CINXE.COM

Неравенство Птолемея — Википедия

<!DOCTYPE html> <html class="client-nojs" lang="ru" dir="ltr"> <head> <meta charset="UTF-8"> <title>Неравенство Птолемея — Википедия</title> <script>(function(){var className="client-js";var cookie=document.cookie.match(/(?:^|; )ruwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t."," \t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","январь","февраль","март","апрель","май","июнь","июль","август","сентябрь","октябрь","ноябрь","декабрь"],"wgRequestId":"bb39390e-5723-4310-b910-00a86eaac555","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Неравенство_Птолемея","wgTitle":"Неравенство Птолемея","wgCurRevisionId":138135936,"wgRevisionId":138135936,"wgArticleId": 554534,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Страницы, использующие расширение JsonConfig","Страницы, использующие волшебные ссылки ISBN","Планиметрия","Неравенства","Теоремы планиметрии"],"wgPageViewLanguage":"ru","wgPageContentLanguage":"ru","wgPageContentModel":"wikitext","wgRelevantPageName":"Неравенство_Птолемея","wgRelevantArticleId":554534,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":1}}},"wgStableRevisionId":138135936,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ru","pageLanguageDir":"ltr","pageVariantFallbacks":"ru"}, "wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":true,"wgVector2022LanguageInHeader":false,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q459547","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.common-site":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready", "skins.vector.styles.legacy":"ready","jquery.makeCollapsible.styles":"ready","ext.flaggedRevs.basic":"ready","mediawiki.codex.messagebox.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","codex-search-styles":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.legacy.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.flaggedRevs.advanced","ext.gadget.collapserefs","ext.gadget.directLinkToCommons","ext.gadget.referenceTooltips","ext.gadget.logo","ext.gadget.edittop","ext.gadget.navboxDefaultGadgets","ext.gadget.wikibugs","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents", "ext.navigationTiming","ext.uls.compactlinks","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=codex-search-styles%7Cext.cite.styles%7Cext.flaggedRevs.basic%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cjquery.makeCollapsible.styles%7Cmediawiki.codex.messagebox.styles%7Cskins.vector.styles.legacy%7Cwikibase.client.init&amp;only=styles&amp;skin=vector"> <script async="" src="/w/load.php?lang=ru&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=ext.gadget.common-site&amp;only=styles&amp;skin=vector"> <link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=site.styles&amp;only=styles&amp;skin=vector"> <noscript><link rel="stylesheet" href="/w/load.php?lang=ru&amp;modules=noscript&amp;only=styles&amp;skin=vector"></noscript> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/1200px-Ptolemy_Inequality.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1200"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/800px-Ptolemy_Inequality.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="800"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/640px-Ptolemy_Inequality.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="640"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Неравенство Птолемея — Википедия"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ru.m.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F"> <link rel="alternate" type="application/x-wiki" title="Править" href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Википедия (ru)"> <link rel="EditURI" type="application/rsd+xml" href="//ru.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ru"> <link rel="alternate" type="application/atom+xml" title="Википедия — Atom-лента" href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin-vector-legacy mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Неравенство_Птолемея rootpage-Неравенство_Птолемея skin-vector action-view"><div id="mw-page-base" class="noprint"></div> <div id="mw-head-base" class="noprint"></div> <div id="content" class="mw-body" role="main"> <a id="top"></a> <div id="siteNotice"><!-- CentralNotice --></div> <div class="mw-indicators"> </div> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Неравенство Птолемея</span></h1> <div id="bodyContent" class="vector-body"> <div id="siteSub" class="noprint">Материал из Википедии — свободной энциклопедии</div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="contentSub2"></div> <div id="jump-to-nav"></div> <a class="mw-jump-link" href="#mw-head">Перейти к навигации</a> <a class="mw-jump-link" href="#searchInput">Перейти к поиску</a> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ru" dir="ltr"><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Ptolemy_Inequality.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/220px-Ptolemy_Inequality.svg.png" decoding="async" width="220" height="220" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/330px-Ptolemy_Inequality.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Ptolemy_Inequality.svg/440px-Ptolemy_Inequality.svg.png 2x" data-file-width="512" data-file-height="512" /></a><figcaption>Если 4 точки не лежат на одной окружности, то все три <i>неравенства Птолемея</i> строгие.</figcaption></figure> <p><b>Неравенство Птолемея</b>&#160;— неравенство на 6 расстояний между четвёркой точек на плоскости. </p><p>Названо в честь позднеэллинистического математика <a href="/wiki/%D0%9A%D0%BB%D0%B0%D0%B2%D0%B4%D0%B8%D0%B9_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D0%B9" title="Клавдий Птолемей">Клавдия Птолемея</a>. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="ru" dir="ltr"><h2 id="mw-toc-heading">Содержание</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Формулировка"><span class="tocnumber">1</span> <span class="toctext">Формулировка</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#О_других_доказательствах"><span class="tocnumber">2</span> <span class="toctext">О других доказательствах</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Следствия"><span class="tocnumber">3</span> <span class="toctext">Следствия</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Вариации_и_обобщения"><span class="tocnumber">4</span> <span class="toctext">Вариации и обобщения</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#См._также"><span class="tocnumber">5</span> <span class="toctext">См. также</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Примечания"><span class="tocnumber">6</span> <span class="toctext">Примечания</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Литература"><span class="tocnumber">7</span> <span class="toctext">Литература</span></a></li> </ul> </div> <div class="mw-heading mw-heading2"><h2 id="Формулировка"><span id=".D0.A4.D0.BE.D1.80.D0.BC.D1.83.D0.BB.D0.B8.D1.80.D0.BE.D0.B2.D0.BA.D0.B0"></span>Формулировка</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=1" title="Редактировать раздел «Формулировка»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=1" title="Редактировать код раздела «Формулировка»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Для любых точек <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684d01c09b12e5a28987c6127567daef29ee3b44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,B,C,D}"></span> плоскости