CINXE.COM

Search results for: non-liner interpolation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: non-liner interpolation</title> <meta name="description" content="Search results for: non-liner interpolation"> <meta name="keywords" content="non-liner interpolation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="non-liner interpolation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="non-liner interpolation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 174</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: non-liner interpolation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> The Implementation of Secton Method for Finding the Root of Interpolation Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Rokhman">Nur Rokhman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical function gives relationship between the variables composing the function. Interpolation can be viewed as a process of finding mathematical function which goes through some specified points. There are many interpolation methods, namely: Lagrange method, Newton method, Spline method etc. For some specific condition, such as, big amount of interpolation points, the interpolation function can not be written explicitly. This such function consist of computational steps. The solution of equations involving the interpolation function is a problem of solution of non linear equation. Newton method will not work on the interpolation function, for the derivative of the interpolation function cannot be written explicitly. This paper shows the use of Secton method to determine the numerical solution of the function involving the interpolation function. The experiment shows the fact that Secton method works better than Newton method in finding the root of Lagrange interpolation function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Secton%20method" title="Secton method">Secton method</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linear%20function" title=" non linear function"> non linear function</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/1837/the-implementation-of-secton-method-for-finding-the-root-of-interpolation-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Overview of Adaptive Spline interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rongli%20Gai">Rongli Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyuan%20Chang"> Zhiyuan Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At this stage, in view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random Period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20algorithm" title="adaptive algorithm">adaptive algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=CNC%20machining" title=" CNC machining"> CNC machining</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation%20constraints" title=" interpolation constraints"> interpolation constraints</a>, <a href="https://publications.waset.org/abstracts/search?q=spline%20curve%20interpolation" title=" spline curve interpolation"> spline curve interpolation</a> </p> <a href="https://publications.waset.org/abstracts/147139/overview-of-adaptive-spline-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> On Hankel Matrices Approach to Interpolation Problem in Infinite and Finite Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ivan%20Baravy">Ivan Baravy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Interpolation problem, as it was initially posed in terms of polynomials, is well researched. However, further mathematical developments extended it significantly. Trigonometric interpolation is widely used in Fourier analysis, while its generalized representation as exponential interpolation is applicable to such problem of mathematical physics as modelling of Ziegler-Biersack-Littmark repulsive interatomic potentials. Formulated for finite fields, this problem arises in decoding Reed--Solomon codes. This paper shows the relation between different interpretations of the problem through the class of matrices of special structure - Hankel matrices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Berlekamp-Massey%20algorithm" title="Berlekamp-Massey algorithm">Berlekamp-Massey algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20interpolation" title=" exponential interpolation"> exponential interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20fields" title=" finite fields"> finite fields</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20matrices" title=" Hankel matrices"> Hankel matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=Hankel%20polynomials" title=" Hankel polynomials"> Hankel polynomials</a> </p> <a href="https://publications.waset.org/abstracts/21861/on-hankel-matrices-approach-to-interpolation-problem-in-infinite-and-finite-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pengwei%20Qiao">Pengwei Qiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Sucai%20Yang"> Sucai Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenxia%20Wei"> Wenxia Wei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=accuracy" title="accuracy">accuracy</a>, <a href="https://publications.waset.org/abstracts/search?q=applicability" title=" applicability"> applicability</a>, <a href="https://publications.waset.org/abstracts/search?q=partition%20interpolation" title=" partition interpolation"> partition interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=site" title=" site"> site</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20pollution" title=" soil pollution"> soil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/110125/evaluation-of-spatial-distribution-prediction-for-site-scale-soil-contaminants-based-on-partition-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijanani%20Anurag%20Prasad">Srijanani Anurag Prasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprises a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractal" title="fractal">fractal</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=iterated%20function%20system" title=" iterated function system"> iterated function system</a>, <a href="https://publications.waset.org/abstracts/search?q=coalescence" title=" coalescence"> coalescence</a>, <a href="https://publications.waset.org/abstracts/search?q=node%20insertion" title=" node insertion"> node insertion</a>, <a href="https://publications.waset.org/abstracts/search?q=knot%20insertion" title=" knot insertion"> knot insertion</a> </p> <a href="https://publications.waset.org/abstracts/148593/node-insertion-in-coalescence-hidden-variable-fractal-interpolation-surface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">100</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Pattern Recognition Search: An Advancement Over Interpolation Search</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahpar%20Yilmaz">Shahpar Yilmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasir%20Nadeem"> Yasir Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20A.