CINXE.COM

Search results for: gallic acid derivatives

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: gallic acid derivatives</title> <meta name="description" content="Search results for: gallic acid derivatives"> <meta name="keywords" content="gallic acid derivatives"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="gallic acid derivatives" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="gallic acid derivatives"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3809</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: gallic acid derivatives</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3809</span> Synthesis and in-Vitro Biological Activity of Novel Gallic Acid Derivatives </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mostafavi">Hossein Mostafavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A diversity of biological activities and pharmaceutical uses have been attributed to gallic acid derivatives such as antibacterial, anticancer, anti inflammatory. A series of gallic acid derivatives were synthesized, and their structure was confirmed by FT-IR, HNMR, CNMR, elemental analysis. In vitro biological activity of compounds was determined against Proteus vulgaris ATCC 7829, Escherichia coli ATCC 25922, as (Gram-negative) bacteria and bacillus cereus ATCC 11778, Staphylococus aureus ATCC 6538 as (Gram-positive) bacteria. Antibacterial susceptibility tests were done by use of the paper disc diffusion method on Mueller Hinton agar (Merck). Chloramiphenicol, Penicilline, Streptomycin and Tetracycline were standard reference antibiotics. The zone of inhibition against bacteria was measured after 24 hours at 37 °C. Compounds 3, 4, 5 were the main antibacterial compounds against Gram-negative bacteria but not Gram-positive. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives" title="gallic acid derivatives">gallic acid derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=antibiotics" title=" antibiotics"> antibiotics</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a> </p> <a href="https://publications.waset.org/abstracts/121718/synthesis-and-in-vitro-biological-activity-of-novel-gallic-acid-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3808</span> Application of Chemical Tests for the Inhibition of Scaling From Hamma Hard Waters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samira%20Ghizellaoui">Samira Ghizellaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boumagoura"> Manel Boumagoura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium carbonate precipitation is a widespread problem, especially in hard water systems. The main water supply that supplies the city of Constantine with drinking water is underground water called Hamma water. This water has a very high hardness of around 590 mg/L CaCO₃. This leads to the formation of scale, consisting mainly of calcium carbonate, which can be responsible for the clogging of valves and the deterioration of equipment (water heaters, washing machines and encrustations in the pipes). Plant extracts used as scale inhibitors have attracted the attention of several researchers. In recent years, green inhibitors have attracted great interest because they are biodegradable, non-toxic and do not affect the environment. The aim of our work is to evaluate the effectiveness of a chemical antiscale treatment in the presence of three green inhibitors: gallicacid; quercetin; alginate, and three mixtures: (gallic acid-quercetin); (quercetin-alginate); (gallic acid-alginate). The results show that the inhibitory effect is manifested from an addition of 1mg/L of gallic acid, 10 mg/L of quercetin, 0.2 mg/L of alginate, 0.4mg/L of (gallic acid-quercetin), 2mg/L of (quercetin-alginate) and 0.4 mg/L of (gallic acid-alginate). On the other hand, 100 mg/L (Drinking water standard) of Ca2+is reached for partial softening at 4 mg/L of gallic acid, 40 mg/L of quercetin, 0.6mg/L of alginate, 4mg/L of (gallic acid-quercetin), 10mg/L of (quercetin-alginate) and 1.6 mg/L of (gallic acid-alginate). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water" title="water">water</a>, <a href="https://publications.waset.org/abstracts/search?q=scaling" title=" scaling"> scaling</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbonate" title=" calcium carbonate"> calcium carbonate</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20inhibitor" title=" green inhibitor"> green inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/167612/application-of-chemical-tests-for-the-inhibition-of-scaling-from-hamma-hard-waters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3807</span> Poly (Diphenylamine-4-Sulfonic Acid) Modified Glassy Carbon Electrode for Voltammetric Determination of Gallic Acid in Honey and Peanut Samples</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zelalem%20Bitew">Zelalem Bitew</a>, <a href="https://publications.waset.org/abstracts/search?q=Adane%20Kassa"> Adane Kassa</a>, <a href="https://publications.waset.org/abstracts/search?q=Beyene%20Misgan"> Beyene Misgan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a sensitive and selective voltammetric method based on poly(diphenylamine-4-sulfonic acid) modified glassy carbon electrode (poly(DPASA)/GCE) was developed for determination of gallic acid. Appearance of an irreversible oxidative peak at both bare GCE and poly(DPASA)/GCE for gallic acid with about three folds current enhancement and much reduced potential at poly(DPASA)/GCE showed catalytic property of the modifier towards oxidation of gallic acid. Under optimized conditions, Adsorptive stripping square wave voltammetric peak current response of the poly(DPASA)/GCE showed linear dependence with gallic acid concentration in the range 5.00 × 10-7 − 3.00 × 10-4 mol L-1 with limit of detection of 4.35 × 10-9. Spike recovery results between 94.62-99.63, 95.00-99.80 and 97.25-103.20% of gallic acid in honey, raw peanut, and commercial peanut butter samples respectively, interference recovery results with less than 4.11% error in the presence of uric acid and ascorbic acid, lower LOD and relatively wider dynamic range than most of the previously reported methods validated the potential applicability of the method based on poly(DPASA)/GCE for determination of gallic acid real samples including in honey and peanut samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title="gallic acid">gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=diphenyl%20amine%20sulfonic%20acid" title=" diphenyl amine sulfonic acid"> diphenyl amine sulfonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorptive%20anodic%20striping%20square%20wave%20voltammetry" title=" adsorptive anodic striping square wave voltammetry"> adsorptive anodic striping square wave voltammetry</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=peanut" title=" peanut"> peanut</a> </p> <a href="https://publications.waset.org/abstracts/172221/poly-diphenylamine-4-sulfonic-acid-modified-glassy-carbon-electrode-for-voltammetric-determination-of-gallic-acid-in-honey-and-peanut-samples" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172221.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3806</span> HPTLC Fingerprint Profiling of Protorhus longifolia Methanolic Leaf Extract and Qualitative Analysis of Common Biomarkers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20S.%20Seboletswe">P. S. Seboletswe</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Mkhize"> Z. Mkhize</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Katata-Seru"> L. M. Katata-Seru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <em>Protorhus longifolia </em>is known as a medicinal plant that has been used traditionally to treat various ailments such as hemiplegic paralysis, blood clotting related diseases, diarrhoea, heartburn, etc. The study reports a High-Performance Thin Layer Chromatography (HPTLC) fingerprint profile of <em>Protorhus longifolia</em> methanolic extract and its qualitative analysis of gallic acid, rutin, and quercetin. HPTLC analysis was achieved using CAMAG HPTLC system equipped with CAMAG automatic TLC sampler 4, CAMAG Automatic Developing Chamber 2 (ADC2), CAMAG visualizer 2, CAMAG Thin Layer Chromatography (TLC) scanner and visionCATS CAMAG HPTLC software. Mobile phase comprising toluene, ethyl acetate, formic acid (21:15:3) was used for qualitative analysis of gallic acid and revealed eight peaks while the mobile phase containing ethyl acetate, water, glacial acetic acid, formic acid (100:26:11:11) for qualitative analysis of rutin and quercetin revealed six peaks. HPTLC sillica gel 60 F254 glass plates (10 &times; 10) were used as the stationary phase. Gallic acid was detected at the R<sub>f</sub> = 0.35; while rutin and quercetin were not evident in the extract. Further studies will be performed to quantify gallic acid in <em>Protorhus longifolia</em> leaves and also identify other biomarkers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=fingerprint%20profiling" title=" fingerprint profiling"> fingerprint profiling</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=Protorhus%20longifolia" title=" Protorhus longifolia"> Protorhus longifolia</a> </p> <a href="https://publications.waset.org/abstracts/116612/hptlc-fingerprint-profiling-of-protorhus-longifolia-methanolic-leaf-extract-and-qualitative-analysis-of-common-biomarkers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/116612.