CINXE.COM

Search results for: production performance

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: production performance</title> <meta name="description" content="Search results for: production performance"> <meta name="keywords" content="production performance"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="production performance" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="production performance"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19098</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: production performance</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19098</span> Design and Evaluation of Production Performance Dashboard for Achieving Oil and Gas Production Target</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Ramos%20Sampe%20Immanuel">Ivan Ramos Sampe Immanuel</a>, <a href="https://publications.waset.org/abstracts/search?q=Linung%20Kresno%20Adikusumo"> Linung Kresno Adikusumo</a>, <a href="https://publications.waset.org/abstracts/search?q=Liston%20Sitanggang"> Liston Sitanggang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Achieving the production targets of oil and gas in an upstream oil and gas company represents a complex undertaking necessitating collaborative engagement from a multidisciplinary team. In addition to conducting exploration activities and executing well intervention programs, an upstream oil and gas enterprise must assess the feasibility of attaining predetermined production goals. The monitoring of production performance serves as a critical activity to ensure organizational progress towards the established oil and gas performance targets. Subsequently, decisions within the upstream oil and gas management team are informed by the received information pertaining to the respective production performance. To augment the decision-making process, the implementation of a production performance dashboard emerges as a viable solution, providing an integrated and centralized tool. The deployment of a production performance dashboard manifests as an instrumental mechanism fostering a user-friendly interface for monitoring production performance, while concurrently preserving the intrinsic characteristics of granular data. The integration of diverse data sources into a unified production performance dashboard establishes a singular veritable source, thereby enhancing the organization's capacity to uphold a consolidated and authoritative foundation for its business requisites. Additionally, the heightened accessibility of the production performance dashboard to business users constitutes a compelling substantiation of its consequential impact on facilitating the monitoring of organizational targets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production" title="production">production</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=dashboard" title=" dashboard"> dashboard</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20analytics" title=" data analytics"> data analytics</a> </p> <a href="https://publications.waset.org/abstracts/178857/design-and-evaluation-of-production-performance-dashboard-for-achieving-oil-and-gas-production-target" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19097</span> Environmental Performance of Olive Oil Production in Greece</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Tsarouhas">P. Tsarouhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Achillas"> Ch. Achillas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Aidonis"> D. Aidonis</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Folinas"> D. Folinas</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Maslis"> V. Maslis</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Moussiopoulos"> N. Moussiopoulos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Agricultural production is a sector with high socioeconomic significance and key implications on employment and nutritional security. However, the impacts of agrifood production and consumption patterns on the environment are considerable, mainly due to the demand of large inputs of resources. This paper presents a case study of olive oil production in Greece, an important agri-product especially for countries in the Mediterranean basin. Life Cycle Analysis has been used to quantify the environmental performance of olive oil production. All key parameters that are associated with the life cycle of olive oil production are studied and environmental “hotspots” are diagnosed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=LCA" title="LCA">LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil%20production" title=" olive oil production"> olive oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20impact" title=" environmental impact"> environmental impact</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a>, <a href="https://publications.waset.org/abstracts/search?q=Greece" title=" Greece"> Greece</a> </p> <a href="https://publications.waset.org/abstracts/14486/environmental-performance-of-olive-oil-production-in-greece" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19096</span> Life Cycle Assessment of Bioethanol from Feedstocks in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thanapat%20Chaireongsirikul">Thanapat Chaireongsirikul</a>, <a href="https://publications.waset.org/abstracts/search?q=Apichit%20Svang-Ariyaskul"> Apichit Svang-Ariyaskul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioethanol%20production" title="bioethanol production">bioethanol production</a>, <a href="https://publications.waset.org/abstracts/search?q=biofuel" title=" biofuel"> biofuel</a>, <a href="https://publications.waset.org/abstracts/search?q=LCA" title=" LCA"> LCA</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20engineering" title=" chemical engineering"> chemical engineering</a> </p> <a href="https://publications.waset.org/abstracts/8268/life-cycle-assessment-of-bioethanol-from-feedstocks-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">368</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19095</span> Evaluating the Logistic Performance Capability of Regeneration Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thorben%20Kuprat">Thorben Kuprat</a>, <a href="https://publications.waset.org/abstracts/search?q=Julian%20Becker"> Julian Becker</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Mayer"> Jonas Mayer</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For years now, it has been recognized that logistic performance capability contributes enormously to a production enterprise’s competitiveness and as such is a critical control lever. In doing so, the orientation on customer wishes (e.g. delivery dates) represents a key parameter not only in the value-adding production but also in product regeneration. Since production and regeneration processes have different characteristics, production planning and control measures cannot be directly transferred to regeneration processes. As part of a special research project, the Institute of Production Systems and Logistics Hannover is focused on increasing the logistic performance capability of regeneration processes for complex capital goods. The aim is to ensure logistic targets are met by implementing a model specifically designed to align the capacities and load in regeneration processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20planning" title="capacity planning">capacity planning</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20capital%20goods" title=" complex capital goods"> complex capital goods</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20performance" title=" logistic performance"> logistic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=regeneration%20process" title=" regeneration process"> regeneration process</a> </p> <a href="https://publications.waset.org/abstracts/10591/evaluating-the-logistic-performance-capability-of-regeneration-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10591.