%20Mehdi"> Syed A. Mehdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Searching for a record in a dataset is always a frequent task for any data structure-related application. Hence, a fast and efficient algorithm for the approach has its importance in yielding the quickest results and enhancing the overall productivity of the company. Interpolation search is one such technique used to search through a sorted set of elements. This paper proposes a new algorithm, an advancement over interpolation search for the application of search over a sorted array. Pattern Recognition Search or PR Search (PRS), like interpolation search, is a pattern-based divide and conquer algorithm whose objective is to reduce the sample size in order to quicken the process and it does so by treating the array as a perfect arithmetic progression series and thereby deducing the key element’s position. We look to highlight some of the key drawbacks of interpolation search, which are accounted for in the Pattern Recognition Search. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=array" title="array">array</a>, <a href="https://publications.waset.org/abstracts/search?q=complexity" title=" complexity"> complexity</a>, <a href="https://publications.waset.org/abstracts/search?q=index" title=" index"> index</a>, <a href="https://publications.waset.org/abstracts/search?q=sorting" title=" sorting"> sorting</a>, <a href="https://publications.waset.org/abstracts/search?q=space" title=" space"> space</a>, <a href="https://publications.waset.org/abstracts/search?q=time" title=" time"> time</a> </p> <a href="https://publications.waset.org/abstracts/142819/pattern-recognition-search-an-advancement-over-interpolation-search" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Sub-Pixel Mapping Based on New Mixed Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeyu%20Zhou">Zeyu Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Bi"> Xiaojun Bi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing%20images" title="remote sensing images">remote sensing images</a>, <a href="https://publications.waset.org/abstracts/search?q=sub-pixel%20mapping" title=" sub-pixel mapping"> sub-pixel mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=bilinear%20interpolation" title=" bilinear interpolation"> bilinear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=edge-directed%20interpolation" title=" edge-directed interpolation"> edge-directed interpolation</a> </p> <a href="https://publications.waset.org/abstracts/77883/sub-pixel-mapping-based-on-new-mixed-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">229</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Blind Data Hiding Technique Using Interpolation of Subsampled Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Singara%20Singh%20Kasana">Singara Singh Kasana</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Garg"> Pankaj Garg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a blind data hiding technique based on interpolation of sub sampled versions of a cover image is proposed. Sub sampled image is taken as a reference image and an interpolated image is generated from this reference image. Then difference between original cover image and interpolated image is used to embed secret data. Comparisons with the existing interpolation based techniques show that proposed technique provides higher embedding capacity and better visual quality marked images. Moreover, the performance of the proposed technique is more stable for different images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation" title="interpolation">interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20subsampling" title=" image subsampling"> image subsampling</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=SIM" title=" SIM"> SIM</a> </p> <a href="https://publications.waset.org/abstracts/18926/blind-data-hiding-technique-using-interpolation-of-subsampled-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18926.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">578</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Increasing the Apparent Time Resolution of Tc-99m Diethylenetriamine Pentaacetic Acid Galactosyl Human Serum Albumin Dynamic SPECT by Use of an 180-Degree Interpolation Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasuyuki%20Takahashi">Yasuyuki Takahashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Maya%20Yamashita"> Maya Yamashita</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoko%20Saito"> Kyoko Saito</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, dynamic SPECT data acquisition needs a few minutes for one rotation. Thus, the time-activity curve (TAC) derived from the dynamic SPECT is relatively coarse. In order to effectively shorten the interval, between data points, we adopted a 180-degree interpolation method. This method is already used for reconstruction of the X-ray CT data. In this study, we applied this 180-degree interpolation method to SPECT and investigated its effectiveness.To briefly describe the 180-degree interpolation method: the 180-degree data in the second half of one rotation are combined with the 180-degree data in the first half of the next rotation to generate a 360-degree data set appropriate for the time halfway between the first and second rotations. In both a phantom and a patient study, the data points from the interpolated images fell in good agreement with the data points tracking the accumulation of 99mTc activity over time for appropriate region of interest. We conclude that data derived from interpolated images improves the apparent time resolution of dynamic SPECT. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20SPECT" title="dynamic SPECT">dynamic SPECT</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20resolution" title=" time resolution"> time resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=180-degree%20interpolation%20method" title=" 180-degree interpolation method"> 180-degree interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=99mTc-GSA." title=" 99mTc-GSA."> 99mTc-GSA.</a> </p> <a href="https://publications.waset.org/abstracts/12762/increasing-the-apparent-time-resolution-of-tc-99m-diethylenetriamine-pentaacetic-acid-galactosyl-human-serum-albumin-dynamic-spect-by-use-of-an-180-degree-interpolation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debjani%20Chakraborty">Debjani Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhijit%20Chatterjee"> Abhijit Chatterjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Aishwaryaprajna"> Aishwaryaprajna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20programming%20problem" title="geometric programming problem">geometric programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multivariate%20optimisation%20technique" title=" multivariate optimisation technique"> multivariate optimisation technique</a>, <a href="https://publications.waset.org/abstracts/search?q=posynomial" title=" posynomial"> posynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a> </p> <a href="https://publications.waset.org/abstracts/70385/spatial-interpolation-technique-for-the-optimisation-of-geometric-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> A Gradient Orientation Based Efficient Linear Interpolation Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Khan">S. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khan"> A. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20R.%20Soomrani"> Abdul R. Soomrani</a>, <a href="https://publications.waset.org/abstracts/search?q=Raja%20F.%20Zafar"> Raja F. Zafar</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Waqas"> A. Waqas</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Akbar"> G. Akbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a low-complexity image interpolation method. Image interpolation is used to convert a low dimension video/image to high dimension video/image. The objective of a good interpolation method is to upscale an image in such a way that it provides better edge preservation at the cost of very low complexity so that real-time processing of video frames can be made possible. However, low complexity methods tend to provide real-time interpolation at the cost of blurring, jagging and other artifacts due to errors in slope calculation. Non-linear methods, on the other hand, provide better edge preservation, but at the cost of high complexity and hence they can be considered very far from having real-time interpolation. The proposed method is a linear method that uses gradient orientation for slope calculation, unlike conventional linear methods that uses the contrast of nearby pixels. Prewitt edge detection is applied to separate uniform regions and edges. Simple line averaging is applied to unknown uniform regions, whereas unknown edge pixels are interpolated after calculation of slopes using gradient orientations of neighboring known edge pixels. As a post-processing step, bilateral filter is applied to interpolated edge regions in order to enhance the interpolated edges. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=edge%20detection" title="edge detection">edge detection</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20orientation" title=" gradient orientation"> gradient orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20upscaling" title=" image upscaling"> image upscaling</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20interpolation" title=" linear interpolation"> linear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20tracing" title=" slope tracing"> slope tracing</a> </p> <a href="https://publications.waset.org/abstracts/85765/a-gradient-orientation-based-efficient-linear-interpolation-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Eliminating Cutter-Path Deviation For Five-Axis Nc Machining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alan%20C.%20Lin">Alan C. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tsong%20Der%20Lin"> Tsong Der Lin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a deviation control method to add interpolation points to numerical control (NC) codes of five-axis machining in order to achieve the required machining accuracy. Specific research issues include: (1) converting machining data between the CL (cutter location) domain and the NC domain, (2) calculating the deviation between the deviated path and the linear path, (3) finding interpolation points, and (4) determining tool orientations for the interpolation points. System implementation with practical examples will also be included to highlight the applicability of the proposed methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CAD%2FCAM" title="CAD/CAM">CAD/CAM</a>, <a href="https://publications.waset.org/abstracts/search?q=cutter%20path" title=" cutter path"> cutter path</a>, <a href="https://publications.waset.org/abstracts/search?q=five-axis%20machining" title=" five-axis machining"> five-axis machining</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20control" title=" numerical control"> numerical control</a> </p> <a href="https://publications.waset.org/abstracts/30394/eliminating-cutter-path-deviation-for-five-axis-nc-machining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30394.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Applications of Probabilistic Interpolation via Orthogonal Matrices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dariusz%20Jacek%20Jak%C3%B3bczak">Dariusz Jacek Jakóbczak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mathematics and computer science are interested in methods of 2D curve interpolation and extrapolation using the set of key points (knots). A proposed method of Hurwitz- Radon Matrices (MHR) is such a method. This novel method is based on the family of Hurwitz-Radon (HR) matrices which possess columns composed of orthogonal vectors. Two-dimensional curve is interpolated via different functions as probability distribution functions: polynomial, sinus, cosine, tangent, cotangent, logarithm, exponent, arcsin, arccos, arctan, arcctg or power function, also inverse functions. It is shown how to build the orthogonal matrix operator and how to use it in a process of curve reconstruction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2D%20data%20interpolation" title="2D data interpolation">2D data interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=hurwitz-radon%20matrices" title=" hurwitz-radon matrices"> hurwitz-radon matrices</a>, <a href="https://publications.waset.org/abstracts/search?q=MHR%20method" title=" MHR method"> MHR method</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20modeling" title=" probabilistic modeling"> probabilistic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=curve%20extrapolation" title=" curve extrapolation"> curve extrapolation</a> </p> <a href="https://publications.waset.org/abstracts/32599/applications-of-probabilistic-interpolation-via-orthogonal-matrices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32599.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">525</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Feature Location Restoration for Under-Sampled Photoplethysmogram Using Spline Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hangsik%20Shin">Hangsik Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this research is to restore the feature location of under-sampled photoplethysmogram using spline interpolation and to investigate feasibility for feature shape restoration. We obtained 10 kHz-sampled photoplethysmogram and decimated it to generate under-sampled dataset. Decimated dataset has 5 kHz, 2.5 k Hz, 1 kHz, 500 Hz, 250 Hz, 25 Hz and 10 Hz sampling frequency. To investigate the restoration performance, we interpolated under-sampled signals with 10 kHz, then compared feature locations with feature locations of 10 kHz sampled photoplethysmogram. Features were upper and lower peak of photplethysmography waveform. Result showed that time differences were dramatically decreased by interpolation. Location error was lesser than 1 ms in both feature types. In 10 Hz sampled cases, location error was also deceased a lot, however, they were still over 10 ms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peak%20detection" title="peak detection">peak detection</a>, <a href="https://publications.waset.org/abstracts/search?q=photoplethysmography" title=" photoplethysmography"> photoplethysmography</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling" title=" sampling"> sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20reconstruction" title=" signal