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3805</span> Surface Modified Polyamidoamine Dendrimer with Gallic Acid Overcomes Drug Resistance in Colon Cancer Cells HCT-116</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khushbu%20Priyadarshi">Khushbu Priyadarshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandramani%20Pathak"> Chandramani Pathak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer cells can develop resistance to conventional therapies especially chemotherapeutic drugs. Resistance to chemotherapy is another challenge in cancer therapeutics. Therefore, it is important to address this issue. Gallic acid (GA) is a natural plant compound that exhibits various biological properties including anti-proliferative, anti-inflammatory, anti-oxidant and anti-bacterial. Despite of the wide spectrum biological properties GA has cytotoxic response and low bioavailability. To overcome this problem, GA was conjugated with the Polyamidoamine(PAMAM) dendrimer for improving the bioavailability and efficient delivery in drug-resistant HCT-116 Colon Cancer cells. Gallic acid was covalently linked to 4.0 G PAMAM dendrimer. PAMAM dendrimer is well established nanocarrier but has cytotoxicity due to presence of amphiphilic nature of amino group. In our study we have modified surface of PAMAM dendrimer with Gallic acid and examine their anti-proliferative effects in drug-resistant HCT-116 cells. Further, drug-resistant colon cancer cells were established and thereafter treated with different concentration of PAMAM-GA to examine their anti-proliferative potential. Our results show that PAMAM-GA conjugate induces apoptotic cell death in HCT-116 and drug-resistant cells observed by Annexin-PI staining. In addition, it also shows that multidrug-resistant drug transporter P-gp protein expression was downregulated with increasing the concentration of GA conjugate. After that we also observed the significant difference in Rh123 efflux and accumulation in drug sensitive and drug-resistant cancer cells. Thus, our study suggests that conjugation of anti-cancer agents with PAMAM could improve drug resistant property and cytotoxic response to treatment of cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title="drug resistance">drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PAMAM%20dendrimer" title=" PAMAM dendrimer"> PAMAM dendrimer</a>, <a href="https://publications.waset.org/abstracts/search?q=P-glycoprotein" title=" P-glycoprotein"> P-glycoprotein</a> </p> <a href="https://publications.waset.org/abstracts/94773/surface-modified-polyamidoamine-dendrimer-with-gallic-acid-overcomes-drug-resistance-in-colon-cancer-cells-hct-116" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94773.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3804</span> Micro RNAs (194 and 135a) as Biomarkers and Therapeutic Targets in Type 2 Diabetic Rats </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Haseena%20Banu">H. Haseena Banu</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Karthick"> D. Karthick</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stalin"> R. Stalin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Nandha%20Kumar"> E. Nandha Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20P.%20Sachidanandam"> T. P. Sachidanandam</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Shanthi"> P. Shanthi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background of the study: Type 2 diabetes is emerging as the predominant metabolic disorder in the world among adults characterized mainly by the resistance of the insulin sensitive tissues towards insulin followed by the decrease in the insulin secretion. The treatment for this disease usually involves treatment with oral synthetic drugs which are known to cause several side effects. Therefore, identification of new biomarkers as therapeutic target is the need of the hour. miRNAs are small, non–protein-coding RNAs that negatively regulate gene expression by promoting degradation and/or inhibit the translation of target mRNAs and have emerged as biomarkers in predicting diabetes mellitus. Objective of the study: To elucidate the therapeutic role of gallic acid in modulating the alterations in glucose metabolism induced by miRNAs 194 and 135a in Type 2 diabetic rats. Materials and Methods: T2D was induced in rats by feeding them with a high fat diet for 2 weeks followed by intraperitoneal injection of 35 mg/kg/body weight (b.wt.) of streptozotocin. Microarrays were used to assess the expression of miRNAs in control, diabetic and gallic acid treated rats. Gene expression studies were carried out by RT PCR analysis. Results: Forty one miRNAs were differentially expressed in Type 2 diabetic rats. Among these, the expression of miRNA 194 was significantly decreased whereas miRNA 135a was significantly increased in Type 2 diabetic rats. The glucose metabolism was also altered significantly in skeletal muscle of Type 2 diabetic rats. Conclusion: T2D is associated with alterations in the expression of miRNAs in skeletal muscle. Both these miRNAs 194 and 135a play an important role in glucose metabolism in skeletal muscle of diabetic rats. Gallic acid effectively ameliorated the alterations in glucose metabolism. Hence, both these miRNAs can serve as biomarkers and therapeutic targets in diabetes mellitus. The study also establishes the role of gallic acid as therapeutic agent. Acknowledgment: The financial assistance provided in the form of ICMR women scientist by ICMR DHR INDIA is gratefully acknowledged here. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title="gallic acid">gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20fat%20diet" title=" high fat diet"> high fat diet</a>, <a href="https://publications.waset.org/abstracts/search?q=type%202%20diabetes%20mellitus" title=" type 2 diabetes mellitus"> type 2 diabetes mellitus</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a> </p> <a href="https://publications.waset.org/abstracts/64261/micro-rnas-194-and-135a-as-biomarkers-and-therapeutic-targets-in-type-2-diabetic-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3803</span> Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Berezin">Vladimir Berezin</a>, <a href="https://publications.waset.org/abstracts/search?q=Aizhan%20Turmagambetova"> Aizhan Turmagambetova</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Bogoyavlenskiy"> Andrey Bogoyavlenskiy</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Alexyuk"> Pavel Alexyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Madina%20Alexyuk"> Madina Alexyuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Zaitceva"> Irina Zaitceva</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezhda%20Sokolova"> Nadezhda Sokolova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antiviral%20activity" title="antiviral activity">antiviral activity</a>, <a href="https://publications.waset.org/abstracts/search?q=influenza%20virus" title=" influenza virus"> influenza virus</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20resistance" title=" drug resistance"> drug resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a> </p> <a href="https://publications.waset.org/abstracts/118980/phenolic-acids-of-plant-origin-as-promising-compounds-for-elaboration-of-antiviral-drugs-against-influenza" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3802</span> Comparative Histological, Immunohistochemical and Biochemical Study on the Effect of Vit. C, Vit. E, Gallic Acid and Silymarin on Carbon Tetrachloride Model of Liver Fibrosis in Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safaa%20S.%20Hassan">Safaa S. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20H.%20Elbakry"> Mohammed H. Elbakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Safwat%20A.%20Mangoura"> Safwat A. Mangoura</a>, <a href="https://publications.waset.org/abstracts/search?q=Zainab%20M.%20Omar"> Zainab M. Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Liver fibrosis is the main reason for increased mortality in chronic liver disease. It has no standard treatment. Antioxidants from a variety of sources are capable of slowing or preventing oxidation of other molecules. Aim: to evaluate the hepatoprotective effect of vit. C, vit. E and gallic acid in comparison to silymarin in the rat model of carbon tetrachloride induced liver fibrosis and their possible mechanisms of action. Material& Methods: A total number of 60 adult male albino rats 160-200gm were divided into six equal groups; received subcutaneous (s.c) injection for 8 weeks. Group I: as control. Group II: received 1.5 mL/kg of CCL4 .Group III: CCL4 and co- treatment with silymarin 100mg/kg p.o. daily. Group IV: CCL4 and co-treatment with vit. C 50mg/kg p.o. daily. Group V: CCL4 and co-treatment with vit. E 200mg/kg. p.o. Group VI: CCL4 and co-treatment with Gallic acid 100mg/kg. p.o. daily. Liver was processed for histological and immunohistochemical examination. Levels of AST, ALT, ALP, reduced GSH, MDA, SOD and hydroxyproline concentration were measured and evaluated statistically. Results: Light and electron microscopic examination of liver of group II exhibited foci of altered cells with dense nuclei and vacuolated, granular cytoplasm, mononuclear cell infiltration in portal areas, profuse collagen fiber deposits were found around portal tract, more intense staining α-SMA-positive cells occupied most of the liver fibrosis tissue, electron lucent areas in the cytoplasm of the hepatocytes, margination of nuclear chromatin. Treatment by any of the antioxidants variably reduced the hepatic structural changes induced by CCL4. Biochemical analysis showed that carbon tetrachloride significantly increased the levels of serum AST, ALT, ALP, hepatic malondialdehyde and hydroxyproline content. Moreover, it decreased the activities of superoxide dismutase and glutathione. Treatment with silymarin, gallic acid, vit. C and vit. E decreased significantly the AST, ALT, and ALP levels in plasma, MDA and hydroxyproline and increased the activities of SOD and glutathione in