выполнено неравенство </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AC\cdot BD\leq AB\cdot CD+BC\cdot AD,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>B</mi> <mi>D</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>A</mi> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mi>D</mi> <mo>+</mo> <mi>B</mi> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>A</mi> <mi>D</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AC\cdot BD\leq AB\cdot CD+BC\cdot AD,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f4d35d4c7af9f44a9dfa01a63c272dd08d7251f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:33.216ex; height:2.509ex;" alt="{\displaystyle AC\cdot BD\leq AB\cdot CD+BC\cdot AD,}"></span></dd></dl> <p>причём равенство достигается <a href="/wiki/%D0%A2%D0%BE%D0%B3%D0%B4%D0%B0_%D0%B8_%D1%82%D0%BE%D0%BB%D1%8C%D0%BA%D0%BE_%D1%82%D0%BE%D0%B3%D0%B4%D0%B0,_%D0%BA%D0%BE%D0%B3%D0%B4%D0%B0" class="mw-redirect" title="Тогда и только тогда, когда">тогда и только тогда, когда</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABCD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABCD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/412b7d8df4db6ca8093d971320c405598c49c339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.198ex; height:2.176ex;" alt="{\displaystyle ABCD}"></span>&#160;— выпуклый <a href="/wiki/%D0%92%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9_%D1%87%D0%B5%D1%82%D1%8B%D1%80%D1%91%D1%85%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA" title="Вписанный четырёхугольник">вписанный четырёхугольник</a>, или точки <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684d01c09b12e5a28987c6127567daef29ee3b44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,B,C,D}"></span> лежат на одной прямой. </p><p>Случай равенства также называется <b>тождеством Птолемея</b>. </p><p><br /> </p> <style data-mw-deduplicate="TemplateStyles:r137842454">.mw-parser-output .ts-Скрытый_блок{margin:0;overflow:hidden;border-collapse:collapse;box-sizing:border-box;font-size:95%}.mw-parser-output .ts-Скрытый_блок-title{text-align:center;font-weight:bold;line-height:1.6em;min-height:1.2em}.mw-parser-output .ts-Скрытый_блок .mw-collapsible-content{overflow-x:auto;overflow-y:hidden;clear:both}.mw-parser-output .ts-Скрытый_блок::before,.mw-parser-output .ts-Скрытый_блок .mw-collapsible-toggle{padding-top:.1em;width:6em;font-weight:normal;font-size:calc(90%/0.95)}.mw-parser-output .ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{float:right;text-align:right}.mw-parser-output .ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{float:left;text-align:left}.mw-parser-output .ts-Скрытый_блок-gray{padding:2px;border:1px solid var(--border-color-base,#a2a9b1)}.mw-parser-output .ts-Скрытый_блок-transparent{border:none}.mw-parser-output .ts-Скрытый_блок-gray .ts-Скрытый_блок-title{background:var(--background-color-neutral,#eaecf0);padding:.1em 6em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-transparent .ts-Скрытый_блок-title{background:transparent;padding:.1em 5.5em;padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray .mw-collapsible-content{padding:.25em 1em}.mw-parser-output .ts-Скрытый_блок-transparent .mw-collapsible-content{padding:.25em 0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .mw-collapsible-toggle{padding-right:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .mw-collapsible-toggle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:1em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:6.5em}.mw-parser-output .ts-Скрытый_блок-gray.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle{padding-right:1em}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-rightHideLink .ts-Скрытый_блок-title-leftTitle{padding-left:0}.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-rightTitle,.mw-parser-output .ts-Скрытый_блок-transparent.ts-Скрытый_блок-leftHideLink .ts-Скрытый_блок-title-leftTitle{padding-right:0}.mw-parser-output .ts-Скрытый_блок+.ts-Скрытый_блок,.mw-parser-output .ts-Скрытый_блок+link+.ts-Скрытый_блок{border-top-style:hidden}</style><div class="mw-collapsible mw-collapsed ts-Скрытый_блок ts-Скрытый_блок-gray ts-Скрытый_блок-rightHideLink" style=""><div class="ts-Скрытый_блок-title" style="text-align: left;">Доказательство<div class="mw-collapsible-toggle-placeholder"></div></div><div class="mw-collapsible-content" style="text-align: left;"> <p>Простейшее доказательство получается с использованием комплексных чисел. Пусть комплексные числа <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z_{1},\,z_{2},\,z_{3},\,z_{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z_{1},\,z_{2},\,z_{3},\,z_{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3fb3eae26db6065938b1084d472728c5685d65b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.805ex; height:2.009ex;" alt="{\displaystyle z_{1},\,z_{2},\,z_{3},\,z_{4}}"></span> соответствуют точкам <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C,D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C,D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/684d01c09b12e5a28987c6127567daef29ee3b44" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.3ex; height:2.509ex;" alt="{\displaystyle A,B,C,D}"></span> плоскости. Тогда неравенство Птолемея равносильно неравенству </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |z_{3}-z_{1}|\cdot |z_{4}-z_{2}|\leq |z_{3}-z_{2}|\cdot |z_{4}-z_{1}|+|z_{3}-z_{4}|\cdot |z_{1}-z_{2}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2264;<!-- ≤ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |z_{3}-z_{1}|\cdot |z_{4}-z_{2}|\leq |z_{3}-z_{2}|\cdot |z_{4}-z_{1}|+|z_{3}-z_{4}|\cdot |z_{1}-z_{2}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a8edab503723e57d47678acf21c773d5fcc859d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:61.405ex; height:2.843ex;" alt="{\displaystyle |z_{3}-z_{1}|\cdot |z_{4}-z_{2}|\leq |z_{3}-z_{2}|\cdot |z_{4}-z_{1}|+|z_{3}-z_{4}|\cdot |z_{1}-z_{2}|}"></span>, <br /></dd></dl> <p>которое следует из неравенства треугольника для комплексных чисел и тождества </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (z_{3}-z_{1})\cdot (z_{4}-z_{2})=(z_{3}-z_{2})\cdot (z_{4}-z_{1})+(z_{3}-z_{4})\cdot (z_{1}-z_{2})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x22C5;<!-- ⋅ --></mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (z_{3}-z_{1})\cdot (z_{4}-z_{2})=(z_{3}-z_{2})\cdot (z_{4}-z_{1})+(z_{3}-z_{4})\cdot (z_{1}-z_{2})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b3e75d82305a49d50d811fa8f65e65d40358e0e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:64.499ex; height:2.843ex;" alt="{\displaystyle (z_{3}-z_{1})\cdot (z_{4}-z_{2})=(z_{3}-z_{2})\cdot (z_{4}-z_{1})+(z_{3}-z_{4})\cdot (z_{1}-z_{2})}"></span>.