reconstruction"> signal reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/53409/feature-location-restoration-for-under-sampled-photoplethysmogram-using-spline-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Comparison between the Quadratic and the Cubic Linked Interpolation on the Mindlin Plate Four-Node Quadrilateral Finite Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dragan%20Ribari%C4%87">Dragan Ribarić</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We employ the so-called problem-dependent linked interpolation concept to develop two cubic 4-node quadrilateral Mindlin plate finite elements with 12 external degrees of freedom. In the problem-independent linked interpolation, the interpolation functions are independent of any problem material parameters and the rotation fields are not expressed in terms of the nodal displacement parameters. On the contrary, in the problem-dependent linked interpolation, the interpolation functions depend on the material parameters and the rotation fields are expressed in terms of the nodal displacement parameters. Two cubic 4-node quadrilateral plate elements are presented, named Q4-U3 and Q4-U3R5. The first one is modelled with one displacement and two rotation degrees of freedom in every of the four element nodes and the second element has five additional internal degrees of freedom to get polynomial completeness of the cubic form and which can be statically condensed within the element. Both elements are able to pass the constant-bending patch test exactly as well as the non-zero constant-shear patch test on the oriented regular mesh geometry in the case of cylindrical bending. In any mesh shape, the elements have the correct rank and only the three eigenvalues, corresponding to the solid body motions are zero. There are no additional spurious zero modes responsible for instability of the finite element models. In comparison with the problem-independent cubic linked interpolation implemented in Q9-U3, the nine-node plate element, significantly less degrees of freedom are employed in the model while retaining the interpolation conformity between adjacent elements. The presented elements are also compared to the existing problem-independent quadratic linked-interpolation element Q4-U2 and to the other known elements that also use the quadratic or the cubic linked interpolation, by testing them on several benchmark examples. Simple functional upgrading from the quadratic to the cubic linked interpolation, implemented in Q4-U3 element, showed no significant improvement compared to the quadratic linked form of the Q4-U2 element. Only when the additional bubble terms are incorporated in the displacement and rotation function fields, which complete the full cubic linked interpolation form, qualitative improvement is fulfilled in the Q4-U3R5 element. Nevertheless, the locking problem exists even for the both presented elements, like in all pure displacement elements when applied to very thin plates modelled by coarse meshes. But good and even slightly better performance can be noticed for the Q4-U3R5 element when compared with elements from the literature, if the model meshes are moderately dense and the plate thickness not extremely thin. In some cases, it is comparable to or even better than Q9-U3 element which has as many as 12 more external degrees of freedom. A significant improvement can be noticed in particular when modeling very skew plates and models with singularities in the stress fields as well as circular plates with distorted meshes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mindlin%20plate%20theory" title="Mindlin plate theory">Mindlin plate theory</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-independent%20linked%20interpolation" title=" problem-independent linked interpolation"> problem-independent linked interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=problem-dependent%20interpolation" title=" problem-dependent interpolation"> problem-dependent interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20displacement-based%20plate%20finite%20elements" title=" quadrilateral displacement-based plate finite elements"> quadrilateral displacement-based plate finite elements</a> </p> <a href="https://publications.waset.org/abstracts/47597/comparison-between-the-quadratic-and-the-cubic-linked-interpolation-on-the-mindlin-plate-four-node-quadrilateral-finite-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47597.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Enhancing Spatial Interpolation: A Multi-Layer Inverse Distance Weighting Model for Complex Regression and Classification Tasks in Spatial Data Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakin%20Hajlaoui">Yakin Hajlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Labib"> Richard Labib</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Fran%C3%A7ois%20Plante"> Jean-François Plante</a>, <a href="https://publications.waset.org/abstracts/search?q=Michel%20Gamache"> Michel Gamache</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study introduces the Multi-Layer Inverse Distance Weighting Model (ML-IDW), inspired by the mathematical formulation of both multi-layer neural networks (ML-NNs) and Inverse Distance Weighting model (IDW). ML-IDW leverages ML-NNs' processing capabilities, characterized by compositions of learnable non-linear functions applied to input features, and incorporates IDW's ability to learn anisotropic spatial dependencies, presenting a promising solution for nonlinear spatial interpolation and learning from complex spatial data. it employ gradient descent and backpropagation to train ML-IDW, comparing its performance against conventional spatial interpolation models such as Kriging and standard IDW on regression and classification tasks using simulated spatial datasets of varying complexity. the results highlight the efficacy of ML-IDW, particularly in handling complex spatial datasets, exhibiting lower mean square error in regression and higher F1 score in classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title="deep learning">deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-layer%20neural%20networks" title=" multi-layer neural networks"> multi-layer neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=gradient%20descent" title=" gradient descent"> gradient descent</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20distance%20weighting" title=" inverse distance weighting"> inverse distance weighting</a> </p> <a href="https://publications.waset.org/abstracts/185810/enhancing-spatial-interpolation-a-multi-layer-inverse-distance-weighting-model-for-complex-regression-and-classification-tasks-in-spatial-data-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Overhead Reduction by Channel Estimation Using Linear Interpolation for Single Carrier Frequency Domain Equalization Transmission</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Su%20Song">Min-Su Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Haeng-Bok%20Kil"> Haeng-Bok Kil</a>, <a