geometric inaccuracies of the shape when applying progressive electrical discharge machining technology with a wire tool electrode is the deviation of circularity. Therefore, the aim of the conducted experimental research was to identify these shortcomings in the first place and also to describe in which specific cases these deviations occur. Subsequently, based on the obtained results of experimental measurements, propose appropriate measures for their elimination or at least their minimization. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608740', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 3 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.13">Efficiency of the Carbide Machining Process with WEDM Technology</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: &#x13D;uboslav Straka </div> </div> <div id="abstractTextBlock608739" class="volume-info volume-info-text volume-info-description"> Abstract: Carbide machining process brings a whole range of problems in practice. This mainly concerns problems associated with their machinability and the economy of the applied machining technology. Because of these problems, it is often not possible to use traditional production technologies when machining them. However, progressive machining technologies achieve relatively good results. However, even with progressive technologies, the problem with the overall efficiency of the machining process remains. Therefore, experimental research was carried out, the aim of which was to obtain relevant data regarding the quantification of qualitative indicators of the machined surface during the machining of hard metals through progressive electrical discharge technology in relation to the overall economic efficiency of the machining process. As part of the conducted experimental research, partial data of individual elements were obtained on the basis of which complex conclusions were drawn in mutual contexts. Subsequently, complex data regarding the effectiveness of the applied electrical discharge process in the machining of hard metals were summarized. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608739', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 13 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.23">Analysis of Horizontal and Vertical Grinding Technologies</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: S&#xE1;ndor Bodz&#xE1;s </div> </div> <div id="abstractTextBlock608201" class="volume-info volume-info-text volume-info-description"> Abstract: The grinding technologies are widely used for finishing operations of various types of parts to provide better surface roughness and accuracy for the selected surfaces. Those technologies are expensive and take a lot of time to execute them consequently they are used when it is reasoned. The goal of this research is to compare the manufacturing design processes for horizontal and vertical grinding where the arrangement distinction between them is just the position of the tool axis compared to the machined surface of the workpiece. All of the necessary manufacturing parameters are determined to ease the design process. After the manufacturing design CAM design and CNC program writing are possible if CNC controlled machine is applied. Using of the same manufacturing parameters a comparative manufacturing analysis is done to determine the differences between the two processes. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608201', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 23 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.35">Optimization of Springback and Thinning during the Deep Drawing Process Based on an Optimization Strategy</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Marwen Habbachi, Attila Baksa, K&#xE1;roly J&#xE1;rmai </div> </div> <div id="abstractTextBlock608900" class="volume-info volume-info-text volume-info-description"> Abstract: During forming the process, various geometric parameters play an important role in determining the amount of the springback. These parameters can include factors such as sheet thickness, friction coefficient, and the radii of the dies. Furthermore, it is important to note that this phenomenon is also influenced by the material selection and the applied load. However, this research aims to investigate the impact of radii of both lower and upper dies, as well as the blank holder force on the springback amount, and the thinning percentage that occurs during elastic recovery of the material during the deep drawing process. The investigation will be followed by the development of an optimization strategy. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608900', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 35 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.43">Experimental Investigation of the Dynamic Compressive Behavior of Carbon-Flax Fiber Reinforced Polymer Composites at High Strain Rates</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Osama M. Mabrouk, Wael Khair-Eldeen, Ahmed H. Hassanin, Mohsen A. Hassan </div> </div> <div id="abstractTextBlock613057" class="volume-info volume-info-text volume-info-description"> Abstract: The present study investigates the dynamic compressive behavior of hybrid carbon/flax fiber-reinforced polymer composites in which epoxy resin is used as the matrix. The hybrid carbon/flax and non-hybrid flax polymer composite laminates were fabricated by hand lay-up followed by hot-compression molding. The Split-Hopkinson pressure bar test (SHPB) was utilized to evaluate the dynamic compressive mechanical properties of the fabricated composites. Compressive strength and failure strain were determined in the sample鈥檚 out-of-plane direction at strain rates ranging from 2638 s<sup>-1 </sup>to 6716 s<sup>-1</sup>. Macroscopic images were used to assess the progressive accumulated damage mechanisms due to the impact loading. Experimental results proved that non-hybrid flax and hybrid carbon/flax epoxy composites are high strain-rate-sensitive materials. For instance, the compressive strength of hybrid carbon/flax composites has increased from 327 MPa to 498 MPa as the strain rate increased from the lowest to the highest value in the considered range. At all impact pressures, hybrid carbon/flax composites have shown higher compressive strength than non-hybrid flax composites. The macroscopic inspection of post-tested composite specimens indicated that the accumulated damage becomes more severe with increasing the strain rate; and the main failure modes were shearing and splitting for both hybrid and non-hybrid composites. Overall, carbon/flax hybridization was found to be an effective technique for improving the load-bearing capacity of the polymer composites subjected to impact loading conditions. </div> <div> <a data-readmore="{ block: '#abstractTextBlock613057', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 43 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.51">Mechanical Performance of Defective FDM Multi-Layer Material Panels</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Amged Elhassan, Waleed Ahmed, Essam Zaneldin </div> </div> <div id="abstractTextBlock612753" class="volume-info volume-info-text volume-info-description"> Abstract: A finite element model was developed in this research to investigate the impact of defects on the mechanical properties of a 3D-printed composite sandwich panel that could occur during the layer alteration period between the dissimilar materials, affecting the interfacial strength between the layers and causing the 3D-printed panel to fail. Numerous parameters, such as interfacial position, size, material properties, and location of defects along the panel, have been examined that might affect the failure mechanism. This finite element study adopted linear elastic behavior by utilizing ANSYS simulation program. The outcomes showed that the midsection of the composite is under a lot of stress, and as we approach the edges of the composite, the tension concentration falls outward until it reaches zero. In the intact scenario, the deformation was zero at either end of the panel and highest in the composite middle. The shear stress was most significant in the center, and it decreased as we moved closer to the extremities of both sides, it gradually decreased until it was lowest there. The endpoints where we have support responses have significant maximum shear stresses, which could degrade the material overall mechanical properties. This rise in the maximum principle stress at the end support could be due to the reaction of the fixed support, which tries to counteract the applied flexural load and raise the maximum principle stress. </div> <div> <a data-readmore="{ block: '#abstractTextBlock612753', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 51 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.61">Finite Element Simulation of Split Hopkinson Pressure Bar (SHPB) Test to Predict the Dynamic Compressive Behavior of Glass Fiber Reinforced Polymer (GFRP) Composite</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Nojeem A. Yusuf, Wael Khair-Eldeen, Toshiyuki Tsuchiya, Mohsen A. Hassan </div> </div> <div id="abstractTextBlock612111" class="volume-info volume-info-text volume-info-description"> Abstract: Glass fiber reinforced polymers (GFRPs) are becoming increasingly important in aerospace, construction, and automotive industries due to their potential for weight reduction, high strength, and excellent fatigue resistance. The failure mechanisms of GFRPs are influenced by factors such as strain-rate, frequency, stress state, and temperature. However, existing constitutive models have predominantly focused on characterizing the material's behavior under quasi-static conditions, potentially limiting their accuracy when applied to situations involving higher strain rates. This study employs explicit dynamics finite element analysis to examine the impact of high strain rates on the dynamic compressive behavior of glass fiber reinforced polymers (GFRPs) in an ABAQUS CAE environment using the Split Hopkinson Pressure Bar (SHPB) experimental setup. The mechanical response of the [0/90]<sub>16</sub> GFRP laminate system is characterized using the orthotropic elasticity material model and Hashin Damage Criteria is used to model the damage properties. Based on stability of total model energy, mesh convergence test was