liver tissue. The effect of administration of CCl4 was improved with the used antioxidants in variable degrees. The most efficient antioxidant was silymarin followed by gallic acid and vit. C then vit. E. It is possibly due to their antioxidant effect, free radical scavenging properties and the reduction of oxidant dependent activation and proliferation of HSCs. Conclusion: So these antioxidants can be a promising drugs candidate for ameliorating liver fibrosis better than the use of the drugs and their side effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title="antioxidant">antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=ccl4" title=" ccl4"> ccl4</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20fibrosis" title=" liver fibrosis"> liver fibrosis</a> </p> <a href="https://publications.waset.org/abstracts/27495/comparative-histological-immunohistochemical-and-biochemical-study-on-the-effect-of-vit-c-vit-e-gallic-acid-and-silymarin-on-carbon-tetrachloride-model-of-liver-fibrosis-in-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3801</span> Effect of Alcoholic and Acetous Fermentations on Phenolic Acids of Kei-Apple (Dovyalis Caffra L.) Fruit</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neil%20Jolly">Neil Jolly</a>, <a href="https://publications.waset.org/abstracts/search?q=Louisa%20%20Beukes"> Louisa Beukes</a>, <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Benito-SaEz"> Santiago Benito-SaEz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kei-apple is a tree found on the African continent. Limited information exists on the effect of alcoholic and acetous fermentation on the phytochemicals. The fruit has increased L-malic, ascorbic, and phenolic acids. Juice was co-inoculated with Schizosaccharomyces pombe and Saccharomyces cerevisiae to induce alcoholic fermentation and acetous fermentation using acetic acid bacteria. Saccharomyces cerevisiae+S. pombe wines and vinegars had highest pH. Total acidity, soluble solids and L-malic acid decreased during alcoholic and acetous fermentation with highest in S. cerevisiae wines and vinegars. Volatile acidity was highest in S. pombe vinegars but not different from S. cerevisiae and S. cerevisiae+S. pombe. Gallic acid was highest in S. pombe wines and vinegars. Syringic acid was highest in S. cerevisiae wines and vinegars. S. cerevisiae+S. pombe wines were highest in caffeic, p-coumaric and protocatechuic acids. Schizosaccharomyces pombe vinegars were highest in caffeic and p-coumaric acids. Ferulic and sinapic acids were highest in S. pombe and S. cerevisiae wines, respectively. Chlorogenic acid was most abundant in both wines and vinegars. Saccharomyces cerevisiae+S. pombe and S. cerevisiae had a positive effect on most phenolic acids. Saccharomyces cerevisiae +acetic acid bacteria had an increased effect on syringic and chlorogenic acids. Schizosaccharomyces pombe+acetic acid bacteria resulted in an increase in gallic, caffeic and p-coumaric acids. Acetic acid bacteria had minimal performance with respect to volatile acidity production in comparison to commercial vinegars. Acetic acid bacteria selection should therefore be reconsidered and the decrease of certain phenolic acids during acetous fermentation needs to be investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20bacteria" title="acetic acid bacteria">acetic acid bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20chromatography" title=" liquid chromatography"> liquid chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolics" title=" phenolics"> phenolics</a>, <a href="https://publications.waset.org/abstracts/search?q=saccharomyces%20cerevisiae" title=" saccharomyces cerevisiae"> saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=schizosaccharomyces%20pombe" title=" schizosaccharomyces pombe"> schizosaccharomyces pombe</a> </p> <a href="https://publications.waset.org/abstracts/133987/effect-of-alcoholic-and-acetous-fermentations-on-phenolic-acids-of-kei-apple-dovyalis-caffra-l-fruit" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">145</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3800</span> Some Changes in Biochemical Parameters of Body and Hepato-Biliary System under the Influence of Hydrazine Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Y.%20Saspugayeva">G. Y. Saspugayeva</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Beysenova"> R. R. Beysenova</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Khanturin"> M. R. Khanturin</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20Abseitov"> E. T. Abseitov</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20B.%20Massenov"> K. B. Massenov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research is devoted to the problems of rocket fuel and impact of its derivatives on environment and living things. Hydrazine derivatives are used in different spheres, in aero-space activity, medical practice, laboratory-diagnosis practice and etc. For Kazakhstan, which has the cosmodrome "Baikonur", the problem of environmental pollution by rocket fuel and its components is important issue. An unsymmetrical dimethylhydrazine is mostly used as rocket fuel for launch vehicles which has high toxicity to humans and animals referred to the World Health Organization. The question about influence of hydrazine derivatives on human organism and ways of detoxication is very actual and requires special approaches in solving these problems. In connection with this situation, we set the goal: study the negative influence of hydrazine derivatives-hydrazine sulphur, nitrosodimethylamine (NDMA), phenylhydrazine, isonicotinic acid hydrazide (IAH) on some biochemical parameters of blood, hepatobiliary system and correction of functional damages of organism with “Salsocollin” drugs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isonicotinic%20acid%20hydrazide%20%28IAH%29" title="isonicotinic acid hydrazide (IAH)">isonicotinic acid hydrazide (IAH)</a>, <a href="https://publications.waset.org/abstracts/search?q=N-nitrosodimethylamine%20%28NDMA%29" title=" N-nitrosodimethylamine (NDMA)"> N-nitrosodimethylamine (NDMA)</a>, <a href="https://publications.waset.org/abstracts/search?q=AlAT-alanine%20aminotransferase" title=" AlAT-alanine aminotransferase"> AlAT-alanine aminotransferase</a>, <a href="https://publications.waset.org/abstracts/search?q=AsAT-aspartate%20aminotransaminase" title=" AsAT-aspartate aminotransaminase "> AsAT-aspartate aminotransaminase </a> </p> <a href="https://publications.waset.org/abstracts/16379/some-changes-in-biochemical-parameters-of-body-and-hepato-biliary-system-under-the-influence-of-hydrazine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3799</span> Synthesis and Anti-Inflammatory Activity of Pyrazol-3-yl Thiazole 4-Carboxylic Acid Derivatives Targeting Enzyme in the Leukotriene Pathway</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shweta%20Sinha">Shweta Sinha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukesh%20Doble"> Mukesh Doble</a>, <a href="https://publications.waset.org/abstracts/search?q=Manju%20S.%20L."> Manju S. L.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pyrazole scaffold is an important group of compound in heterocyclic chemistry and is found to possess numerous uses in chemistry. Pyrazole derivatives are also known to possess important biological activities including antitumor, antimicrobial, antiviral, antifungal, anticancer and anti-inflammatory. Inflammation is associated with pain, allergy and asthma. Leukotrienes are mediators of various inflammatory and allergic disorders. 5-Lipoxygenase (5-LOX) is an important enzyme involved in the biosynthesis of leukotrienes and metabolism of arachidonic acid (AA) and thus targeted for anti-inflammation. In vitro inhibitory activity of pyrazol-3-yl thiazole 4-carboxylic acid derivatives is tested against enzyme 5-LOX. Most of these compounds exhibit good inhibitory activity against this enzyme. Binding mode study of these compounds is determined by computational tool. Further experiments are being done to understand the mechanism of action of these compounds in inhibiting this enzyme. To conclude, these compounds appear to be a promising target in drug design against 5-LOX. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inflammation" title="inflammation">inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=inhibition" title=" inhibition"> inhibition</a>, <a href="https://publications.waset.org/abstracts/search?q=5-lipoxygenase" title=" 5-lipoxygenase"> 5-lipoxygenase</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazole" title=" pyrazole"> pyrazole</a> </p> <a href="https://publications.waset.org/abstracts/71661/synthesis-and-anti-inflammatory-activity-of-pyrazol-3-yl-thiazole-4-carboxylic-acid-derivatives-targeting-enzyme-in-the-leukotriene-pathway" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71661.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3798</span> Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anil%20Bhandari">Anil Bhandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Imran%20Khan%20Pathan"> Imran Khan Pathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Peeyush%20K.%20Sharma"> Peeyush K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20K.%20Patel"> Rakesh K. Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20Purohit"> Suresh Purohit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=embelin" title="embelin">embelin</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidangadi%20Churna" title=" Vidangadi Churna"> Vidangadi Churna</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20targeted%20drug%20delivery" title=" colon targeted drug delivery"> colon targeted drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/1701/development-and-optimization-of-colon-targeted-drug-delivery-system-of-ayurvedic-churna-formulation-using-eudragit-l100-and-ethyl-cellulose-as-coating-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3797</span> Improvement of Antibacterial Activity for Ceftazidime by Partially Purified Tannase from Penicillium expansum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahira%20N.