</dd></dl> <p>В случае обращения неравенства в равенство слагаемые в правой части должны быть пропорциональны вектору суммы и сонаправлены ему, то есть оба числа </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {(z_{3}-z_{2})(z_{4}-z_{1})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {(z_{3}-z_{2})(z_{4}-z_{1})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9a4b0c112e0221249d33a54039b455e478d03a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.677ex; height:7.176ex;" alt="{\displaystyle {\cfrac {(z_{3}-z_{2})(z_{4}-z_{1})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {(z_{3}-z_{4})(z_{1}-z_{2})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {(z_{3}-z_{4})(z_{1}-z_{2})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7c9de7de7a8daf305b88e91be6fb7534658c27b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:18.677ex; height:7.176ex;" alt="{\displaystyle {\cfrac {(z_{3}-z_{4})(z_{1}-z_{2})}{(z_{3}-z_{1})(z_{4}-z_{2})}}}"></span></dd></dl> <p>должны быть вещественны, положительны, с суммой равной 1 (то есть находятся между 0 и 1). </p><p>Вещественность означает, что <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\rm {Im}}{\cfrac {z_{3}-z_{2}}{z_{3}-z_{1}}}:{\cfrac {z_{4}-z_{2}}{z_{4}-z_{1}}}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">I</mi> <mi mathvariant="normal">m</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\rm {Im}}{\cfrac {z_{3}-z_{2}}{z_{3}-z_{1}}}:{\cfrac {z_{4}-z_{2}}{z_{4}-z_{1}}}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/607255210413a56a344b7931b06459b58abbcba5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.868ex; height:7.176ex;" alt="{\displaystyle {\rm {Im}}{\cfrac {z_{3}-z_{2}}{z_{3}-z_{1}}}:{\cfrac {z_{4}-z_{2}}{z_{4}-z_{1}}}=0}"></span>, а это - стандартное уравнение окружности. </p><p>То, что числа между 0 и 1 означает лишь, что точки A и C на этой окружности - не соседние (на обеих дугах между ними должна присутствовать либо точка B, либо точка D). </p> </div></div> <div class="mw-heading mw-heading2"><h2 id="О_других_доказательствах"><span id=".D0.9E_.D0.B4.D1.80.D1.83.D0.B3.D0.B8.D1.85_.D0.B4.D0.BE.D0.BA.D0.B0.D0.B7.D0.B0.D1.82.D0.B5.D0.BB.D1.8C.D1.81.D1.82.D0.B2.D0.B0.D1.85"></span>О других доказательствах</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=2" title="Редактировать раздел «О других доказательствах»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=2" title="Редактировать код раздела «О других доказательствах»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li>Один из вариантов доказательства неравенства основан на применении <a href="/wiki/%D0%98%D0%BD%D0%B2%D0%B5%D1%80%D1%81%D0%B8%D1%8F_(%D0%B3%D0%B5%D0%BE%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F)" title="Инверсия (геометрия)">инверсии</a> относительно окружности с центром в точке <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span>; этим неравенство Птолемея сводится к <a href="/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%B0" title="Неравенство треугольника">неравенству треугольника</a> для образов точек <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span>.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup></li> <li>Существует способ доказательства через <a href="/wiki/%D0%9F%D1%80%D1%8F%D0%BC%D0%B0%D1%8F_%D0%A1%D0%B8%D0%BC%D1%81%D0%BE%D0%BD%D0%B0" title="Прямая Симсона">прямую Симсона</a>.</li> <li>Теорема Птолемея может доказываться следующим способом (близким к доказательству самого Птолемея, приведённому им в книге <a href="/wiki/%D0%90%D0%BB%D1%8C%D0%BC%D0%B0%D0%B3%D0%B5%D1%81%D1%82" title="Альмагест">Альмагест</a>)&#160;— ввести точку <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span> такую, что <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle ABE=\angle DBC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>A</mi> <mi>B</mi> <mi>E</mi> <mo>=</mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>D</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle ABE=\angle DBC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4849392ead8c11476b3660137e3f3292a0a37dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.192ex; height:2.176ex;" alt="{\displaystyle \angle ABE=\angle DBC}"></span>, а потом через <a href="/wiki/%D0%9F%D0%BE%D0%B4%D0%BE%D0%B1%D0%B8%D0%B5_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2" class="mw-redirect" title="Подобие треугольников">подобие треугольников</a>.</li> <li>Теорема также является следствием из <a href="/wiki/%D0%A1%D0%BE%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D0%91%D1%80%D0%B5%D1%82%D1%88%D0%BD%D0%B0%D0%B9%D0%B4%D0%B5%D1%80%D0%B0" title="Соотношение Бретшнайдера">соотношения Бретшнайдера</a>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="Следствия"><span id=".D0.A1.D0.BB.D0.B5.D0.B4.D1.81.D1.82.D0.B2.D0.B8.D1.8F"></span>Следствия</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=3" title="Редактировать раздел «Следствия»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=3" title="Редактировать код раздела «Следствия»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><b><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%BE%D0%BC%D0%BF%D0%B5%D1%8E" title="Теорема Помпею">Теорема Помпею</a></b>.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Рассмотрим точку <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> и <a href="/wiki/%D0%9F%D1%80%D0%B0%D0%B2%D0%B8%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA" title="Правильный треугольник">правильный треугольник</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span>. Тогда из отрезков <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle XA}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle XA}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f81e96775e04149546dbef15bc5152b07e158d97" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.723ex; height:2.176ex;" alt="{\displaystyle XA}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle XB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle XB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afa0a3fca929c224fde829e24ea00c0b099ddd8b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.744ex; height:2.176ex;" alt="{\displaystyle XB}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle XC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle XC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab722fbd2027d28d36dc9931112013d87a5f812f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.746ex; height:2.176ex;" alt="{\displaystyle XC}"></span> можно составить треугольник, причём этот <a href="/wiki/%D0%A2%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA" title="Треугольник">треугольник</a> вырожденный тогда и только тогда, когда точка <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> лежит на описанной окружности треугольника <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABC}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABC}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e55b44cfd965fbdc7a328d5db8a35a619db0971" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.273ex; height:2.176ex;" alt="{\displaystyle ABC}"></span>.</li></ul> <ul><li>Если AC — <a href="/wiki/%D0%94%D0%B8%D0%B0%D0%BC%D0%B5%D1%82%D1%80" title="Диаметр">диаметр</a> окружности, то теорема превращается в правило <a href="/wiki/%D0%A1%D0%B8%D0%BD%D1%83%D1%81_(%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D1%8F)" class="mw-redirect" title="Синус (функция)">синуса</a> суммы. Именно это следствие использовал Птолемей для составления таблицы синусов.