CINXE.COM
Search results for: surfactants adsorption
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: surfactants adsorption</title> <meta name="description" content="Search results for: surfactants adsorption"> <meta name="keywords" content="surfactants adsorption"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="surfactants adsorption" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="surfactants adsorption"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1067</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: surfactants adsorption</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Adsorption and Desorption Behavior of Ionic and Nonionic Surfactants on Polymer Surfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giulia%20Magi%20Meconi">Giulia Magi Meconi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20Ballard"> Nicholas Ballard</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20M.%20Asua"> José M. Asua</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronen%20Zangi"> Ronen Zangi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and computational studies are combined to elucidate the adsorption proprieties of ionic and nonionic surfactants on hydrophobic polymer surface such us poly(styrene). To present these two types of surfactants, sodium dodecyl sulfate and poly(ethylene glycol)-block-poly(ethylene), commonly utilized in emulsion polymerization, are chosen. By applying quartz crystal microbalance with dissipation monitoring it is found that, at low surfactant concentrations, it is easier to desorb (as measured by rate) ionic surfactants than nonionic surfactants. From molecular dynamics simulations, the effective, attractive force of these nonionic surfactants to the surface increases with the decrease of their concentration, whereas, the ionic surfactant exhibits mildly the opposite trend. The contrasting behavior of ionic and nonionic surfactants critically relies on two observations obtained from the simulations. The first is that there is a large degree of interweavement between head and tails groups in the adsorbed layer formed by the nonionic surfactant (PEO/PE systems). The second is that water molecules penetrate this layer. In the disordered layer, these nonionic surfactants generate at the surface, only oxygens of the head groups present at the interface with the water phase or oxygens next to the penetrating waters can form hydrogen bonds. Oxygens inside this layer lose this favorable energy, with a magnitude that increases with the surfactants density at the interface. This reduced stability of the surfactants diminishes their driving force for adsorption. All that is shown to be in accordance with experimental results on the dynamics of surfactants desorption. Ionic surfactants assemble into an ordered structure and the attraction to the surface was even slightly augmented at higher surfactant concentration, in agreement with the experimentally determined adsorption isotherm. The reason these two types of surfactants behave differently is because the ionic surfactant has a small head group that is strongly hydrophilic, whereas the head groups of the nonionic surfactants are large and only weakly attracted to water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emulsion%20polymerization%20process" title="emulsion polymerization process">emulsion polymerization process</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20dynamics%20simulations" title=" molecular dynamics simulations"> molecular dynamics simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20surface" title=" polymer surface"> polymer surface</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption" title=" surfactants adsorption"> surfactants adsorption</a> </p> <a href="https://publications.waset.org/abstracts/68668/adsorption-and-desorption-behavior-of-ionic-and-nonionic-surfactants-on-polymer-surfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Anticorrosive Performances of “Methyl Ester Sulfonates” Biodegradable Anionic Synthetized Surfactants on Carbon Steel X 70 in Oilfields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asselah%20Amel">Asselah Amel</a>, <a href="https://publications.waset.org/abstracts/search?q=Affif%20Chaouche%20M%27yassa"> Affif Chaouche M'yassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Toudji%20Amira"> Toudji Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Tazerouti%20Amel"> Tazerouti Amel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study covers two aspects ; the biodegradability and the performances in corrosion inhibition of a series of synthetized surfactants namely Φ- sodium methyl ester sulfonates (Φ-MES: C₁₂-MES, C₁₄-MES and C₁₆-MES. The biodegradability of these organic compounds was studied using the respirometric method, ‘the standard ISO 9408’. Degradation was followed by analysis of dissolved oxygen using the dissolved oxygen meter over 28 days and the results were compared with that of sodium dodecyl sulphate (SDS). The inoculum used consists of activated sludge taken from the aeration basin of the biological wastewater treatment plant in the city of Boumerdes-Algeria. In addition, the anticorrosive performances of Φ-MES surfactants on a carbon steel "X70" were evaluated in an injection water from a well of Hassi R'mel region- Algeria, known as Baremian water, and are compared to sodium dodecyl sulphate. Two technics, the weight loss and the linear polarization resistance corrosion rate (LPR) are used allowing to investigate the relationships between the concentrations of these synthetized surfactants and their surface properties, surface coverage and inhibition efficiency. Various adsorption isotherm models were used to characterize the nature of adsorption and explain their mechanism. The results show that the MES anionic surfactants was readily biodegradable, degrading faster than SDS, about 88% for C₁₂-MES compared to 66% for the SDS. The length of their carbon chain affects their biodegradability; the longer the chain, the lower the biodegradability. The inhibition efficiency of these surfactants is around 78.4% for C₁₂-MES, 76.60% for C₁₄-MES and 98.19% for C₁₆-MES and increases with their concentration and reaches a maximum value around their critical micelle concentrations ( CMCs). Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy allowed to the visualization of a good adhesion of the protective film formed by the surfactants to the surface of the steel. The studied surfactants show the Langmuirian behavior from which the thermodynamic parameters as adsorption constant (Kads), standard free energy of adsorption (〖∆G〗_ads^0 ) are determined. Interaction of the surfactants with steel surface have involved physisorptions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corrosion" title="corrosion">corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherems" title=" adsorption isotherems"> adsorption isotherems</a> </p> <a href="https://publications.waset.org/abstracts/158303/anticorrosive-performances-of-methyl-ester-sulfonates-biodegradable-anionic-synthetized-surfactants-on-carbon-steel-x-70-in-oilfields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Influence of the Adsorption of Anionic–Nonionic Surfactants/Silica Nanoparticles Mixture on Clay Rock Minerals in Chemical Enhanced Oil Recovery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Mendoza%20Ram%C3%ADrez">C. Mendoza Ramírez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gamb%C3%BAs%20Ordaz"> M. Gambús Ordaz</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mercado%20Ojeda."> R. Mercado Ojeda.