conducted across various mesh sizes to obtain the optimal mesh size for validating the developed FE-model. The simulation results highlight a notable increase in the compressive stress of the GFRP, rising from 200 MPa to 663 MPa as the strain rate increases from 596 s<sup>-1</sup> to 1743 s<sup>-1</sup>. These results have shown the strain rate sensitivity of GFRPs and offer valuable insights for the prospective design and application of GFRP composites. </div> <div> <a data-readmore="{ block: '#abstractTextBlock612111', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 61 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.71">Applicability of High-Entropy Alloys</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Ferenc Hareancz, Gergely Juh&#xE1;sz, R&#xE9;ka Enik&#x151; F&#xE1;bi&#xE1;n, &#xC1;d&#xE1;m Vida </div> </div> <div id="abstractTextBlock608910" class="volume-info volume-info-text volume-info-description"> Abstract: In the 21st century a new chapter in materials science has been opened with the appearance of high-entropy alloys (HEA). These alloys differ from conventional alloys, they contain five or more elements in roughly equal amounts which are often based on a single main element (base metal) to which one or more other elements are added in small amounts to achieve the desired properties. High entropy alloys exhibit simple crystal structures due to high entropy, such as lattices that are body-centered cubic (BCC), face-centered cubic (FCC). In conventional alloys, diffusion inhibition is often achieved by using small amounts of alloying elements to increase the number of lattice defects or by creating secondary phases that block atomic motion. In high-entropy alloys, the large number of different elements results in high entropy, which can lead to slower diffusion due to the disorder of the atomic arrangement. This property can be beneficial in terms of corrosion resistance and suitability for use at high temperatures.. High-entropy alloys possess exceptional mechanical properties, corrosion resistance, and high-temperature behavior, making them promising alternatives to conventional alloys in fields such as aerospace and aviation, where materials must perform under extreme environmental conditions. However, the economic production and processing of HEAs remains a challenge, which limits their widespread application. Additional research and development are required to fully realize the potential of HEAs and to replace conventional alloys on a larger scale. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608910', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 71 </div> </div> <div class="item-block"> <div class="item-link"> <a href="/SSP.363.81">Determination of Flash Points of Flammable Mixtures for Explosion Protection</a> </div> <div class="item-link volume-authors"> <div class="semibold-middle-text"> Authors: Levente Tugyi, Zolt&#xE1;n Sim&#xE9;nfalvi, G&#xE1;bor L. Szepesi </div> </div> <div id="abstractTextBlock608894" class="volume-info volume-info-text volume-info-description"> Abstract: The flash point is the temperature at which the surface of a flammable liquid already produces enough vapour to burst under the influence of an ignition source, such as a spark. When determining the explosion hazard areas of a technology, if it is a combustible liquid, this value is used to determine the fire hazard class according to the current BM Decree 54/2014 (XII. 5.) in Hungary. Also for storage tanks, if flammable liquids are stored, a fire hazard class is determined according to MSZ 9790:1985, which is also based on the flash point of the flammable liquid. It is true worldwide that, for flammable liquids, the flash point data is the basis for determining whether or not there is a risk of explosive vapour under normal operating conditions. In principle, there are two types of flash points, open-cup and close-cup, which should be determined according to EN ISO 13736:2021/A1:2023, EN ISO 2719:2016/A1:2021, ASTM D93:2020, IP 34:2021, ASTM D92:2018, EN ISO 2592:2018, IP 36:2002. For a completely homogeneous liquid, the situation is straightforward because the flash point has already been determined and is treated uniformly in the literature, despite small variations. However, in the case of an inhomogeneous medium containing all percentages of combustible liquid and, for example, water, the flash point will be higher than the value determined for a completely pure combustible liquid. But how much higher? The testing methods described in the standard may not be quickly and easily available to everyone. Based on the current literature, it is possible to determine the flash point of the mixture using a relatively small number of input parameters (Antoine constant, vapour-liquid equilibrium) as a good approximation. The aim of this paper is to describe this relationship by presenting the flash points of ethanol-water and methanol-water mixtures. This is important because if the flash point of a mixture is no longer within the range of explosion protection measures required by regulation or standard, there is no safety justification for the installation and use of explosion-proof designs and additional operational