</li></ul> <ul><li><a href="/wiki/%D0%A4%D0%BE%D1%80%D0%BC%D1%83%D0%BB%D0%B0_%D0%9A%D0%B0%D1%80%D0%BD%D0%BE" title="Формула Карно">Формула Карно</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Вариации_и_обобщения"><span id=".D0.92.D0.B0.D1.80.D0.B8.D0.B0.D1.86.D0.B8.D0.B8_.D0.B8_.D0.BE.D0.B1.D0.BE.D0.B1.D1.89.D0.B5.D0.BD.D0.B8.D1.8F"></span>Вариации и обобщения</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=4" title="Редактировать раздел «Вариации и обобщения»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=4" title="Редактировать код раздела «Вариации и обобщения»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%D0%A1%D0%BE%D0%BE%D1%82%D0%BD%D0%BE%D1%88%D0%B5%D0%BD%D0%B8%D0%B5_%D0%91%D1%80%D0%B5%D1%82%D1%88%D0%BD%D0%B0%D0%B9%D0%B4%D0%B5%D1%80%D0%B0" title="Соотношение Бретшнайдера">Соотношение Бретшнайдера</a></li> <li>Неравенства Птолемея можно распространить и на шесть точек: если <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1},A_{2},\dots A_{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1},A_{2},\dots A_{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/876d601ca885f40e634c23231063de0f9b101f17" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.57ex; height:2.509ex;" alt="{\displaystyle A_{1},A_{2},\dots A_{6}}"></span> произвольные точки плоскости (это обобщение называют <i>теоремой Птолемея для шестиугольника</i>, а в зарубежной литературе <i>теоремой Фурмана</i> (Fuhrmann’s theorem)<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup>), то</li></ul> <dl><dd><dl><dd><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png/220px-%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png" decoding="async" width="220" height="232" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/97/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png/330px-%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png 1.5x, //upload.wikimedia.org/wikipedia/commons/9/97/%D0%9E%D0%B1%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%BD%D0%B0%D1%8F_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F.png 2x" data-file-width="407" data-file-height="430" /></a><figcaption>Обобщенная теорема Птолемея или <a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%B5%D0%B9%D1%81%D0%B8" title="Теорема Кейси">теорема Кейси</a></figcaption></figure><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}A_{4}\cdot A_{2}A_{5}\cdot A_{3}A_{6}\leq A_{1}A_{2}\cdot A_{3}A_{6}\cdot A_{4}A_{5}+A_{1}A_{2}\cdot A_{3}A_{4}\cdot A_{5}A_{6}+}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>&#x2264;<!-- ≤ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}A_{4}\cdot A_{2}A_{5}\cdot A_{3}A_{6}\leq A_{1}A_{2}\cdot A_{3}A_{6}\cdot A_{4}A_{5}+A_{1}A_{2}\cdot A_{3}A_{4}\cdot A_{5}A_{6}+}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/837856d320b81516200711bac5bc4642430a108a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:68.174ex; height:2.509ex;" alt="{\displaystyle A_{1}A_{4}\cdot A_{2}A_{5}\cdot A_{3}A_{6}\leq A_{1}A_{2}\cdot A_{3}A_{6}\cdot A_{4}A_{5}+A_{1}A_{2}\cdot A_{3}A_{4}\cdot A_{5}A_{6}+}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle +A_{2}A_{3}\cdot A_{1}A_{4}\cdot A_{5}A_{6}+A_{2}A_{3}\cdot A_{4}A_{5}\cdot A_{1}A_{6}+A_{3}A_{4}\cdot A_{2}A_{5}\cdot A_{1}A_{6},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle +A_{2}A_{3}\cdot A_{1}A_{4}\cdot A_{5}A_{6}+A_{2}A_{3}\cdot A_{4}A_{5}\cdot A_{1}A_{6}+A_{3}A_{4}\cdot A_{2}A_{5}\cdot A_{1}A_{6},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04f9d7467097be5b35be0b548c9aa5eb04408b8a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:68.563ex; height:2.509ex;" alt="{\displaystyle +A_{2}A_{3}\cdot A_{1}A_{4}\cdot A_{5}A_{6}+A_{2}A_{3}\cdot A_{4}A_{5}\cdot A_{1}A_{6}+A_{3}A_{4}\cdot A_{2}A_{5}\cdot A_{1}A_{6},}"></span></dd></dl></dd> <dd>причем равенство достигается тогда и только тогда, когда <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{1}\dots A_{6}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2026;<!-- … --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{1}\dots A_{6}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c6a16e6bc712ddd245919df726af6663a7239bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.092ex; height:2.509ex;" alt="{\displaystyle A_{1}\dots A_{6}}"></span>&#160;— вписанный шестиугольник.</dd></dl> <ul><li><b><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9A%D0%B5%D0%B9%D1%81%D0%B8" title="Теорема Кейси">Теорема Кейси</a></b> (<b>обобщённая теорема Птолемея</b>): Рассмотрим окружности <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha ,\beta ,\gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> <mo>,</mo> <mi>&#x03B2;<!-- β --></mi> <mo>,</mo> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha ,\beta ,\gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/301cc1b37ba8f0fb0c9bedee5efa5e0b5bc9e791" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.15ex; height:2.676ex;" alt="{\displaystyle \alpha ,\beta ,\gamma }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B4;<!-- δ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \delta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5321cfa797202b3e1f8620663ff43c4660ea03a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.049ex; height:2.343ex;" alt="{\displaystyle \delta }"></span>, касающиеся данной окружности в вершинах <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A,B,C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A,B,C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ce2acf22b93dfbd22373336bd9c22dbd98a49d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.341ex; height:2.509ex;" alt="{\displaystyle A,B,C}"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f34a0c600395e5d4345287e21fb26efd386990e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.924ex; height:2.176ex;" alt="{\displaystyle D}"></span> выпуклого четырёхугольника <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ABCD}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> <mi>C</mi> <mi>D</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ABCD}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/412b7d8df4db6ca8093d971320c405598c49c339" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.198ex; height:2.176ex;" alt="{\displaystyle ABCD}"></span>. Пусть <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\alpha \beta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\alpha \beta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f46dc6dd7c95b79255f2fa3f677cd3152c5feb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.066ex; height:2.676ex;" alt="{\displaystyle t_{\alpha \beta }}"></span>&#160;— длина общей касательной к окружностям <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \alpha }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B1;<!-- α --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \alpha }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b79333175c8b3f0840bfb4ec41b8072c83ea88d3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.488ex; height:1.676ex;" alt="{\displaystyle \alpha }"></span> и <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \beta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B2;<!-- β --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \beta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed48a5e36207156fb792fa79d29925d2f7901e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.332ex; height:2.509ex;" alt="{\displaystyle \beta }"></span> (внешней, если оба касания внутренние или внешние одновременно, и внутренней, если одно касание внутреннее, а другое внешнее); <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\beta \gamma },t_{\gamma \delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\beta \gamma },t_{\gamma \delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48459ca50cfbcc5e46ff554b7de871f27190e402" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.646ex; height:2.676ex;" alt="{\displaystyle t_{\beta \gamma },t_{\gamma \delta }}"></span> <span class="nowrap">и т. д.