%20Muslim">Sahira N. Muslim</a>, <a href="https://publications.waset.org/abstracts/search?q=Alaa%20N.%20Mohammed"> Alaa N. Mohammed</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Saadoon%20Khazaal"> Saba Saadoon Khazaal</a>, <a href="https://publications.waset.org/abstracts/search?q=Batool%20Kadham%20Salman"> Batool Kadham Salman</a>, <a href="https://publications.waset.org/abstracts/search?q=Israa%20M.%20S.%20AL-Kadmy"> Israa M. S. AL-Kadmy</a>, <a href="https://publications.waset.org/abstracts/search?q=Sraa%20N.%20Muslim"> Sraa N. Muslim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Dwaish"> Ahmed S. Dwaish</a>, <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Mohammed%20Kareem"> Sawsan Mohammed Kareem</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20N.%20Aziz"> Sarah N. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruaa%20A.%20Jasim"> Ruaa A. Jasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tannase has wide applications in food, beverage, brewing, cosmetics and chemical industries and one of the major applications of tannase is the production of gallic acid. Gallic acid is used for manufacturing of trimethoprim. In the present study, a local fungal strain of <em>Penicillium expansum</em> A<sub>4</sub> isolated from spoilt apple samples gave the highest production level of tannase. Tannase was partially purified with a recovery yield of 92.52% and 6.32 fold of purification by precipitation using ammonium sulfate at 50% saturation. Tannase led to increased antimicrobial activity of ceftazidime against<em> Pseudomonas aeruginosa</em> and<em> S. aureus</em> and had a synergism effect at low concentrations of ceftazidime, and thus, tannase may be a useful adjuvant agent for the treatment of many bacterial infections in combination with ceftazidime. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceftazidime" title="ceftazidime">ceftazidime</a>, <a href="https://publications.waset.org/abstracts/search?q=Penicillium%20expansum" title=" Penicillium expansum"> Penicillium expansum</a>, <a href="https://publications.waset.org/abstracts/search?q=tannase" title=" tannase"> tannase</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a> </p> <a href="https://publications.waset.org/abstracts/65967/improvement-of-antibacterial-activity-for-ceftazidime-by-partially-purified-tannase-from-penicillium-expansum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">741</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3796</span> Effect of Phenolic Compounds on Off-Odor Development and Oxidative Stability of Camel Meat during Refrigerated Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sajid%20Maqsood">Sajid Maqsood</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysha%20Al%20Rashedi"> Aysha Al Rashedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Abushelaibi"> Aisha Abushelaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusaimah%20Manheem"> Kusaimah Manheem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impact of different natural antioxidants on lipid oxidation, microbial load and sensorial quality in ground camel meat (leg region) during 9 days of refrigerated storage were investigated. Control camel meat showed higher lipid oxidation products (Peroxide value and Thiobarbituric acid reactive substances (TBARS)) during the storage period. Upon addition of different natural antioxidants PV and TBARS were retarded, especially in samples added with tannic acid (TA), catechin (CT) and gallic acid (GA) (p<0.05). Haem iron content decreased with increasing storage period and was found to be lower in samples added with caffeic acid (CA) and gallic acid (GA) at the end of storage period (p<0.05). Furthermore, lower mesophilic bacterial count (MBC) and psychrophilic bacterial counts (PBC) were observed in TA and CT treated samples compared to control and other samples (p<0.05). Camel meat treated with TA and CT also received higher likeness scores for colour, odor and overall appearance compared to control samples (p<0.05). Therefore, adding different natural antioxidants especially TA and CT showed retarding effect on lipid oxidation and microbial growth and were also effective in maintaining sensory attributes (color and odor) of ground camel meat during storage at 4°C. Hence, TA and CT could be considered as the potential natural antioxidant for preserving the quality of the camel meat displayed at refrigerated shelves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidants" title="natural antioxidants">natural antioxidants</a>, <a href="https://publications.waset.org/abstracts/search?q=lipid%20oxidation" title=" lipid oxidation"> lipid oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=camel%20meat" title=" camel meat"> camel meat</a> </p> <a href="https://publications.waset.org/abstracts/12471/effect-of-phenolic-compounds-on-off-odor-development-and-oxidative-stability-of-camel-meat-during-refrigerated-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3795</span> Effect of Phenolic Acids on Human Saliva: Evaluation by Diffusion and Precipitation Assays on Cellulose Membranes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Obreque-Slier">E. Obreque-Slier</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Orellana-Rodr%C3%ADguez"> F. Orellana-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L%C3%B3pez-Sol%C3%ADs"> R. López-Solís</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phenolic compounds are secondary metabolites present in some foods, such as wine. Polyphenols comprise two main groups: flavonoids (anthocyanins, flavanols, and flavonols) and non-flavonoids (stilbenes and phenolic acids). Phenolic acids are low molecular weight non flavonoid compounds that are usually grouped into benzoic (gallic, vanillinic and protocatechuic acids) and cinnamic acids (ferulic, p-coumaric and caffeic acids). Likewise, tannic acid is an important polyphenol constituted mainly by gallic acid. Phenolic compounds are responsible for important properties in foods and drinks, such as color, aroma, bitterness, and astringency. Astringency is a drying, roughing, and sometimes puckering sensation that is experienced on the various oral surfaces during or immediately after tasting foods. Astringency perception has been associated with interactions between flavanols present in some foods and salivary proteins. Despite the quantitative relevance of phenolic acids in food and beverages, there is no information about its effect on salivary proteins and consequently on the sensation of astringency. The objective of this study was assessed the interaction of several phenolic acids (gallic, vanillinic, protocatechuic, ferulic, p-coumaric and caffeic acids) with saliva. Tannic acid was used as control. Thus, solutions of each phenolic acids (5 mg/mL) were mixed with human saliva (1:1 v/v). After incubation for 5 min at room temperature, 15-μL aliquots of the mixtures were dotted on a cellulose membrane and allowed to diffuse. The dry membrane was fixed in 50 g/L trichloroacetic acid, rinsed in 800 mL/L ethanol and stained for protein with Coomassie blue for 20 min, destained with several rinses of 73 g/L acetic acid and dried under a heat lamp. Both diffusion area and stain intensity of the protein spots were semiqualitative estimates for protein-tannin interaction (diffusion test). The rest of the whole saliva-phenol solution mixtures of the diffusion assay were centrifuged and fifteen-μL aliquots of each supernatant were dotted on a cellulose membrane, allowed to diffuse and processed for protein staining, as indicated above. In this latter assay, reduced protein staining was taken as indicative of protein precipitation (precipitation test). The diffusion of the salivary protein was restricted by the presence of each phenolic acids (anti-diffusive effect), while tannic acid did not alter diffusion of the salivary protein. By contrast, phenolic acids did not provoke precipitation of the salivary protein, while tannic acid produced precipitation of salivary proteins. In addition, binary mixtures (mixtures of two components) of various phenolic acids with gallic acid provoked a restriction of saliva. Similar effect was observed by the corresponding individual phenolic acids. Contrary, binary mixtures of phenolic acid with tannic acid, as well tannic acid alone, did not affect the diffusion of the saliva but they provoked an evident precipitation. In summary, phenolic acids showed a relevant interaction with the salivary proteins, thus suggesting that these wine compounds can also contribute to the sensation of astringency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=astringency" title="astringency">astringency</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenols" title=" polyphenols"> polyphenols</a>, <a href="https://publications.waset.org/abstracts/search?q=tannins" title=" tannins"> tannins</a>, <a href="https://publications.waset.org/abstracts/search?q=tannin-protein%20interaction" title=" tannin-protein interaction"> tannin-protein interaction</a> </p> <a href="https://publications.waset.org/abstracts/75827/effect-of-phenolic-acids-on-human-saliva-evaluation-by-diffusion-and-precipitation-assays-on-cellulose-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3794</span> Study on the Efficiency of Some Antioxidants on Reduction of Maillard Reaction