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical solutions flooding with surfactants, based on their property of reducing the interfacial tension between crude oil and water, is a potential application of chemical enhanced oil recovery (CEOR), however, the high-rate retention of surfactants associated with adsorption in the porous medium and the complexity of the mineralogical composition of the reservoir rock generates a limitation in the efficiency of displacement of crude oil. This study evaluates the effect of the concentration of a mixture of anionic-non-ionic surfactants with silica nanoparticles, in a rock sample composed of 25.14% clay minerals of the kaolinite, chlorite, halloysite and montmorillonite type, according to the results of X-Ray Diffraction analysis and Scanning Electron Spectrometry (XRD and SEM, respectively). The amount of the surfactant mixture adsorbed on the clay rock minerals was analyzed from the construction of its calibration curve and the 4-Region Isotherm Model in a UV-Visible spectroscopy. The adsorption rate of the surfactant in the clay rock averages 32% across all concentrations, influenced by the presence of the surface area of the substrate with a value of 1.6 m2/g and by the mineralogical composition of the clay that increases the cation exchange capacity (CEC). In addition, on Region I and II a final concentration measurement is not evident in the UV-VIS, due to its ionic nature, its high affinity with the clay rock and its low concentration. Finally, for potential CEOR applications, the adsorption of these mixed surfactant systems is considered due to their industrial relevance and it is concluded that it is possible to use concentrations in Region III and IV; initially the adsorption has an increasing slope and then reaches zero in the equilibrium where interfacial tension values are reached in the order of x10-1 mN/m. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%E2%80%93nonionic%20surfactants" title="anionic–nonionic surfactants">anionic–nonionic surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20rock" title=" clay rock"> clay rock</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=4-region%20isotherm%20model" title=" 4-region isotherm model"> 4-region isotherm model</a>, <a href="https://publications.waset.org/abstracts/search?q=cation%20exchange%20capacity" title=" cation exchange capacity"> cation exchange capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title=" enhanced oil recovery"> enhanced oil recovery</a> </p> <a href="https://publications.waset.org/abstracts/172905/influence-of-the-adsorption-of-anionic-nonionic-surfactantssilica-nanoparticles-mixture-on-clay-rock-minerals-in-chemical-enhanced-oil-recovery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1064</span> Adsorption Kinetics and Equilibria at an Air-Liquid Interface of Biosurfactant and Synthetic Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sagheer%20A.%20Onaizi">Sagheer A. Onaizi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption of anionic biosurfactant (surfactin) and anionic synthetic surfactant (sodium dodecylbenzenesulphonate, abbreviated as SDOBS) from phosphate buffer containing high concentrations of co- and counter-ions to the air-buffer interface has been investigated. The self-assembly of the two surfactants at the interface has been monitored through dynamic surface tension measurements. The equilibrium surface pressure-surfactant concentration data in the premicellar region were regressed using Gibbs adsorption equation. The predicted surface saturations for SDOBS and surfactin are and, respectively. The occupied area per an SDOBS molecule at the interface saturation condition is while that occupied by a surfactin molecule is. The surface saturations reported in this work for both surfactants are in a very good agreement with those obtained using expensive techniques such as neutron reflectometry, suggesting that the surface tension measurements coupled with appropriate theoretical analysis could provide useful information comparable to those obtained using highly sophisticated techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=air-liquid%20interface" title=" air-liquid interface"> air-liquid interface</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20tension" title=" surface tension"> surface tension</a> </p> <a href="https://publications.waset.org/abstracts/17087/adsorption-kinetics-and-equilibria-at-an-air-liquid-interface-of-biosurfactant-and-synthetic-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">713</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1063</span> Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phillip%20Ahn">Phillip Ahn</a>, <a href="https://publications.waset.org/abstracts/search?q=Bryan%20Kim"> Bryan Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20removal" title="heavy metal removal">heavy metal removal</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewaters" title=" wastewaters"> wastewaters</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20remediation" title=" water remediation"> water remediation</a> </p> <a href="https://publications.waset.org/abstracts/41163/adsorption-of-heavy-metals-using-chemically-modified-tea-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1062</span> Studies on Interaction between Anionic Polymer Sodium Carboxymethylcellulose with Cationic Gemini Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamil">M. Kamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahber%20Husain%20Khan"> Rahber Husain Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the Interaction of anionic polymer, sodium carboxymethylcellulose (NaCMC), with cationic gemini surfactants 2,2[(oxybis(ethane-1,2-diyl))bis(oxy)]bis(N-hexadecyl1-N,N-[di(E2)/tri(E3)]methyl1-2-oxoethanaminium)chloride (16-E2-16 and 16-E3-16) and conventional surfactant (CTAC) in aqueous solutions have been studied by surface tension measurement of binary mixtures (0.0- 0.5 wt% NaCMC and 1 mM gemini surfactant/10 mM CTAC solution). Surface tension measurements were used to determine critical aggregation concentration (CAC) and critical micelle concentration (CMC). The maximum surface excess concentration (Ґmax) at the air-water interface was evaluated by the Gibbs adsorption equation. The minimum area per surfactant molecule was evaluated, which indicates the surfactant-polymer Interaction in a mixed system. The effect of changing surfactant chain length on CAC and CMC values of mixed polymer-surfactant systems was examined. From the results, it was found that the gemini surfactant interacts strongly with NaCMC as compared to its corresponding monomeric counterpart CTAC. In these systems, electrostatic interactions predominate. The lowering of surface tension with an increase in the concentration of surfactants is higher in the case of gemini surfactants almost 10-15 times. The measurements indicated that the Interaction between NaCMC-CTAC resulted in complex formation. The volume of coacervate increases with an increase in CTAC concentration; however, above 0.1 wt. % concentration coacervate vanishes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%20polymer" title="anionic polymer">anionic polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=gemni%20surfactants" title=" gemni surfactants"> gemni surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=tensiometer" title=" tensiometer"> tensiometer</a>, <a href="https://publications.waset.org/abstracts/search?q=CMC" title=" CMC"> CMC</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/163366/studies-on-interaction-between-anionic-polymer-sodium-carboxymethylcellulose-with-cationic-gemini-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1061</span> Prediction of Corrosion Inhibition Using Methyl Ester Sulfonate Anionic Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Asselah">A. Asselah</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khalfi"> A. Khalfi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.Toumi"> M. A.Toumi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.Tazerouti"> A.Tazerouti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of the corrosion inhibition of a standard carbon steel "API 5L grade X70" by two biodegradable anionic surfactants derived from fatty acids by photo sulfochlorination, called sodium lauryl methyl ester sulfonates and sodium palmityl methyl ester sulfonates was carried. A solution at 2.5 g/l NaCl saturated with carbon dioxide is used as a corrosive medium. The gravimetric and electrochemical technics (stationary and transient) were used in order to quantify