</span> определяются аналогично. Тогда</li></ul> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t_{\alpha \beta }t_{\gamma \delta }+t_{\beta \gamma }t_{\delta \alpha }=t_{\alpha \gamma }t_{\beta \delta }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B3;<!-- γ --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> <mo>+</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B4;<!-- δ --></mi> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <mo>=</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B3;<!-- γ --></mi> </mrow> </msub> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> <mi>&#x03B4;<!-- δ --></mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t_{\alpha \beta }t_{\gamma \delta }+t_{\beta \gamma }t_{\delta \alpha }=t_{\alpha \gamma }t_{\beta \delta }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af68a992c11309905a04da2a706c15af50e48aa0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.254ex; height:2.676ex;" alt="{\displaystyle t_{\alpha \beta }t_{\gamma \delta }+t_{\beta \gamma }t_{\delta \alpha }=t_{\alpha \gamma }t_{\beta \delta }}"></span>.</dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:Circle_graph_C4.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Circle_graph_C4.svg/170px-Circle_graph_C4.svg.png" decoding="async" width="170" height="170" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/70/Circle_graph_C4.svg/255px-Circle_graph_C4.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/70/Circle_graph_C4.svg/340px-Circle_graph_C4.svg.png 2x" data-file-width="126" data-file-height="126" /></a><figcaption><a href="/wiki/%D0%A6%D0%B8%D0%BA%D0%BB%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B9_%D0%B3%D1%80%D0%B0%D1%84" class="mw-redirect" title="Циклический граф">Циклический граф</a>, в котором все расстояния удовлетворяют <i>неравенству Птолемея</i>, называют <b>графом Птолемея</b></figcaption></figure> <ul><li><b><a href="/wiki/%D0%93%D1%80%D0%B0%D1%84_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" class="mw-redirect" title="Граф Птолемея">Граф Птолемея</a></b> (см. рис.)<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup>,</li></ul> <div class="mw-heading mw-heading2"><h2 id="См._также"><span id=".D0.A1.D0.BC._.D1.82.D0.B0.D0.BA.D0.B6.D0.B5"></span>См. также</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=5" title="Редактировать раздел «См. также»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=5" title="Редактировать код раздела «См. также»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D0%BE%D0%BC%D0%BF%D0%B5%D1%8E" title="Теорема Помпею">Теорема Помпею</a></li> <li><a href="/wiki/%D0%A2%D0%BE%D1%87%D0%BA%D0%B0_%D0%9C%D0%B8%D0%BA%D0%B5%D0%BB%D1%8F" title="Точка Микеля">Теорема Микеля о шести окружностях</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="Примечания"><span id=".D0.9F.D1.80.D0.B8.D0.BC.D0.B5.D1.87.D0.B0.D0.BD.D0.B8.D1.8F"></span>Примечания</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=6" title="Редактировать раздел «Примечания»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=6" title="Редактировать код раздела «Примечания»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="reflist columns" style="list-style-type: decimal;"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.mccme.ru/ask/qa/ptolemey.html">Доказательство теоремы Птолемея с помощью инверсии</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20090526081133/http://www.mccme.ru/ask/qa/ptolemey.html">Архивная копия</a> от 26 мая 2009 на <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Дистанционный консультационный пункт по математике <a href="/wiki/%D0%9C%D0%A6%D0%9D%D0%9C%D0%9E" class="mw-redirect" title="МЦНМО">МЦНМО</a>.</span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://www.mccme.ru/ask/qa/pomp.html">О теореме Д. Помпейю</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20041217075812/http://www.mccme.ru/ask/qa/pomp.html">Архивная копия</a> от 17 декабря 2004 на <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>. Дистанционный консультационный пункт по математике <a href="/wiki/%D0%9C%D0%A6%D0%9D%D0%9C%D0%9E" class="mw-redirect" title="МЦНМО">МЦНМО</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text"><span class="citation"><span lang="und"><a rel="nofollow" class="external text" href="http://www.mccme.ru/ask/qa/ptolemey.html">Теорема Птолемея</a></span><span class="hidden-ref" style="display:none;">&#160;&#160;<small class="ref-info" style="cursor:help;" title="на неопределённом языке">(неопр.)</small></span>.&#32;Дата обращения: 17 мая 2011.&#32;<a rel="nofollow" class="external text" href="https://web.archive.org/web/20090526081133/http://www.mccme.ru/ask/qa/ptolemey.html">Архивировано</a> 26 мая 2009 года.</span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r141305934">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free a::after,.mw-parser-output .id-lock-limited a::after,.mw-parser-output .id-lock-registration a::after,.mw-parser-output .id-lock-subscription a::after,.mw-parser-output .cs1-ws-icon a::after{content:"";width:1.1em;height:1.1em;display:inline-block;vertical-align:middle;background-position:center;background-repeat:no-repeat;background-size:contain}.mw-parser-output .id-lock-free.id-lock-free a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")}.mw-parser-output .id-lock-limited.id-lock-limited a::after,.mw-parser-output .id-lock-registration.id-lock-registration a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")}.mw-parser-output .id-lock-subscription.id-lock-subscription a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")}.mw-parser-output .cs1-ws-icon a::after{background-image:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-night .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-night .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}html.skin-theme-clientpref-os .mw-parser-output .id-lock-free a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-limited a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-registration a::after,html.skin-theme-clientpref-os .mw-parser-output .id-lock-subscription a::after{filter:invert(1)hue-rotate(180deg)}}</style><cite id="CITEREFHoworka1981" class="citation cs2">Howorka, Edward (1981), "A characterization of Ptolemaic graphs (Характеризация графов Птолемея)", <i>Journal of Graph Theory</i>, <b>5</b> (3): 323—331, <a href="/wiki/%D0%A6%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B9_%D0%B8%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D0%B0" title="Цифровой идентификатор объекта">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fjgt.3190050314">10.1002/jgt.3190050314</a>, <a href="/wiki/Mathematical_Reviews" title="Mathematical Reviews">MR</a>&#160;<a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0625074">0625074</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Graph+Theory&amp;rft.atitle=A+characterization+of+Ptolemaic+graphs+%28%D0%A5%D0%B0%D1%80%D0%B0%D0%BA%D1%82%D0%B5%D1%80%D0%B8%D0%B7%D0%B0%D1%86%D0%B8%D1%8F+%D0%B3%D1%80%D0%B0%D1%84%D0%BE%D0%B2+%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F%29&amp;rft.volume=5&amp;rft.issue=3&amp;rft.pages=323%E2%80%94331&amp;rft.date=1981&amp;rft_id=info%3Adoi%2F10.1002%2Fjgt.3190050314&amp;rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D625074%23id-name%3DMR&amp;rft.aulast=Howorka&amp;rft.aufirst=Edward&amp;rfr_id=info%3Asid%2Fru.wikipedia.org%3A%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE+%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" class="Z3988"></span>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Литература"><span id=".D0.9B.D0.B8.D1.82.D0.B5.D1.80.D0.B0.D1.82.D1.83.D1.80.D0.B0"></span>Литература</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit&amp;section=7" title="Редактировать раздел «Литература»" class="mw-editsection-visualeditor"><span>править</span></a><span class="mw-editsection-divider"> | </span><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit&amp;section=7" title="Редактировать код раздела «Литература»"><span>править код</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141305934"><span class="citation no-wikidata" data-wikidata-property-id="P1343">Факультативный курс по математике. 