CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 115 results for author: <span class="mathjax">Baudis, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&amp;query=Baudis%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Baudis, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Baudis%2C+L&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Baudis, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2502.04209">arXiv:2502.04209</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2502.04209">pdf</a>, <a href="https://arxiv.org/format/2502.04209">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Radon Removal in XENONnT down to the Solar Neutrino Level </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2502.04209v1-abstract-short" style="display: inline;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountere&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'inline'; document.getElementById('2502.04209v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2502.04209v1-abstract-full" style="display: none;"> The XENONnT experiment has achieved an unprecedented reduction of the $^\text{222}$Rn activity concentration within its liquid xenon dual-phase time projection chamber to a level of (0.90$\,\pm\,$0.01$\,$stat.$\,\pm\,$0.07 sys.)$\,渭$Bq/kg, equivalent to about 1200 $^\text{222}$Rn atoms per cubic meter of liquid xenon. This represents a 15-fold improvement over the $^\text{222}$Rn levels encountered during XENON1T&#39;s main science runs and is a factor five lower compared to other currently operational multi-tonne liquid xenon detectors engaged in dark matter searches. This breakthrough enables the pursuit of various rare event searches that lie beyond the confines of the standard model of particle physics, with world-leading sensitivity. The ultra-low $^\text{222}$Rn levels have diminished the radon-induced background rate in the detector to a point where it is for the first time lower than the solar neutrino-induced background, which is poised to become the primary irreducible background in liquid xenon-based detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2502.04209v1-abstract-full').style.display = 'none'; document.getElementById('2502.04209v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2025. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.10451">arXiv:2412.10451</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.10451">pdf</a>, <a href="https://arxiv.org/format/2412.10451">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Low-Energy Nuclear Recoil Calibration of XENONnT with a $^{88}$YBe Photoneutron Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Ant%2C+D">D. Ant</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%2C+A+P+C">A. P. Cimental Ch</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (147 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.10451v1-abstract-short" style="display: inline;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 even&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'inline'; document.getElementById('2412.10451v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.10451v1-abstract-full" style="display: none;"> Characterizing low-energy (O(1keV)) nuclear recoils near the detector threshold is one of the major challenges for large direct dark matter detectors. To that end, we have successfully used a Yttrium-Beryllium photoneutron source that emits 152 keV neutrons for the calibration of the light and charge yields of the XENONnT experiment for the first time. After data selection, we accumulated 474 events from 183 hours of exposure with this source. The expected background was $55 \pm 12$ accidental coincidence events, estimated using a dedicated 152 hour background calibration run with a Yttrium-PVC gamma-only source and data-driven modeling. From these calibrations, we extracted the light yield and charge yield for liquid xenon at our field strength of 23 V/cm between 0.5 keV$_{\rm NR}$ and 5.0 keV$_{\rm NR}$ (nuclear recoil energy in keV). This calibration is crucial for accurately measuring the solar $^8$B neutrino coherent elastic neutrino-nucleus scattering and searching for light dark matter particles with masses below 12 GeV/c$^2$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.10451v1-abstract-full').style.display = 'none'; document.getElementById('2412.10451v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.05264">arXiv:2412.05264</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2412.05264">pdf</a>, <a href="https://arxiv.org/format/2412.05264">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The neutron veto of the XENONnT experiment: Results with demineralized water </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (145 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.05264v3-abstract-short" style="display: inline;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV)&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'inline'; document.getElementById('2412.05264v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.05264v3-abstract-full" style="display: none;"> Radiogenic neutrons emitted by detector materials are one of the most challenging backgrounds for the direct search of dark matter in the form of weakly interacting massive particles (WIMPs). To mitigate this background, the XENONnT experiment is equipped with a novel gadolinium-doped water Cherenkov detector, which encloses the xenon dual-phase time projection chamber (TPC). The neutron veto (NV) tags neutrons via their capture on gadolinium or hydrogen, which release $纬$-rays that are subsequently detected as Cherenkov light. In this work, we present the key features and the first results of the XENONnT NV when operated with demineralized water in the initial phase of the experiment. Its efficiency for detecting neutrons is $(82\pm 1)\,\%$, the highest neutron detection efficiency achieved in a water Cherenkov detector. This enables a high efficiency of $(53\pm 3)\,\%$ for the tagging of WIMP-like neutron signals, inside a tagging time window of $250\,\mathrm{渭s}$ between TPC and NV, leading to a livetime loss of $1.6\,\%$ during the first science run of XENONnT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.05264v3-abstract-full').style.display = 'none'; document.getElementById('2412.05264v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.17934">arXiv:2411.17934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.17934">pdf</a>, <a href="https://arxiv.org/format/2411.17934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Demonstration of the light collection stability of a PEN-based wavelength shifting reflector in a tonne scale liquid argon detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Gupta%2C+V">V. Gupta</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+P+-">P. -J. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Choudhary%2C+S">S. Choudhary</a>, <a href="/search/physics?searchtype=author&amp;query=Goldbrunner%2C+M">M. Goldbrunner</a>, <a href="/search/physics?searchtype=author&amp;query=Hamer%2C+A">A. Hamer</a>, <a href="/search/physics?searchtype=author&amp;query=Ku%C5%BAniak%2C+M">M. Ku藕niak</a>, <a href="/search/physics?searchtype=author&amp;query=Ku%C5%BAwa%2C+M">M. Ku藕wa</a>, <a href="/search/physics?searchtype=author&amp;query=Leonhardt%2C+A">A. Leonhardt</a>, <a href="/search/physics?searchtype=author&amp;query=Montagna%2C+E">E. Montagna</a>, <a href="/search/physics?searchtype=author&amp;query=Nieradka%2C+G">G. Nieradka</a>, <a href="/search/physics?searchtype=author&amp;query=Parkinson%2C+H+B">H. B. Parkinson</a>, <a href="/search/physics?searchtype=author&amp;query=Pietropaolo%2C+F">F. Pietropaolo</a>, <a href="/search/physics?searchtype=author&amp;query=Pollmann%2C+T+R">T. R. Pollmann</a>, <a href="/search/physics?searchtype=author&amp;query=Resnati%2C+F">F. Resnati</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6nert%2C+S">S. Sch枚nert</a>, <a href="/search/physics?searchtype=author&amp;query=Szelc%2C+A+M">A. M. Szelc</a>, <a href="/search/physics?searchtype=author&amp;query=Thieme%2C+K">K. Thieme</a>, <a href="/search/physics?searchtype=author&amp;query=Walczak%2C+M">M. Walczak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.17934v1-abstract-short" style="display: inline;"> Liquid argon detectors rely on wavelength shifters for efficient detection of scintillation light. The current standard is tetraphenyl butadiene (TPB), but it is challenging to instrument on a large scale. Poly(ethylene 2,6-naphthalate) (PEN), a polyester easily manufactured as thin sheets, could simplify the coverage of large surfaces with wavelength shifters. Previous measurements have shown tha&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17934v1-abstract-full').style.display = 'inline'; document.getElementById('2411.17934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.17934v1-abstract-full" style="display: none;"> Liquid argon detectors rely on wavelength shifters for efficient detection of scintillation light. The current standard is tetraphenyl butadiene (TPB), but it is challenging to instrument on a large scale. Poly(ethylene 2,6-naphthalate) (PEN), a polyester easily manufactured as thin sheets, could simplify the coverage of large surfaces with wavelength shifters. Previous measurements have shown that commercial grades of PEN have approximately 50% light conversion efficiency relative to TPB. Encouraged by these results, we conducted a large-scale measurement using $4~m^2$ combined PEN and specular reflector foils in a two-tonne liquid argon dewar to assess its stability over approximately two weeks. This test is crucial for validating PEN as a viable substitute for TPB. The setup used for the measurement of the stability of PEN as a wavelength shifter is described, together with the first results, showing no evidence of performance deterioration over a period of 12 days. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.17934v1-abstract-full').style.display = 'none'; document.getElementById('2411.17934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08022">arXiv:2411.08022</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.08022">pdf</a>, <a href="https://arxiv.org/format/2411.08022">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Commissioning of the 2.6 m tall two-phase xenon time projection chamber of Xenoscope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/physics?searchtype=author&amp;query=Girard%2C+F">F. Girard</a>, <a href="/search/physics?searchtype=author&amp;query=J%C3%B6rg%2C+F">F. J枚rg</a>, <a href="/search/physics?searchtype=author&amp;query=Ouahada%2C+S">S. Ouahada</a>, <a href="/search/physics?searchtype=author&amp;query=Peres%2C+R">R. Peres</a>, <a href="/search/physics?searchtype=author&amp;query=Piastra%2C+F">F. Piastra</a>, <a href="/search/physics?searchtype=author&amp;query=Silva%2C+M+R">M. Rajado Silva</a>, <a href="/search/physics?searchtype=author&amp;query=Garc%C3%ADa%2C+D+R">D. Ram铆rez Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Wittweg%2C+C">C. Wittweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08022v1-abstract-short" style="display: inline;"> Xenoscope is a demonstrator for a next-generation xenon-based observatory for astroparticle physics, as proposed by the XLZD (XENON-LUX-ZEPLIN-DARWIN) collaboration. It houses a 2.6 m tall, two-phase xenon time projection chamber (TPC), in a cryostat filled with $\sim$ 360 kg of liquid xenon. The main goals of the facility are to demonstrate electron drift in liquid xenon over this distance, to me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08022v1-abstract-full').style.display = 'inline'; document.getElementById('2411.08022v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08022v1-abstract-full" style="display: none;"> Xenoscope is a demonstrator for a next-generation xenon-based observatory for astroparticle physics, as proposed by the XLZD (XENON-LUX-ZEPLIN-DARWIN) collaboration. It houses a 2.6 m tall, two-phase xenon time projection chamber (TPC), in a cryostat filled with $\sim$ 360 kg of liquid xenon. The main goals of the facility are to demonstrate electron drift in liquid xenon over this distance, to measure the electron cloud transversal and longitudinal diffusion, as well as the optical properties of the medium. In this work, we describe in detail the construction and commissioning of the TPC and report on the observation of light and charge signals with cosmic muons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08022v1-abstract-full').style.display = 'none'; document.getElementById('2411.08022v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19016">arXiv:2410.19016</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19016">pdf</a>, <a href="https://arxiv.org/format/2410.19016">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Neutrinoless Double Beta Decay Sensitivity of the XLZD Rare Event Observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19016v1-abstract-short" style="display: inline;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19016v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19016v1-abstract-full" style="display: none;"> The XLZD collaboration is developing a two-phase xenon time projection chamber with an active mass of 60 to 80 t capable of probing the remaining WIMP-nucleon interaction parameter space down to the so-called neutrino fog. In this work we show that, based on the performance of currently operating detectors using the same technology and a realistic reduction of radioactivity in detector materials, such an experiment will also be able to competitively search for neutrinoless double beta decay in $^{136}$Xe using a natural-abundance xenon target. XLZD can reach a 3$蟽$ discovery potential half-life of 5.7$\times$10$^{27}$ yr (and a 90% CL exclusion of 1.3$\times$10$^{28}$ yr) with 10 years of data taking, corresponding to a Majorana mass range of 7.3-31.3 meV (4.8-20.5 meV). XLZD will thus exclude the inverted neutrino mass ordering parameter space and will start to probe the normal ordering region for most of the nuclear matrix elements commonly considered by the community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19016v1-abstract-full').style.display = 'none'; document.getElementById('2410.19016v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 7 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.17137">arXiv:2410.17137</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.17137">pdf</a>, <a href="https://arxiv.org/format/2410.17137">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> The XLZD Design Book: Towards the Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XLZD+Collaboration"> XLZD Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a>, <a href="/search/physics?searchtype=author&amp;query=Armstrong%2C+J+E">J. E. Armstrong</a>, <a href="/search/physics?searchtype=author&amp;query=Arthurs%2C+M">M. Arthurs</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Baker%2C+A">A. Baker</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Bang%2C+J">J. Bang</a> , et al. (419 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.17137v1-abstract-short" style="display: inline;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'inline'; document.getElementById('2410.17137v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.17137v1-abstract-full" style="display: none;"> This report describes the experimental strategy and technologies for a next-generation xenon observatory sensitive to dark matter and neutrino physics. The detector will have an active liquid xenon target mass of 60-80 tonnes and is proposed by the XENON-LUX-ZEPLIN-DARWIN (XLZD) collaboration. The design is based on the mature liquid xenon time projection chamber technology of the current-generation experiments, LZ and XENONnT. A baseline design and opportunities for further optimization of the individual detector components are discussed. The experiment envisaged here has the capability to explore parameter space for Weakly Interacting Massive Particle (WIMP) dark matter down to the neutrino fog, with a 3$蟽$ evidence potential for the spin-independent WIMP-nucleon cross sections as low as $3\times10^{-49}\rm cm^2$ (at 40 GeV/c$^2$ WIMP mass). The observatory is also projected to have a 3$蟽$ observation potential of neutrinoless double-beta decay of $^{136}$Xe at a half-life of up to $5.7\times 10^{27}$ years. Additionally, it is sensitive to astrophysical neutrinos from the atmosphere, sun, and galactic supernovae. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.17137v1-abstract-full').style.display = 'none'; document.getElementById('2410.17137v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00755">arXiv:2410.00755</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00755">pdf</a>, <a href="https://arxiv.org/format/2410.00755">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Model-independent searches of new physics in DARWIN with a semi-supervised deep learning pipeline </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaral%2C+D+W+P">D. W. P. Amaral</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+N+F">N. F. Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Braun%2C+R">R. Braun</a> , et al. (209 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00755v1-abstract-short" style="display: inline;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and cons&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00755v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00755v1-abstract-full" style="display: none;"> We present a novel deep learning pipeline to perform a model-independent, likelihood-free search for anomalous (i.e., non-background) events in the proposed next generation multi-ton scale liquid Xenon-based direct detection experiment, DARWIN. We train an anomaly detector comprising a variational autoencoder and a classifier on extensive, high-dimensional simulated detector response data and construct a one-dimensional anomaly score optimised to reject the background only hypothesis in the presence of an excess of non-background-like events. We benchmark the procedure with a sensitivity study that determines its power to reject the background-only hypothesis in the presence of an injected WIMP dark matter signal, outperforming the classical, likelihood-based background rejection test. We show that our neural networks learn relevant energy features of the events from low-level, high-dimensional detector outputs, without the need to compress this data into lower-dimensional observables, thus reducing computational effort and information loss. For the future, our approach lays the foundation for an efficient end-to-end pipeline that eliminates the need for many of the corrections and cuts that are traditionally part of the analysis chain, with the potential of achieving higher accuracy and significant reduction of analysis time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00755v1-abstract-full').style.display = 'none'; document.getElementById('2410.00755v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 Figures, 3 Tables, 23 Pages (incl. references)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.08778">arXiv:2409.08778</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.08778">pdf</a>, <a href="https://arxiv.org/format/2409.08778">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> </div> <p class="title is-5 mathjax"> XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (143 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.08778v1-abstract-short" style="display: inline;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'inline'; document.getElementById('2409.08778v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.08778v1-abstract-full" style="display: none;"> The XENONnT experiment, located at the INFN Laboratori Nazionali del Gran Sasso, Italy, features a 5.9 tonne liquid xenon time projection chamber surrounded by an instrumented neutron veto, all of which is housed within a muon veto water tank. Due to extensive shielding and advanced purification to mitigate natural radioactivity, an exceptionally low background level of (15.8 $\pm$ 1.3) events/(tonne$\cdot$year$\cdot$keV) in the (1, 30) keV region is reached in the inner part of the TPC. XENONnT is thus sensitive to a wide range of rare phenomena related to Dark Matter and Neutrino interactions, both within and beyond the Standard Model of particle physics, with a focus on the direct detection of Dark Matter in the form of weakly interacting massive particles (WIMPs). From May 2021 to December 2021, XENONnT accumulated data in rare-event search mode with a total exposure of one tonne $\cdot$ year. This paper provides a detailed description of the signal reconstruction methods, event selection procedure, and detector response calibration, as well as an overview of the detector performance in this time frame. This work establishes the foundational framework for the `blind analysis&#39; methodology we are using when reporting XENONnT physics results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.08778v1-abstract-full').style.display = 'none'; document.getElementById('2409.08778v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 23 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02877">arXiv:2408.02877</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02877">pdf</a>, <a href="https://arxiv.org/format/2408.02877">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.133.191002">10.1103/PhysRevLett.133.191002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Indication of Solar $^8$B Neutrinos via Coherent Elastic Neutrino-Nucleus Scattering with XENONnT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02877v2-abstract-short" style="display: inline;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'inline'; document.getElementById('2408.02877v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02877v2-abstract-full" style="display: none;"> We present the first measurement of nuclear recoils from solar $^8$B neutrinos via coherent elastic neutrino-nucleus scattering with the XENONnT dark matter experiment. The central detector of XENONnT is a low-background, two-phase time projection chamber with a 5.9 t sensitive liquid xenon target. A blind analysis with an exposure of 3.51 t$\times$yr resulted in 37 observed events above 0.5 keV, with ($26.4^{+1.4}_{-1.3}$) events expected from backgrounds. The background-only hypothesis is rejected with a statistical significance of 2.73 $蟽$. The measured $^8$B solar neutrino flux of $(4.7_{-2.3}^{+3.6})\times 10^6 \mathrm{cm}^{-2}\mathrm{s}^{-1}$ is consistent with results from the Sudbury Neutrino Observatory. The measured neutrino flux-weighted CE$谓$NS cross section on Xe of $(1.1^{+0.8}_{-0.5})\times10^{-39} \mathrm{cm}^2$ is consistent with the Standard Model prediction. This is the first direct measurement of nuclear recoils from solar neutrinos with a dark matter detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02877v2-abstract-full').style.display = 'none'; document.getElementById('2408.02877v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 133, 191002 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13638">arXiv:2406.13638</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.13638">pdf</a>, <a href="https://arxiv.org/format/2406.13638">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> XENONnT WIMP Search: Signal &amp; Background Modeling and Statistical Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boese%2C+K">K. Boese</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Ch%C3%A1vez%2C+A+P+C">A. P. Cimental Ch谩vez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13638v1-abstract-short" style="display: inline;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13638v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13638v1-abstract-full" style="display: none;"> The XENONnT experiment searches for weakly-interacting massive particle (WIMP) dark matter scattering off a xenon nucleus. In particular, XENONnT uses a dual-phase time projection chamber with a 5.9-tonne liquid xenon target, detecting both scintillation and ionization signals to reconstruct the energy, position, and type of recoil. A blind search for nuclear recoil WIMPs with an exposure of 1.1 tonne-years yielded no signal excess over background expectations, from which competitive exclusion limits were derived on WIMP-nucleon elastic scatter cross sections, for WIMP masses ranging from 6 GeV/$c^2$ up to the TeV/$c^2$ scale. This work details the modeling and statistical methods employed in this search. By means of calibration data, we model the detector response, which is then used to derive background and signal models. The construction and validation of these models is discussed, alongside additional purely data-driven backgrounds. We also describe the statistical inference framework, including the definition of the likelihood function and the construction of confidence intervals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13638v1-abstract-full').style.display = 'none'; document.getElementById('2406.13638v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 10 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19524">arXiv:2404.19524</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.19524">pdf</a>, <a href="https://arxiv.org/format/2404.19524">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> DARWIN/XLZD: a future xenon observatory for dark matter and other rare interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">Laura Baudis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19524v1-abstract-short" style="display: inline;"> The DARWIN/XLZD experiment is a next-generation dark matter detector with a multi-ten-ton liquid xenon time projection chamber at its core. Its principal goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until interactions of astrophysical neutrinos will become an irreducible background. The prompt scintilla&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19524v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19524v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19524v1-abstract-full" style="display: none;"> The DARWIN/XLZD experiment is a next-generation dark matter detector with a multi-ten-ton liquid xenon time projection chamber at its core. Its principal goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until interactions of astrophysical neutrinos will become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the liquid xenon target will be observed by VUV-sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs with masses above $\sim$5\,GeV, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions, and in particular also to bosonic dark matter candidates with masses at the keV-scale. We present the detector concept, discuss the main sources of backgrounds, the technological challenges and some of the ongoing detector design and R&amp;D efforts, as well as the large-scale demonstrators. We end by discussing the sensitivity to particle dark matter interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19524v1-abstract-full').style.display = 'none'; document.getElementById('2404.19524v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 10 figures. Accepted to appear in Nuc. Phys. B special issue &#34;Nobel Symposium on Dark Matter&#34; (NS 182)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.14878">arXiv:2403.14878</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.14878">pdf</a>, <a href="https://arxiv.org/format/2403.14878">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.012011">10.1103/PhysRevD.110.012011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Offline tagging of radon-induced backgrounds in XENON1T and applicability to other liquid xenon detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Chavez%2C+A+P+C">A. P. Cimental Chavez</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.14878v2-abstract-short" style="display: inline;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'inline'; document.getElementById('2403.14878v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.14878v2-abstract-full" style="display: none;"> This paper details the first application of a software tagging algorithm to reduce radon-induced backgrounds in liquid noble element time projection chambers, such as XENON1T and XENONnT. The convection velocity field in XENON1T was mapped out using $^{222}\text{Rn}$ and $^{218}\text{Po}$ events, and the root-mean-square convection speed was measured to be $0.30 \pm 0.01$ cm/s. Given this velocity field, $^{214}\text{Pb}$ background events can be tagged when they are followed by $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays, or preceded by $^{218}\text{Po}$ decays. This was achieved by evolving a point cloud in the direction of a measured convection velocity field, and searching for $^{214}\text{Bi}$ and $^{214}\text{Po}$ decays or $^{218}\text{Po}$ decays within a volume defined by the point cloud. In XENON1T, this tagging system achieved a $^{214}\text{Pb}$ background reduction of $6.2^{+0.4}_{-0.9}\%$ with an exposure loss of $1.8\pm 0.2 \%$, despite the timescales of convection being smaller than the relevant decay times. We show that the performance can be improved in XENONnT, and that the performance of such a software-tagging approach can be expected to be further improved in a diffusion-limited scenario. Finally, a similar method might be useful to tag the cosmogenic $^{137}\text{Xe}$ background, which is relevant to the search for neutrinoless double-beta decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.14878v2-abstract-full').style.display = 'none'; document.getElementById('2403.14878v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 19 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Rev.D 110 (2024) 012011 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10446">arXiv:2402.10446</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10446">pdf</a>, <a href="https://arxiv.org/format/2402.10446">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> The XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a> , et al. (170 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10446v1-abstract-short" style="display: inline;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'inline'; document.getElementById('2402.10446v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10446v1-abstract-full" style="display: none;"> The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.9 tonnes of cryogenic liquid xenon (8.5 tonnes total mass in cryostat). The experiment is expected to extend the sensitivity to WIMP dark matter by more than an order of magnitude compared to XENON1T, thanks to the larger active mass and the significantly reduced background, improved by novel systems such as a radon removal plant and a neutron veto. This article describes the XENONnT experiment and its sub-systems in detail and reports on the detector performance during the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10446v1-abstract-full').style.display = 'none'; document.getElementById('2402.10446v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">32 pages, 19 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.05320">arXiv:2311.05320</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.05320">pdf</a>, <a href="https://arxiv.org/format/2311.05320">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Dual-phase xenon time projection chambers for rare-event searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">Laura Baudis</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.05320v2-abstract-short" style="display: inline;"> In the past decade, dual-phase xenon time projection chambers (Xe-TPCs) have emerged as some of the most powerful detectors in the fields of astroparticle physics and rare-event searches. Developed primarily towards the direct detection of dark matter particles, experiments presently operating deep underground have reached target masses at the multi-tonne scale, energy thresholds around 1 keV