in Low Lactose Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farnaz%20Alaeimoghadam">Farnaz Alaeimoghadam</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzad%20Alaeimoghadam"> Farzad Alaeimoghadam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In low-lactose milk, due to lactose hydrolysis and its conversion to monosaccharides like glucose and galactose, the Maillard reaction (non-enzymatic browning) occurs more readily compared to non-hydrolyzed milk. This reaction incurs off-flavor and dark color, as well as a decrease in the nutritional value of milk. The target of this research was to evaluate the effect of natural antioxidants in diminishing the browning in low-lactose milk. In this research, three antioxidants, namely ascorbic acid, gallic acid, and pantothenic acid in the concentration range of 0-1 mM/L, either in combination with each other or separately, were added to low-lactose milk. After heat treatment (120 0C for 3 min.), milk samples incubated at 55 0C for one day and then stored at 4 0C for 9 days. Quality indices, including total phenol content, antioxidant activity, color indices, and sensory characters, were measured during intervals of 0, 2, 5, 7, and 9 days. Results of this research showed that the effect of storage time and adding antioxidants were significant on pH, antioxidant activity, total phenolic compounds either before or after heating, index L*, color change, and sensational characteristics (p < 0.05); however, acidity, a* and b* indices, chroma, and hue angle showed no significant changes (p > 0.05). The findings showed that the simultaneous application of gallic acid and ascorbic in the diminishing of non-enzymatic browning and color change, increasing pH, longevity, and antioxidant activity after heat treatment, and augmenting phenolic compounds before heat treatment was better than that of pantothenic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maillard" title="Maillard">Maillard</a>, <a href="https://publications.waset.org/abstracts/search?q=low-lactose%20milk" title=" low-lactose milk"> low-lactose milk</a>, <a href="https://publications.waset.org/abstracts/search?q=non-enzymatic%20browning" title=" non-enzymatic browning"> non-enzymatic browning</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20antioxidant" title=" natural antioxidant"> natural antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/129291/study-on-the-efficiency-of-some-antioxidants-on-reduction-of-maillard-reaction-in-low-lactose-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3793</span> Acanthopanax koreanum and Major Ingredient, Impressic Acid, Possess Matrix Metalloproteinase-13 Down-Regulating Capacity and Protect Cartilage Destruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Lim">Hyun Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Sook%20Min"> Dong Sook Min</a>, <a href="https://publications.waset.org/abstracts/search?q=Han%20Eul%20Yun"> Han Eul Yun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kil%20Tae%20Kim"> Kil Tae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ya%20Nan%20Sun"> Ya Nan Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Young%20Ho%20Kim"> Young Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun%20Pyo%20Kim"> Hyun Pyo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Matrix metalloproteinase (MMP)-13 has an important role for degrading cartilage materials under inflammatory conditions such as arthritis. Since the 70% ethanol extract of Acanthopanax koreanum inhibited MMP-13 expression in IL-1β-treated human chondrocyte cell line, SW1353, two major constituents including acanthoic acid and impressic acid were initially isolated from the same plant materials and their MMP-13 down-regulating capacity was examined. In IL-1β-treated SW1353 cells, acanthoic acid and impressic acid significantly and concentration-dependently inhibited MMP-13 expression at 10 – 100 μM and 0.5 – 10 μM, respectively. The potent one, impressic acid, was found to inhibit MMP-13 expression by blocking the phosphorylation of signal transducer and activator of transcription-1/-2 (STAT-1/-2) and activation of c-Jun and c-Fos among cellular signaling pathway involved, but did not affect the activation of mitogen-activated protein kinases (MAPKs) and nuclear transcription factor-κB (NF-κB). Further, impressic acid was also found to inhibit the expression of MMP-13 mRNA (47.7% inhibition at 10 μM), the glycosaminoglycan release (42.2% reduction at 10 μM) and proteoglycan loss in IL-1-treated rabbit cartilage explants culture. For a further study, 21 impressic acid derivatives were isolated from the same plant materials and their suppressive activities against MMP-13 expression were examined. Among the derivatives, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F and acantrifoside A clearly down-regulated MMP-13 expression, but impressic acid being most potent. All these results suggest that impressic acid, 3α-hydroxy-lup-20(29)-en-23-oxo,28-oic acid, (20R)-3α-hydroxy-29-dimethoxylupan-23,28-dioic acid, acankoreoside F, acantrifoside A and A. koreanum may have a potential for therapeutic agents to prevent cartilage degradation possibly by inhibiting matrix protein degradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acanthoic%20acid" title="acanthoic acid">acanthoic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=Acanthopanax%20koreanum" title=" Acanthopanax koreanum"> Acanthopanax koreanum</a>, <a href="https://publications.waset.org/abstracts/search?q=cartilage" title=" cartilage"> cartilage</a>, <a href="https://publications.waset.org/abstracts/search?q=impressic%20acid" title=" impressic acid"> impressic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=matrix%20metalloproteinase" title=" matrix metalloproteinase"> matrix metalloproteinase</a> </p> <a href="https://publications.waset.org/abstracts/57571/acanthopanax-koreanum-and-major-ingredient-impressic-acid-possess-matrix-metalloproteinase-13-down-regulating-capacity-and-protect-cartilage-destruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3792</span> Effect of Acetic Acid Fermentation on Bioactive Components and Anti-Xanthine Oxidase Activities in Vinegar Brewed from Monascus-Fermented Soybeans</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyung-Soon%20Choi">Kyung-Soon Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ji-Young%20Hwang"> Ji-Young Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Young-Hee%20Pyo"> Young-Hee Pyo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vinegars have been used as an alternative remedy for treating gout, but the scientific basis remains to be elucidated. In this study, acetic acid fermentation was applied for the first time to Monascus-fermented soybeans to examine its effect on the bioactive components together with the xanthine oxidase inhibitory (XOI) activity of the soy vinegar. The content of total phenols (0.47~0.97 mg gallic acid equivalents/mL) and flavonoids (0.18~0.39 mg quercetin equivallents/mL) were spectrophotometrically determined, and the content of organic acid (10.22~59.76 mg/mL) and isoflavones (6.79~7.46 mg/mL) were determined using HPLC-UV. The analytical method for ubiquinones (0.079~0.276 μg/mL) employed saponification before solvent extraction and quantification using LC-MS. Soy vinegar also showed significant XOI (95.3%) after 20 days of acetic acid fermentation at 30 °C. The results suggest that soy vinegar has potential as a novel medicinal food. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acetic%20acid%20fermentation" title="acetic acid fermentation">acetic acid fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20component" title=" bioactive component"> bioactive component</a>, <a href="https://publications.waset.org/abstracts/search?q=soy%20vinegar" title=" soy vinegar"> soy vinegar</a>, <a href="https://publications.waset.org/abstracts/search?q=xanthine%20oxidase%20inhibitory%20activity" title=" xanthine oxidase inhibitory activity"> xanthine oxidase inhibitory activity</a> </p> <a href="https://publications.waset.org/abstracts/66060/effect-of-acetic-acid-fermentation-on-bioactive-components-and-anti-xanthine-oxidase-activities-in-vinegar-brewed-from-monascus-fermented-soybeans" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66060.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3791</span> Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akanit%20Pisalwadcharin">Akanit Pisalwadcharin</a>, <a href="https://publications.waset.org/abstracts/search?q=Komate%20Satayawut"> Komate Satayawut</a>, <a href="https://publications.waset.org/abstracts/search?q=Virachnee%20Lohachoompol"> Virachnee Lohachoompol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20tea" title="green tea">green tea</a>, <a href="https://publications.waset.org/abstracts/search?q=mangosteen" title=" mangosteen"> mangosteen</a>, <a href="https://publications.waset.org/abstracts/search?q=pomegranate" title=" pomegranate"> pomegranate</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a> </p> <a href="https://publications.waset.org/abstracts/58736/bioactive-compounds-and-antioxidant-capacity-of-instant-fruit-green-tea-powders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> QSAR and Anti-Depressant Studies of Some Novel Phenothiazine Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20L.