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19094</span> Egg Production Performance of Old Laying Hen Fed Dietary Turmeric Powder</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20P.%20Rahardja">D. P. Rahardja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rahman%20Hakim"> M. Rahman Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Sri%20Lestari"> V. Sri Lestari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to elucidate the effects of turmeric powder supplementation on egg production performance of old laying hens (104 weeks of age). There were 40 hens of Hysex Brown strain used in the study. They were caged individually, and randomly divided into 4 treatment groups of diet containing 0 (control), 1, 2 and 4 % oven dried turmeric powder for 3 periods of 4 weeks; Egg production (% hen day) and feed intake of the 4 treatment groups at the commencement of the experiment were not significantly different. In addition to egg production performance (%HD and egg weight), feed and water intakes were measured daily. The results indicated that feed intakes of the hen were significantly lowered when 4% turmeric powder supplemented, while there were no significant changes in water intakes. Egg production (%HD) were significantly increased and maintained at a higher level by turmeric powder supplementation up to 4% compared with the control, while the weight of eggs were not significantly affected. The research markedly demonstrated that supplementation of turmeric powder up to 4% could improve and maintain egg production performance of the old laying hen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curcumin" title="curcumin">curcumin</a>, <a href="https://publications.waset.org/abstracts/search?q=feed%20and%20water%20intake" title=" feed and water intake"> feed and water intake</a>, <a href="https://publications.waset.org/abstracts/search?q=old%20laying%20hen" title=" old laying hen"> old laying hen</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20production" title=" egg production"> egg production</a> </p> <a href="https://publications.waset.org/abstracts/32902/egg-production-performance-of-old-laying-hen-fed-dietary-turmeric-powder" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19093</span> Livestock Production in Vietnam: Technical Efficiency and Productivity Performance Based on Regional Differences</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diep%20Thanh%20Tung">Diep Thanh Tung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to measure technical efficiency and examine productivity performance of livestock production in regions of Vietnam based on a panel data of 2008–2012. After four years, although there are improvements in efficiency of some regions, low technical efficiency, poor performance of productivity and its compositions are dominant features in almost regions. Households which much depend on livestock income in agricultural income or agricultural income in total income are more vulnerable than the others in term of livestock production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title="data envelopment analysis">data envelopment analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-frontier" title=" meta-frontier"> meta-frontier</a>, <a href="https://publications.waset.org/abstracts/search?q=Malmquist" title=" Malmquist"> Malmquist</a>, <a href="https://publications.waset.org/abstracts/search?q=technical%20efficiency" title=" technical efficiency"> technical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock%20production" title=" livestock production"> livestock production</a> </p> <a href="https://publications.waset.org/abstracts/22117/livestock-production-in-vietnam-technical-efficiency-and-productivity-performance-based-on-regional-differences" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">706</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19092</span> Audit Is a Production Performance Tool</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lattari%20Samir">Lattari Samir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of a production process is the result of proper operation where the management tools appear as the key to success through process management which consists of managing and implementing a quality policy, organizing and planning the manufacturing, and thus defining an efficient logic as the main areas covered by production management. To carry out this delicate mission, which requires reconciling often contradictory objectives, the auditor is called upon, who must be able to express an opinion on the effectiveness of the operation of the "production" function. To do this, the auditor must structure his mission in three phases, namely, the preparation phase to assimilate the particularities of this function, the implementation phase and the conclusion phase. The audit is a systematic and independent examination of all the stages of a manufacturing process intended to determine whether the pre-established arrangements for the combination of production factors are respected, whether their implementation is effective and whether they are relevant in relation to the goals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=audit" title="audit">audit</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20of%20process" title=" performance of process"> performance of process</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20examination" title=" independent examination"> independent examination</a>, <a href="https://publications.waset.org/abstracts/search?q=management%20tools" title=" management tools"> management tools</a>, <a href="https://publications.waset.org/abstracts/search?q=audit%20of%20accounts" title=" audit of accounts"> audit of accounts</a> </p> <a href="https://publications.waset.org/abstracts/168614/audit-is-a-production-performance-tool" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168614.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19091</span> Subsea Control Module (SCM) - A Vital Factor for Well Integrity and Production Performance in Deep Water Oil and Gas Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Okoro%20Ikechukwu%20Ralph">Okoro Ikechukwu Ralph</a>, <a href="https://publications.waset.org/abstracts/search?q=Fuat%20Kara"> Fuat Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The discoveries of hydrocarbon reserves has clearly drifted offshore, and in deeper waters - areas where the industry still has limited knowledge; and that were hitherto, regarded as being out of reach. This shift presents significant and increased challenges in technology requirements needed to guarantee safety of personnel, environment and equipment; ensure high reliability of installed equipment; and provide high level of confidence in security of investment and company reputation. Nowhere are these challenges more apparent than on subsea well integrity and production performance. The past two decades has witnessed enormous rise in deep and ultra-deep water offshore field developments for the recovery of hydrocarbons. Subsea installed equipment at the seabed has been the technology of choice for these developments. This paper discusses the role of Subsea Control module (SCM) as a vital factor for deep-water well integrity and production performance. A case study for Deep-water well integrity and production performance is analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=offshore%20reliability" title="offshore reliability">offshore reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20performance" title=" production performance"> production performance</a>, <a href="https://publications.waset.org/abstracts/search?q=subsea%20control%20module" title=" subsea control module"> subsea control module</a>, <a href="https://publications.waset.org/abstracts/search?q=well%20integrity" title=" well integrity"> well integrity</a> </p> <a