and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05320v2-abstract-full').style.display = 'inline'; document.getElementById('2311.05320v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.05320v2-abstract-full" style="display: none;"> In the past decade, dual-phase xenon time projection chambers (Xe-TPCs) have emerged as some of the most powerful detectors in the fields of astroparticle physics and rare-event searches. Developed primarily towards the direct detection of dark matter particles, experiments presently operating deep underground have reached target masses at the multi-tonne scale, energy thresholds around 1 keV and radioactivity-induced background rates similar to those from solar neutrinos. These unique properties, together with demonstrated stable operation over several years, allow for the exploration of new territory via high-sensitivity searches for a plethora of ultra-rare interactions. These include searches for particle dark matter, for second order weak decays, and the observation of astrophysical neutrinos. We first review some properties of xenon as a radiation detection medium and the operation principles of dual-phase Xe-TPCs together with their energy calibration and resolution. We then discuss the status of currently running experiments and of proposed next-generation projects, describing some of the technological challenges. We end by looking at their sensitivity to dark matter candidates, to second order weak decays and to solar and supernova neutrinos. Experiments based on dual-phase Xe-TPCs are difficult, and, like all good experiments, they are constantly pushed to their limits. Together with many other endeavours in astroparticle physics and cosmology they will continue to push at the borders of the unknown, hopefully to reveal profound new knowledge about our cosmos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.05320v2-abstract-full').style.display = 'none'; document.getElementById('2311.05320v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 10 figures. Invited review, published in &#34;The Particle-Gravity Frontier&#34; issue of Philosophical Transactions A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phil. Trans. R. Soc. A382 (2023) 0083 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11996">arXiv:2309.11996</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11996">pdf</a>, <a href="https://arxiv.org/format/2309.11996">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12296-y">10.1140/epjc/s10052-023-12296-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and performance of the field cage for the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11996v1-abstract-short" style="display: inline;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11996v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11996v1-abstract-full" style="display: none;"> The precision in reconstructing events detected in a dual-phase time projection chamber depends on an homogeneous and well understood electric field within the liquid target. In the XENONnT TPC the field homogeneity is achieved through a double-array field cage, consisting of two nested arrays of field shaping rings connected by an easily accessible resistor chain. Rather than being connected to the gate electrode, the topmost field shaping ring is independently biased, adding a degree of freedom to tune the electric field during operation. Two-dimensional finite element simulations were used to optimize the field cage, as well as its operation. Simulation results were compared to ${}^{83m}\mathrm{Kr}$ calibration data. This comparison indicates an accumulation of charge on the panels of the TPC which is constant over time, as no evolution of the reconstructed position distribution of events is observed. The simulated electric field was then used to correct the charge signal for the field dependence of the charge yield. This correction resolves the inconsistent measurement of the drift electron lifetime when using different calibrations sources and different field cage tuning voltages. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11996v1-abstract-full').style.display = 'none'; document.getElementById('2309.11996v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 84, 138 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16340">arXiv:2306.16340</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16340">pdf</a>, <a href="https://arxiv.org/format/2306.16340">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-12298-w">10.1140/epjc/s10052-023-12298-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Cosmogenic background simulations for the DARWIN observatory at different underground locations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Adrover%2C+M">M. Adrover</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Babicz%2C+M">M. Babicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Barberio%2C+E">E. Barberio</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bell%2C+N">N. Bell</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Boehm%2C+C">C. Boehm</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (158 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16340v1-abstract-short" style="display: inline;"> Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0谓尾尾$), and axion-like particles (ALPs). Although cosmic muons are&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16340v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16340v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16340v1-abstract-full" style="display: none;"> Xenon dual-phase time projections chambers (TPCs) have proven to be a successful technology in studying physical phenomena that require low-background conditions. With 40t of liquid xenon (LXe) in the TPC baseline design, DARWIN will have a high sensitivity for the detection of particle dark matter, neutrinoless double beta decay ($0谓尾尾$), and axion-like particles (ALPs). Although cosmic muons are a source of background that cannot be entirely eliminated, they may be greatly diminished by placing the detector deep underground. In this study, we used Monte Carlo simulations to model the cosmogenic background expected for the DARWIN observatory at four underground laboratories: Laboratori Nazionali del Gran Sasso (LNGS), Sanford Underground Research Facility (SURF), Laboratoire Souterrain de Modane (LSM) and SNOLAB. We determine the production rates of unstable xenon isotopes and tritium due to muon-included neutron fluxes and muon-induced spallation. These are expected to represent the dominant contributions to cosmogenic backgrounds and thus the most relevant for site selection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16340v1-abstract-full').style.display = 'none'; document.getElementById('2306.16340v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.11871">arXiv:2306.11871</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.11871">pdf</a>, <a href="https://arxiv.org/format/2306.11871">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Search for events in XENON1T associated with Gravitational Waves </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Anto艅 Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (138 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.11871v2-abstract-short" style="display: inline;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW1&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'inline'; document.getElementById('2306.11871v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.11871v2-abstract-full" style="display: none;"> We perform a blind search for particle signals in the XENON1T dark matter detector that occur close in time to gravitational wave signals in the LIGO and Virgo observatories. No particle signal is observed in the nuclear recoil, electronic recoil, CE$谓$NS, and S2-only channels within $\pm$ 500 seconds of observations of the gravitational wave signals GW170104, GW170729, GW170817, GW170818, and GW170823. We use this null result to constrain mono-energetic neutrinos and Beyond Standard Model particles emitted in the closest coalescence GW170817, a binary neutron star merger. We set new upper limits on the fluence (time-integrated flux) of coincident neutrinos down to 17 keV at 90% confidence level. Furthermore, we constrain the product of coincident fluence and cross section of Beyond Standard Model particles to be less than $10^{-29}$ cm$^2$/cm$^2$ in the [5.5-210] keV energy range at 90% confidence level. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.11871v2-abstract-full').style.display = 'none'; document.getElementById('2306.11871v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.10931">arXiv:2304.10931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.10931">pdf</a>, <a href="https://arxiv.org/format/2304.10931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.261002">10.1103/PhysRevLett.130.261002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Searching for Heavy Dark Matter near the Planck Mass with XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (142 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.10931v1-abstract-short" style="display: inline;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'inline'; document.getElementById('2304.10931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.10931v1-abstract-full" style="display: none;"> Multiple viable theoretical models predict heavy dark matter particles with a mass close to the Planck mass, a range relatively unexplored by current experimental measurements. We use 219.4 days of data collected with the XENON1T experiment to conduct a blind search for signals from Multiply-Interacting Massive Particles (MIMPs). Their unique track signature allows a targeted analysis with only 0.05 expected background events from muons. Following unblinding, we observe no signal candidate events. This work places strong constraints on spin-independent interactions of dark matter particles with a mass between 1$\times$10$^{12}\,$GeV/c$^2$ and 2$\times$10$^{17}\,$GeV/c$^2$. In addition, we present the first exclusion limits on spin-dependent MIMP-neutron and MIMP-proton cross-sections for dark matter particles with masses close to the Planck scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.10931v1-abstract-full').style.display = 'none'; document.getElementById('2304.10931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 261002 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.14729">arXiv:2303.14729</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.14729">pdf</a>, <a href="https://arxiv.org/format/2303.14729">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.131.041003">10.1103/PhysRevLett.131.041003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=XENON+Collaboration"> XENON Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bazyk%2C+M">M. Bazyk</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.14729v2-abstract-short" style="display: inline;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid targe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'inline'; document.getElementById('2303.14729v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.14729v2-abstract-full" style="display: none;"> We report on the first search for nuclear recoils from dark matter in the form of weakly interacting massive particles (WIMPs) with the XENONnT experiment which is based on a two-phase time projection chamber with a sensitive liquid xenon mass of $5.9$ t. During the approximately 1.1 tonne-year exposure used for this search, the intrinsic $^{85}$Kr and $^{222}$Rn concentrations in the liquid target were reduced to unprecedentedly low levels, giving an electronic recoil background rate of $(15.8\pm1.3)~\mathrm{events}/(\mathrm{t\cdot y \cdot keV})$ in the region of interest. A blind analysis of nuclear recoil events with energies between $3.3$ keV and $60.5$ keV finds no significant excess. This leads to a minimum upper limit on the spin-independent WIMP-nucleon cross section of $2.58\times 10^{-47}~\mathrm{cm}^2$ for a WIMP mass of $28~\mathrm{GeV}/c^2$ at $90\%$ confidence level. Limits for spin-dependent interactions are also provided. Both the limit and the sensitivity for the full range of WIMP masses analyzed here improve on previous results obtained with the XENON1T experiment for the same exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.14729v2-abstract-full').style.display = 'none'; document.getElementById('2303.14729v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Limit points are included in the submission file</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 131, 041003 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.13963">arXiv:2303.13963</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.13963">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11823-1">10.1140/epjc/s10052-023-11823-1 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electron transport measurements in liquid xenon with Xenoscope, a large-scale DARWIN demonstrator </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Chavez%2C+A+P+C">A. P. Cimental Chavez</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garcia%2C+J+J">J. J. Cuenca-Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Franchi%2C+J">J. Franchi</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/physics?searchtype=author&amp;query=Girard%2C+F">F. Girard</a>, <a href="/search/physics?searchtype=author&amp;query=Peres%2C+R">R. Peres</a>, <a href="/search/physics?searchtype=author&amp;query=Garcia%2C+D+R">D. Ramirez Garcia</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez-Lucas%2C+P">P. Sanchez-Lucas</a>, <a href="/search/physics?searchtype=author&amp;query=Thieme%2C+K">K. Thieme</a>, <a href="/search/physics?searchtype=author&amp;query=Wittweg%2C+C">C. Wittweg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.13963v2-abstract-short" style="display: inline;"> There is a compelling physics case for a large, xenon-based underground detector devoted to dark matter and other rare-event searches. A two-phase time projection chamber as inner detector allows for a good energy resolution, a three-dimensional position determination of the interaction site and particle discrimination. To study challenges related to the construction and operation of a multi-tonne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13963v2-abstract-full').style.display = 'inline'; document.getElementById('2303.13963v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.13963v2-abstract-full" style="display: none;"> There is a compelling physics case for a large, xenon-based underground detector devoted to dark matter and other rare-event searches. A two-phase time projection chamber as inner detector allows for a good energy resolution, a three-dimensional position determination of the interaction site and particle discrimination. To study challenges related to the construction and operation of a multi-tonne scale detector, we have designed and constructed a vertical, full-scale demonstrator for the DARWIN experiment at the University of Zurich. Here we present first results from a several-months run with 343 kg of xenon and electron drift lifetime and transport measurements with a 53 cm tall purity monitor immersed in the cryogenic liquid. After 88 days of continuous purification, the electron lifetime reached a value of 664(23) microseconds. We measured the drift velocity of electrons for electric fields in the range (25--75) V/cm, and found values consistent with previous measurements. We also calculated the longitudinal diffusion constant of the electron cloud in the same field range, and compared with previous data, as well as with predictions from an empirical model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.13963v2-abstract-full').style.display = 'none'; document.getElementById('2303.13963v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 717 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11032">arXiv:2212.11032</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11032">pdf</a>, <a href="https://arxiv.org/format/2212.11032">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/07/P07054">10.1088/1748-0221/18/07/P07054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Triggerless Data Acquisition System of the XENONnT Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brookes%2C+E+J">E. J. Brookes</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (140 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11032v1-abstract-short" style="display: inline;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commerc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'inline'; document.getElementById('2212.11032v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11032v1-abstract-full" style="display: none;"> The XENONnT detector uses the latest and largest liquid xenon-based time projection chamber (TPC) operated by the XENON Collaboration, aimed at detecting Weakly Interacting Massive Particles and conducting other rare event searches. The XENONnT data acquisition (DAQ) system constitutes an upgraded and expanded version of the XENON1T DAQ system. For its operation, it relies predominantly on commercially available hardware accompanied by open-source and custom-developed software. The three constituent subsystems of the XENONnT detector, the TPC (main detector), muon veto, and the newly introduced neutron veto, are integrated into a single DAQ, and can be operated both independently and as a unified system. In total, the DAQ digitizes the signals of 698 photomultiplier tubes (PMTs), of which 253 from the top PMT array of the TPC are digitized twice, at $\times10$ and $\times0.5$ gain. The DAQ for the most part is a triggerless system, reading out and storing every signal that exceeds the digitization thresholds. Custom-developed software is used to process the acquired data, making it available within $\mathcal{O}\left(10\text{ s}\right)$ for live data quality monitoring and online analyses. The entire system with all the three subsystems was successfully commissioned and has been operating continuously, comfortably withstanding readout rates that exceed $\sim500$ MB/s during calibration. Livetime during normal operation exceeds $99\%$ and is $\sim90\%$ during most high-rate calibrations. The combined DAQ system has collected more than 2 PB of both calibration and science data during the commissioning of XENONnT and the first science run. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11032v1-abstract-full').style.display = 'none'; document.getElementById('2212.11032v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07037">arXiv:2212.07037</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.07037">pdf</a>, <a href="https://arxiv.org/format/2212.07037">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 Underground Facilities and Infrastructure Overview Topical Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Hall%2C+J">J. Hall</a>, <a href="/search/physics?searchtype=author&amp;query=Lesko%2C+K+T">K. T. Lesko</a>, <a href="/search/physics?searchtype=author&amp;query=Orrell%2C+J+L">J. L. Orrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07037v1-abstract-short" style="display: inline;"> The Underground Frontier (UF) was charged with assessing the anticipated needs and available space for well shielded underground space to conduct scientific research. The Frontier sought to understand the existing space, space that would become available in the coming decade, and potential for creating additional space to host these efforts. To this end UF created a survey which was sent to existi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07037v1-abstract-full').style.display = 'inline'; document.getElementById('2212.07037v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07037v1-abstract-full" style="display: none;"> The Underground Frontier (UF) was charged with assessing the anticipated needs and available space for well shielded underground space to conduct scientific research. The Frontier sought to understand the existing space, space that would become available in the coming decade, and potential for creating additional space to host these efforts. To this end UF created a survey which was sent to existing underground laboratories. This assessment was necessary for UF to develop a bold plan to foster and empower broad reaching underground research, maximize cost savings and synergistic research opportunities, and advance the HEP research program requiring underground space for the next two decades. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07037v1-abstract-full').style.display = 'none'; document.getElementById('2212.07037v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 Underground Facilities and Infrastructure Overview Topical Report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02856">arXiv:2212.02856</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02856">pdf</a>, <a href="https://arxiv.org/format/2212.02856">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11354-9">10.1140/epjc/s10052-023-11354-9 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Liquid argon light collection and veto modeling in GERDA Phase II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=GERDA+collaboration"> GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+A">A. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">S. Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">A. Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">V. Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Calgaro%2C+S">S. Calgaro</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">C. Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">A. Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+P">P-J. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">T. Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">E. V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Giacinto%2C+A">A. Di Giacinto</a> , et al. (94 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02856v1-abstract-short" style="display: inline;"> The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the GERDA experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of $^{76}$Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02856v1-abstract-full').style.display = 'inline'; document.getElementById('2212.02856v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02856v1-abstract-full" style="display: none;"> The ability to detect liquid argon scintillation light from within a densely packed high-purity germanium detector array allowed the GERDA experiment to reach an exceptionally low background rate in the search for neutrinoless double beta decay of $^{76}$Ge. Proper modeling of the light propagation throughout the experimental setup, from any origin in the liquid argon volume to its eventual detection by the novel light read-out system, provides insight into the rejection capability and is a necessary ingredient to obtain robust background predictions. In this paper, we present a model of the GERDA liquid argon veto, as obtained by Monte Carlo simulations and constrained by calibration data, and highlight its application for background decomposition. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02856v1-abstract-full').style.display = 'none'; document.getElementById('2212.02856v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.14191">arXiv:2211.14191</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.14191">pdf</a>, <a href="https://arxiv.org/format/2211.14191">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11512-z">10.1140/epjc/s10052-023-11512-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Low-energy Calibration of XENON1T with an Internal $^{37}$Ar Source </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Bui%2C+T+K">T. K. Bui</a>, <a href="/search/physics?searchtype=author&amp;query=Cai%2C+C">C. Cai</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a> , et al. (139 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.14191v3-abstract-short" style="display: inline;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respecti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'inline'; document.getElementById('2211.14191v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.14191v3-abstract-full" style="display: none;"> A low-energy electronic recoil calibration of XENON1T, a dual-phase xenon time projection chamber, with an internal $^{37}$Ar source was performed. This calibration source features a 35-day half-life and provides two mono-energetic lines at 2.82 keV and 0.27 keV. The photon yield and electron yield at 2.82 keV are measured to be (32.3$\pm$0.3) photons/keV and (40.6$\pm$0.5) electrons/keV, respectively, in agreement with other measurements and with NEST predictions. The electron yield at 0.27 keV is also measured and it is (68.0$^{+6.3}_{-3.7}$) electrons/keV. The $^{37}$Ar calibration confirms that the detector is well-understood in the energy region close to the detection threshold, with the 2.82 keV line reconstructed at (2.83$\pm$0.02) keV, which further validates the model used to interpret the low-energy electronic recoil excess previously reported by XENON1T. The ability to efficiently remove argon with cryogenic distillation after the calibration proves that $^{37}$Ar can be considered as a regular calibration source for multi-tonne xenon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.14191v3-abstract-full').style.display = 'none'; document.getElementById('2211.14191v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.13450">arXiv:2211.13450</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.13450">pdf</a>, <a href="https://arxiv.org/format/2211.13450">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 Underground Facilities &amp; Infrastructure Frontier Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">Laura Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Hall%2C+J">Jeter Hall</a>, <a href="/search/physics?searchtype=author&amp;query=Lesko%2C+K+T">Kevin T. Lesko</a>, <a href="/search/physics?searchtype=author&amp;query=Orrell%2C+J+L">John L. Orrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.13450v1-abstract-short" style="display: inline;"> The decade since Snowmass 2013 has seen extraordinary progress of high energy physics research performed--or planned for--at underground facilities. Drs. T. Kajita and A.B. McDonald were awarded the 2015 Nobel Prize in Physics for the discovery of neutrino oscillation, which show that neutrinos have mass. The U.S. has embarked on the development of the world-class LBNF/DUNE science program to inve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13450v1-abstract-full').style.display = 'inline'; document.getElementById('2211.13450v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.13450v1-abstract-full" style="display: none;"> The decade since Snowmass 2013 has seen extraordinary progress of high energy physics research performed--or planned for--at underground facilities. Drs. T. Kajita and A.B. McDonald were awarded the 2015 Nobel Prize in Physics for the discovery of neutrino oscillation, which show that neutrinos have mass. The U.S. has embarked on the development of the world-class LBNF/DUNE science program to investigate neutrino properties. The Generation 2 dark matter program is advancing to full data collection in the coming 5 years, a Dark Matter New Initiatives program has begun, and the U.S. dark matter community is looking toward a Generation 3 program of large-scale dark matter direct detection searches. The Sanford Underground Research Facility has become a focal point for U.S. underground facilities and infrastructure investment. The status since the 2013 Snowmass process as well as the outcome from the 2014 P5 program of recommendations is reviewed. These are then evaluated based on the activities and discussions of the Snowmass 2021 process resulting in conclusions looking forward to the coming decade of high energy physics research performed in underground facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.13450v1-abstract-full').style.display = 'none'; document.getElementById('2211.13450v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Snowmass 2021 Underground Facilities &amp; Infrastructure Frontier Report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.05026">arXiv:2211.05026</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.05026">pdf</a>, <a href="https://arxiv.org/format/2211.05026">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/18/02/P02001">10.1088/1748-0221/18/02/P02001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration sources for the LEGEND-200 experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Benato%2C+G">G. Benato</a>, <a href="/search/physics?searchtype=author&amp;query=Bond%2C+E+M">E. M. Bond</a>, <a href="/search/physics?searchtype=author&amp;query=Chiu%2C+P+-">P. -J. Chiu</a>, <a href="/search/physics?searchtype=author&amp;query=Elliott%2C+S+R">S. R. Elliott</a>, <a href="/search/physics?searchtype=author&amp;query=Massarczyk%2C+R">R. Massarczyk</a>, <a href="/search/physics?searchtype=author&amp;query=Meijer%2C+S">S. Meijer</a>, <a href="/search/physics?searchtype=author&amp;query=M%C3%BCller%2C+Y">Y. M眉ller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.05026v2-abstract-short" style="display: inline;"> In the search for a monochromatic peak as the signature of neutrinoless double beta decay an excellent energy resolution and an ultra-low background around the $Q$-value of the decay are essential. The LEGEND-200 experiment performs such a search with high-purity germanium detectors enriched in $^{76}$Ge immersed in liquid argon. To determine and monitor the stability of the energy scale and resol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05026v2-abstract-full').style.display = 'inline'; document.getElementById('2211.05026v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.05026v2-abstract-full" style="display: none;"> In the search for a monochromatic peak as the signature of neutrinoless double beta decay an excellent energy resolution and an ultra-low background around the $Q$-value of the decay are essential. The LEGEND-200 experiment performs such a search with high-purity germanium detectors enriched in $^{76}$Ge immersed in liquid argon. To determine and monitor the stability of the energy scale and resolution of the germanium diodes, custom-made, low-neutron emission $^{228}$Th sources are regularly deployed in the vicinity of the crystals. Here we describe the production process of the 17 sources available for installation in the experiment, the measurements of their alpha- and gamma-activities, as well as the determination of the neutron emission rates with a low-background LiI(Eu) detector operated deep underground. With a flux of $\left( 4.27 \pm 0.60_{\rm stat} \pm 0.92_{\rm syst} \right) \times 10^{-4} ~\text{n / (kBq$\cdot$s)}$, approximately one order of magnitude below that of commercial sources, the neutron-induced background rate, mainly from the activation of $^{76}$Ge, is negligible compared to other background sources in LEGEND-200. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.05026v2-abstract-full').style.display = 'none'; document.getElementById('2211.05026v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages + references; typos corrected, comments from journal referee&#39;s implemented</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 18 P02001 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07231">arXiv:2210.07231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07231">pdf</a>, <a href="https://arxiv.org/format/2210.07231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10913-w">10.1140/epjc/s10052-022-10913-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An approximate likelihood for nuclear recoil searches with XENON1T data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07231v1-abstract-short" style="display: inline;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07231v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07231v1-abstract-full" style="display: none;"> The XENON collaboration has published stringent limits on specific dark matter -nucleon recoil spectra from dark matter recoiling on the liquid xenon detector target. In this paper, we present an approximate likelihood for the XENON1T 1 tonne-year nuclear recoil search applicable to any nuclear recoil spectrum. Alongside this paper, we publish data and code to compute upper limits using the method we present. The approximate likelihood is constructed in bins of reconstructed energy, profiled along the signal expectation in each bin. This approach can be used to compute an approximate likelihood and therefore most statistical results for any nuclear recoil spectrum. Computing approximate results with this method is approximately three orders of magnitude faster than the likelihood used in the original publications of XENON1T, where limits were set for specific families of recoil spectra. Using this same method, we include toy Monte Carlo simulation-derived binwise likelihoods for the upcoming XENONnT experiment that can similarly be used to assess the sensitivity to arbitrary nuclear recoil signatures in its eventual 20 tonne-year exposure. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07231v1-abstract-full').style.display = 'none'; document.getElementById('2210.07231v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by European Physical Journal C</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.12478">arXiv:2204.12478</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.12478">pdf</a>, <a href="https://arxiv.org/format/2204.12478">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/08/P08010">10.1088/1748-0221/17/08/P08010 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The upgraded low-background germanium counting facility Gator for high-sensitivity $纬$-ray spectrometry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.12478v2-abstract-short" style="display: inline;"> We describe the upgrade and performance of the high-purity germanium counting facility Gator, which is dedicated to low-background $纬$-ray spectrometry. Gator is operated at the Gran Sasso Underground Laboratory in Italy, at an average depth of 3600 meter water equivalent, and employed for material screening and selection in ultra-low background, rare-event search experiments in astroparticle phys&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12478v2-abstract-full').style.display = 'inline'; document.getElementById('2204.12478v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.12478v2-abstract-full" style="display: none;"> We describe the upgrade and performance of the high-purity germanium counting facility Gator, which is dedicated to low-background $纬$-ray spectrometry. Gator is operated at the Gran Sasso Underground Laboratory in Italy, at an average depth of 3600 meter water equivalent, and employed for material screening and selection in ultra-low background, rare-event search experiments in astroparticle physics. The detector is equipped with a passive shield made of layers of copper, lead and polyethylene, and the sample cavity is purged with gaseous nitrogen maintained at positive pressure for radon suppression. After upgrading its enclosure, the background rate is (82.0$\pm$0.7) counts/(kg$\cdot$day) in the energy region 100 keV to 2700 keV, a 20% reduction compared to the previously reported rate. We show the stability of various operation parameters as a function of time. We also summarize the sample analysis procedure, and demonstrate Gator&#39;s sensitivity by examining one material sample, a candidate photosensor for the DARWIN experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.12478v2-abstract-full').style.display = 'none'; document.getElementById('2204.12478v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 (2022) P08010 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.14354">arXiv:2203.14354</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.14354">pdf</a>, <a href="https://arxiv.org/format/2203.14354">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/07/P07018">10.1088/1748-0221/17/07/P07018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GPU-based optical simulation of the DARWIN detector </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovi%C4%87%2C+B">B. Antunovi膰</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Bajpai%2C+D">D. Bajpai</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baur%2C+D">D. Baur</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Chauvin%2C+A">A. Chauvin</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Gangi%2C+P">P. Di Gangi</a>, <a href="/search/physics?searchtype=author&amp;query=Dierle%2C+J">J. Dierle</a>, <a href="/search/physics?searchtype=author&amp;query=Diglio%2C+S">S. Diglio</a>, <a href="/search/physics?searchtype=author&amp;query=Doerenkamp%2C+M">M. Doerenkamp</a>, <a href="/search/physics?searchtype=author&amp;query=Eitel%2C+K">K. Eitel</a>, <a href="/search/physics?searchtype=author&amp;query=Farrell%2C+S">S. Farrell</a>, <a href="/search/physics?searchtype=author&amp;query=Ferella%2C+A+D">A. D. Ferella</a>, <a href="/search/physics?searchtype=author&amp;query=Ferrari%2C+C">C. Ferrari</a> , et al. (55 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.14354v2-abstract-short" style="display: inline;"> Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing effi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14354v2-abstract-full').style.display = 'inline'; document.getElementById('2203.14354v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.14354v2-abstract-full" style="display: none;"> Understanding propagation of scintillation light is critical for maximizing the discovery potential of next-generation liquid xenon detectors that use dual-phase time projection chamber technology. This work describes a detailed optical simulation of the DARWIN detector implemented using Chroma, a GPU-based photon tracking framework. To evaluate the framework and to explore ways of maximizing efficiency and minimizing the time of light collection, we simulate several variations of the conventional detector design. Results of these selected studies are presented. More generally, we conclude that the approach used in this work allows one to investigate alternative designs faster and in more detail than using conventional Geant4 optical simulations, making it an attractive tool to guide the development of the ultimate liquid xenon observatory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.14354v2-abstract-full').style.display = 'none'; document.getElementById('2203.14354v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Updated to address the referees&#39; comments, add few more authors. Journal reference added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 17 (2022) P07018 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.02309">arXiv:2203.02309</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.02309">pdf</a>, <a href="https://arxiv.org/format/2203.02309">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6471/ac841a">10.1088/1361-6471/ac841a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Aerne%2C+V">V. Aerne</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Akerib%2C+D+S">D. S. Akerib</a>, <a href="/search/physics?searchtype=author&amp;query=Akimov%2C+D+Y">D. Yu. Akimov</a>, <a href="/search/physics?searchtype=author&amp;query=Akshat%2C+J">J. Akshat</a>, <a href="/search/physics?searchtype=author&amp;query=Musalhi%2C+A+K+A">A. K. Al Musalhi</a>, <a href="/search/physics?searchtype=author&amp;query=Alder%2C+F">F. Alder</a>, <a href="/search/physics?searchtype=author&amp;query=Alsum%2C+S+K">S. K. Alsum</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amarasinghe%2C+C+S">C. S. Amarasinghe</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Ames%2C+A">A. Ames</a>, <a href="/search/physics?searchtype=author&amp;query=Anderson%2C+T+J">T. J. Anderson</a>, <a href="/search/physics?searchtype=author&amp;query=Andrieu%2C+B">B. Andrieu</a>, <a href="/search/physics?searchtype=author&amp;query=Angelides%2C+N">N. Angelides</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Ara%C3%BAjo%2C+H+M">H. M. Ara煤jo</a> , et al. (572 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.02309v1-abstract-short" style="display: inline;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neut&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'inline'; document.getElementById('2203.02309v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.02309v1-abstract-full" style="display: none;"> The nature of dark matter and properties of neutrinos are among the most pressing issues in contemporary particle physics. The dual-phase xenon time-projection chamber is the leading technology to cover the available parameter space for Weakly Interacting Massive Particles (WIMPs), while featuring extensive sensitivity to many alternative dark matter candidates. These detectors can also study neutrinos through neutrinoless double-beta decay and through a variety of astrophysical sources. A next-generation xenon-based detector will therefore be a true multi-purpose observatory to significantly advance particle physics, nuclear physics, astrophysics, solar physics, and cosmology. This review article presents the science cases for such a detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.02309v1-abstract-full').style.display = 'none'; document.getElementById('2203.02309v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">77 pages, 40 figures, 1262 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-22-003 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.13355">arXiv:2202.13355</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2202.13355">pdf</a>, <a href="https://arxiv.org/format/2202.13355">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10163-w">10.1140/epjc/s10052-022-10163-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Pulse shape analysis in GERDA Phase II </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+GERDA+collaboration"> The GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G">G. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bellotti%2C+E">E. Bellotti</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">S. Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">A. Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">V. Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">C. Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">A. Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">T. Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">E. V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Doroshkevich%2C+E">E. Doroshkevich</a> , et al. (91 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.13355v1-abstract-short" style="display: inline;"> The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$尾$ decay in $^{76}$Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by poi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13355v1-abstract-full').style.display = 'inline'; document.getElementById('2202.13355v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.13355v1-abstract-full" style="display: none;"> The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$尾$ decay in $^{76}$Ge using isotopically enriched high purity germanium detectors at the Laboratori Nazionali del Gran Sasso of INFN. After Phase I (2011-2013), the experiment benefited from several upgrades, including an additional active veto based on LAr instrumentation and a significant increase of mass by point-contact germanium detectors that improved the half-life sensitivity of Phase II (2015-2019) by an order of magnitude. At the core of the background mitigation strategy, the analysis of the time profile of individual pulses provides a powerful topological discrimination of signal-like and background-like events. Data from regular $^{228}$Th calibrations and physics data were both considered in the evaluation of the pulse shape discrimination performance. In this work, we describe the various methods applied to the data collected in GERDA Phase II corresponding to an exposure of 103.7 kg$\cdot$yr. These methods suppress the background by a factor of about 5 in the region of interest around Q$_{尾尾}$ = 2039 keV, while preserving (81$\pm$3)% of the signal. In addition, an exhaustive list of parameters is provided which were used in the final data analysis. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.13355v1-abstract-full').style.display = 'none'; document.getElementById('2202.13355v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 82 (2022) 284 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12231">arXiv:2112.12231</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12231">pdf</a>, <a href="https://arxiv.org/format/2112.12231">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/ptep/ptac074">10.1093/ptep/ptac074 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Application and modeling of an online distillation method to reduce krypton and argon in XENON1T </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+A">A. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (129 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12231v2-abstract-short" style="display: inline;"> A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12231v2-abstract-full').style.display = 'inline'; document.getElementById('2112.12231v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12231v2-abstract-full" style="display: none;"> A novel online distillation technique was developed for the XENON1T dark matter experiment to reduce intrinsic background components more volatile than xenon, such as krypton or argon, while the detector was operating. The method is based on a continuous purification of the gaseous volume of the detector system using the XENON1T cryogenic distillation column. A krypton-in-xenon concentration of $(360 \pm 60)$ ppq was achieved. It is the lowest concentration measured in the fiducial volume of an operating dark matter detector to date. A model was developed and fit to the data to describe the krypton evolution in the liquid and gas volumes of the detector system for several operation modes over the time span of 550 days, including the commissioning and science runs of XENON1T. The online distillation was also successfully applied to remove Ar-37 after its injection for a low energy calibration in XENON1T. This makes the usage of Ar-37 as a regular calibration source possible in the future. The online distillation can be applied to next-generation experiments to remove krypton prior to, or during, any science run. The model developed here allows further optimization of the distillation strategy for future large scale detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12231v2-abstract-full').style.display = 'none'; document.getElementById('2112.12231v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Prog Theor Exp Phys (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.12116">arXiv:2112.12116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.12116">pdf</a>, <a href="https://arxiv.org/format/2112.12116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.022001">10.1103/PhysRevD.106.022001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emission of Single and Few Electrons in XENON1T and Limits on Light Dark Matter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Bernard%2C+A">A. Bernard</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a> , et al. (130 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.12116v3-abstract-short" style="display: inline;"> Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12116v3-abstract-full').style.display = 'inline'; document.getElementById('2112.12116v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.12116v3-abstract-full" style="display: none;"> Delayed single- and few-electron emissions plague dual-phase time projection chambers, limiting their potential to search for light-mass dark matter. This paper examines the origins of these events in the XENON1T experiment. Characterization of the