%20Tambe">D. L. Tambe</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dighe%20Nachiket"> S. Dighe Nachiket</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: Depression is a common but serious illness and the phenothiazine derivatives shows prominent effect against the depression hence work was undertaken to validate this use scientifically. Material and Methods: Synthesis of phenothiazine derivatives are done by the substitution of various groups, but the basic scheme of synthesis is started with synthesis of 4-(Cyclohexylidene) Benzoic acid using PABA. After that with the further six step of synthesis of 3-(10H-phenothiazin-2-yl)-N, 5-diphenyl-4H-1, 2, 4-triazol-4-amine is done which is final product. Antidepressant activity of all the synthesized compounds was evaluated by despair swim test by using Sprague Dawley Rats. Standard drug imipramine was used as the control. In the despair swim test, all the synthesized derivatives showed antidepressant activity. Results: Among the all phenothiazine derivatives four compounds (6.6-7.2 (14H –phenyl ), 9.43 (1H OH), 8.50 (1H NH phenothiazine),6.85-8.21(14H phenyl), 8.50 (1H NH phenothiazine), 11.82 (1H – OH), 6.6-7.2 (8H –phenyl ), 9.43 (1H OH), 8.50 (1H NH phenothiazine), 4.2 (1H NH) and 6.85-8.21(8H phenyl), 8.50 (1H NH phenothiazine), 3.9 (1H NH) 11.82 (1H – OH) showed significant antidepressant activity comparing with control drug imipramine. Conclusion: Various Novel phenothiazine derivatives show more potent antidepressant activity and it plays more beneficial role in human health for the treatment of depression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antidepressant%20activities" title="antidepressant activities">antidepressant activities</a>, <a href="https://publications.waset.org/abstracts/search?q=despair%20swim%20test" title=" despair swim test"> despair swim test</a>, <a href="https://publications.waset.org/abstracts/search?q=phenothiazine" title=" phenothiazine"> phenothiazine</a>, <a href="https://publications.waset.org/abstracts/search?q=Sprague%20Dawley%20Rats" title=" Sprague Dawley Rats"> Sprague Dawley Rats</a> </p> <a href="https://publications.waset.org/abstracts/26552/qsar-and-anti-depressant-studies-of-some-novel-phenothiazine-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26552.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Evaluation of the Total Antioxidant Capacity and Total Phenol Content of the Wild and Cultivated Variety of Aegle Marmelos (L) Correa Leaves Used in the Treatment of Diabetes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Nigam">V. Nigam</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Nambiar"> V. Nambiar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aegle Marmelos leaf has been used as a remedy for various gastrointestinal infections and lowering blood sugar level in traditional system of medicine in India due to the presence of various constituents such as flavonoids, tannins and alkaloids (eg. Aegelin, Marmelosin, Luvangetin).The objective of the present study was to evaluate the total antioxidant activity, total and individual phenol content of the wild and cultivated variety of Aegle marmelos leaves to assess the role of this plant in ethanomedicine in India. The methanolic extracts of the leaves were screened for total antioxidant capacity through Ferric Reducing Antioxidant Potential (FRAP) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay; Total Phenol content (TPC) through spectrophotometric technique based on Folin Ciocalteau assay and for qualitative estimation of phenols, High performance Liquid Chromatography was used. The TPC of wild and cultivated variety was 7.6% and 6.5% respectively whereas HPLC analysis for quantification of individual polyphenol revealed the presence of gallic acid, chlorogenic acid and Ferullic acid in wild variety whereas gallic acid, Ferullic acid and pyrocatechol in cultivated variety. FRAP values and IC 50 value (DPPH) for wild and cultivated variety was 14.65 μmol/l and 11.80μmol/l; 437 μg/ml and 620μg/ml respectively and thus it can be used as potential inhibitor of free radicals. The wild variety was having more antioxidant capacity than the cultivated one it can be exploited further for its therapeutic application. As Aegle marmelos is rich in antioxidant, it can be used as food additives to delay the oxidative deterioration of foods and as nutraceutical in medicinal formulation against degenerative diseases like diabetes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=aegle%20marmelos" title=" aegle marmelos"> aegle marmelos</a>, <a href="https://publications.waset.org/abstracts/search?q=antidiabetic" title=" antidiabetic"> antidiabetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nutraceutical" title=" nutraceutical"> nutraceutical</a> </p> <a href="https://publications.waset.org/abstracts/21443/evaluation-of-the-total-antioxidant-capacity-and-total-phenol-content-of-the-wild-and-cultivated-variety-of-aegle-marmelos-l-correa-leaves-used-in-the-treatment-of-diabetes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21443.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Identification of Phenolic Compounds and Study the Antimicrobial Property of Eleaocarpus Ganitrus Fruits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Velvizhi%20Dharmalingam">Velvizhi Dharmalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajalaksmi%20Ramalingam"> Rajalaksmi Ramalingam</a>, <a href="https://publications.waset.org/abstracts/search?q=Rekha%20Prabhu"> Rekha Prabhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilavarasan%20Raju"> Ilavarasan Raju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The use of herbal products for various therapeutic regimens has increased tremendously in the developing countries. Elaeocarpus ganitrus(Rudraksha) is a broad-leaved tree, belonging to the family Elaeocarpaceae found in tropical and subtropical areas. It is popular in an indigenous system of medicine like Ayurveda, Siddha, and Unani. According to Ayurvedic medicine, Rudraksha is used in the managing of blood pressure, asthma, mental disorders, diabetes, gynaecological disorders, neurological disorders such as epilepsy and liver diseases. Objectives: The present study aimed to study the physicochemical parameters of Elaeocarpus ganitrus(fruits) and identify the phenolic compounds (gallic acid, ellagic acid, and chebulinic acid). To estimate the microbial load and the antibacterial activity of extract of Elaeocarpus ganitrus for selective pathogens. Methodology: The dried powdered fruit of Elaeocarpus ganitrus was performed the physicochemical parameters (such as Loss on drying, Alcohol soluble extractive, Water soluble extractive, Total ash and Acid insoluble ash) and pH was measured. The dried coarse powdered fruit of Elaeocarpus ganitrus was extracted successively with hexane, chloroform, ethylacetate and aqueous alcohol by cold percolation method. Identification of phenolic compounds (gallic acid, ellagic acid, chebulinic acid) was done by HPTLC method and confirmed by co-TLC using different solvent system.The successive extracts of Elaeocarpus ganitrus and standards (like gallic acid, ellagic acid, and chebulinic acid) was approximately weighed and made up with alcohol. HPTLC (CAMAG) analysis was performed on a TLC over silica gel 60F254 precoated aluminium plate, layer thickness 0.2 mm (E.Merck, Germany) by using ATS4, Visualizer and Scanner with wavelength at 254 nm, 366 nm and derivatized with different reagents. The microbial load such as total bacterial count, total fungal count, Enterobacteria, Escherichia coli, Salmonella species, Staphylococcus aureus and Pseudomonas aeruginosa by serial dilution method and antibacterial activity of was measured by Kirby bauer method for selective pathogens. Results: The physicochemical parameter of Elaeocarpus ganitrus was studied for standardization of crude drug. Among all the successive extracts were identified with phenolic compounds and Elaeocarpus ganitrus extract having potent antibacterial activity against gram-positive and gram-negative bacteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Elaeocarpus%20ganitrus" title=" Elaeocarpus ganitrus"> Elaeocarpus ganitrus</a>, <a href="https://publications.waset.org/abstracts/search?q=HPTLC" title=" HPTLC"> HPTLC</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a> </p> <a href="https://publications.waset.org/abstracts/64280/identification-of-phenolic-compounds-and-study-the-antimicrobial-property-of-eleaocarpus-ganitrus-fruits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Antioxidant Capacity, Proximate Biomass Composition and Fatty Acid Profile of Five Marine Microalgal Species with Potential as Aquaculture Feed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasilis%20Andriopoulos">Vasilis Andriopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20D.%20Gkioni"> Maria D. Gkioni</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Koutra"> Elena Koutra</a>, <a href="https://publications.waset.org/abstracts/search?q=Savvas%20G.%20Mastropetros"> Savvas G. Mastropetros</a>, <a href="https://publications.waset.org/abstracts/search?q=Fotini%20N.