href="https://publications.waset.org/abstracts/29562/subsea-control-module-scm-a-vital-factor-for-well-integrity-and-production-performance-in-deep-water-oil-and-gas-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">511</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19090</span> Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Rybicka">Justyna Rybicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Tiwari"> Ashutosh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shane%20Enticott"> Shane Enticott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS&rsquo; performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20performance" title=" capacity performance"> capacity performance</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/43018/testing-a-flexible-manufacturing-system-facility-production-capacity-through-discrete-event-simulation-automotive-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19089</span> A Universal Approach to Categorize Failures in Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Konja%20Kn%C3%BCppel">Konja Knüppel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerrit%20Meyer"> Gerrit Meyer</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Nyhuis"> Peter Nyhuis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing interconnectedness and complexity of production processes raise the susceptibility of production systems to failure. Therefore, the ability to respond quickly to failures is increasingly becoming a competitive factor. The research project "Sustainable failure management in manufacturing SMEs" is developing a methodology to identify failures in the production and select preventive and reactive measures in order to correct failures and to establish sustainable failure management systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20categorization" title="failure categorization">failure categorization</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20management" title=" failure management"> failure management</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20performance" title=" logistic performance"> logistic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20optimization" title=" production optimization"> production optimization</a> </p> <a href="https://publications.waset.org/abstracts/2637/a-universal-approach-to-categorize-failures-in-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2637.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19088</span> The Effects of Neurospora crassa-Fermented Palm Kernel Cake in the Diet on the Production Performance and Egg-Yolk Quality of Arab Laying-Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yose%20Rizal">Yose Rizal</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuraini"> Nuraini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirnawati"> Mirnawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Endo%20Mahata"> Maria Endo Mahata</a>, <a href="https://publications.waset.org/abstracts/search?q=Rio%20Darman"> Rio Darman</a>, <a href="https://publications.waset.org/abstracts/search?q=Dendi%20Kurniawan"> Dendi Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment had been conducted to determine the effects of several levels of Neurospora crassa- fermented palm kernel cake in the diet on the production performance and egg-yolk quality of Arab laying-hens, and to obtain the appropriate level of this fermented palm kernel cake for reducing the utilization of concentrated feed in the diet. Three hundred Arab laying-hens of 72 weeks old were employed in this experiment, and randomly assigned to four treatments (0, 7.25, 10.15, and 13.05% fermented palm kernel cake in diets) in a completely randomized design with five replicates. Measured variables were production performance (feed consumption, egg-mass production, feed conversion, egg weight and hen-day egg production), and egg-yolk quality (ether extract and cholesterol contents, and egg-yolk color index). Results of experiment indicated that feed consumption, egg-mass production, feed conversion, egg weight, hen-day egg production and egg-yolk color index were not influenced (P>0.05) by diets. However, the ether extract and cholesterol contents of egg-yolk were very significantly reduced (P<0.01) by diets. In conclusion, Neurospora crassa-fermented palm kernel cake could be included up to 13.05% to effectively replace 45% concentrated feed in Arab laying-hens diet without adverse effect on the production performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neurospora%20crassa-fermented%20palm%20kernel%20cake" title="neurospora crassa-fermented palm kernel cake">neurospora crassa-fermented palm kernel cake</a>, <a href="https://publications.waset.org/abstracts/search?q=Arab%20laying-hens" title=" Arab laying-hens"> Arab laying-hens</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20performance" title=" production performance"> production performance</a>, <a href="https://publications.waset.org/abstracts/search?q=ether%20extract" title=" ether extract"> ether extract</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=egg-yolk%20color%20index" title=" egg-yolk color index"> egg-yolk color index</a> </p> <a href="https://publications.waset.org/abstracts/16179/the-effects-of-neurospora-crassa-fermented-palm-kernel-cake-in-the-diet-on-the-production-performance-and-egg-yolk-quality-of-arab-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16179.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">740</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19087</span> Improvement of Overall Equipment Effectiveness of Load Haul Dump Machines in Underground Coal Mines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20BalaRaju">J. BalaRaju</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Govinda%20Raj"> M. Govinda Raj</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20N.%20Murthy"> C. S. N. Murthy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Every organization in the competitive world tends to improve its economy by increasing their production and productivity rates. Unequivocally, the production in Indian underground mines over the years is not satisfactory, due to a variety of reasons. There are manifold of avenues for the betterment of production, and one such approach is through enhanced utilization of mechanized equipment such as Load Haul Dumper (LHD). This is used as loading and hauling purpose in underground mines. In view of the aforementioned facts, this paper delves into identification of the key influencing factors such as LHDs maintenance effectiveness, vehicle condition, operator skill and utilization of the machines on performance of LHDs. An attempt has been made for improvement of performance of the equipment through evaluation of Overall Equipment Effectiveness (OEE). Two different approaches for evaluation of OEE have been adopted and compared under various operating conditions. The use of OEE calculation in terms of percentage availability, performance and quality and the hitherto existing situation of the underground mine production is evaluated. Necessary recommendations are suggested to mining industry on the basis of OEE. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=utilization" title="utilization">utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance" title=" maintenance"> maintenance</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20and%20quality" title=" performance and quality"> performance and quality</a> </p> <a href="https://publications.waset.org/abstracts/79759/improvement-of-overall-equipment-effectiveness-of-load-haul-dump-machines-in-underground-coal-mines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79759.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19086</span> Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rhadinia%20Tayag-Relanes">Rhadinia Tayag-Relanes</a>, <a href="https://publications.waset.org/abstracts/search?q=Felina%20C.