the rate of corrosion and to evaluate the electrochemical inhibition efficiency, thus the nature of the mode of action of the inhibitor, in addition to a surface characterization by scanning electron microscopy (MEB) coupled to energy dispersive X-ray spectroscopy (EDX). The variation of the concentration and the temperature were examined, and the mode of adsorption of these inhibitors on the surface of the metal was established by assigning it the appropriate isotherm and determining the corresponding thermodynamic parameters. The MEB-EDX allowed the visualization of good adhesion of the protective film formed by the surfactants to the surface of the steel. The corrosion inhibition was evaluated at around 93% for sodium lauryl methyl ester sulfonate surfactant at 20 ppm and 87.2% at 50 ppm for sodium palmityl methyl ester sulfonate surfactant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=oilfield" title=" oilfield"> oilfield</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion" title=" corrosion"> corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactants" title=" anionic surfactants"> anionic surfactants</a> </p> <a href="https://publications.waset.org/abstracts/158305/prediction-of-corrosion-inhibition-using-methyl-ester-sulfonate-anionic-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1060</span> Degradation of Hydrocarbons by Surfactants and Biosurfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ferhat">Samira Ferhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Redha%20Alouaoui"> Redha Alouaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Leila%20Trifi"> Leila Trifi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Badis"> Abdelmalek Badis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is the use of natural surfactant (biosurfactant) and synthetic (sodium dodecyl sulfate and tween 80) for environmental application. In fact the solubility of the polycyclic hydrocarbon (naphthalene) and the desorption of the heavy metals in the presence of surfactants. The microorganisms selected in this work are bacterial strain (Bacillus licheniformis) for the production of biosurfactant for use in this study. In the first part of this study, we evaluated the effectiveness of surfactants solubilization certain hydrocarbons few soluble in water such as polyaromatic (case naphthalene). Tests have shown that from the critical micelle concentration, decontamination is performed. The second part presents the results on the desorption of heavy metals (for copper) by the three surfactants, using concentrations above the critical micelle concentration. The comparison between the desorption of copper by the three surfactants, it is shown that the biosurfactant is more effective than tween 80 and sodium dodecyl sulfate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfactants" title="surfactants">surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title=" biosurfactant"> biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=naphthalene" title=" naphthalene"> naphthalene</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20micelle%20concentration" title=" critical micelle concentration"> critical micelle concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=solubilization" title=" solubilization"> solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=desorption" title=" desorption"> desorption</a> </p> <a href="https://publications.waset.org/abstracts/40181/degradation-of-hydrocarbons-by-surfactants-and-biosurfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1059</span> Regulating Hydrogen Energy Evaluation During Aluminium Hydrolysis in Alkaline Solutions Containing Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20A.%20Deyab">Mohamed A. Deyab</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20A.%20A.%20El-Shamy"> Omnia A. A. El-Shamy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to reveal on the systematic evaluation of hydrogen production by aluminum hydrolysis in alkaline solutions containing different surfactants using hydrogen evolution measurements and supplemented by scan electron microscope (SEM) and energy dispersive X-ray analysis (EDX). It has been demonstrated that when alkaline concentration and solution temperature rise, the rate of H2 generation and, consequently, aluminum hydrolysis also rises. The addition of nonionic and cationic surfactants solution retards the rate of H2 production. The work is a promising option for carbon-free hydrogen production from renewable resources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrolysis" title=" hydrolysis"> hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/161815/regulating-hydrogen-energy-evaluation-during-aluminium-hydrolysis-in-alkaline-solutions-containing-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1058</span> Purification of Bilge Water by Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Atmani">Fatiha Atmani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Djellab"> Lamia Djellab</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Yeddou%20Mezenner"> Nacera Yeddou Mezenner</a>, <a href="https://publications.waset.org/abstracts/search?q=Zohra%20Bensaadi"> Zohra Bensaadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Generally, bilge waters can be briefly defined as saline and greasy wastewaters. The oil and grease are mixed with the sea water, which affects many marine species. Bilge water is a complex mixture of various compounds such as solvents, surfactants, fuel, lubricating oils, and hydraulic oils. It is resulted mainly by the leakage from the machinery and fresh water washdowns,which are allowed to drain to the lowest inner part of the ship's hull. There are several physicochemical methods used for bilge water treatment such as biodegradation electrochemical and electro-coagulation/flotation.The research herein presented discusses adsorption as a method to treat bilge water and eggshells were studied as an adsorbent. The influence of operating parameters as contact time, temperature and adsorbent dose (0,2 - 2g/l) on the removal efficiency of Chemical oxygen demand, COD, and turbidity was analyzed. The bilge wastewater used for this study was supplied by Harbour Bouharoune. Chemical oxygen demand removal increased from 26.7% to 68.7% as the adsorbent dose increased from 0.2 to 2 g. The kinetics of adsorption by eggshells were fast, reaching 55 % of the total adsorption capacity in ten minutes (T= 20°C, pH =7.66, m=2g/L). It was found that the turbidity removal efficiency decreased and 95% were achieved at the end of 90 min reaction. The adsorption process was found to be effective for the purification of bilge water and pseudo-second-order kinetic model was fitted for COD removal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=bilge%20water" title=" bilge water"> bilge water</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshells%20and%20kinetics" title=" eggshells and kinetics"> eggshells and kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20and%20kinetics" title=" equilibrium and kinetics "> equilibrium and kinetics </a> </p> <a href="https://publications.waset.org/abstracts/32584/purification-of-bilge-water-by-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1057</span> [Keynote Talk]: Uptake of Co(II) Ions from Aqueous Solutions by Low-Cost Biopolymers and Their Hybrid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kateryna%20Zhdanova">Kateryna Zhdanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Evelyn%20Szeinbaum"> Evelyn Szeinbaum</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Lo"> Michelle Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeonjae%20Jo"> Yeonjae Jo</a>, <a href="https://publications.waset.org/abstracts/search?q=Abel%20E.