href="https://publications.waset.org/abstracts/search?q=Eui-Rim%20Jeong"> Eui-Rim Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes a new method to reduce the overhead by pilots for single carrier frequency domain equalization (SC-FDE) transmission. In the conventional SC-FDE transmission structure, the overhead by transmitting pilot is heavy because the pilot are transmitted at every SC-FDE block. The proposed SC-FDE structure has fewer pilots and many SC-FCE blocks are transmitted between pilots. The channel estimation and equalization is performed at the pilot period and the channels between pilots are estimated through linear interpolation. This reduces the pilot overhead by reducing the pilot transmission compared with the conventional structure, and enables reliable channel estimation and equalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channel%20estimation" title="channel estimation">channel estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20interpolation" title=" linear interpolation"> linear interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pilot%20overhead" title=" pilot overhead"> pilot overhead</a>, <a href="https://publications.waset.org/abstracts/search?q=SC-FDE" title=" SC-FDE"> SC-FDE</a> </p> <a href="https://publications.waset.org/abstracts/80487/overhead-reduction-by-channel-estimation-using-linear-interpolation-for-single-carrier-frequency-domain-equalization-transmission" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Spatial Interpolation of Intermediate Soil Properties to Enhance Geotechnical Surveying for Foundation Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov">Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Assel%20T.%20Mukhamejanova"> Assel T. Mukhamejanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aliya%20K.%20Aldungarova"> Aliya K. Aldungarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20G.%20Nazarova"> Aida G. Nazarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabit%20A.%20Karaulov"> Sabit A. Karaulov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurgul%20T.%20Alibekova"> Nurgul T. Alibekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Aigul%20K.%20Kozhas"> Aigul K. Kozhas</a>, <a href="https://publications.waset.org/abstracts/search?q=Dias%20Kazhimkanuly"> Dias Kazhimkanuly</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20K.%20Tleubayeva"> Akmaral K. Tleubayeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focuses on enhancing geotechnical surveying for foundation design through the spatial interpolation of intermediate soil properties. Traditional geotechnical practices rely on discrete data from borehole drilling, soil sampling, and laboratory analyses, often neglecting the continuous nature of soil properties and disregarding values in intermediate locations. This study challenges these omissions by emphasizing interpolation techniques such as Kriging, Inverse Distance Weighting, and Spline interpolation to capture the nuanced spatial variations in soil properties. The methodology is applied to geotechnical survey data from two construction sites in Astana, Kazakhstan, revealing continuous representations of Young's Modulus, Cohesion, and Friction Angle. The spatial heatmaps generated through interpolation offered valuable insights into the subsurface environment, highlighting heterogeneity and aiding in more informed foundation design decisions for considered cites. Moreover, intriguing patterns of heterogeneity, as well as visual clusters and transitions between soil classes, were explored within seemingly uniform layers. The study bridges the gap between discrete borehole samples and the continuous subsurface, contributing to the evolution of geotechnical engineering practices. The proposed approach, utilizing open-source software geographic information systems, provides a practical tool for visualizing soil characteristics and may pave the way for future advancements in geotechnical surveying and foundation design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20mechanical%20properties" title="soil mechanical properties">soil mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20interpolation" title=" spatial interpolation"> spatial interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20distance%20weighting" title=" inverse distance weighting"> inverse distance weighting</a>, <a href="https://publications.waset.org/abstracts/search?q=heatmaps" title=" heatmaps"> heatmaps</a> </p> <a href="https://publications.waset.org/abstracts/183248/spatial-interpolation-of-intermediate-soil-properties-to-enhance-geotechnical-surveying-for-foundation-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">156</span> Observed Changes in Constructed Precipitation at High Resolution in Southern Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Tien%20Thanh">Nguyen Tien Thanh</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%BCnter%20Meon"> Günter Meon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Precipitation plays a key role in water cycle, defining the local climatic conditions and in ecosystem. It is also an important input parameter for water resources management and hydrologic models. With spatial continuous data, a certainty of discharge predictions or other environmental factors is unquestionably better than without. This is, however, not always willingly available to acquire for a small basin, especially for coastal region in Vietnam due to a low network of meteorological stations (30 stations) on long coast of 3260 km2. Furthermore, available gridded precipitation datasets are not fine enough when applying to hydrologic models. Under conditions of global warming, an application of spatial interpolation methods is a crucial for the climate change impact studies to obtain the spatial continuous data. In recent research projects, although some methods can perform better than others do, no methods draw the best results for all cases. The objective of this paper therefore, is to investigate different spatial interpolation methods for daily precipitation over a small basin (approximately 400 km2) located in coastal region, Southern Vietnam and find out the most efficient interpolation method on this catchment. The five different interpolation methods consisting of cressman, ordinary kriging, regression kriging, dual kriging and inverse distance weighting have been applied to identify the best method for the area of study on the spatio-temporal scale (daily, 10 km x 10 km). A 30-year precipitation database was created and merged into available gridded datasets. Finally, observed changes in constructed precipitation were performed. The results demonstrate that the method of ordinary kriging interpolation is an effective approach to analyze the daily precipitation. The mixed trends of increasing and decreasing monthly, seasonal and annual precipitation have documented at significant levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation" title="interpolation">interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=trend" title=" trend"> trend</a>, <a href="https://publications.waset.org/abstracts/search?q=vietnam" title=" vietnam"> vietnam</a> </p> <a