%20Young"> Felina C. Young</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the PDCA approach and record review in the gathering of data for the calendar year 2019 from August to October data of the noodle products miki, canton, and misua. Causal-comparative research was used in this study; it attempts to establish cause-effect relationships among the variables such as descriptive statistics and correlation, both were used to compute the data gathered. The study found that miki, canton, and misua production has different cycle time sets for each production and has different production outputs in every set of its production process and a different number of wastages. The company has not yet established its allowable rejection rate/ wastage; instead, this paper used a 1% wastage limit. The researcher recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators by checking their performance statistically based on the output and the machine performance; a root cause analysis for finding the solution must be conducted; and an improvement on the recording system of the input and output of the production process of noodle product should be established to eliminate the poor recording of data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continuous%20improvement" title="continuous improvement">continuous improvement</a>, <a href="https://publications.waset.org/abstracts/search?q=process" title=" process"> process</a>, <a href="https://publications.waset.org/abstracts/search?q=operations" title=" operations"> operations</a>, <a href="https://publications.waset.org/abstracts/search?q=PDCA" title=" PDCA"> PDCA</a> </p> <a href="https://publications.waset.org/abstracts/182181/analysis-of-noodle-production-process-at-yan-hu-food-manufacturing-basis-for-production-improvement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182181.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19085</span> Machines Hacking Humans: Performances Practices in Electronic Music during the 21st Century</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zimasa%20Siyasanga%20Gysman">Zimasa Siyasanga Gysman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper assesses the history of electronic music and its performance to illustrate that machines and technology have largely influenced how humans perform electronic music. The history of electronic music mainly focuses on the composition and production of electronic music with little to no attention paid to its performance by the majority of scholars in this field. Therefore, establishing a history of performance involves investigating what compositions of electronic music called for in the production of electronic music performance. This investigation into seminal works in the history of electronic music, therefore, illustrates the aesthetics of electronic music performance and the aesthetics established in the very beginnings of electronic music performance demonstrate the aesthetics of electronic music which are still prevalent today. The key aesthetics are the repurposing of technology and the hybridisation of technology. Performers take familiar technology (technology that society has become accustomed to using in daily life), not necessarily related to music or performance and use it as an instrument in their performances, such as a rotary dial telephone. Likewise, since the beginnings of electronic music, producers have always experimented with the latest technologies available to them in their compositions and performances. The spirit of performers of electronic music, therefore, revolves around repurposing familiar technologies and using them in new ways, whilst similarly experimenting with new technologies in their performances. This process of hybridisation plays a key role in the production and performance of electronic music in the twentieth century. Through various interviews with performers of electronic music, it is shown that these aesthetics are driving performance practices in the twenty-first century. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=body" title="body">body</a>, <a href="https://publications.waset.org/abstracts/search?q=hybridisation" title=" hybridisation"> hybridisation</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=sound" title=" sound"> sound</a> </p> <a href="https://publications.waset.org/abstracts/102904/machines-hacking-humans-performances-practices-in-electronic-music-during-the-21st-century" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102904.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19084</span> Performance, Scalability and Reliability Engineering: Shift Left and Shift Right Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyothirmayee%20Pola">Jyothirmayee Pola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ideally, a test-driven development (TDD) or agile or any other process should be able to define and implement performance, scalability, and reliability (PSR) of the product with a higher quality of service (QOS) and should have the ability to fix any PSR issues with lesser cost before it hits the production. Most PSR test strategies for new product introduction (NPI) include assumptions about production load requirements but never accurate. NPE (New product Enhancement) include assumptions for new features that are being developed whilst workload distribution for older features can be derived by analyzing production transactions. This paper talks about how to shift left PSR towards design phase of release management process to get better QOS w.r.t PSR for any product under development. It also explains the ROI for future customer onboarding both for Service Oriented Architectures (SOA) and Microservices architectures and how to define PSR requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=component%20PSR" title="component PSR">component PSR</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20engineering" title=" performance engineering"> performance engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20tuning" title=" performance tuning"> performance tuning</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=return%20on%20investment" title=" return on investment"> return on investment</a>, <a href="https://publications.waset.org/abstracts/search?q=scalability" title=" scalability"> scalability</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20PSR" title=" system PSR"> system PSR</a> </p> <a href="https://publications.waset.org/abstracts/150074/performance-scalability-and-reliability-engineering-shift-left-and-shift-right-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150074.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19083</span> Field Production Data Collection, Analysis and Reporting Using Automated System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20AlAmeeri">Amir AlAmeeri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Ibrahim"> Mohamed Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Various data points are constantly being measured in the production system, and due to the nature of the wells, these data points, such as pressure, temperature, water cut, etc.., fluctuations are constant, which requires high frequency monitoring and collection. It is a very difficult task to analyze these parameters manually using spreadsheets and email. An automated system greatly enhances efficiency, reduce errors, the need for constant emails which take up disk space, and frees up time for the operator to perform other critical tasks. Various production data is being recorded in an oil field, and this huge volume of data can be seen as irrelevant to some, especially when viewed on its own with no context. In order to fully utilize all this information, it needs to be properly collected, verified and stored in one common place and analyzed for surveillance and monitoring purposes. This paper describes how data is recorded by different parties and departments in the field, and verified numerous times as it is being loaded into a repository. Once it is loaded, a final check is done before being entered into a production monitoring system. Once all this is collected, various calculations are performed to report allocated production. Calculated production data is used to