%20Navarro"> Abel E. Navarro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Alginate hydrogel beads (AB), spent peppermint leaf (PM), and a hybrid adsorbent of these two materials (ABPM) were studied as potential biosorbents of Cobalt (II) ions from aqueous solutions. Cobalt ion is a commonly underestimated pollutant that is responsible for several health problems. Discontinuous batch experiments were conducted at room temperature to evaluate the effect of solution acidity, mass of adsorbent on the adsorption of Co(II) ions. The interfering effect of salinity, the presence of surfactants, an organic dye, and Pb(II) ions were also studied to resemble the application of these adsorbents in real wastewater. Equilibrium results indicate that Co(II) uptake is maximized at pH values higher than 5, with adsorbent doses of 200 mg, 200 mg, and 120 mg for AB, PM, and ABPM, respectively. Co(II) adsorption followed the trend AB > ABPM > PM with Adsorption percentages of 77%, 71% and 64%, respectively. Salts had a strong negative effect on the adsorption due to the increase of the ionic strength and the competition for adsorption sites. The presence of Pb(II) ions, surfactant, and dye BY57 had a slightly negative effect on the adsorption, apparently due to their interaction with different adsorption sites that do not interfere with the removal of Co(II). A polar-electrostatic adsorption mechanism is proposed based on the experimental results. Scanning electron microscopy indicates that adsorbent has appropriate morphological and textural properties, and also that ABPM encapsulated most of the PM inside of the hydrogel beads. These experimental results revealed that AB, PM, and ABPM are promising adsorbents for the elimination of Co(II) ions from aqueous solutions under different experimental conditions. These biopolymers are proposed as eco-friendly alternatives for the removal of heavy metal ions at lower costs than the conventional techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Co%28II%29%20ions" title=" Co(II) ions"> Co(II) ions</a>, <a href="https://publications.waset.org/abstracts/search?q=alginate%20hydrogel%20beads" title=" alginate hydrogel beads"> alginate hydrogel beads</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20peppermint%20leaf" title=" spent peppermint leaf"> spent peppermint leaf</a>, <a href="https://publications.waset.org/abstracts/search?q=pH" title=" pH"> pH</a> </p> <a href="https://publications.waset.org/abstracts/113482/keynote-talk-uptake-of-coii-ions-from-aqueous-solutions-by-low-cost-biopolymers-and-their-hybrid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113482.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1056</span> Studies of Heavy Metal Ions Removal Efficiency in the Presence of Anionic Surfactant Using Ion Exchangers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Wolowicz">Anna Wolowicz</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Staszak"> Katarzyna Staszak</a>, <a href="https://publications.waset.org/abstracts/search?q=Zbigniew%20Hubicki"> Zbigniew Hubicki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays heavy metal ions as well as surfactants are widely used throughout the world due to their useful properties. The consequence of such widespread use is their significant production. On the other hand, the increasing demand for surfactants and heavy metal ions results in production of large amounts of wastewaters which are discharged to the environment from mining, metal plating, pharmaceutical, cosmetic, fertilizer, paper, pesticide and electronic industries, pigments producing, petroleum refining and from autocatalyst, fibers, food, polymer industries etc. Heavy metal ions are non-biodegradable in the environment, cable of accumulation in living organisms and organs, toxic and carcinogenic. On the other hand, not only heavy metal ions but also surfactants affect the purity of water and soils. Some of surfactants are also toxic, harmful and dangerous because they are able to penetrate into surface waters causing foaming, blocked diffusion of oxygen from the atmosphere and act as emulsifiers of hydrophobic substances and increase solubility of many the dangerous pollutants. Among surfactants the anionic ones dominate and their share in the global production of surfactants is around 50 ÷ 60%. Due to the negative impact of heavy metals and surfactants on aquatic ecosystems and living organisms, removal and monitoring of their concentration in the environment is extremely important. Surfactants and heavy metal ions removal can be achieved by different biological and physicochemical methods. The adsorption as well as the ion-exchange methods play here a significant role. The aim of this study was heavy metal ions removal from aqueous solutions using different types of ion exchangers in the presence of anionic surfactants. Preliminary studies of copper(II), nickel(II), zinc(II) and cobalt(II) removal from acidic solutions using ion exchangers (Lewatit MonoPlus TP 220, Lewatit MonoPlus SR 7, Purolite A 400 TL, Purolite A 830, Purolite S 984, Dowex PSR 2, Dowex PSR3, Lewatit AF-5) allowed to select the most effective ones for the above mentioned sorbates and then to checking their removal efficiency in the presence of anionic surfactants. As it was found out Lewatit MonoPlus TP 220 of the chelating type, show the highest sorption capacities for copper(II) ions in comparison with the other ion exchangers under discussion, e.g. 9.98 mg/g (0.1 M HCl); 9.12 mg/g (6 M HCl). Moreover, cobalt(II) removal efficiency was the highest in 0.1 M HCl using also Lewatit MonoPlus TP 220 (6.9 mg/g) similar to zinc(II) (9.1 mg/g) and nickiel(II) (6.2 mg/g). As the anionic surfactant sodium dodecyl sulphate (SDS) was used and surfactant parameters such as viscosity (η), density (ρ) and critical micelle concentration (CMC) were obtained: η = 1.13 ± 0,01 mPa·s; ρ = 999.76 mg/cm3; CMC = 2.26 g/cm3. The studies of copper(II) removal from acidic solutions in the presence of SDS of different concentration show negligible effects on copper(II) removal efficiency. The sorption capacity of Cu(II) from 0.1 M acidic solution of 500 mg/L initial concentration was equal to 46.8 mg/g whereas in the presence of SDS 45.3 mg/g (0.1 mg SDS/L), 47.1 mg/g (0.5 mg SDS/L), 46.6 mg/g (1 mg SDS/L). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactant" title="anionic surfactant">anionic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20ions" title=" heavy metal ions"> heavy metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20exchanger" title=" ion exchanger"> ion exchanger</a>, <a href="https://publications.waset.org/abstracts/search?q=removal" title=" removal"> removal</a> </p> <a href="https://publications.waset.org/abstracts/89510/studies-of-heavy-metal-ions-removal-efficiency-in-the-presence-of-anionic-surfactant-using-ion-exchangers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89510.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1055</span> A Multi-Family Offline SPE LC-MS/MS Analytical Method for Anionic, Cationic and Non-ionic Surfactants in Surface Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Laure%20Wiest">Laure Wiest</a>, <a href="https://publications.waset.org/abstracts/search?q=Barbara%20Giroud"> Barbara Giroud</a>, <a href="https://publications.waset.org/abstracts/search?q=Azziz%20Assoumani"> Azziz Assoumani</a>, <a href="https://publications.waset.org/abstracts/search?q=Francois%20Lestremau"> Francois Lestremau</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuelle%20Vulliet"> Emmanuelle Vulliet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to their production at high tonnages and their extensive use, surfactants are contaminants among those determined at the highest concentrations in wastewater. However, analytical methods and data regarding their occurrence in river water are scarce and concern only a few families, mainly anionic surfactants. The objective of this study was to develop an analytical method to extract and analyze a wide variety of surfactants in a minimum of steps, with a sensitivity compatible with the detection of ultra-traces in surface waters. 