%20Lamari"> Fotini N. Lamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20Hatziantoniou"> Sofia Hatziantoniou</a>, <a href="https://publications.waset.org/abstracts/search?q=Michalis%20Kornaros"> Michalis Kornaros</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the antioxidant activity of aqueous and methanolic extracts of Chlorella minutissima, Dunaliella salina, Isochrysis galbana, Nannochloropsis oculata and Tisohrysis lutea, as well as the proximate composition and fatty acid profile were evaluated, with the aim to select species suitable for co-production of antioxidants and aquaculture feed. Batch cultivation was performed at 25oC in a modified f/2 medium under continuous illumination and aeration with ambient air. Biomass was collected via centrifugation and extracted first with H2O and subsequently with methanol at two growth phases (early and late stationary). Total phenolic content and antioxidant and reducing activity of the extracts were evaluated. The highest phenolic content was found in the methanolic extract of C. minutissima at the early stationary phase (9.04±0.68 mg Gallic Acid Equivalent g-1 dry weight), and the aqueous extract of D. salina at the late stationary phase (8.78±1.49 mg Gallic Acid Equivalent g-1 Dry weight). Antioxidant activity, measured as 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and Ferric reducing antioxidant power assay of methanolic extracts were comparable to the literature and correlated to Total phenolic content and Chlorophyll content of the biomass. No such correlation was found in the aqueous extracts. N. oculata and T. lutea were high in protein (39.88±1.72% Dry weight and 43.30±1.33% Dry weight, respectively) and carotenoids (0.64±0.13% and 0.92±0.02%, respectively). Additionally, they presented high eicosapentaenoic acid and docosahexaenoic acid levels (33.74±9.98 mg eicosapentaenoic acid g-1 DW and 31.31±2.92 mg docosahexaenoic acid g-1 dry weight, respectively). N. oculata and T. lutea are promising candidates for the co-production of antioxidants and aquaculture feed, while C. minutissima and D. salina showed promise due to their higher antioxidant content. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aquaculture%20fee" title="aquaculture fee">aquaculture fee</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acids" title=" fatty acids"> fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=microalgae" title=" microalgae"> microalgae</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20phenolic%20content" title=" total phenolic content"> total phenolic content</a> </p> <a href="https://publications.waset.org/abstracts/144133/antioxidant-capacity-proximate-biomass-composition-and-fatty-acid-profile-of-five-marine-microalgal-species-with-potential-as-aquaculture-feed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144133.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Development of PVA/polypyrrole Scaffolds by Supercritical CO₂ for Its Application in Biomedicine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Montes">Antonio Montes</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20Cozar"> Antonio Cozar</a>, <a href="https://publications.waset.org/abstracts/search?q=Clara%20Pereyra"> Clara Pereyra</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Valor"> Diego Valor</a>, <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Martinez%20de%20la%20Ossa"> Enrique Martinez de la Ossa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tissues and organs can be damaged because of traumatism, congenital illnesses, or cancer and the traditional therapeutic alternatives, such as surgery, cannot usually completely repair the damaged tissues. Tissue engineering allows regeneration of the patient's tissues, reducing the problems caused by the traditional methods. Scaffolds, polymeric structures with interconnected porosity, can be promoted the proliferation and adhesion of the patient’s cells in the damaged area. Furthermore, by means of impregnation of the scaffold with beneficial active substances, tissue regeneration can be induced through a drug delivery process. The objective of the work is the fabrication of a PVA scaffold coated with Gallic Acid and polypyrrole through a one-step foaming and impregnation process using the SSI technique (Supercritical Solvent Impregnation). In this technique, supercritical CO₂ penetrates into the polymer chains producing the plasticization of the polymer. In the depressurization step a CO₂ cellular nucleation and growing to take place to an interconnected porous structure of the polymer. The foaming process using supercritical CO₂ as solvent and expansion agent presents advantages compared to the traditional scaffolds’ fabrication methods, such as the polymer’s high solubility in the solvent or the possibility of carrying out the process at a low temperature, avoiding the inactivation of the active substance. In this sense, the supercritical CO₂ avoids the use of organic solvents and reduces the solvent residues in the final product. Moreover, this process does not require long processing time that could cause the stratification of substance inside the scaffold reducing the therapeutic efficiency of the formulation. An experimental design has been carried out to optimize the SSI technique operating conditions, as well as a study of the morphological characteristics of the scaffold for its use in tissue engineerings, such as porosity, conductivity or the release profiles of the active substance. It has been proved that the obtained scaffolds are partially porous, conductors of electricity and are able to release Gallic Acid in the long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scaffold" title="scaffold">scaffold</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming" title=" foaming"> foaming</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical" title=" supercritical"> supercritical</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA" title=" PVA"> PVA</a>, <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title=" polypyrrole"> polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=gallic%20acid" title=" gallic acid"> gallic acid</a> </p> <a href="https://publications.waset.org/abstracts/143360/development-of-pvapolypyrrole-scaffolds-by-supercritical-co2-for-its-application-in-biomedicine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> The Complete Modal Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Andersen">Sebastian Andersen</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20N.%20Poulsen"> Peter N. Poulsen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of basis projection in the structural dynamic analysis is frequently applied. The purpose of the method is to improve the computational efficiency, while maintaining a high solution accuracy, by projection the governing equations onto a small set of carefully selected basis vectors. The present work considers basis projection in kinematic nonlinear systems with a focus on two widely used basis vectors; the system mode shapes and their modal derivatives. Particularly the latter basis vectors are given special attention since only approximate modal derivatives have been used until now. In the present work the complete modal derivatives, derived from perturbation methods, are presented and compared to the previously applied approximate modal derivatives. The correctness of the complete modal derivatives is illustrated by use of an example of a harmonically loaded kinematic nonlinear structure modeled by beam elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basis%20projection" title="basis projection">basis projection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20nonlinearities" title=" kinematic nonlinearities"> kinematic nonlinearities</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20derivatives" title=" modal derivatives"> modal derivatives</a> </p> <a href="https://publications.waset.org/abstracts/92260/the-complete-modal-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92260.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Optimization of Monascus Orange Pigments Production Using pH-Controlled Fed-Batch Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young%20Min%20Kim">Young Min Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe"> Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monascus pigments, commonly used as a natural colorant in Asia, have many biological activities, such as cholesterol level control, anti-obesity, anti-cancer, and anti-oxidant, that have recently been elucidated. Especially, amino acid derivatives of Monascus pigments are receiving much attention because they have higher biological activities than original Monascus pigments. Previously, there have been two ways to produce amino acid derivatives: one-step production and two-step production. However, the one-step production has low purity, and the two-step production—precursor(orange pigments) fermentation and derivatives synthesis—has low productivity and growth rate during its precursor fermentation step. In this study, it was verified that pH is a key factor that affects the stability of orange pigments and the growth rate of Monascus. With an optimal pH profile obtained by pH-stat fermentation, we designed a process of precursor(orange pigments) fermentation that is a pH-controlled fed-batch fermentation. The final concentration of orange pigments in this process increased to 5.5g/L which is about 30% higher than the concentration produced from the previously used precursor fermentation step. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cultivation%20process" title="cultivation process">cultivation process</a>, <a href="https://publications.waset.org/abstracts/search?q=fed-batch%20fermentation" title=" fed-batch fermentation"> fed-batch fermentation</a>, <a href="https://publications.waset.org/abstracts/search?q=monascus%20pigments" title=" monascus pigments"> monascus pigments</a>, <a href="https://publications.waset.org/abstracts/search?q=pH%20stability" title=" pH stability"> pH stability</a> </p> <a href="https://publications.waset.org/abstracts/55435/optimization-of-monascus-orange-pigments-production-using-ph-controlled-fed-batch-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Phytochemical Study and Biological Activity of Sage (Salvia officinalis L.