report field production automatically. It is also used to monitor well and surface facility performance. Engineers can use this for their studies and analyses to ensure field is performing as it should be, predict and forecast production, and monitor any changes in wells that could affect field performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20production" title=" oil production"> oil production</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheleken" title=" Cheleken"> Cheleken</a>, <a href="https://publications.waset.org/abstracts/search?q=exploration%20and%20production%20%28E%26P%29" title=" exploration and production (E&amp;P)"> exploration and production (E&amp;P)</a>, <a href="https://publications.waset.org/abstracts/search?q=Caspian%20Sea" title=" Caspian Sea"> Caspian Sea</a>, <a href="https://publications.waset.org/abstracts/search?q=allocation" title=" allocation"> allocation</a>, <a href="https://publications.waset.org/abstracts/search?q=forecast" title=" forecast"> forecast</a> </p> <a href="https://publications.waset.org/abstracts/78956/field-production-data-collection-analysis-and-reporting-using-automated-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19082</span> A Method to Identify Areas for Hydraulic Fracturing by Using Production Logging Tools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Shirbazo">Armin Shirbazo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Lamei%20Ramandi"> Hamed Lamei Ramandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Vahab"> Mohammad Vahab</a>, <a href="https://publications.waset.org/abstracts/search?q=Jalal%20Fahimpour"> Jalal Fahimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing, especially multi-stage hydraulic fracturing, is a practical solution for wells with uneconomic production. The wide range of applications is appraised appropriately to have a stable well-production. Production logging tool, which is known as PLT in the oil and gas industry, is counted as one of the most reliable methods to evaluate the efficiency of fractures jobs. This tool has a number of benefits and can be used to prevent subsequent production failure. It also distinguishes different problems that occurred during well-production. In this study, the effectiveness of hydraulic fracturing jobs is examined by using the PLT in various cases and situations. The performance of hydraulically fractured wells is investigated. Then, the PLT is employed to gives more information about the properties of different layers. The PLT is also used to selecting an optimum fracturing design. The results show that one fracture and three-stage fractures behave differently. In general, the one-stage fracture should be created in high-quality areas of the reservoir to have better performance, and conversely, in three-stage fractures, low-quality areas are a better candidate for fracturing <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-stage%20fracturing" title="multi-stage fracturing">multi-stage fracturing</a>, <a href="https://publications.waset.org/abstracts/search?q=horizontal%20well" title=" horizontal well"> horizontal well</a>, <a href="https://publications.waset.org/abstracts/search?q=PLT" title=" PLT"> PLT</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture%20length" title=" fracture length"> fracture length</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20stages" title=" number of stages"> number of stages</a> </p> <a href="https://publications.waset.org/abstracts/141225/a-method-to-identify-areas-for-hydraulic-fracturing-by-using-production-logging-tools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">194</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19081</span> Modeling and Benchmarking the Thermal Energy Performance of Palm Oil Production Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mathias%20B.%20Michael">Mathias B. Michael</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien-Chien%20Jen"> Tien-Chien Jen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal energy consumption in palm oil production plant comprises mainly of steam, hot water and hot air. In most efficient plants, hot water and air are generated from the steam supply system. Research has shown that thermal energy utilize in palm oil production plants is about 70 percent of the total energy consumption of the plant. In order to manage the plants’ energy efficiently, the energy systems are modelled and optimized. This paper aimed to present the model of steam supply systems of a typical palm oil production plant in Ghana. The models include exergy and energy models of steam boiler, steam turbine and the palm oil mill. The paper further simulates the virtual plant model to obtain the thermal energy performance of the plant under study. The simulation results show that, under normal operating condition, the boiler energy performance is considerably below the expected level as a result of several factors including intermittent biomass fuel supply, significant moisture content of the biomass fuel and significant heat losses. The total thermal energy performance of the virtual plant is set as a baseline. The study finally recommends number of energy efficiency measures to improve the plant’s energy performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20biomass" title="palm biomass">palm biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20supply" title=" steam supply"> steam supply</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20and%20energy%20models" title=" exergy and energy models"> exergy and energy models</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20performance%20benchmark" title=" energy performance benchmark"> energy performance benchmark</a> </p> <a href="https://publications.waset.org/abstracts/78554/modeling-and-benchmarking-the-thermal-energy-performance-of-palm-oil-production-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78554.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19080</span> Performance Analysis of Photovoltaic Solar Energy Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakariyya%20Hassan%20Abdullahi">Zakariyya Hassan Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Suleiman%20Abdullahi"> Zainab Suleiman Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuhu%20Alhaji%20Muhammad"> Nuhu Alhaji Muhammad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a thorough review of photovoltaic and photovoltaic thermal systems is done on the basis of its performance based on electrical as well as thermal output. Photovoltaic systems are classified according to their use, i.e., electricity production, and thermal, Photovoltaic systems behave in an extraordinary and useful way, they react to light by transforming part of it into electricity useful way and unique, since photovoltaic and thermal applications along with the electricity production. The application of various photovoltaic systems is also discussed in detail. The performance analysis including all aspects, e.g., electrical, thermal, energy, and energy efficiency are also discussed. A case study for PV and PV/T system based on energetic analysis is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title="photovoltaic">photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable" title=" renewable"> renewable</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/47848/performance-analysis-of-photovoltaic-solar-energy-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">515</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19079</span> Experimental Study of a Solar Still with Four Glass Cover</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Haddad">Zakaria Haddad</a>, <a href="https://publications.waset.org/abstracts/search?q=Azzedine%20Nahoui"> Azzedine Nahoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salmi"> Mohamed Salmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Djagham"> Ali Djagham</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar distillation is an effective and practical method for the production of drinking water in arid and semi-arid areas; however, this production is very limited. The aim of this work is to increase the latter by means of single slope solar still with four glass cover without augmenting volume and surface of a conventional solar still, using local materials and simple design. The equipment was tested under the climatic condition of Msila city (35°70′ N, 4°54′ E), Algeria. Performance of the use of four glass cover was studied, and exhaustive data were collected, analyzed, and presented. To show the effectiveness of the system, its performance was compared with that of the conventional solar still. The experimental study shows that the production of the proposed system achieves 5.3 l/m²/day and 5.8 l/m²/day respectively for the months of April and May, with an increase of 10% and 17% compared to the conventional solar still. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drinking%20water" title="drinking water">drinking water</a>, <a href="https://publications.waset.org/abstracts/search?q=four%20glass%20cover" title=" four glass cover"> four glass cover</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20distillation" title=" solar distillation"> solar distillation</a> </p> <a href="https://publications.waset.org/abstracts/117910/experimental-study-of-a-solar-still-with-four-glass-cover" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/117910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19078</span> Electricity Production from Vermicompost Liquid Using Microbial Fuel Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratthana%20Ammaraphitak">Pratthana Ammaraphitak</a>, <a href="https://publications.waset.org/abstracts/search?q=Piyachon%20Ketsuwan"> Piyachon Ketsuwan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rattapoom%20Prommana"> Rattapoom Prommana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electricity production from vermicompost liquid was investigated in microbial fuel cells (MFCs). The aim of this study was to determine the performance of vermicompost liquid as a biocatalyst for electricity production by MFCs. Chemical and physical parameters of vermicompost liquid as total nitrogen, ammonia-nitrogen, nitrate, nitrite, total phosphorus, potassium, organic matter, C:N ratio, pH, and electrical conductivity in MFCs were studied. The performance of MFCs was operated in open circuit mode for 7 days. The maximum open circuit voltage (OCV) was 0.45 V. The maximum power density of 5.29 ± 0.75 W/m² corresponding to a current density of 0.024 2 ± 0.0017 A/m² was achieved by the 1000 Ω on day 2. Vermicompost liquid has efficiency to generate electricity from organic waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vermicompost%20liquid" title="vermicompost liquid">vermicompost liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20fuel%20cell" title=" microbial fuel cell"> microbial fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrient" title=" nutrient"> nutrient</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20production" title=" electricity production"> electricity production</a> </p> <a href="https://publications.waset.org/abstracts/82720/electricity-production-from-vermicompost-liquid-using-microbial-fuel-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19077</span> Growth and Laying Performance of Commercial Hens Fed with Varying Levels of Trichanthera gigantea (Nees.) Leaf Meal</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carmel%20Khrisna%20Wong%20Moreno">Carmel Khrisna Wong Moreno</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinah%20M.%20Espina"> Dinah M. Espina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing price of feed ingredients has prompted farmers to seek feasible feed alternatives like the utilization of locally-grown protein-rich feedstuff which is cheaper but gives a positive result in poultry production. Trichanthera gigantea, a fodder tree which is an excellent alternative as feed ingredient in the Philippines has now gained popularity as feed supplement. This study was conducted to determine the growth and laying performance of commercial hens fed with varying levels of Trichanthera gigantea leaf meal. The incorporation of Trichanthera gigantea leaf meal at 5%, 10%, and 15% into the diet of commercial hens did not affect the growth and laying performance. Results of the study revealed that the weight gain of the birds fed with Trichanthera gigantea supplemented diets was not significantly different with the control (100% commercial layer mash). The voluntary feed intake, feed conversion ratio, weekly average egg weight and egg production of the commercial hens fed with T. gigantea leaf meal supplemented diets were not significantly different from the control. Results of the study showed that the supplementation of Trichanthera gigantea leaf meal of up to 15% into the diets of commercial hens is highly acceptable since it does not affect the growth and laying performance of the birds. In addition, it would mean a 15% savings in production cost from commercial feeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20production" title="egg production">egg production</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20performance" title=" laying performance"> laying performance</a>, <a href="https://publications.waset.org/abstracts/search?q=trichanthera%20gigantea%20%28nees%29" title=" trichanthera gigantea (nees)"> trichanthera gigantea (nees)</a> </p> <a href="https://publications.waset.org/abstracts/37524/growth-and-laying-performance-of-commercial-hens-fed-with-varying-levels-of-trichanthera-gigantea-nees-leaf-meal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37524.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19076</span> Performing a Chamber Theatre Adaptation of Nick Joaquin&#039;s &#039;the Summer Solstice&#039;</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Allen%20B.%20Baylosis">Allen B. Baylosis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chamber Theatre has been one of the least articulated staging devices in the field of theatre and performance studies. This creative exploratory-descriptive study responds to this gap by employing the staging technique in a Chamber Theatre production based on Nick Joaquin’s The Summer Solstice. Specifically, this study opts to understand three processes involved in the Chamber Theatre creative thesis production of The Summer Solstice as performance: performance of the theatre-maker, performance of the spect-actors, and performance of the spectators. For this purpose, the theatre-maker describes the creative process of transforming The Summer Solstice text to a Chamber Theatre production—from text to staging. The theatre-maker also analyzes the performers’ experiences and the spectators’ responses as they participate in a Chamber Theatre performance. In doing so, the theatre-maker collects qualitative data from seventeen (17) performers and qualitative feedback from twenty (20) spectators. For the mode of data analysis, this study employed Ranciere’s concept on the Emancipated Spectator (2008) and Schechner’s Performance Theory (1988). The study’s findings examine how the theatre-maker, the performers, and the spectators become distant viewers of their respective restored behavior performances. Through these viewed performances, this study implies that it is possible to ascertain a reasonable definition of purpose for Chamber Theatre. Hence, despite the existence of other modern staging devices in the field of theatre and performance studies, this study concludes that Chamber Theatre remains to be a relevant staging technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation%20of%20text" title="adaptation of text">adaptation of text</a>, <a href="https://publications.waset.org/abstracts/search?q=chamber%20theatre" title=" chamber theatre"> chamber theatre</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20theater" title=" experimental theater"> experimental theater</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20interpretation" title=" oral interpretation"> oral interpretation</a> </p> <a href="https://publications.waset.org/abstracts/130931/performing-a-chamber-theatre-adaptation-of-nick-joaquins-the-summer-solstice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130931.