27 substances, from 12 families of surfactants, anionic, cationic and non-ionic were selected for method optimization. Different retention mechanisms for the extraction by solid phase extraction (SPE) were tested and compared in order to improve their detection by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The best results were finally obtained with a C18 grafted silica LC column and a polymer cartridge with hydrophilic lipophilic balance (HLB), and the method developed allows the extraction of the three types of surfactants with satisfactory recoveries. The final analytical method comprised only one extraction and two LC injections. It was validated and applied for the quantification of surfactants in 36 river samples. The method's limits of quantification (LQ), intra- and inter-day precision and accuracy were evaluated, and good performances were obtained for the 27 substances. As these compounds have many areas of application, contaminations of instrument and method blanks were observed and considered for the determination of LQ. Nevertheless, with LQ between 15 and 485 ng/L, and accuracy of over 80%, this method was suitable for monitoring surfactants in surface waters. Application on French river samples revealed the presence of anionic, cationic and non-ionic surfactants with median concentrations ranging from 24 ng/L for octylphenol ethoxylates (OPEO) to 4.6 µg/L for linear alkylbenzenesulfonates (LAS). The analytical method developed in this work will therefore be useful for future monitoring of surfactants in waters. Moreover, this method, which shows good performances for anionic, non-ionic and cationic surfactants, may be easily adapted to other surfactants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anionic%20surfactant" title="anionic surfactant">anionic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=cationic%20surfactant" title=" cationic surfactant"> cationic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=LC-MS%2FMS" title=" LC-MS/MS"> LC-MS/MS</a>, <a href="https://publications.waset.org/abstracts/search?q=non-ionic%20surfactant" title=" non-ionic surfactant"> non-ionic surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=SPE" title=" SPE"> SPE</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20water" title=" surface water"> surface water</a> </p> <a href="https://publications.waset.org/abstracts/134440/a-multi-family-offline-spe-lc-msms-analytical-method-for-anionic-cationic-and-non-ionic-surfactants-in-surface-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134440.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1054</span> Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Djelloul%20Addad">Djelloul Addad</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Belkhadem%20Mokhtari"> Fatiha Belkhadem Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dyes" title="dyes">dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methylene%20blue" title=" methylene blue"> methylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=langmuir" title=" langmuir"> langmuir</a> </p> <a href="https://publications.waset.org/abstracts/184434/physico-chemical-characterization-of-an-algerian-biomass-application-in-the-adsorption-of-an-organic-pollutant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1053</span> A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marc%20Sader">Marc Sader</a>, <a href="https://publications.waset.org/abstracts/search?q=Michiel%20Stock"> Michiel Stock</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20De%20Baets"> Bernard De Baets</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=predictive%20modeling" title=" predictive modeling"> predictive modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=QSAR" title=" QSAR"> QSAR</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20forest" title=" random forest"> random forest</a> </p> <a href="https://publications.waset.org/abstracts/62354/a-quantitative-structure-adsorption-study-on-novel-and-emerging-adsorbent-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1052</span> Fabric Softener Deposition on Cellulose Nanocrystals and Cotton Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Evdokia%20K.%20Oikonomou">Evdokia K. Oikonomou</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Christov"> Nikolay Christov</a>, <a href="https://publications.waset.org/abstracts/search?q=Galder%20Cristobal"> Galder Cristobal</a>, <a href="https://publications.waset.org/abstracts/search?q=Graziana%20Messina"> Graziana Messina</a>, <a href="https://publications.waset.org/abstracts/search?q=Giovani%20Marletta"> Giovani Marletta</a>, <a href="https://publications.waset.org/abstracts/search?q=Laurent%20Heux"> Laurent Heux</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Francois%20Berret"> Jean-Francois Berret</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fabric softeners are aqueous formulations that contain ~10 wt. % double tailed cationic surfactants. Here, a formulation in which 50% surfactant was replaced with low quantities of natural guar polymers was developed. Thanks to the reduced surfactant quantity this product has less environmental impact while the guars presence was found to maintain the product’s performance. The objective of this work is to elucidate the effect of the guar polymers on the softener deposition and the adsorption mechanism on the cotton surface. The surfactants in these formulations are assembled into large distributed (0.1 – 1 µm) vesicles that are stable in the presence of guars and upon dilution. The effect of guars on the vesicles adsorption on cotton was first estimated by using cellulose nanocrystals (CNC) as a stand-in for cotton. The dispersion of CNC in water permits to follow the interaction between the vesicles, guars, and CNC in the bulk. It was found that guars enhance the deposition on CNC and that the vesicles are deposited intactly on the fibers driven by electrostatics. The mechanism of the vesicles/guars adsorption on cellulose fibers was identified by quartz crystal microbalance with dissipation monitoring. It was found that the guars increase the surfactant deposited quantity, in agreement with the results in the bulk. Also, the structure of the adsorbed surfactant on the fibers' surfaces (vesicle or bilayer) was influenced by the guars presence. Deposition studies on cotton fabrics were also conducted. Attenuated total reflection and scanning electron microscopy were used to study the effect of the polymers on this deposition. Finally, fluorescent microscopy was used to follow the adsorption of surfactant vesicles, labeled with a fluorescent dye, on cotton fabrics in water. It was found that, in the presence or not of polymers, the surfactant vesicles are adsorbed on fiber maintaining their vesicular structure in water (supported vesicular bilayer structure). The guars influence this process. However, upon drying the vesicles are transformed into bilayers and eventually wrap the fibers (supported lipid bilayer structure). This mechanism is proposed for the adsorption of vesicular conditioner on cotton fiber and can be affected by the presence of polymers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulose%20nanocrystals" title="cellulose nanocrystals">cellulose nanocrystals</a>, <a href="https://publications.waset.org/abstracts/search?q=cotton%20fibers" title=" cotton fibers"> cotton fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=fabric%20softeners" title=" fabric softeners"> fabric softeners</a>, <a href="https://publications.waset.org/abstracts/search?q=guar%20polymers" title=" guar polymers"> guar polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant%20vesicles" title=" surfactant vesicles"> surfactant vesicles</a> </p> <a href="https://publications.waset.org/abstracts/92386/fabric-softener-deposition-on-cellulose-nanocrystals-and-cotton-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1051</span> Effect of the Experimental Conditions on the Adsorption Capacities in the Removal of Pb2+ from Aqueous Solutions by the Hydroxyapatite Nanopowders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oral%20Lacin">Oral Lacin</a>, <a href="https://publications.waset.org/abstracts/search?q=Turan%20Calban"> Turan Calban</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Sevim"> Fatih Sevim</a>, <a href="https://publications.waset.org/abstracts/search?q=Taner%20Celik"> Taner Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Pb<sup>2+</sup> uptake