intensity of delayed electron backgrounds shows that the resulting emissions are correlated, in time and position, with high-energy events and can effectively be vetoed. In this work we extend previous S2-only analyses down to a single electron. From this analysis, after removing the correlated backgrounds, we observe rates &lt; 30 events/(electron*kg*day) in the region of interest spanning 1 to 5 electrons. We derive 90% confidence upper limits for dark matter-electron scattering, first direct limits on the electric dipole, magnetic dipole, and anapole interactions, and bosonic dark matter models, where we exclude new parameter space for dark photons and solar dark photons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.12116v3-abstract-full').style.display = 'none'; document.getElementById('2112.12116v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 17 figures, Updated to correct published Solar Dark Photon limit</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106, 022001 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.06675">arXiv:2112.06675</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.06675">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10383-0">10.1140/epjc/s10052-022-10383-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> R&amp;D of Wavelength-Shifting Reflectors and Characterization of the Quantum Efficiency of Tetraphenyl Butadiene and Polyethylene Naphthalate in Liquid Argon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=McFadden%2C+N">N. McFadden</a>, <a href="/search/physics?searchtype=author&amp;query=Krause%2C+P">P. Krause</a>, <a href="/search/physics?searchtype=author&amp;query=Sch%C3%B6nert%2C+S">S. Sch枚nert</a>, <a href="/search/physics?searchtype=author&amp;query=Wu%2C+V+H+S">V. H. S. Wu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.06675v2-abstract-short" style="display: inline;"> Detectors based on liquid argon (LAr) often require surfaces that can shift vacuum ultraviolet (VUV) light and reflect the visible shifted light. For the LAr instrumentation of the LEGEND-200 neutrinoless double beta decay experiment, several square meters of wavelength-shifting reflectors (WLSR) were prepared: the reflector Tetratex (TTX) was in-situ evaporated with the wavelength shifter tetraph&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06675v2-abstract-full').style.display = 'inline'; document.getElementById('2112.06675v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.06675v2-abstract-full" style="display: none;"> Detectors based on liquid argon (LAr) often require surfaces that can shift vacuum ultraviolet (VUV) light and reflect the visible shifted light. For the LAr instrumentation of the LEGEND-200 neutrinoless double beta decay experiment, several square meters of wavelength-shifting reflectors (WLSR) were prepared: the reflector Tetratex (TTX) was in-situ evaporated with the wavelength shifter tetraphenyl butadiene (TPB). For even larger detectors, TPB evaporation will be more challenging and plastic films of polyethylene naphthalate (PEN) are considered as an option to ease scalability. In this work, we first characterized the absorption (and reflectivity) of PEN, TPB (and TTX) films in response to visible light. We then measured TPB and PEN coupled to TTX in a LAr setup equipped with a VUV sensitive photomultiplier tube. The effective light yield in the setup was first measured using an absorbing reference sample, and the VUV reflectivity of TTX quantified. The characterization and simulation of the setup along with the measurements and modelling of the optical parameters of TPB, PEN and TTX allowed to estimate the quantum efficiency (QE) of TPB and PEN in LAr (at 87K) for the first time: these were found to be above 67% and 49%, respectively (at 90% CL). These results provide relevant input for the optical simulations of experiments that use TPB in LAr, such as LEGEND-200, and for experiments that plan to use TPB or PEN to shift VUV scintillation light. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.06675v2-abstract-full').style.display = 'none'; document.getElementById('2112.06675v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2022) 82:442 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2112.05629">arXiv:2112.05629</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2112.05629">pdf</a>, <a href="https://arxiv.org/format/2112.05629">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-10345-6">10.1140/epjc/s10052-022-10345-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Material radiopurity control in the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Abe%2C+K">K. Abe</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+A">S. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Martin%2C+D+A">D. Ant贸n Martin</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baxter%2C+A+L">A. L. Baxter</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+R">R. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Cimmino%2C+B">B. Cimmino</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+M">M. Clark</a> , et al. (128 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2112.05629v2-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and $^{222}$Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05629v2-abstract-full').style.display = 'inline'; document.getElementById('2112.05629v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2112.05629v2-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of the utmost importance for rare-event searches and thus critical to the XENONnT experiment. Results of an extensive radioassay program are reported, in which material samples have been screened with gamma-ray spectroscopy, mass spectrometry, and $^{222}$Rn emanation measurements. Furthermore, the cleanliness procedures applied to remove or mitigate surface contamination of detector materials are described. Screening results, used as inputs for a XENONnT Monte Carlo simulation, predict a reduction of materials background ($\sim$17%) with respect to its predecessor XENON1T. Through radon emanation measurements, the expected $^{222}$Rn activity concentration in XENONnT is determined to be 4.2$\,(^{+0.5}_{-0.7})\,渭$Bq/kg, a factor three lower with respect to XENON1T. This radon concentration will be further suppressed by means of the novel radon distillation system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2112.05629v2-abstract-full').style.display = 'none'; document.getElementById('2112.05629v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.07151">arXiv:2109.07151</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2109.07151">pdf</a>, <a href="https://arxiv.org/format/2109.07151">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09834-x">10.1140/epjc/s10052-021-09834-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A measurement of the mean electronic excitation energy of liquid xenon </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">Laura Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez-Lucas%2C+P">Patricia Sanchez-Lucas</a>, <a href="/search/physics?searchtype=author&amp;query=Thieme%2C+K">Kevin Thieme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.07151v2-abstract-short" style="display: inline;"> Detectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by means of radioactive sources. However, a microscopic calibration, i.e. the translation from the number of excitation quanta into deposited energy, also n&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07151v2-abstract-full').style.display = 'inline'; document.getElementById('2109.07151v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.07151v2-abstract-full" style="display: none;"> Detectors using liquid xenon as target are widely deployed in rare event searches. Conclusions on the interacting particle rely on a precise reconstruction of the deposited energy which requires calibrations of the energy scale of the detector by means of radioactive sources. However, a microscopic calibration, i.e. the translation from the number of excitation quanta into deposited energy, also necessitates good knowledge of the energy required to produce single scintillation photons or ionisation electrons in liquid xenon. The sum of these excitation quanta is directly proportional to the deposited energy in the target. The proportionality constant is the mean excitation energy and is commonly known as $W$-value. Here we present a measurement of the $W$-value with electronic recoil interactions in a small dual-phase xenon time projection chamber with a hybrid (photomultiplier tube and silicon photomultipliers) photosensor configuration. Our result is based on calibrations at $\mathcal{O}(1-10 \, \mathrm{keV})$ with internal $^{37}$Ar and $^{83\text{m}}$Kr sources and single electron events. We obtain a value of $W=11.5 \, ^{+0.2}_{-0.3} \, \mathrm{(syst.)} \, \mathrm{eV}$, with negligible statistical uncertainty, which is lower than previously measured at these energies. If further confirmed, our result will be relevant for modelling the absolute response of liquid xenon detectors to particle interactions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.07151v2-abstract-full').style.display = 'none'; document.getElementById('2109.07151v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 4 figures, 2 tables. v2: external crosstalk considered, NEST comparison and references added, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 1060 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.11462">arXiv:2107.11462</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2107.11462">pdf</a>, <a href="https://arxiv.org/format/2107.11462">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> LEGEND-1000 Preconceptual Design Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=LEGEND+Collaboration"> LEGEND Collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Abgrall%2C+N">N. Abgrall</a>, <a href="/search/physics?searchtype=author&amp;query=Abt%2C+I">I. Abt</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alexander%2C+A">A. Alexander</a>, <a href="/search/physics?searchtype=author&amp;query=Andreoiu%2C+C">C. Andreoiu</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Avignone%2C+F+T">F. T. Avignone III</a>, <a href="/search/physics?searchtype=author&amp;query=Bae%2C+W">W. Bae</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A">A. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Bantel%2C+M">M. Bantel</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Barabash%2C+A+S">A. S. Barabash</a>, <a href="/search/physics?searchtype=author&amp;query=Barbeau%2C+P+S">P. S. Barbeau</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+C+J">C. J. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Barton%2C+P+J">P. J. Barton</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bernieri%2C+E">E. Bernieri</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Bhimani%2C+K+H">K. H. Bhimani</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Blalock%2C+E">E. Blalock</a>, <a href="/search/physics?searchtype=author&amp;query=Bolozdynya%2C+A">A. Bolozdynya</a> , et al. (239 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.11462v1-abstract-short" style="display: inline;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'inline'; document.getElementById('2107.11462v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.11462v1-abstract-full" style="display: none;"> We propose the construction of LEGEND-1000, the ton-scale Large Enriched Germanium Experiment for Neutrinoless $尾尾$ Decay. This international experiment is designed to answer one of the highest priority questions in fundamental physics. It consists of 1000 kg of Ge detectors enriched to more than 90% in the $^{76}$Ge isotope operated in a liquid argon active shield at a deep underground laboratory. By combining the lowest background levels with the best energy resolution in the field, LEGEND-1000 will perform a quasi-background-free search and can make an unambiguous discovery of neutrinoless double-beta decay with just a handful of counts at the decay $Q$ value. The experiment is designed to probe this decay with a 99.7%-CL discovery sensitivity in the $^{76}$Ge half-life of $1.3\times10^{28}$ years, corresponding to an effective Majorana mass upper limit in the range of 9-21 meV, to cover the inverted-ordering neutrino mass scale with 10 yr of live time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.11462v1-abstract-full').style.display = 'none'; document.getElementById('2107.11462v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2105.13829">arXiv:2105.13829</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2105.13829">pdf</a>, <a href="https://arxiv.org/format/2105.13829">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08052">10.1088/1748-0221/16/08/P08052 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and construction of Xenoscope -- a full-scale vertical demonstrator for the DARWIN observatory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/physics?searchtype=author&amp;query=Girard%2C+F">F. Girard</a>, <a href="/search/physics?searchtype=author&amp;query=Manfredini%2C+A">A. Manfredini</a>, <a href="/search/physics?searchtype=author&amp;query=McFadden%2C+N">N. McFadden</a>, <a href="/search/physics?searchtype=author&amp;query=Peres%2C+R">R. Peres</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez-Lucas%2C+P">P. Sanchez-Lucas</a>, <a href="/search/physics?searchtype=author&amp;query=Thieme%2C+K">K. Thieme</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2105.13829v2-abstract-short" style="display: inline;"> The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and other rare interactions. It will operate a 50 t liquid xenon detector, with 40 t in the time projection chamber (TPC). To inform the final detector design and technical choices, a series of technological questions must first be addressed. Here we describe a full-scale demonstrator in the vertical&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13829v2-abstract-full').style.display = 'inline'; document.getElementById('2105.13829v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2105.13829v2-abstract-full" style="display: none;"> The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and other rare interactions. It will operate a 50 t liquid xenon detector, with 40 t in the time projection chamber (TPC). To inform the final detector design and technical choices, a series of technological questions must first be addressed. Here we describe a full-scale demonstrator in the vertical dimension, Xenoscope, with the main goal of achieving electron drift over a 2.6 m distance, which is the scale of the DARWIN TPC. We have designed and constructed the facility infrastructure, including the cryostat, cryogenic and purification systems, the xenon storage and recuperation system, as well as the slow control system. We have also designed a xenon purity monitor and the TPC, with the fabrication of the former nearly complete. In a first commissioning run of the facility without an inner detector, we demonstrated the nominal operational reach of Xenoscope and benchmarked the components of the cryogenic and slow control systems, demonstrating reliable and continuous operation of all subsystems over 40 days. The infrastructure is thus ready for the integration of the purity monitor, followed by the TPC. Further applications of the facility include R&amp;D on the high voltage feedthrough for DARWIN, measurements of electron cloud diffusion, as well as measurements of optical properties of liquid xenon. In the future, Xenoscope will be available as a test platform for the DARWIN collaboration to characterise new detector technologies. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2105.13829v2-abstract-full').style.display = 'none'; document.getElementById('2105.13829v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 23 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 16 P08052 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.15051">arXiv:2104.15051</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2104.15051">pdf</a>, <a href="https://arxiv.org/format/2104.15051">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/16/08/P08033">10.1088/1748-0221/16/08/P08033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Improved quality tests of R11410-21 photomultiplier tubes for the XENONnT experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bollig%2C+J">J. Bollig</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/physics?searchtype=author&amp;query=Ferella%2C+A+D">A. D. Ferella</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/physics?searchtype=author&amp;query=Hoetzsch%2C+L">L. Hoetzsch</a>, <a href="/search/physics?searchtype=author&amp;query=Kazama%2C+S">S. Kazama</a>, <a href="/search/physics?searchtype=author&amp;query=Koltman%2C+G">G. Koltman</a>, <a href="/search/physics?searchtype=author&amp;query=Landsman%2C+H">H. Landsman</a>, <a href="/search/physics?searchtype=author&amp;query=Lindner%2C+M">M. Lindner</a>, <a href="/search/physics?searchtype=author&amp;query=Mahlstedt%2C+J">J. Mahlstedt</a>, <a href="/search/physics?searchtype=author&amp;query=Undagoitia%2C+T+M">T. Marrod谩n Undagoitia</a>, <a href="/search/physics?searchtype=author&amp;query=Pelssers%2C+B">B. Pelssers</a>, <a href="/search/physics?searchtype=author&amp;query=Volta%2C+G">G. Volta</a>, <a href="/search/physics?searchtype=author&amp;query=Wack%2C+O">O. Wack</a>, <a href="/search/physics?searchtype=author&amp;query=Wulf%2C+J">J. Wulf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.15051v1-abstract-short" style="display: inline;"> Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affect&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.15051v1-abstract-full').style.display = 'inline'; document.getElementById('2104.15051v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.15051v1-abstract-full" style="display: none;"> Photomultiplier tubes (PMTs) are often used in low-background particle physics experiments, which rely on an excellent response to single-photon signals and stable long-term operation. In particular, the Hamamatsu R11410 model is the light sensor of choice for liquid xenon dark matter experiments, including XENONnT. The same PMT model was also used for the predecessor, XENON1T, where issues affecting its long-term operation were observed. Here, we report on an improved PMT testing procedure which ensures optimal performance in XENONnT. Using both new and upgraded facilities, we tested 368 new PMTs in a cryogenic xenon environment. We developed new tests targeted at the detection of light emission and the degradation of the PMT vacuum through small leaks, which can lead to spurious signals known as afterpulses, both of which were observed in XENON1T. We exclude the use of 26 of the 368 tested PMTs and categorise the remainder according to their performance. Given that we have improved the testing procedure, yet we rejected fewer PMTs, we expect significantly better PMT performance in XENONnT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.15051v1-abstract-full').style.display = 'none'; document.getElementById('2104.15051v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.15111">arXiv:2103.15111</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.15111">pdf</a>, <a href="https://arxiv.org/format/2103.15111">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09184-8">10.1140/epjc/s10052-021-09184-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Characterization of inverted coaxial $^{76}$Ge detectors in GERDA for future double-$尾$ decay experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=GERDA+collaboration"> GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bellotti%2C+E">E. Bellotti</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">S. Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">A. Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">V. Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">C. Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">A. Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">T. Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">E. V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Doroshkevich%2C+E">E. Doroshkevich</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.15111v1-abstract-short" style="display: inline;"> Neutrinoless double-$尾$ decay of $^{76}$Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in $^{76}$Ge.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15111v1-abstract-full').style.display = 'inline'; document.getElementById('2103.15111v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.15111v1-abstract-full" style="display: none;"> Neutrinoless double-$尾$ decay of $^{76}$Ge is searched for with germanium detectors where source and detector of the decay are identical. For the success of future experiments it is important to increase the mass of the detectors. We report here on the characterization and testing of five prototype detectors manufactured in inverted coaxial (IC) geometry from material enriched to 88% in $^{76}$Ge. IC detectors combine the large mass of the traditional semi-coaxial Ge detectors with the superior resolution and pulse shape discrimination power of point contact detectors which exhibited so far much lower mass. Their performance has been found to be satisfactory both when operated in vacuum cryostat and bare in liquid argon within the GERDA setup. The measured resolutions at the Q-value for double-$尾$ decay of $^{76}$Ge (Q$_{尾尾}$ = 2039 keV) are about 2.1 keV full width at half maximum in vacuum cryostat. After 18 months of operation within the ultra-low background environment of the GERmanium Detector Array (GERDA) experiment and an accumulated exposure of 8.5 kg$\cdot$yr, the background index after analysis cuts is measured to be $4.9^{+7.3}_{-3.4}\times 10^{-4}$ counts /(keV$\cdot$kg$\cdot$yr) around Q$_{尾尾}$. This work confirms the feasibility of IC detectors for the next-generation experiment LEGEND. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.15111v1-abstract-full').style.display = 'none'; document.getElementById('2103.15111v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 12 figures, submitted to EPJC</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 505 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.13777">arXiv:2103.13777</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2103.13777">pdf</a>, <a href="https://arxiv.org/format/2103.13777">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-021-09403-2">10.1140/epjc/s10052-021-09403-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calibration of the GERDA experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=GERDA+collaboration"> GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bellotti%2C+E">E. Bellotti</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">S. Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">A. Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">V. Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">C. Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">A. Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">T. Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">E. V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Doroshkevich%2C+E">E. Doroshkevich</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.13777v1-abstract-short" style="display: inline;"> The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$尾$ decay in $^{76}$Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q$_{尾尾}$ = 2039.061(7)keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13777v1-abstract-full').style.display = 'inline'; document.getElementById('2103.13777v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.13777v1-abstract-full" style="display: none;"> The GERmanium Detector Array (GERDA) collaboration searched for neutrinoless double-$尾$ decay in $^{76}$Ge with an array of about 40 high-purity isotopically-enriched germanium detectors. The experimental signature of the decay is a monoenergetic signal at Q$_{尾尾}$ = 2039.061(7)keV in the measured summed energy spectrum of the two emitted electrons. Both the energy reconstruction and resolution of the germanium detectors are crucial to separate a potential signal from various backgrounds, such as neutrino-accompanied double-$尾$ decays allowed by the Standard Model. The energy resolution and stability were determined and monitored as a function of time using data from regular $^{228}$Th calibrations. In this work, we describe the calibration process and associated data analysis of the full GERDA dataset, tailored to preserve the excellent resolution of the individual germanium detectors when combining data over several years. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.13777v1-abstract-full').style.display = 'none'; document.getElementById('2103.13777v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 682 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.13981">arXiv:2009.13981</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.13981">pdf</a>, <a href="https://arxiv.org/format/2009.13981">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-08777-z">10.1140/epjc/s10052-020-08777-z <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $^{222}$Rn emanation measurements for the XENON1T experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (118 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.13981v3-abstract-short" style="display: inline;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation me&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'inline'; document.getElementById('2009.13981v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.13981v3-abstract-full" style="display: none;"> The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $渭$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $\pm$ 0.1) $渭$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.13981v3-abstract-full').style.display = 'none'; document.getElementById('2009.13981v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 81, 337 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.06079">arXiv:2009.06079</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2009.06079">pdf</a>, <a href="https://arxiv.org/format/2009.06079">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.125.252502">10.1103/PhysRevLett.125.252502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Final Results of GERDA on the Search for Neutrinoless Double-$尾$ Decay </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=GERDA+collaboration"> GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">M. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Araujo%2C+G+R">G. R. Araujo</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">A. M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">M. Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">I. Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">C. Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bellotti%2C+E">E. Bellotti</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">S. Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">A. Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">L. Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Biancacci%2C+V">V. Biancacci</a>, <a href="/search/physics?searchtype=author&amp;query=Borowicz%2C+D">D. Borowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">E. Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">V. Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">V. Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">R. Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">A. Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">C. Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">A. Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">T. Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">V. D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">E. V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">N. Di Marco</a> , et al. (90 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.06079v1-abstract-short" style="display: inline;"> The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-$尾$ ($0谓尾尾$) decay of $^{76}$Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in $^{76}$Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of $5.2\times10^{-4}$ co&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06079v1-abstract-full').style.display = 'inline'; document.getElementById('2009.06079v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.06079v1-abstract-full" style="display: none;"> The GERmanium Detector Array (GERDA) experiment searched for the lepton-number-violating neutrinoless double-$尾$ ($0谓尾尾$) decay of $^{76}$Ge, whose discovery would have far-reaching implications in cosmology and particle physics. By operating bare germanium diodes, enriched in $^{76}$Ge, in an active liquid argon shield, GERDA achieved an unprecedently low background index of $5.2\times10^{-4}$ counts/(keV$\cdot$kg$\cdot$yr) in the signal region and met the design goal to collect an exposure of 100 kg$\cdot$yr in a background-free regime. When combined with the result of Phase I, no signal is observed after 127.2 kg$\cdot$yr of total exposure. A limit on the half-life of $0谓尾尾$ decay in $^{76}$Ge is set at $T_{1/2}&gt;1.8\times10^{26}$ yr at 90% C.L., which coincides with the sensitivity assuming no signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.06079v1-abstract-full').style.display = 'none'; document.getElementById('2009.06079v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 3 figures, submitted to Physical Review Letters</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 125, 252502 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.08796">arXiv:2007.08796</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2007.08796">pdf</a>, <a href="https://arxiv.org/format/2007.08796">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/11/031">10.1088/1475-7516/2020/11/031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Projected WIMP Sensitivity of the XENONnT Dark Matter Experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=The+XENON+collaboration"> The XENON collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J+R">J. R. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (115 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.08796v2-abstract-short" style="display: inline;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, c&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'inline'; document.getElementById('2007.08796v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.08796v2-abstract-full" style="display: none;"> XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 \pm 0.6$ (keV t y)$^{-1}$ and $(2.2\pm 0.5)\times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$\,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4\times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6\times10^{-48}$ cm$^2$ ($5.0\times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$蟽$ (5$蟽$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2\times10^{-43}$ cm$^2$ ($6.0\times10^{-42}$ cm$^2$). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.08796v2-abstract-full').style.display = 'none'; document.getElementById('2007.08796v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP11(2020)031 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.03114">arXiv:2006.03114</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2006.03114">pdf</a>, <a href="https://arxiv.org/format/2006.03114">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Solar Neutrino Detection Sensitivity in DARWIN via Electron Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+E+M+A">S. E. M. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F">F. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Arazi%2C+L">L. Arazi</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Balzer%2C+M">M. Balzer</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baur%2C+D">D. Baur</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Bourgeois%2C+C">C. Bourgeois</a>, <a href="/search/physics?searchtype=author&amp;query=Breskin%2C+A">A. Breskin</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Br%C3%BCnner%2C+S">S. Br眉nner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a> , et al. (141 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.03114v2-abstract-short" style="display: inline;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would ben&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'inline'; document.getElementById('2006.03114v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.03114v2-abstract-full" style="display: none;"> We detail the sensitivity of the liquid xenon (LXe) DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: $pp$, $^7$Be, $^{13}$N, $^{15}$O and $pep$. The precision of the $^{13}$N, $^{15}$O and $pep$ components is hindered by the double-beta decay of $^{136}$Xe and, thus, would benefit from a depleted target. A high-statistics observation of $pp$ neutrinos would allow us to infer the values of the weak mixing angle, $\sin^2胃_w$, and the electron-type neutrino survival probability, $P_e$, in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, at an exposure of 300 ty. An observation of $pp$ and $^7$Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high (GS98) and low metallicity (AGS09) solar models with 2.1-2.5$蟽$ significance, independent of external measurements from other experiments or a measurement of $^8$B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $^{131}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.03114v2-abstract-full').style.display = 'none'; document.getElementById('2006.03114v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures; for associated data files, see https://github.com/Physik-Institut-UZH/DARWIN-Sensitivity-Studies/tree/master/solar_neutrinos_electron_scattering</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.13407">arXiv:2003.13407</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.13407">pdf</a>, <a href="https://arxiv.org/format/2003.13407">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of $^{136}$Xe </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Maouloud%2C+S+E+M+A">S. E. M. Ahmed Maouloud</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F">F. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antunovic%2C+B">B. Antunovic</a>, <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Baur%2C+D">D. Baur</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Bismark%2C+A">A. Bismark</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J">J. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a>, <a href="/search/physics?searchtype=author&amp;query=Clark%2C+M">M. Clark</a>, <a href="/search/physics?searchtype=author&amp;query=Colijn%2C+A+P">A. P. Colijn</a>, <a href="/search/physics?searchtype=author&amp;query=Cuenca-Garc%C3%ADa%2C+J+J">J. J. Cuenca-Garc铆a</a>, <a href="/search/physics?searchtype=author&amp;query=Cussonneau%2C+J+P">J. P. Cussonneau</a>, <a href="/search/physics?searchtype=author&amp;query=Decowski%2C+M+P">M. P. Decowski</a>, <a href="/search/physics?searchtype=author&amp;query=Depoian%2C+A">A. Depoian</a>, <a href="/search/physics?searchtype=author&amp;query=Dierle%2C+J">J. Dierle</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Gangi%2C+P">P. Di Gangi</a> , et al. (70 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.13407v2-abstract-short" style="display: inline;"> The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$\,$t total natural xenon inventory, 40$\,$t will be the active target of a time projection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4\times10^{27}\,$yr, u&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13407v2-abstract-full').style.display = 'inline'; document.getElementById('2003.13407v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.13407v2-abstract-full" style="display: none;"> The DARWIN observatory is a proposed next-generation experiment to search for particle dark matter and for the neutrinoless double beta decay of $^{136}$Xe. Out of its 50$\,$t total natural xenon inventory, 40$\,$t will be the active target of a time projection chamber which thus contains about 3.6 t of $^{136}$Xe. Here, we show that its projected half-life sensitivity is $2.4\times10^{27}\,$yr, using a fiducial volume of 5t of natural xenon and 10$\,$yr of operation with a background rate of less than 0.2$~$events/(t$\cdot$yr) in the energy region of interest. This sensitivity is based on a detailed Monte Carlo simulation study of the background and event topologies in the large, homogeneous target. DARWIN will be comparable in its science reach to dedicated double beta decay experiments using xenon enriched in $^{136}$Xe. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.13407v2-abstract-full').style.display = 'none'; document.getElementById('2003.13407v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 808 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03825">arXiv:2003.03825</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.03825">pdf</a>, <a href="https://arxiv.org/format/2003.03825">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8284-0">10.1140/epjc/s10052-020-8284-0 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy resolution and linearity of XENON1T in the MeV energy range </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Aprile%2C+E">E. Aprile</a>, <a href="/search/physics?searchtype=author&amp;query=Aalbers%2C+J">J. Aalbers</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+F">F. Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Alfonsi%2C+M">M. Alfonsi</a>, <a href="/search/physics?searchtype=author&amp;query=Althueser%2C+L">L. Althueser</a>, <a href="/search/physics?searchtype=author&amp;query=Amaro%2C+F+D">F. D. Amaro</a>, <a href="/search/physics?searchtype=author&amp;query=Antochi%2C+V+C">V. C. Antochi</a>, <a href="/search/physics?searchtype=author&amp;query=Angelino%2C+E">E. Angelino</a>, <a href="/search/physics?searchtype=author&amp;query=Angevaare%2C+J">J. Angevaare</a>, <a href="/search/physics?searchtype=author&amp;query=Arneodo%2C+F">F. Arneodo</a>, <a href="/search/physics?searchtype=author&amp;query=Barge%2C+D">D. Barge</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauermeister%2C+B">B. Bauermeister</a>, <a href="/search/physics?searchtype=author&amp;query=Bellagamba%2C+L">L. Bellagamba</a>, <a href="/search/physics?searchtype=author&amp;query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&amp;query=Berger%2C+T">T. Berger</a>, <a href="/search/physics?searchtype=author&amp;query=Breur%2C+P+A">P. A. Breur</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+A">A. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Brown%2C+E">E. Brown</a>, <a href="/search/physics?searchtype=author&amp;query=Bruenner%2C+S">S. Bruenner</a>, <a href="/search/physics?searchtype=author&amp;query=Bruno%2C+G">G. Bruno</a>, <a href="/search/physics?searchtype=author&amp;query=Budnik%2C+R">R. Budnik</a>, <a href="/search/physics?searchtype=author&amp;query=Capelli%2C+C">C. Capelli</a>, <a href="/search/physics?searchtype=author&amp;query=Cardoso%2C+J+M+R">J. M. R. Cardoso</a>, <a href="/search/physics?searchtype=author&amp;query=Cichon%2C+D">D. Cichon</a> , et al. (113 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03825v2-abstract-short" style="display: inline;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XEN&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'inline'; document.getElementById('2003.03825v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03825v2-abstract-full" style="display: none;"> Xenon dual-phase time projection chambers designed to search for Weakly Interacting Massive Particles have so far shown a relative energy resolution which degrades with energy above $\sim$200 keV due to the saturation effects. This has limited their sensitivity in the search for rare events like the neutrinoless double-beta decay of $^{136}$Xe at its $Q$-value, $Q_{尾尾}\simeq$ 2.46 MeV. For the XENON1T dual-phase time projection chamber, we demonstrate that the relative energy resolution at 1 $蟽/渭$ is as low as (0.80$\pm$0.02) % in its one-ton fiducial mass, and for single-site interactions at $Q_{尾尾}$. We also present a new signal correction method to rectify the saturation effects of the signal readout system, resulting in more accurate position reconstruction and indirectly improving the energy resolution. The very good result achieved in XENON1T opens up new windows for the xenon dual-phase dark matter detectors to simultaneously search for other rare events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03825v2-abstract-full').style.display = 'none'; document.getElementById('2003.03825v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 785 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.01731">arXiv:2003.01731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2003.01731">pdf</a>, <a href="https://arxiv.org/format/2003.01731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-8031-6">10.1140/epjc/s10052-020-8031-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The first dual-phase xenon TPC equipped with silicon photomultipliers and characterisation with $^{37}$Ar </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">L. Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Biondi%2C+Y">Y. Biondi</a>, <a href="/search/physics?searchtype=author&amp;query=Galloway%2C+M">M. Galloway</a>, <a href="/search/physics?searchtype=author&amp;query=Girard%2C+F">F. Girard</a>, <a href="/search/physics?searchtype=author&amp;query=Hochrein%2C+S">S. Hochrein</a>, <a href="/search/physics?searchtype=author&amp;query=Reichard%2C+S">S. Reichard</a>, <a href="/search/physics?searchtype=author&amp;query=Sanchez-Lucas%2C+P">P. Sanchez-Lucas</a>, <a href="/search/physics?searchtype=author&amp;query=Thieme%2C+K">K. Thieme</a>, <a href="/search/physics?searchtype=author&amp;query=Wulf%2C+J">J. Wulf</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.01731v3-abstract-short" style="display: inline;"> For the first time, a small dual-phase (liquid/gas) xenon time projection chamber was equipped with a top array of silicon photomultipliers for light and charge readout. Here we describe the instrument in detail, as well as the data processing and the event position reconstruction algorithms. We obtain a spatial resolution of ~1.5 mm in the horizontal plane. To characterise the detector performanc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01731v3-abstract-full').style.display = 'inline'; document.getElementById('2003.01731v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.01731v3-abstract-full" style="display: none;"> For the first time, a small dual-phase (liquid/gas) xenon time projection chamber was equipped with a top array of silicon photomultipliers for light and charge readout. Here we describe the instrument in detail, as well as the data processing and the event position reconstruction algorithms. We obtain a spatial resolution of ~1.5 mm in the horizontal plane. To characterise the detector performance, we show calibration data with internal $^{83\text{m}}$Kr and $^{37}$Ar sources, and we detail the production of the latter as well as its introduction into the system. We finally compare the observed light and charge yields down to electronic recoil energies of 2.82 keV to predictions based on NEST v2.0. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.01731v3-abstract-full').style.display = 'none'; document.getElementById('2003.01731v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 13 figures, typos corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 80, 477 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.02522">arXiv:1909.02522</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/1909.02522">pdf</a>, <a href="https://arxiv.org/format/1909.02522">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/JHEP03(2020)139">10.1007/JHEP03(2020)139 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Modeling of GERDA Phase II data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&amp;query=GERDA+collaboration"> GERDA collaboration</a>, <a href="/search/physics?searchtype=author&amp;query=Agostini%2C+M">Matteo Agostini</a>, <a href="/search/physics?searchtype=author&amp;query=Bakalyarov%2C+A+M">Alexander M. Bakalyarov</a>, <a href="/search/physics?searchtype=author&amp;query=Balata%2C+M">Marco Balata</a>, <a href="/search/physics?searchtype=author&amp;query=Barabanov%2C+I">Igor Barabanov</a>, <a href="/search/physics?searchtype=author&amp;query=Baudis%2C+L">Laura Baudis</a>, <a href="/search/physics?searchtype=author&amp;query=Bauer%2C+C">Christian Bauer</a>, <a href="/search/physics?searchtype=author&amp;query=Bellotti%2C+E">Enrico Bellotti</a>, <a href="/search/physics?searchtype=author&amp;query=Belogurov%2C+S">Sergej Belogurov</a>, <a href="/search/physics?searchtype=author&amp;query=Bettini%2C+A">Alessandro Bettini</a>, <a href="/search/physics?searchtype=author&amp;query=Bezrukov%2C+L">Leonid Bezrukov</a>, <a href="/search/physics?searchtype=author&amp;query=Borowicz%2C+D">Dariusz Borowicz</a>, <a href="/search/physics?searchtype=author&amp;query=Bossio%2C+E">Elisabetta Bossio</a>, <a href="/search/physics?searchtype=author&amp;query=Bothe%2C+V">Vikas Bothe</a>, <a href="/search/physics?searchtype=author&amp;query=Brudanin%2C+V">Victor Brudanin</a>, <a href="/search/physics?searchtype=author&amp;query=Brugnera%2C+R">Riccardo Brugnera</a>, <a href="/search/physics?searchtype=author&amp;query=Caldwell%2C+A">Allen Caldwell</a>, <a href="/search/physics?searchtype=author&amp;query=Cattadori%2C+C">Carla Cattadori</a>, <a href="/search/physics?searchtype=author&amp;query=Chernogorov%2C+A">Andrey Chernogorov</a>, <a href="/search/physics?searchtype=author&amp;query=Comellato%2C+T">Tommaso Comellato</a>, <a href="/search/physics?searchtype=author&amp;query=D%27Andrea%2C+V">Valerio D&#39;Andrea</a>, <a href="/search/physics?searchtype=author&amp;query=Demidova%2C+E+V">Elena V. Demidova</a>, <a href="/search/physics?searchtype=author&amp;query=Di+Marco%2C+N">Natalia Di Marco</a>, <a href="/search/physics?searchtype=author&amp;query=Domula%2C+A">Alexander Domula</a>, <a href="/search/physics?searchtype=author&amp;query=Doroshkevich%2C+E">Evgenyi Doroshkevich</a> , et al. (85 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.02522v2-abstract-short" style="display: inline;"> The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta ($0谓尾尾$) decay of $^{76}$Ge. The technological challenge of GERDA is to operate in a &#34;background-free&#34; regime in the region of interest (ROI) after analysis cuts for the full 100$\,$kg$\cdot$yr target exposure of the experiment. A careful modeling and de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02522v2-abstract-full').style.display = 'inline'; document.getElementById('1909.02522v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.02522v2-abstract-full" style="display: none;"> The GERmanium Detector Array (GERDA) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta ($0谓尾尾$) decay of $^{76}$Ge. The technological challenge of GERDA is to operate in a &#34;background-free&#34; regime in the region of interest (ROI) after analysis cuts for the full 100$\,$kg$\cdot$yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around $Q_{尾尾}$ for the $0谓尾尾$ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos ($2谓尾尾$) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for GERDA Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of $16.04^{+0.78}_{-0.85} \cdot 10^{-3}\,$cts/(kg$\cdot$keV$\cdot$yr) for the enriched BEGe data set and $14.68^{+0.47}_{-0.52} \cdot 10^{-3}\,$cts/(kg$\cdot$keV$\cdot$yr) for the enriched coaxial data set. These values are similar to the one of Gerda Phase I despite a much larger number of detectors and hence radioactive hardware components. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.02522v2-abstract-full').style.display = 'none'; document.getElementById('1909.02522v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Baudis%2C+L&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10