href="https://publications.waset.org/abstracts/41642/observed-changes-in-constructed-precipitation-at-high-resolution-in-southern-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">155</span> Inverse Cauchy Problem of Doubly Connected Domains via Spectral Meshless Radial Point Interpolation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elyas%20Shivanian">Elyas Shivanian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the spectral meshless radial point interpolation (SMRPI) technique is applied to the Cauchy problems of two-dimensional elliptic PDEs in doubly connected domains. It is obtained the unknown data on the inner boundary of the domain while overspecified boundary data are imposed on the outer boundary of the domain by using the SMRPI. Shape functions, which are constructed through point interpolation method using the radial basis functions, help us to treat problem locally with the aim of high order convergence rate. In this way, localization in SMRPI can reduce the ill-conditioning for Cauchy problem. Furthermore, we improve previous results and it is revealed the SMRPI is more accurate and stable by adding strong perturbations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cauchy%20problem" title="cauchy problem">cauchy problem</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20connected%20domain" title=" doubly connected domain"> doubly connected domain</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20function" title=" radial basis function"> radial basis function</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20function" title=" shape function"> shape function</a> </p> <a href="https://publications.waset.org/abstracts/56408/inverse-cauchy-problem-of-doubly-connected-domains-via-spectral-meshless-radial-point-interpolation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">154</span> Finite Volume Method in Loop Network in Hydraulic Transient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossain%20Samani">Hossain Samani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Ehteram"> Mohammad Ehteram </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider finite volume method (FVM) in water hammer. We will simulate these techniques on a looped network with complex boundary conditions. After comparing methods, we see the FVM method as the best method. We compare the results of FVM with experimental data. Finite volume using staggered grid is applied for solving water hammer equations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20transient" title="hydraulic transient">hydraulic transient</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20hammer" title=" water hammer"> water hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation" title=" non-liner interpolation "> non-liner interpolation </a> </p> <a href="https://publications.waset.org/abstracts/12178/finite-volume-method-in-loop-network-in-hydraulic-transient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12178.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">153</span> Spatial REE Geochemical Modeling at Lake Acıgöl, Denizli, Turkey: Analytical Approaches on Spatial Interpolation and Spatial Correlation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Budakoglu">M. Budakoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Karaman"> M. Karaman</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Abdelnasser"> A. Abdelnasser</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kumral"> M. Kumral</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The spatial interpolation and spatial correlation of the rare earth elements (REE) of lake surface sediments of Lake Acıgöl and its surrounding lithological units is carried out by using GIS techniques like Inverse Distance Weighted (IDW) and Geographically Weighted Regression (GWR) techniques. IDW technique which makes the spatial interpolation shows that the lithological units like Hayrettin Formation at north of Lake Acigol have high REE contents than lake sediments as well as ∑LREE and ∑HREE contents. However, Eu/Eu* values (based on chondrite-normalized REE pattern) show high value in some lake surface sediments than in lithological units and that refers to negative Eu-anomaly. Also, the spatial interpolation of the V/Cr ratio indicated that Acıgöl lithological units and lake sediments deposited in in oxic and dysoxic conditions. But, the spatial correlation is carried out by GWR technique. This technique shows high spatial correlation coefficient between ∑LREE and ∑HREE which is higher in the lithological units (Hayrettin Formation and Cameli Formation) than in the other lithological units and lake surface sediments. Also, the matching between REEs and Sc and Al refers to REE abundances of Lake Acıgöl sediments weathered from local bedrock around the lake. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20geochemical%20modeling" title="spatial geochemical modeling">spatial geochemical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=IDW" title=" IDW"> IDW</a>, <a href="https://publications.waset.org/abstracts/search?q=GWR%20techniques" title=" GWR techniques"> GWR techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=lake%20sediments" title=" lake sediments"> lake sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=Lake%20Ac%C4%B1g%C3%B6l" title=" Lake Acıgöl"> Lake Acıgöl</a>, <a href="https://publications.waset.org/abstracts/search?q=Turkey" title=" Turkey"> Turkey</a> </p> <a href="https://publications.waset.org/abstracts/10634/spatial-ree-geochemical-modeling-at-lake-acigol-denizli-turkey-analytical-approaches-on-spatial-interpolation-and-spatial-correlation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">152</span> Analysis of Interpolation Factor in Pulse Shaping Filter on MRC for CDMA 2000 Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Verma">Pankaj Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gagandeep%20Singh%20Walia"> Gagandeep Singh Walia</a>, <a href="https://publications.waset.org/abstracts/search?q=Padma%20Devi"> Padma Devi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20P.%20Singh"> H. P. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Code Division Multiple Access 2000 operates on various RF channel bandwidths 1.2288 or 3.6864 Mcps. CDMA offers high bandwidth and wireless broadband services but the efficiency gets decreased because of many interfering factors like fading, interference, scattering, diffraction, refraction, reflection etc. To reduce the spectral bandwidth is one of the major concerns in modern day technology and this is achieved by pulse shaping filter. This paper investigates the effect of diversity (MRC), interpolation factor in Root Raised Cosine (RRC) filter for the QPSK and BPSK modulation schemes. It is made possible to send information with minimum inter symbol interference and within limited bandwidth with proper pulse shaping technique. Bit error rate (BER) performance is analyzed by applying diversity technique by varying the interpolation factor for Binary Phase Shift Keying (BPSK) and Quadrature Phase Shift Keying (QPSK). Interpolation factor increases the original sampling rate of a sequence to a higher rate and reduces the interference and diversity reduces the fading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CDMA2000" title="CDMA2000">CDMA2000</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20raised%20cosine" title=" root raised cosine"> root raised cosine</a>, <a href="https://publications.waset.org/abstracts/search?q=roll%20off%20factor" title=" roll off factor"> roll off factor</a>, <a href="https://publications.waset.org/abstracts/search?q=ISI" title=" ISI"> ISI</a>, <a href="https://publications.waset.org/abstracts/search?q=diversity" title=" diversity"> diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=interference" title=" interference"> interference</a>, <a href="https://publications.waset.org/abstracts/search?q=fading" title=" fading"> fading</a> </p> <a href="https://publications.waset.org/abstracts/12521/analysis-of-interpolation-factor-in-pulse-shaping-filter-on-mrc-for-cdma-2000-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12521.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">151</span> A Survey on Lossless Compression of Bayer Color Filter Array Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alina%20Trifan">Alina Trifan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%C3%B3nio%20J.%20R.%20Neves"> António J. R. Neves</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bayer%20image" title="bayer image">bayer image</a>, <a href="https://publications.waset.org/abstracts/search?q=CFA" title=" CFA"> CFA</a>, <a href="https://publications.waset.org/abstracts/search?q=lossless%20compression" title=" lossless compression"> lossless compression</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20coding%20standards" title=" image coding standards"> image coding standards</a> </p> <a href="https://publications.waset.org/abstracts/39918/a-survey-on-lossless-compression-of-bayer-color-filter-array-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">150</span> Generating Arabic Fonts Using Rational Cubic Ball Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakharuddin%20Ibrahim">Fakharuddin Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Md.%20Ali"> Jamaludin Md. Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Ramli"> Ahmad Ramli </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we will discuss about the data interpolation by using the rational cubic Ball curve. To generate a curve with a better and satisfactory smoothness, the curve segments must be connected with a certain amount of continuity. The continuity that we will consider is of type G<sup>1</sup> continuity. The conditions considered are known as the G<sup>1</sup> Hermite condition. A simple application of the proposed method is to generate an Arabic font satisfying the required continuity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20interpolation" title="data interpolation">data interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=rational%20ball%20curve" title=" rational ball curve"> rational ball curve</a>, <a href="https://publications.waset.org/abstracts/search?q=hermite%20condition" title=" hermite condition"> hermite condition</a>, <a href="https://publications.waset.org/abstracts/search?q=continuity" title=" continuity"> continuity</a> </p> <a href="https://publications.waset.org/abstracts/44202/generating-arabic-fonts-using-rational-cubic-ball-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">149</span> A Geometric Interpolation Scheme in Overset Meshes for the Piecewise Linear Interface Calculation Volume of Fluid Method in Multiphase Flows</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanni%20Chang">Yanni Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dezhi%20Dai"> Dezhi Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=Albert%20Y.%20Tong"> Albert Y. Tong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Piecewise linear interface calculation (PLIC) schemes are widely used in the volume-of-fluid (VOF) method to capture interfaces in numerical simulations of multiphase flows. Dynamic overset meshes can be especially useful in applications involving component motions and complex geometric shapes. In the present study, the VOF value of an acceptor cell is evaluated in a geometric way that transfers the fraction field between the meshes precisely with reconstructed interfaces from the corresponding donor elements. The acceptor cell value is evaluated by using a weighted average of its donors for most of the overset interpolation schemes for continuous flow variables. The weighting factors are obtained by different algebraic methods. Unlike the continuous flow variables, the VOF equation is a step function near the interfaces, which ranges from zero to unity rapidly. A geometric interpolation scheme of the VOF field in overset meshes for the PLIC-VOF method has been proposed in the paper. It has been tested successfully in quadrilateral/hexahedral overset meshes by employing several VOF advection tests with imposed solenoidal velocity fields. The proposed algorithm has been shown to yield higher accuracy in mass conservation and interface reconstruction compared with three other algebraic ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation%20scheme" title="interpolation scheme">interpolation scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=multiphase%20flows" title=" multiphase flows"> multiphase flows</a>, <a href="https://publications.waset.org/abstracts/search?q=overset%20meshes" title=" overset meshes"> overset meshes</a>, <a href="https://publications.waset.org/abstracts/search?q=PLIC-VOF%20method" title=" PLIC-VOF method"> PLIC-VOF method</a> </p> <a href="https://publications.waset.org/abstracts/113095/a-geometric-interpolation-scheme-in-overset-meshes-for-the-piecewise-linear-interface-calculation-volume-of-fluid-method-in-multiphase-flows" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">148</span> Teaching Tools for Web Processing Services</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashid%20Javed">Rashid Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hardy%20Lehmkuehler"> Hardy Lehmkuehler</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Josef-Behr"> Franz Josef-Behr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Web Processing Services (WPS) have up growing concern in geoinformation research. However, teaching about them is difficult because of the generally complex circumstances of their use. They limit the possibilities for hands- on- exercises on Web Processing Services. To support understanding however a Training Tools Collection was brought on the way at University of Applied Sciences Stuttgart (HFT). It is limited to the scope of Geostatistical Interpolation of sample point data where different algorithms can be used like IDW, Nearest Neighbor etc. The Tools Collection aims to support understanding of the scope, definition and deployment of Web Processing Services. For example it is necessary to characterize the input of Interpolation by the data set, the parameters for the algorithm and the interpolation results (here a grid of interpolated values is assumed). This