by the hydroxyapatite nanopowders (n-Hap) from aqueous solutions was investigated by using batch adsorption techniques. The adsorption equilibrium studies were carried out as a function of contact time, adsorbent dosage, pH, temperature, and initial Pb<sup>2+</sup> concentration. The results showed that the equilibrium time of adsorption was achieved within 60 min, and the effective pH was selected to be 5 (natural pH). The maximum adsorption capacity of Pb<sup>2+ </sup>on n-Hap was found as 565 mg.g<sup>-1</sup>. It is believed that the results obtained for adsorption may provide a background for the detailed mechanism investigations and the pilot and industrial scale applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanopowders" title="nanopowders">nanopowders</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/52026/effect-of-the-experimental-conditions-on-the-adsorption-capacities-in-the-removal-of-pb2-from-aqueous-solutions-by-the-hydroxyapatite-nanopowders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1050</span> Scanning Electronic Microscopy for Analysis of the Effects of Surfactants on De-Wrinkling and Dispersion of Graphene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kostandinos%20Katsamangas">Kostandinos Katsamangas</a>, <a href="https://publications.waset.org/abstracts/search?q=Fawad%20Inam"> Fawad Inam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graphene was dispersed using a tip sonicator and the effect of surfactants were analysed. Sodium Dodecyl Sulphate (SDS) and Polyvinyl Alcohol (PVA) were compared to observe whether or not they had any effect on any de-wrinkling, and secondly whether they aided to achieve better dispersions. There is a huge demand for wrinkle free graphene as this will greatly increase its usefulness in various engineering applications. A comprehensive literature on de-wrinkling graphene has been discussed. Low magnification Scanning Electronic Microscopy (SEM) was conducted to assess the quality of graphene de-wrinkling. The utilization of the PVA has a significant effect on de-wrinkling whereas SDS had minimal effect on the de-wrinkling of graphene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Graphene" title="Graphene">Graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=de-wrinkling" title=" de-wrinkling"> de-wrinkling</a>, <a href="https://publications.waset.org/abstracts/search?q=dispersion" title=" dispersion"> dispersion</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a>, <a href="https://publications.waset.org/abstracts/search?q=scanning%20electronic%20microscopy" title=" scanning electronic microscopy"> scanning electronic microscopy</a> </p> <a href="https://publications.waset.org/abstracts/26054/scanning-electronic-microscopy-for-analysis-of-the-effects-of-surfactants-on-de-wrinkling-and-dispersion-of-graphene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">471</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1049</span> Adsorption Behavior and Mechanism of Illite Surface under the Action of Different Surfactants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiuxia%20Sun">Xiuxia Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Yan%20Jin"> Yan Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zilong%20Liu"> Zilong Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiming%20Wei"> Shiming Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a critical mineral component of shale, illite is essential in oil exploration and development due to its surface hydration characteristics and action mechanism. This paper, starting from the perspective of the molecular structure of organic matter, uses molecular dynamics simulation technology to deeply explore the interaction mechanism between organic molecules and the illite surface. In the study, we thoroughly considered the forces such as van der Waals force, electrostatic force, and steric hindrance and constructed an illite crystal model covering C8-C18 modifiers. Subsequently, we systematically analyzed surfactants' adsorption behavior and hydration characteristics with different alkyl chain numbers, lengths, and concentrations on the illite surface. The simulation results show that surfactant molecules with shorter alkyl chains present a lateral monolayer or inclined double-layer arrangement on the illite surface, and these two arrangements may coexist under different concentration conditions. In addition, with the increase in the number of alkyl chains, the interlayer spacing of illite increases significantly. In contrast, the change in alkyl chain length has a limited effect on surface properties. It is worth noting that the change in functional group structure has a particularly significant effect on the wettability of the illite surface, and its influence even exceeds the change in the alkyl chain structure. This discovery gives us a new perspective on understanding and regulating the wetting properties. The results obtained are consistent with the XRD analysis and wettability experimental data in this paper, further confirming the reliability of the research conclusions. This study deepened our understanding of illite's hydration characteristics and mechanism. We provided new ideas and directions for the molecular design and application development of oilfield chemicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=illite" title="illite">illite</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactant" title=" surfactant"> surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=hydration" title=" hydration"> hydration</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/186331/adsorption-behavior-and-mechanism-of-illite-surface-under-the-action-of-different-surfactants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1048</span> Uranium Adsorption Using a Composite Material Based on Platelet SBA-15 Supported Tin Salt Tungstomolybdophosphoric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Aghayan">H. Aghayan</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Hashemi"> F. A. Hashemi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Yavari"> R. Yavari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Zolghadri"> S. Zolghadri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a new composite adsorbent based on a mesoporous silica SBA-15 with platelet morphology and tin salt of tungstomolybdophosphoric (TWMP) acid was synthesized and applied for uranium adsorption from aqueous solution. The sample was characterized by X-ray diffraction, Fourier transfer infra-red, and N<sub>2</sub> adsorption-desorption analysis, and then, effect of various parameters such as concentration of metal ions and contact time on adsorption behavior was examined. The experimental result showed that the adsorption process was explained by the Langmuir isotherm model very well, and predominant reaction mechanism is physisorption. Kinetic data of adsorption suggest that the adsorption process can be described by the pseudo second-order reaction rate model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=platelet%20SBA-15" title="platelet SBA-15">platelet SBA-15</a>, <a href="https://publications.waset.org/abstracts/search?q=tungstomolybdophosphoric%20acid" title=" tungstomolybdophosphoric acid"> tungstomolybdophosphoric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=uranium%20ion" title=" uranium ion"> uranium ion</a> </p> <a href="https://publications.waset.org/abstracts/73436/uranium-adsorption-using-a-composite-material-based-on-platelet-sba-15-supported-tin-salt-tungstomolybdophosphoric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73436.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1047</span> The Experimental and Modeling Adsorption Properties of Sr2+ on Raw and Purified Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Khodadadi">A. A. Khodadadi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Ravaj"> S. C. Ravaj</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20D.%20Tavildari"> B. D. Tavildari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20B.