7-9&#32;&#47;&#32;Сост. И.&#160;Л.&#160;Никольская.&#160;— <abbr title="Москва">М.</abbr>: <a href="/wiki/%D0%9F%D1%80%D0%BE%D1%81%D0%B2%D0%B5%D1%89%D0%B5%D0%BD%D0%B8%D0%B5_(%D0%B8%D0%B7%D0%B4%D0%B0%D1%82%D0%B5%D0%BB%D1%8C%D1%81%D1%82%D0%B2%D0%BE)" title="Просвещение (издательство)">Просвещение</a>, 1991.&#160;— С.&#160;328-329.&#160;— 383&#160;с.&#160;— <a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/5090012873" class="internal mw-magiclink-isbn">ISBN 5-09-001287-3</a>.</span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r141305934"><span class="citation no-wikidata" data-wikidata-property-id="P1343"><i><a href="/wiki/%D0%9F%D0%BE%D0%BD%D0%B0%D1%80%D0%B8%D0%BD,_%D0%AF%D0%BA%D0%BE%D0%B2_%D0%9F%D0%B5%D1%82%D1%80%D0%BE%D0%B2%D0%B8%D1%87" title="Понарин, Яков Петрович">Понарин Я. П.</a></i>&#32;Элементарная геометрия. В 2 т.&#160;— <abbr title="Москва">М.</abbr>: <a href="/wiki/%D0%9C%D0%A6%D0%9D%D0%9C%D0%9E" class="mw-redirect" title="МЦНМО">МЦНМО</a>, 2004.&#160;— С.&#160;61-63.&#160;— <a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%98%D1%81%D1%82%D0%BE%D1%87%D0%BD%D0%B8%D0%BA%D0%B8_%D0%BA%D0%BD%D0%B8%D0%B3/5940571700" class="internal mw-magiclink-isbn">ISBN 5-94057-170-0</a>.</span></li></ul></div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Источник — <a dir="ltr" href="https://ru.wikipedia.org/w/index.php?title=Неравенство_Птолемея&amp;oldid=138135936">https://ru.wikipedia.org/w/index.php?title=Неравенство_Птолемея&amp;oldid=138135936</a></div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D0%B8" title="Служебная:Категории">Категории</a>: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9F%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F" title="Категория:Планиметрия">Планиметрия</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%B0" title="Категория:Неравенства">Неравенства</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D1%8B_%D0%BF%D0%BB%D0%B0%D0%BD%D0%B8%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D0%B8" title="Категория:Теоремы планиметрии">Теоремы планиметрии</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Скрытые категории: <ul><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B,_%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D1%80%D0%B0%D1%81%D1%88%D0%B8%D1%80%D0%B5%D0%BD%D0%B8%D0%B5_JsonConfig" title="Категория:Страницы, использующие расширение JsonConfig">Страницы, использующие расширение JsonConfig</a></li><li><a href="/wiki/%D0%9A%D0%B0%D1%82%D0%B5%D0%B3%D0%BE%D1%80%D0%B8%D1%8F:%D0%A1%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B,_%D0%B8%D1%81%D0%BF%D0%BE%D0%BB%D1%8C%D0%B7%D1%83%D1%8E%D1%89%D0%B8%D0%B5_%D0%B2%D0%BE%D0%BB%D1%88%D0%B5%D0%B1%D0%BD%D1%8B%D0%B5_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_ISBN" title="Категория:Страницы, использующие волшебные ссылки ISBN">Страницы, использующие волшебные ссылки ISBN</a></li></ul></div></div> </div> </div> <div id="mw-navigation"> <h2>Навигация</h2> <div id="mw-head"> <nav id="p-personal" class="mw-portlet mw-portlet-personal vector-user-menu-legacy vector-menu" aria-labelledby="p-personal-label" > <h3 id="p-personal-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Персональные инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anonuserpage" class="mw-list-item"><span title="Страница участника для моего IP">Вы не представились системе</span></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D1%91_%D0%BE%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5" title="Страница обсуждений для моего IP [n]" accesskey="n"><span>Обсуждение</span></a></li><li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9C%D0%BE%D0%B9_%D0%B2%D0%BA%D0%BB%D0%B0%D0%B4" title="Список правок, сделанных с этого IP-адреса [y]" accesskey="y"><span>Вклад</span></a></li><li id="pt-createaccount" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BE%D0%B7%D0%B4%D0%B0%D1%82%D1%8C_%D1%83%D1%87%D1%91%D1%82%D0%BD%D1%83%D1%8E_%D0%B7%D0%B0%D0%BF%D0%B8%D1%81%D1%8C&amp;returnto=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE+%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" title="Мы предлагаем вам создать учётную запись и войти в систему, хотя это и не обязательно."><span>Создать учётную запись</span></a></li><li id="pt-login" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%92%D1%85%D0%BE%D0%B4&amp;returnto=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE+%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" title="Здесь можно зарегистрироваться в системе, но это необязательно. [o]" accesskey="o"><span>Войти</span></a></li> </ul> </div> </nav> <div id="left-navigation"> <nav id="p-namespaces" class="mw-portlet mw-portlet-namespaces vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-namespaces-label" > <h3 id="p-namespaces-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Пространства имён</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected mw-list-item"><a href="/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" title="Просмотреть контентную страницу [c]" accesskey="c"><span>Статья</span></a></li><li id="ca-talk" class="mw-list-item"><a href="/wiki/%D0%9E%D0%B1%D1%81%D1%83%D0%B6%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5:%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" rel="discussion" title="Обсуждение основной страницы [t]" accesskey="t"><span>Обсуждение</span></a></li> </ul> </div> </nav> <nav id="p-variants" class="mw-portlet mw-portlet-variants emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-variants-label" > <input type="checkbox" id="p-variants-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-variants" class="vector-menu-checkbox" aria-labelledby="p-variants-label" > <label id="p-variants-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">русский</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> </div> <div id="right-navigation"> <nav id="p-views" class="mw-portlet mw-portlet-views vector-menu-tabs vector-menu-tabs-legacy vector-menu" aria-labelledby="p-views-label" > <h3 id="p-views-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Просмотры</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected mw-list-item"><a href="/wiki/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F"><span>Читать</span></a></li><li id="ca-ve-edit" class="mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;veaction=edit" title="Редактировать данную страницу [v]" accesskey="v"><span>Править</span></a></li><li id="ca-edit" class="collapsible mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=edit" title="Править исходный текст этой страницы [e]" accesskey="e"><span>Править код</span></a></li><li id="ca-history" class="mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=history" title="Журнал