paper reports on first experiences using a pilot installation. This was intended to find suitable software interfaces for later full implementations and conclude on potential user interface characteristics. Experiences were made with Deegree software, one of several Services Suites (Collections). Being strictly programmed in Java, Deegree offers several OGC compliant Service Implementations that also promise to be of benefit for the project. The mentioned parameters for a WPS were formalized following the paradigm that any meaningful component will be defined in terms of suitable standards. E.g. the data output can be defined as a GML file. But, the choice of meaningful information pieces and user interactions is not free but partially determined by the selected WPS Processing Suite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=deegree" title="deegree">deegree</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=IDW" title=" IDW"> IDW</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20processing%20service%20%28WPS%29" title=" web processing service (WPS)"> web processing service (WPS)</a> </p> <a href="https://publications.waset.org/abstracts/36347/teaching-tools-for-web-processing-services" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36347.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">147</span> Interpolation Issue in PVNPG-14M Application for Technical Control of Artillery Fire</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Blaha">Martin Blaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladislav%20Potu%C5%BE%C3%A1k"> Ladislav Potužák</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Holesz"> Daniel Holesz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focused on application support for technical control of artillery units – PVNPG-14M, especially on interpolation issue. Artillery units of the Army of the Czech Republic, reflecting the current global security neighborhood, can be used outside the Czech Republic. The paper presents principles, evolution and calculation in the process of complete preparation. The paper presents expertise using of application of current artillery communication and information system and suggests the perspective future system. The paper also presents problems in process of complete preparing of fire especially problems in permanently information (firing table) and calculated values. The paper presents problems of current artillery communication and information system and suggests requirements of the future system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fire%20for%20Effect" title="Fire for Effect">Fire for Effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Application" title=" Application"> Application</a>, <a href="https://publications.waset.org/abstracts/search?q=Fire%20Control" title=" Fire Control"> Fire Control</a>, <a href="https://publications.waset.org/abstracts/search?q=Interpolation%20method" title=" Interpolation method"> Interpolation method</a>, <a href="https://publications.waset.org/abstracts/search?q=Software%20development." title=" Software development."> Software development.</a> </p> <a href="https://publications.waset.org/abstracts/39674/interpolation-issue-in-pvnpg-14m-application-for-technical-control-of-artillery-fire" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39674.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">146</span> An Interpolation Tool for Data Transfer in Two-Dimensional Ice Accretion Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marta%20Cordero-Gracia">Marta Cordero-Gracia</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariola%20Gomez"> Mariola Gomez</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Blesbois"> Olivier Blesbois</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Carrion"> Marina Carrion</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the difficulties in icing simulations is for extended periods of exposure, when very large ice shapes are created. As well as being large, they can have complex shapes, such as a double horn. For icing simulations, these configurations are currently computed in several steps. The icing step is stopped when the ice shapes become too large, at which point a new mesh has to be created to allow for further CFD and ice growth simulations to be performed. This can be very costly, and is a limiting factor in the simulations that can be performed. A way to avoid the costly human intervention in the re-meshing step of multistep icing computation is to use mesh deformation instead of re-meshing. The aim of the present work is to apply an interpolation method based on Radial Basis Functions (RBF) to transfer deformations from surface mesh to volume mesh. This deformation tool has been developed specifically for icing problems. It is able to deal with localized, sharp and large deformations, unlike the tools traditionally used for more smooth wing deformations. This tool will be presented along with validation on typical two-dimensional icing shapes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ice%20accretion" title="ice accretion">ice accretion</a>, <a href="https://publications.waset.org/abstracts/search?q=interpolation" title=" interpolation"> interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesh%20deformation" title=" mesh deformation"> mesh deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=radial%20basis%20functions" title=" radial basis functions"> radial basis functions</a> </p> <a href="https://publications.waset.org/abstracts/59130/an-interpolation-tool-for-data-transfer-in-two-dimensional-ice-accretion-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">145</span> New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makhlouf">B. Makhlouf</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Bouchhida"> O. Bouchhida</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nibouche"> M. Nibouche</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Laidi"> K. Laidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=harmonic%20elimination" title="harmonic elimination">harmonic elimination</a>, <a href="https://publications.waset.org/abstracts/search?q=Particle%20Swarm%20Optimisation%20%28PSO%29" title=" Particle Swarm Optimisation (PSO)"> Particle Swarm Optimisation (PSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=polynomial%20interpolation" title=" polynomial interpolation"> polynomial interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=pulse%20width%20modulation" title=" pulse width modulation"> pulse width modulation</a>, <a href="https://publications.waset.org/abstracts/search?q=real-time%20harmonics%20control" title=" real-time harmonics control"> real-time harmonics control</a>, <a href="https://publications.waset.org/abstracts/search?q=voltage%20inverter" title=" voltage inverter"> voltage inverter</a> </p> <a href="https://publications.waset.org/abstracts/32807/new-concept-for-real-time-selective-harmonics-elimination-based-on-lagrange-interpolation-polynomials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=non-liner%20interpolation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10