%20Abdolahi"> M. B. Abdolahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The adsorption properties of local bentonite (Semnan Iran) and purified prepared from this bentonite towards Sr2+ adsorption, were investigated by batch equilibration. The influence of equilibration time, adsorption isotherms, kinetic adsorption, solution pH, and presence of EDTA and NaCl on these properties was studied and discussed. Kinetic data were found to be well fitted with a pseudo-second order kinetic model. Sr2+ is preferably adsorbed by bentonite and purified bentonite. The D-R isotherm model has the best fit with experimental data than other adsorption isotherm models. The maximum adsorption of Sr2+ representing the highest negative charge density on the surface of the adsorbent was seen at pH 12. Presence of EDTA and NaCl decreased the amount of Sr2+ adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bentonite" title="bentonite">bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=purified%20bentonite" title=" purified bentonite"> purified bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=Sr2%2B" title=" Sr2+"> Sr2+</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20isotherm" title=" equilibrium isotherm"> equilibrium isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/5687/the-experimental-and-modeling-adsorption-properties-of-sr2-on-raw-and-purified-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5687.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1046</span> Luminescent Enhancement with Morphology Controlled Gd2O3:Eu Phosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruby%20Priya">Ruby Priya</a>, <a href="https://publications.waset.org/abstracts/search?q=Om%20Parkash%20Pandey"> Om Parkash Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Eu doped Gd₂O₃ phosphors are synthesized via co-precipitation method using ammonia as a precipitating agent. The concentration of the Eu was set as 4 mol% for all the samples. The effect of the surfactants (CTAB, PEG, and SDS) on the structural, morphological and luminescent properties has been studied in details. The as-synthesized phosphors were characterized by X-ray diffraction technique, Field emission scanning electron microscopy, Fourier transformed infrared spectroscopy and photoluminescence technique. It was observed that the surfactants have not changed the crystal structure, but influenced the morphology of as-synthesized phosphors to a great extent. The as-synthesized phosphors are expected to be promising candidates for optoelectronic devices, biosensors, MRI contrast agents and various biomedical applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-precipitation" title="co-precipitation">co-precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=Europium" title=" Europium"> Europium</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=surfactants" title=" surfactants"> surfactants</a> </p> <a href="https://publications.waset.org/abstracts/108613/luminescent-enhancement-with-morphology-controlled-gd2o3eu-phosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1045</span> GAC Adsorption Modelling of Metsulfuron Methyl from Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nathaporn%20Areerachakul">Nathaporn Areerachakul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the adsorption capacity of GAC with metsulfuron methyl was evaluated by using adsorption equilibrium and a fixed bed. Mathematical modelling was also used to simulate the GAC adsorption behavior. Adsorption equilibrium experiment of GAC was conducted using a constant concentration of metsulfuron methyl of 10 mg/L. The purpose of this study was to find the single component equilibrium concentration of herbicide. The adsorption behavior was simulated using the Langmuir, Freundlich, and Sips isotherm. The Sips isotherm fitted the experimental data reasonably well with an error of 6.6 % compared with 15.72 % and 7.07% for the Langmuir isotherm and Freudrich isotherm. Modelling using GAC adsorption theory could not replicate the experimental results in fixed bed column of 10 and 15 cm bed depths after a period more than 10 days of operation. This phenomenon is attributed to the formation of micro-organism (BAC) on the surface of GAC in addition to GAC alone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotherm" title="isotherm">isotherm</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20equilibrium" title=" adsorption equilibrium"> adsorption equilibrium</a>, <a href="https://publications.waset.org/abstracts/search?q=GAC" title=" GAC"> GAC</a>, <a href="https://publications.waset.org/abstracts/search?q=metsulfuron%20methyl" title=" metsulfuron methyl"> metsulfuron methyl</a> </p> <a href="https://publications.waset.org/abstracts/8935/gac-adsorption-modelling-of-metsulfuron-methyl-from-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1044</span> CO₂ Capture by Clay and Its Adsorption Mechanism</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jedli%20Hedi">Jedli Hedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hedfi%20Hachem"> Hedfi Hachem</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Jbara"> Abdessalem Jbara</a>, <a href="https://publications.waset.org/abstracts/search?q=Slimi%20Khalifa"> Slimi Khalifa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural and modified clay were used as an adsorbent for CO2 capture. Sample of clay was subjected to acid treatments to improve their textural properties, namely, its surface area and pore volume. The modifications were carried out by heating the clays at 120 °C and then by acid treatment with 3M sulphuric acid solution at boiling temperature for 10 h. The CO2 adsorption capacities of the acid-treated clay were performed out in a batch reactor. It was found that the clay sample treated with 3M H2SO4 exhibited the highest Brunauer–Emmett–Teller (BET) surface area (16.29–24.68 m2/g) and pore volume (0.056–0.064 cm3/g). After the acid treatment, the CO2 adsorption capacity of clay increased. The CO2 adsorption capacity of clay increased after the acid treatment. The CO2 adsorption by clay, were characterized by SEM, FTIR, ATD-ATG and BET method. For describing the phenomenon of CO2 adsorption for these materials, the adsorption isotherms were modeled using the Freundlich and Langmuir models. CO2 adsorption isotherm was found attributable to physical adsorption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20treatment" title=" acid treatment"> acid treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20mechanism" title=" adsorption mechanism"> adsorption mechanism</a> </p> <a href="https://publications.waset.org/abstracts/72338/co2-capture-by-clay-and-its-adsorption-mechanism" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1043</span> Adsorption of Iodine from Aqueous Solution on Modified Silica Gel with Cyclodextrin Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raied">Raied</a>, <a href="https://publications.waset.org/abstracts/search?q=Badr%20Al-Fulaiti"> Badr Al-Fulaiti</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20I.