изменений страницы [h]" accesskey="h"><span>История</span></a></li> </ul> </div> </nav> <nav id="p-cactions" class="mw-portlet mw-portlet-cactions emptyPortlet vector-menu-dropdown vector-menu" aria-labelledby="p-cactions-label" title="Больше возможностей" > <input type="checkbox" id="p-cactions-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-cactions" class="vector-menu-checkbox" aria-labelledby="p-cactions-label" > <label id="p-cactions-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Ещё</span> </label> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </nav> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <h3 >Поиск</h3> <form action="/w/index.php" id="searchform" class="vector-search-box-form"> <div id="simpleSearch" class="vector-search-box-inner" data-search-loc="header-navigation"> <input class="vector-search-box-input" type="search" name="search" placeholder="Искать в Википедии" aria-label="Искать в Википедии" autocapitalize="sentences" title="Искать в Википедии [f]" accesskey="f" id="searchInput" > <input type="hidden" name="title" value="Служебная:Поиск"> <input id="mw-searchButton" class="searchButton mw-fallbackSearchButton" type="submit" name="fulltext" title="Найти страницы, содержащие указанный текст" value="Найти"> <input id="searchButton" class="searchButton" type="submit" name="go" title="Перейти к странице, имеющей в точности такое название" value="Перейти"> </div> </form> </div> </div> </div> <div id="mw-panel" class="vector-legacy-sidebar"> <div id="p-logo" role="banner"> <a class="mw-wiki-logo" href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу"></a> </div> <nav id="p-navigation" class="mw-portlet mw-portlet-navigation vector-menu-portal portal vector-menu" aria-labelledby="p-navigation-label" > <h3 id="p-navigation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Навигация</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%D0%97%D0%B0%D0%B3%D0%BB%D0%B0%D0%B2%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Перейти на заглавную страницу [z]" accesskey="z"><span>Заглавная страница</span></a></li><li id="n-content" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5"><span>Содержание</span></a></li><li id="n-featured" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%98%D0%B7%D0%B1%D1%80%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D1%81%D1%82%D0%B0%D1%82%D1%8C%D0%B8" title="Статьи, считающиеся лучшими статьями проекта"><span>Избранные статьи</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BB%D1%83%D1%87%D0%B0%D0%B9%D0%BD%D0%B0%D1%8F_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D0%B0" title="Посмотреть случайно выбранную страницу [x]" accesskey="x"><span>Случайная статья</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%D0%9F%D0%BE%D1%80%D1%82%D0%B0%D0%BB:%D0%A2%D0%B5%D0%BA%D1%83%D1%89%D0%B8%D0%B5_%D1%81%D0%BE%D0%B1%D1%8B%D1%82%D0%B8%D1%8F" title="Статьи о текущих событиях в мире"><span>Текущие события</span></a></li><li id="n-sitesupport" class="mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ru.wikipedia.org&amp;uselang=ru" title="Поддержите нас"><span>Пожертвовать</span></a></li> </ul> </div> </nav> <nav id="p-participation" class="mw-portlet mw-portlet-participation vector-menu-portal portal vector-menu" aria-labelledby="p-participation-label" > <h3 id="p-participation-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Участие</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-bug_in_article" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D0%BD%D0%B8%D1%8F_%D0%BE%D0%B1_%D0%BE%D1%88%D0%B8%D0%B1%D0%BA%D0%B0%D1%85" title="Сообщить об ошибке в этой статье"><span>Сообщить об ошибке</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0:%D0%92%D0%B2%D0%B5%D0%B4%D0%B5%D0%BD%D0%B8%D0%B5"><span>Как править статьи</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BE%D0%BE%D0%B1%D1%89%D0%B5%D1%81%D1%82%D0%B2%D0%BE" title="О проекте, о том, чем здесь можно заниматься, а также — где что находится"><span>Сообщество</span></a></li><li id="n-forum" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A4%D0%BE%D1%80%D1%83%D0%BC" title="Форум участников Википедии"><span>Форум</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D0%B5%D0%B6%D0%B8%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8" title="Список последних изменений [r]" accesskey="r"><span>Свежие правки</span></a></li><li id="n-newpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%9D%D0%BE%D0%B2%D1%8B%D0%B5_%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список недавно созданных страниц"><span>Новые страницы</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%A1%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B0" title="Место расположения Справки"><span>Справка</span></a></li> </ul> </div> </nav> <nav id="p-tb" class="mw-portlet mw-portlet-tb vector-menu-portal portal vector-menu" aria-labelledby="p-tb-label" > <h3 id="p-tb-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Инструменты</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D1%81%D1%8B%D0%BB%D0%BA%D0%B8_%D1%81%D1%8E%D0%B4%D0%B0/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" title="Список всех страниц, ссылающихся на данную [j]" accesskey="j"><span>Ссылки сюда</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%B2%D1%8F%D0%B7%D0%B0%D0%BD%D0%BD%D1%8B%D0%B5_%D0%BF%D1%80%D0%B0%D0%B2%D0%BA%D0%B8/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" rel="nofollow" title="Последние изменения в страницах, на которые ссылается эта страница [k]" accesskey="k"><span>Связанные правки</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A1%D0%BF%D0%B5%D1%86%D1%81%D1%82%D1%80%D0%B0%D0%BD%D0%B8%D1%86%D1%8B" title="Список служебных страниц [q]" accesskey="q"><span>Служебные страницы</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;oldid=138135936" title="Постоянная ссылка на эту версию страницы"><span>Постоянная ссылка</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=info" title="Подробнее об этой странице"><span>Сведения о странице</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:%D0%A6%D0%B8%D1%82%D0%B0%D1%82%D0%B0&amp;page=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;id=138135936&amp;wpFormIdentifier=titleform" title="Информация о том, как цитировать эту страницу"><span>Цитировать страницу</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:UrlShortener&amp;url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259D%25D0%25B5%25D1%2580%25D0%25B0%25D0%25B2%25D0%25B5%25D0%25BD%25D1%2581%25D1%2582%25D0%25B2%25D0%25BE_%25D0%259F%25D1%2582%25D0%25BE%25D0%25BB%25D0%25B5%25D0%25BC%25D0%25B5%25D1%258F"><span>Получить короткий URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:QrCode&amp;url=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%259D%25D0%25B5%25D1%2580%25D0%25B0%25D0%25B2%25D0%25B5%25D0%25BD%25D1%2581%25D1%2582%25D0%25B2%25D0%25BE_%25D0%259F%25D1%2582%25D0%25BE%25D0%25BB%25D0%25B5%25D0%25BC%25D0%25B5%25D1%258F"><span>Скачать QR-код</span></a></li> </ul> </div> </nav> <nav id="p-coll-print_export" class="mw-portlet mw-portlet-coll-print_export vector-menu-portal portal vector-menu" aria-labelledby="p-coll-print_export-label" > <h3 id="p-coll-print_export-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">Печать/экспорт</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%D0%A1%D0%BB%D1%83%D0%B6%D0%B5%D0%B1%D0%BD%D0%B0%D1%8F:DownloadAsPdf&amp;page=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;action=show-download-screen" title="Скачать