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19075</span> Mine Production Index (MPi): New Method to Evaluate Effectiveness of Mining Machinery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amol%20Lanke">Amol Lanke</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Hoseinie"> Hadi Hoseinie</a>, <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Ghodrati"> Behzad Ghodrati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> OEE has been used in many industries as measure of performance. However due to limitations of original OEE, it has been modified by various researchers. OEE for mining application is special version of classic equation, carries these limitation over. In this paper it has been aimed to modify the OEE for mining application by introducing the weights to the elements of it and termed as Mine Production index (MPi). As a special application of new index MPi shovel has been developed by team of experts and researchers for evaluating the shovel effectiveness. Based on analysis, utilization followed by performance and availability were ranked in this order. To check the applicability of this index, a case study was done on four electrical and one hydraulic shovel in a Swedish mine. The results shows that MPishovelcan properly evaluate production effectiveness of shovels and determine effectiveness values in optimistic view compared to OEE. MPi with calculation not only give the effectiveness but also can predict which elements should be focused for improving the productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mining" title="mining">mining</a>, <a href="https://publications.waset.org/abstracts/search?q=overall%20equipment%20efficiency%20%28OEE%29" title=" overall equipment efficiency (OEE)"> overall equipment efficiency (OEE)</a>, <a href="https://publications.waset.org/abstracts/search?q=mine%20production%20index" title=" mine production index"> mine production index</a>, <a href="https://publications.waset.org/abstracts/search?q=shovels" title=" shovels"> shovels</a> </p> <a href="https://publications.waset.org/abstracts/13163/mine-production-index-mpi-new-method-to-evaluate-effectiveness-of-mining-machinery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19074</span> Performance Evaluation of Production Schedules Based on Process Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20Hee%20Han">Kwan Hee Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> External environment of enterprise is rapidly changing majorly by global competition, cost reduction pressures, and new technology. In these situations, production scheduling function plays a critical role to meet customer requirements and to attain the goal of operational efficiency. It deals with short-term decision making in the production process of the whole supply chain. The major task of production scheduling is to seek a balance between customer orders and limited resources. In manufacturing companies, this task is so difficult because it should efficiently utilize resource capacity under the careful consideration of many interacting constraints. At present, many computerized software solutions have been utilized in many enterprises to generate a realistic production schedule to overcome the complexity of schedule generation. However, most production scheduling systems do not provide sufficient information about the validity of the generated schedule except limited statistics. Process mining only recently emerged as a sub-discipline of both data mining and business process management. Process mining techniques enable the useful analysis of a wide variety of processes such as process discovery, conformance checking, and bottleneck analysis. In this study, the performance of generated production schedule is evaluated by mining event log data of production scheduling software system by using the process mining techniques since every software system generates event logs for the further use such as security investigation, auditing and error bugging. An application of process mining approach is proposed for the validation of the goodness of production schedule generated by scheduling software systems in this study. By using process mining techniques, major evaluation criteria such as utilization of workstation, existence of bottleneck workstations, critical process route patterns, and work load balance of each machine over time are measured, and finally, the goodness of production schedule is evaluated. By using the proposed process mining approach for evaluating the performance of generated production schedule, the quality of production schedule of manufacturing enterprises can be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title="data mining">data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=event%20log" title=" event log"> event log</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20mining" title=" process mining"> process mining</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20scheduling" title=" production scheduling"> production scheduling</a> </p> <a href="https://publications.waset.org/abstracts/74583/performance-evaluation-of-production-schedules-based-on-process-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74583.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19073</span> Performance Comparison and Visualization of COMSOL Multiphysics, Matlab, and Fortran for Predicting the Reservoir Pressure on Oil Production in a Multiple Leases Reservoir with Boundary Element Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Alias">N. Alias</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20W.%20Muhammad"> W. Z. W. Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20N.%20M.%20Ibrahim"> M. N. M. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mohamed"> M. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20F.%20S.%20Saipol"> H. F. S. Saipol</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20N.%20Z.%20Ariffin"> U. N. Z. Ariffin</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20A.%20Zakaria"> N. A. Zakaria</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Z.%20Suardi"> M. S. Z. Suardi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the performance comparison of some computation software for solving the boundary element method (BEM). BEM formulation is the numerical technique and high potential for solving the advance mathematical modeling to predict the production of oil well in arbitrarily shaped based on multiple leases reservoir. The limitation of data validation for ensuring that a program meets the accuracy of the mathematical modeling is considered as the research motivation of this paper. Thus, based on this limitation, there are three steps involved to validate the accuracy of the oil production simulation process. In the first step, identify the mathematical modeling based on partial differential equation (PDE) with Poisson-elliptic type to perform the BEM discretization. In the second step, implement the simulation of the 2D BEM discretization using COMSOL Multiphysic and MATLAB programming languages. In the last step, analyze the numerical performance indicators for both programming languages by using the validation of Fortran programming. The performance comparisons of numerical analysis are investigated in terms of percentage error, comparison graph and 2D visualization of pressure on oil production of multiple leases reservoir. According to the performance comparison, the structured programming in Fortran programming is the alternative software for implementing the accurate numerical simulation of BEM. As a conclusion, high-level language for numerical computation and numerical performance evaluation are satisfied to prove that Fortran is well suited for capturing the visualization of the production of oil well in arbitrarily shaped. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20comparison" title="performance comparison">performance comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=2D%20visualization" title=" 2D visualization"> 2D visualization</a>, <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20multiphysic" title=" COMSOL multiphysic"> COMSOL multiphysic</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a>, <a href="https://publications.waset.org/abstracts/search?q=Fortran" title=" Fortran"> Fortran</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling%20and%20simulation" title=" modelling and simulation"> modelling and simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20element%20method" title=" boundary element method"> boundary element method</a>, <a href="https://publications.waset.org/abstracts/search?q=reservoir%20pressure" title=" reservoir pressure"> reservoir pressure</a> </p> <a href="https://publications.waset.org/abstracts/34966/performance-comparison-and-visualization-of-comsol-multiphysics-matlab-and-fortran-for-predicting-the-reservoir-pressure-on-oil-production-in-a-multiple-leases-reservoir-with-boundary-element-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">491</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19072</span> Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fama%20Jallow">Fama Jallow</a>, <a href="https://publications.waset.org/abstracts/search?q=Melody%20Neaves"> Melody Neaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Professor%20Mcgregor"> Professor Mcgregor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/172491/advancing-hydrogen-production-through-additive-manufacturing-optimising-structures-of-high-performance-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19071</span> A Polynomial Approach for a Graphical-based Integrated Production and Transport Scheduling with Capacity Restrictions </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndeley">M. Ndeley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of global manufacturing supply chains depends on the interaction of production and transport processes. Currently, the scheduling of these processes is done separately without considering mutual requirements, which leads to no optimal solutions. An integrated scheduling of both processes enables the improvement of supply chain performance. The integrated production and transport scheduling problem (PTSP) is NP-hard, so that heuristic methods are necessary to efficiently solve large problem instances as in the case of global manufacturing supply chains. This paper presents a heuristic scheduling approach which handles the integration of flexible production processes with intermodal transport, incorporating flexible land transport. The method is based on a graph that allows a reformulation of the PTSP as a shortest path problem for each job, which can be solved in polynomial time. The proposed method is applied to a supply chain scenario with a manufacturing facility in South Africa and shipments of finished product to customers within the Country. The obtained results show that the approach is suitable for the scheduling of large-scale problems and can be flexibly adapted to different scenarios. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=production%20and%20transport%20scheduling%20problem" title="production and transport scheduling problem">production and transport scheduling problem</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20based%20scheduling" title=" graph based scheduling"> graph based scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=integrated%20scheduling" title=" integrated scheduling"> integrated scheduling</a> </p> <a href="https://publications.waset.org/abstracts/30253/a-polynomial-approach-for-a-graphical-based-integrated-production-and-transport-scheduling-with-capacity-restrictions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19070</span> A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Shams%20Bidhendi">Saba Shams Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Goh"> Steven Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Wandel"> Andrew Wandel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author&rsquo;s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers&rsquo; resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20strategies" title=" lean strategies"> lean strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes" title=" manufacturing wastes"> manufacturing wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20performance" title=" manufacturing performance"> manufacturing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a> </p> <a href="https://publications.waset.org/abstracts/97420/a-multi-objective-methodology-for-selecting-lean-initiatives-in-modular-construction-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19069</span> Experimental Validation of a Mathematical Model for Sizing End-of-Production-Line Test Benches for Electric Motors of Electric Vehicle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emiliano%20Lustrissimi">Emiliano Lustrissimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Bonifacio%20Bianco"> Bonifacio Bianco</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastiano%20Caravaggi"> Sebastiano Caravaggi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Rosato"> Antonio Rosato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical framework has been designed to enhance the configuration of an end-of-production-line (EOL) test bench. This system can be used to assess the performance of electric motors or axles intended for electric vehicles. The model has been developed to predict the behaviour of EOL test benches and electric motors/axles under various boundary conditions, eliminating the need for extensive physical testing and reducing the corresponding power consumption. The suggested model is versatile, capable of being utilized across various types of electric motors or axles, and adaptable to accommodate varying power ratings of electric motors or axles. The maximum performance to be guaranteed by the EMs according to the car maker's specifications are taken as inputs in the model. Then, the required performance of each main EOL test bench component is calculated, and the corresponding systems available on the market are selected based on manufacturers’ catalogues. In this study, an EOL test bench has been designed according to the proposed model outputs for testing a low-power (about 22 kW) electric axle. The performance of the designed EOL test bench has been measured and used to validate the proposed model and assess both the consistency of the constraints as well as the accuracy of predictions in terms of electric demands. The comparison between experimental and predicted data exhibited a reasonable agreement, allowing to demonstrate that, despite some discrepancies, the model gives an accurate representation of the EOL test benches' performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electric%20motors" title="electric motors">electric motors</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20vehicles" title=" electric vehicles"> electric vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=end-of-production-line%20test%20bench" title=" end-of-production-line test bench"> end-of-production-line test bench</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20tests" title=" field tests"> field tests</a> </p> <a href="https://publications.waset.org/abstracts/185756/experimental-validation-of-a-mathematical-model-for-sizing-end-of-production-line-test-benches-for-electric-motors-of-electric-vehicle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=636">636</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=637">637</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=production%20performance&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10