%20El-Shafey"> E. I. El-Shafey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cyclodextrin (CD) derivatives (αCD, βCD, ϒCD and hp-βCD) were successfully immobilized on silica gel surface via epichlorohydrin as a cross linker. The ratio of silica to CD was optimized in preliminary experiments based on best performance of iodine adsorption capacity. Selected adsorbents with ratios of silica to CD derivatives, in this study, include Si-αCD (3:2), Si-βCD (4:1), Si-ϒCD (4:1) and Si-hp-βCD (4:1). The adsorption of iodine (I2/KI) solution was investigated in terms of initial pH, contact time, iodine concentration and temperature. No significant variations was noticed for iodine adsorption at different pH values, thus, initial pH 6 was selected for further studies. Equilibrium adsorption was reached faster on Si-hp-βCD than other adsorbents with kinetic adsorption data fitting well pseudo second order model. Activation energy (Ea) was found to be in the range of 12.7 - 23.4 kJ/mol. Equilibrium adsorption data were found to fit well the Langmuir adsorption model with lower uptake as temperature rises. Iodine uptake follows the order: Si-hp-βCD (714 mg/g) >Si-αCD (625 mg/g) >Si-βCD (555.6 mg/g)> Si-ϒCD (435 mg/g). Thermodynamic study showed that iodine adsorption is exothermic and spontaneous. Adsorbents reuse exhibited excellent performance for iodine adsorption with a decrease in iodine uptake of ~ 2- 4 % in the third adsorption cycle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=iodine" title=" iodine"> iodine</a>, <a href="https://publications.waset.org/abstracts/search?q=silica" title=" silica"> silica</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclodextrin" title=" cyclodextrin"> cyclodextrin</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=epichlorohydrin" title=" epichlorohydrin"> epichlorohydrin</a> </p> <a href="https://publications.waset.org/abstracts/144749/adsorption-of-iodine-from-aqueous-solution-on-modified-silica-gel-with-cyclodextrin-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1042</span> Removal of Toxic Ni++ Ions from Wastewater by Nano-Bentonite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Ahmed">A. M. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Mona%20A.%20Darwish"> Mona A. Darwish</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Removal of Ni++ ions from aqueous solution by sorption ontoNano-bentonite was investigated. Experiments were carried out as a function amount of Nano-bentonite, pH, concentration of metal, constant time, agitation speed and temperature. The adsorption parameter of metal ions followed the Langmuir Freundlich adsorption isotherm were applied to analyze adsorption data. The adsorption process has fit pseudo-second order kinetic models. Thermodynamics parameters e.g.ΔG*, ΔS °and ΔH ° of adsorption process have also been calculated and the sorption process was found to be endothermic. The adsorption process has fit pseudo-second order kinetic models. Langmuir and Freundich adsorption isotherm models were applied to analyze adsorption data and both were found to be applicable to the adsorption process. Thermodynamic parameters, e.g., ∆G °, ∆S ° and ∆H ° of the on-going adsorption process have also been calculated and the sorption process was found to be endothermic. Finally, it can be seen that Bentonite was found to be more effective for the removal of Ni (II) same with some experimental conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20water" title="waste water">waste water</a>, <a href="https://publications.waset.org/abstracts/search?q=nickel" title=" nickel"> nickel</a>, <a href="https://publications.waset.org/abstracts/search?q=bentonite" title=" bentonite"> bentonite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a> </p> <a href="https://publications.waset.org/abstracts/41044/removal-of-toxic-ni-ions-from-wastewater-by-nano-bentonite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1041</span> Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rabia%20Hunky">Rabia Hunky</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayat%20Kalifa"> Hayat Kalifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bai"> Bai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EOR" title="EOR">EOR</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20gas" title=" oil gas"> oil gas</a>, <a href="https://publications.waset.org/abstracts/search?q=IOR" title=" IOR"> IOR</a>, <a href="https://publications.waset.org/abstracts/search?q=WC" title=" WC"> WC</a>, <a href="https://publications.waset.org/abstracts/search?q=IF" title=" IF"> IF</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas" title=" oil and gas"> oil and gas</a> </p> <a href="https://publications.waset.org/abstracts/151355/surfactant-improved-heavy-oil-recovery-in-sandstone-reservoirs-by-wettability-alteration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151355.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1040</span> Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serife%20Parlayici">Serife Parlayici</a>, <a href="https://publications.waset.org/abstracts/search?q=Erol%20Pehlivan"> Erol Pehlivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plum-stone" title="plum-stone">plum-stone</a>, <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title=" activated carbon"> activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20and%20lead" title=" copper and lead"> copper and lead</a>, <a href="https://publications.waset.org/abstracts/search?q=isotherms" title=" isotherms"> isotherms</a> </p> <a href="https://publications.waset.org/abstracts/71963/removal-of-copperii-and-leadii-from-aqueous-phase-by-plum-stone-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1039</span> Adsorption of Congo Red on MgO Nanoparticles Prepared by Molten Salt Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahbaa%20F.%20Bdewi">Shahbaa F. Bdewi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bakhtyar%20K.%20Aziz"> Bakhtyar K. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayad%20A.%20R.%20Mutar"> Ayad A. R. Mutar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-materials show different surface properties due to their high surface area and active sites. This study investigates the feasibility of using nano-MgO (NMO) for removing Congo red (CR) dye from wastewater. NMO was prepared by molten salt method. Equilibrium experiments show the equilibrium was reached after 120 minutes and maximum adsorption efficiency was obtained in acidic media up to pH 6. Isotherm studies revealed the favorability of the adsorption process. The overall adsorption process was spontaneous and endothermic in nature with a maximum adsorption capacity of 1100 mg g-1 at 40°C as estimated from Langmuir isotherm. The adsorption kinetics was found to follow pseudo second-order rate equation. Relatively high activation energy (180.7 kJ mol-1) was obtained which is consistent with chemisorption mechanism for the adsorption process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=congo%20red" title=" congo red"> congo red</a>, <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxide" title=" magnesium oxide"> magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/62294/adsorption-of-congo-red-on-mgo-nanoparticles-prepared-by-molten-salt-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1038</span> Removal of Tartrazine Dye Form Aqueous Solutions by Adsorption on the Surface of Polyaniline/Iron Oxide Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Ali%20Jebreil">Salem Ali Jebreil </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a polyaniline/Iron oxide (PANI/Fe2O3) composite was chemically prepared by oxidative polymerization of aniline in acid medium, in presence of ammonium persulphate as an oxidant and amount of Fe2O3. The composite was characterized by a scanning electron microscopy (SEM). The prepared composite has been used as adsorbent to remove Tartrazine dye form aqueous solutions. The effects of initial dye concentration and temperature on the adsorption capacity of PANI/Fe2O3 for Tartrazine dye have been studied in this paper. The Langmuir and Freundlich adsorption models have been used for the mathematical description of adsorption equilibrium data. The best fit is obtained using the Freundlich isotherm with an R2 value of 0.998. The change of Gibbs energy, enthalpy, and entropy of adsorption has been also evaluated for the adsorption of Tartrazine onto PANI/ Fe2O3. It has been proved according the results that the adsorption process is endothermic in nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=dye" title=" dye"> dye</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=tartrazine" title=" tartrazine"> tartrazine</a> </p> <a href="https://publications.waset.org/abstracts/18322/removal-of-tartrazine-dye-form-aqueous-solutions-by-adsorption-on-the-surface-of-polyanilineiron-oxide-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18322.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=35">35</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=surfactants%20adsorption&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>