benefits in the EHS area. </div> <div> <a data-readmore="{ block: '#abstractTextBlock608894', lines: 2, expandText: '...more', collapseText: '...less' }"></a> </div> <div class="page-number semibold-large-text"> 81 </div> </div> <div class="block-bottom-pagination"> <div class="pager-info"> <p>Showing 1 to 10 of 17 Paper Titles</p> </div> <div class="pagination-container"><ul class="pagination"><li class="active"><span>1</span></li><li><a href="/SSP.363/2">2</a></li><li class="PagedList-skipToNext"><a href="/SSP.363/2" rel="next">></a></li></ul></div> </div> </div> </div> </div> </div> </div> </div> <div class="social-icon-popup"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-popup-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-popup-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-popup-icon social-icon"></i></a> </div> </div> <div class="sc-footer"> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="footer-menu col-md-12 col-sm-12 col-xs-12"> <ul class="list-inline menu-font"> <li><a href="/ForLibraries">For Libraries</a></li> <li><a href="/ForPublication/Paper">For Publication</a></li> <li><a href="/insights" target="_blank">Insights</a></li> <li><a href="/DocuCenter">Downloads</a></li> <li><a href="/Home/AboutUs">About Us</a></li> <li><a href="/PolicyAndEthics/PublishingPolicies">Policy &amp; Ethics</a></li> <li><a href="/Home/Contacts">Contact Us</a></li> <li><a href="/Home/Imprint">Imprint</a></li> <li><a href="/Home/PrivacyPolicy">Privacy Policy</a></li> <li><a href="/Home/Sitemap">Sitemap</a></li> <li><a href="/Conferences">All Conferences</a></li> <li><a href="/special-issues">All Special Issues</a></li> <li><a href="/news/all">All News</a></li> <li><a href="/read-and-publish-agreements">Read &amp; Publish Agreements</a></li> </ul> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12"> <a href="https://www.facebook.com/Scientific.Net.Ltd/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon facebook-footer-icon social-icon"></i></a> <a href="https://twitter.com/Scientific_Net/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon twitter-footer-icon social-icon"></i></a> <a href="https://www.linkedin.com/company/scientificnet/" target="_blank" rel="noopener" title="Scientific.Net"><i class="inline-icon linkedin-footer-icon social-icon"></i></a> </div> </div> </div> </div> <div class="line-footer"></div> <div class="footer-fluid"> <div class="container"> <div class="row"> <div class="col-xs-12 footer-copyright"> <p> &#169; 2024 Trans Tech Publications Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For open access content, terms of the Creative Commons licensing CC-BY are applied. <br />Scientific.Net is a registered trademark of Trans Tech Publications Ltd. </p> </div> </div> </div> </div> </div> <a class="scrollTop inline-icon scroll-top-icon" href="#" style="display: none"></a> </div> <script src="/Scripts/public.min.js?v=BtSq2PJEHRTW2PekpQGgIQKs7-OSPiKhsoI9rMs6kTU"></script> <script> $(function () { $("#paper-search").autocomplete({ minLength: 1, source: '/Title/Search?kurzel=SSP&volumeBegin=363&volumeEnd=363', delay: 200, select: function (event, ui) { window.location.href = ui.item.url; } }); }); </script> <script asp-render-component-scripts> $(function () { $.get("/Title/ShowMarcXmlLink") .done(function (showMarcXmlLink) { if (showMarcXmlLink) { $("#titleMarcXmlLink").show(); } }); }); Scinet.public = (function () { function loadCartInfo(onLoad) { var formatCartItemCount = function (count) { var format = (count > 1 || count === 0) ? "{0} items" : "{0} item"; $("#cartInfoTotalItemsCount").html(Scinet.stringFormat(format, count)); }, cookieCartItemCount = Cookies.get("Scinet5.CartItemsCount"); if (onLoad && cookieCartItemCount != null) { formatCartItemCount(parseInt(cookieCartItemCount, 10)); } else { $.ajax({ url: "/Cart/GetItemsCount", cache: false }) .done( function (count) { Cookies.set("Scinet5.CartItemsCount", count, { domain: ".scientific.net", secure: true }); formatCartItemCount(count); }); } } return { loadCartInfo: loadCartInfo }; })(); $(function () { Scinet.public.loadCartInfo(true); $("[data-add-book-to-cart]").on("click", function (e) { e.preventDefault(); var data = $(this).data("add-book-to-cart"); console.log(data); var url = "/Cart/AddBook"; $.post(url, data) .done( function () { Scinet.public.loadCartInfo(); $("#addToCart").modal(); }) .fail( function (xhr) { Scinet.error(xhr.responseText); }); }) }); </script> <script> var $buoop = { required: { e: 11, f: -6, o: -6, s: -3, c: -6 }, insecure: false, unsupported: false, api: 2019.11, reminder: 0, onshow: function () { window.browserUpdateOutdated = true; } }; function $buo_f() { var e = document.createElement("script"); e.src = "//browser-update.org/update.min.js"; document.body.appendChild(e); }; try { document.addEventListener("DOMContentLoaded", $buo_f, false) } catch (e) { window.attachEvent("onload", $buo_f) } </script> <!-- IE polyfills--> <!--[if lt IE 10]> <script src="/Scripts/lib/flexibility/flexibility.js"></script> <script> flexibility(document.documentElement); </script> <![endif]--> <script> window.clientErrorLogActionUrl = "/Errors/LogClientError"; </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10