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mekhaldi%20Abdelkader">Mekhaldi Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Bouzned%20Ahcen"> Bouzned Ahcen</a>, <a href="https://publications.waset.org/abstracts/search?q=Djibaoui%20Rachid"> Djibaoui Rachid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamoum%20Hakim"> Hamoum Hakim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an attempt to evaluate the antioxidant and antimicrobial activity of methanolic extract and essential oils prepared from the leaves of sage (Salvia officinalis L.). The content of polyphenols in the methanolic extract of the leaves from Salvia officinalis extract was determined by spectrophoto- metrically, calculated as gallic acid and catechin equivalent. Antioxidant activity was evaluated by free radical scavenging activity using 2,2-diphenylpicryl-1-picrylhydrazyl (DPPH) assay. The plant essential oil and methanol extract were also subjected to screenings for the evaluation of their antioxidant activities using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) test. While the plant essential oil showed only weak antioxidant activities, its methanol extract was considerably active in DPPH (IC50= 37.29µg/ml) test. Appreciable total phenolic content (31.25mg/g) was also detected for the plant methanol extract as gallic acid equivalent in the Folin–Ciocalteu test. The plant was also screened for its antimicrobial activity and good to moderate inhibitions were recorded for its essential oil and methanol extract against most of the tested microorganisms. The present investigation revealed that this plant has rich source of antioxidant properties. It is for this reason that sage has found increasing application in food formulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoid" title=" flavonoid"> flavonoid</a>, <a href="https://publications.waset.org/abstracts/search?q=polyphenol" title=" polyphenol"> polyphenol</a>, <a href="https://publications.waset.org/abstracts/search?q=salvia%20officinalis" title=" salvia officinalis "> salvia officinalis </a> </p> <a href="https://publications.waset.org/abstracts/15899/phytochemical-study-and-biological-activity-of-sage-salvia-officinalis-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15899.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Selected Ethnomedicinal Plants of Northern Surigao Del Sur: Their Antioxidant Activities in Terms of Total Phenolics, ABTS Radical Cation Decolorization Power, and Ferric Reducing Ability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gemma%20A.%20Gruyal">Gemma A. Gruyal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plants can contain a wide variety of substances with antioxidative properties which are associated to important health benefits. These positive health effects are of great importance at a time when the environment is laden with many toxic substances. Five selected herbal plants namely, Mimosa pudica, Phyllanthus niruri, Ceiba pentandra, Eleusine polydactyla and Trema amboinensis, were chosen for the experiment to investigate their total phenolics content and antioxidant activities using ABTS radical cation decolorization power, and ferric reducing antioxidant power. The total phenolic content of each herbal plants ranges from 0.84 to 42.59 mg gallic acid equivalent/g. The antioxidant activity in the ABTS radical cation decolorization power varies from 0.005 to 0.362 mg trolox equivalent/g and the FRAP ranges from 0.30 to 28.42 mg gallic acid equivalent/g. Among the five medicinal plants, Mimosa pudica has been an excellent performer in terms of the 3 parameters measured; it is followed by Phyllanthus niruri. The five herbal plants do not have equivalent antioxidant power. The relative high values for M. pudica and P. niruri supports the medicinal value of both plants. The total phenolics, ABTS and FRAP correlate strongly with one another. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABTS" title="ABTS">ABTS</a>, <a href="https://publications.waset.org/abstracts/search?q=FRAP" title=" FRAP"> FRAP</a>, <a href="https://publications.waset.org/abstracts/search?q=Leaf%20extracts" title=" Leaf extracts"> Leaf extracts</a>, <a href="https://publications.waset.org/abstracts/search?q=phenol" title=" phenol"> phenol</a> </p> <a href="https://publications.waset.org/abstracts/28034/selected-ethnomedicinal-plants-of-northern-surigao-del-sur-their-antioxidant-activities-in-terms-of-total-phenolics-abts-radical-cation-decolorization-power-and-ferric-reducing-ability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Antioxydant Activity of Flavonoïd’s Extracts of Rhamnus alaternus L. Leaves of Tessala Mountains (Occidental Algeria)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Benchiha%20Walid">Benchiha Walid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahroug%20Samira"> Mahroug Samira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rhamnus alaternus L. is a shrub that belongs to the family of Rhamnaceae. It is a medicinal plant that is largely used in traditional medicine in Algeria. Five flavonoic extracts obtained of Rhamnus alaternus L. leaves. The flavonoids were evaluated by a method that uses aluminum chloride AlCl3 of each extract; the content is estimated at 19.33 (Hexanic. Extract), 18.42 (Chlroformic.extract), 16.75 (Acetate. Extract), 3.9 (Brute. Extract), and 3.02 (Aqueous. Extract) mg Equivalent quercetine/gram of extract (mg QE/ g extract). The antioxidant activity was realized by the antiradical test that was evaluated by using DPHH (2.2 diphenyl-1-1picrylhdrazile), the inhibitory concentration at 50% (CI50) were estimated at 74.78 (Vitamin.C), 143.78 (Catechine), 101.78 (Gallic acid), 205.41 (Tannic acid), 210 (Caffeic acid) µg/ml; 74.16 (Br.extr), 9.98 (Aq.extr), 54.08 (Hèx.extr), 8.64 (Ac.extr), 30.49 (Ch.extr) mg/ml. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rhamnus%20alaternus%20L." title="Rhamnus alaternus L.">Rhamnus alaternus L.</a>, <a href="https://publications.waset.org/abstracts/search?q=flavonoids" title=" flavonoids"> flavonoids</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxydant%20activity" title=" antioxydant activity"> antioxydant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=Tessala" title=" Tessala"> Tessala</a> </p> <a href="https://publications.waset.org/abstracts/31838/antioxydant-activity-of-flavonoids-extracts-of-rhamnus-alaternus-l-leaves-of-tessala-mountains-occidental-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> Synthesis and Analgesic activity of 2-(p-Substituted phenyl)-3-[4-(N-Substituted amino) methyl-2-oxo indoilin-3-ylidene]benzenesulfonyl Quinazolin-4(3H)-One Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Gopal">N. Gopal</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Jaasminerjiit"> K. Jaasminerjiit</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Z.%20Xiang"> L. Z. Xiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quinazoline-4(3H)-one ring system has been consistently regarded as promising privileged structural icon owing to its pharmacodynamic versatility in many of its synthetic derivatives as well as in several naturally occurring alkaloids. The literature reveals that 2nd & 3rd positions of the quinazolin-4(3H)-one pharmacophore are the target for substitution with other moieties. On the other hand, sulphanilamide derivatives and isatin moiety also displayed valuable biological activities. Hence, it was thought worthwhile to study the effects of three pharmacophoric moieties like quinazolinone, sulphanilamide and isatin in a single molecule for the better analgesic activity with lower toxicity. Series of novel 2,3-disubstituted quinazolin-4(3H)-one derivatives have been synthesised from the intermediate Schiff base of 2-(4’-substitutedphenyl)-3-[(N-2-oxoindolin-3-ylidene)-4”-sulphonamidophenyl]-quinazolin-4(3H)-one derivatives, which was prepared from reacting 2-(substituted phenyl)-4H-benzo[d][1,3]-oxazin-4-one with sulphanilamide. The required benzoxazinone derivatives were prepared by reacting anthranilic acid with benzoyl chloride. All the compounds structure was characterised by using H1 NMR, IR and Mass spectroscopy. The intermediate Schiff base and final Mannich base compounds were evaluated for their analgesic activity by acetic acid-induced writhing method at the dose of 25mg/kg, 50 mg/kg, and 100 mg/kg (bw) and Diclofenac (25mg/kg of body weight) will be used as the reference drugs. From the results of the study, it has been observed that final Mannich base showed a better analgesic activity when compared to the parent Schiff bases, it was found that compound substituted with N-methyl piperazine at 1st position of the indole nucleus of the final quinazolinone derivatives (GA4B1) i.e. 2-(4’-methoxy phenyl)-3-[4-(N-(1-N-methyl piperazine amine) methyl-2-oxo indoilin-3-ylidene] benzenesulfonyl quinazolin-4(3H)-one increases the analgesic activity and among the synthesised compounds, GA4B1 exhibited quite superior analgesic activity. The remaining Schiff bases and Mannich base derivatives exhibited moderate analgesic activity. All the compounds showed a dose dependent activity. None of the synthesised compound showed ulcer index whereas the standard drug, diclofenac [25 mg/kg (bw)] showed significantly higher gross ulcer index values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analgesic%20activity" title="analgesic activity">analgesic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=isatin" title=" isatin"> isatin</a>, <a href="https://publications.waset.org/abstracts/search?q=mannich%20base" title=" mannich base"> mannich base</a>, <a href="https://publications.waset.org/abstracts/search?q=quinazolin-4%283H%29-one" title=" quinazolin-4(3H)-one"> quinazolin-4(3H)-one</a> </p> <a href="https://publications.waset.org/abstracts/45034/synthesis-and-analgesic-activity-of-2-p-substituted-phenyl-3-4-n-substituted-amino-methyl-2-oxo-indoilin-3-ylidenebenzenesulfonyl-quinazolin-43h-one-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=gallic%20acid%20derivatives&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10