эту страницу как файл PDF"><span>Скачать как PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;printable=yes" title="Версия этой страницы для печати [p]" accesskey="p"><span>Версия для печати</span></a></li> </ul> </div> </nav> <nav id="p-wikibase-otherprojects" class="mw-portlet mw-portlet-wikibase-otherprojects vector-menu-portal portal vector-menu" aria-labelledby="p-wikibase-otherprojects-label" > <h3 id="p-wikibase-otherprojects-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">В других проектах</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Ptolemy%27s_theorem" hreflang="en"><span>Викисклад</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q459547" title="Ссылка на связанный элемент репозитория данных [g]" accesskey="g"><span>Элемент Викиданных</span></a></li> </ul> </div> </nav> <nav id="p-lang" class="mw-portlet mw-portlet-lang vector-menu-portal portal vector-menu" aria-labelledby="p-lang-label" > <h3 id="p-lang-label" class="vector-menu-heading " > <span class="vector-menu-heading-label">На других языках</span> </h3> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%A8%D8%B1%D9%87%D9%86%D8%A9_%D8%A8%D8%B7%D9%84%D9%8A%D9%85%D9%88%D8%B3" title="مبرهنة بطليموس — арабский" lang="ar" hreflang="ar" data-title="مبرهنة بطليموس" data-language-autonym="العربية" data-language-local-name="арабский" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Teorema_de_Ptolemeu" title="Teorema de Ptolemeu — каталанский" lang="ca" hreflang="ca" data-title="Teorema de Ptolemeu" data-language-autonym="Català" data-language-local-name="каталанский" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-ckb mw-list-item"><a href="https://ckb.wikipedia.org/wiki/%D8%AA%DB%8C%DB%86%D8%B1%D9%85%DB%8C_%D8%A8%DB%95%D8%AA%DA%B5%DB%8C%D9%85%DB%86%D8%B3" title="تیۆرمی بەتڵیمۆس — центральнокурдский" lang="ckb" hreflang="ckb" data-title="تیۆرمی بەتڵیمۆس" data-language-autonym="کوردی" data-language-local-name="центральнокурдский" class="interlanguage-link-target"><span>کوردی</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Satz_von_Ptolem%C3%A4us" title="Satz von Ptolemäus — немецкий" lang="de" hreflang="de" data-title="Satz von Ptolemäus" data-language-autonym="Deutsch" data-language-local-name="немецкий" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%98%CE%B5%CF%8E%CF%81%CE%B7%CE%BC%CE%B1_%CF%84%CE%BF%CF%85_%CE%A0%CF%84%CE%BF%CE%BB%CE%B5%CE%BC%CE%B1%CE%AF%CE%BF%CF%85" title="Θεώρημα του Πτολεμαίου — греческий" lang="el" hreflang="el" data-title="Θεώρημα του Πτολεμαίου" data-language-autonym="Ελληνικά" data-language-local-name="греческий" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Ptolemy%27s_theorem" title="Ptolemy&#039;s theorem — английский" lang="en" hreflang="en" data-title="Ptolemy&#039;s theorem" data-language-autonym="English" data-language-local-name="английский" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Teorema_de_Ptolomeo" title="Teorema de Ptolomeo — испанский" lang="es" hreflang="es" data-title="Teorema de Ptolomeo" data-language-autonym="Español" data-language-local-name="испанский" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%82%D8%B6%DB%8C%D9%87_%D8%A8%D8%B7%D9%84%D9%85%DB%8C%D9%88%D8%B3" title="قضیه بطلمیوس — персидский" lang="fa" hreflang="fa" data-title="قضیه بطلمیوس" data-language-autonym="فارسی" data-language-local-name="персидский" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ptolemaioksen_lause" title="Ptolemaioksen lause — финский" lang="fi" hreflang="fi" data-title="Ptolemaioksen lause" data-language-autonym="Suomi" data-language-local-name="финский" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Ptol%C3%A9m%C3%A9e" title="Théorème de Ptolémée — французский" lang="fr" hreflang="fr" data-title="Théorème de Ptolémée" data-language-autonym="Français" data-language-local-name="французский" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Teorema_de_Tolomeo" title="Teorema de Tolomeo — галисийский" lang="gl" hreflang="gl" data-title="Teorema de Tolomeo" data-language-autonym="Galego" data-language-local-name="галисийский" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A9%D7%A4%D7%98_%D7%AA%D7%9C%D7%9E%D7%99" title="משפט תלמי — иврит" lang="he" hreflang="he" data-title="משפט תלמי" data-language-autonym="עברית" data-language-local-name="иврит" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%A4%E0%A5%8B%E0%A4%B2%E0%A5%87%E0%A4%AE%E0%A5%80_%E0%A4%95%E0%A4%BE_%E0%A4%AA%E0%A5%8D%E0%A4%B0%E0%A4%AE%E0%A5%87%E0%A4%AF" title="प्तोलेमी का प्रमेय — хинди" lang="hi" hreflang="hi" data-title="प्तोलेमी का प्रमेय" data-language-autonym="हिन्दी" data-language-local-name="хинди" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Ptolemejev_pou%C4%8Dak" title="Ptolemejev poučak — хорватский" lang="hr" hreflang="hr" data-title="Ptolemejev poučak" data-language-autonym="Hrvatski" data-language-local-name="хорватский" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Ptolemaiosz-t%C3%A9tel" title="Ptolemaiosz-tétel — венгерский" lang="hu" hreflang="hu" data-title="Ptolemaiosz-tétel" data-language-autonym="Magyar" data-language-local-name="венгерский" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%BF%D5%B2%D5%B8%D5%B4%D5%A5%D5%B8%D5%BD%D5%AB_%D5%A9%D5%A5%D5%B8%D6%80%D5%A5%D5%B4" title="Պտղոմեոսի թեորեմ — армянский" lang="hy" hreflang="hy" data-title="Պտղոմեոսի թեորեմ" data-language-autonym="Հայերեն" data-language-local-name="армянский" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Teorema_di_Tolomeo" title="Teorema di Tolomeo — итальянский" lang="it" hreflang="it" data-title="Teorema di Tolomeo" data-language-autonym="Italiano" data-language-local-name="итальянский" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%88%E3%83%AC%E3%83%9F%E3%83%BC%E3%81%AE%E5%AE%9A%E7%90%86" title="トレミーの定理 — японский" lang="ja" hreflang="ja" data-title="トレミーの定理" data-language-autonym="日本語" data-language-local-name="японский" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9E%E1%83%A2%E1%83%9D%E1%83%9A%E1%83%94%E1%83%9B%E1%83%94%E1%83%A1_%E1%83%97%E1%83%94%E1%83%9D%E1%83%A0%E1%83%94%E1%83%9B%E1%83%90" title="პტოლემეს თეორემა — грузинский" lang="ka" hreflang="ka" data-title="პტოლემეს თეორემა" data-language-autonym="ქართული" data-language-local-name="грузинский" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-km mw-list-item"><a href="https://km.wikipedia.org/wiki/%E1%9E%91%E1%9F%92%E1%9E%9A%E1%9E%B9%E1%9E%9F%E1%9F%92%E1%9E%8F%E1%9E%B8%E1%9E%94%E1%9E%91%E1%9E%8F%E1%9E%BC%E1%9E%9B%E1%9F%81%E1%9E%98%E1%9E%B8" title="ទ្រឹស្តីបទតូលេមី — кхмерский" lang="km" hreflang="km" data-title="ទ្រឹស្តីបទតូលេមី" data-language-autonym="ភាសាខ្មែរ" data-language-local-name="кхмерский" class="interlanguage-link-target"><span>ភាសាខ្មែរ</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%94%84%ED%86%A8%EB%A0%88%EB%A7%88%EC%9D%B4%EC%98%A4%EC%8A%A4_%EC%A0%95%EB%A6%AC" title="프톨레마이오스 정리 — корейский" lang="ko" hreflang="ko" data-title="프톨레마이오스 정리" data-language-autonym="한국어" data-language-local-name="корейский" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Ptolem%C4%97jaus_teorema" title="Ptolemėjaus teorema — литовский" lang="lt" hreflang="lt" data-title="Ptolemėjaus teorema" data-language-autonym="Lietuvių" data-language-local-name="литовский" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Ptolemaja_teor%C4%93ma" title="Ptolemaja teorēma — латышский" lang="lv" hreflang="lv" data-title="Ptolemaja teorēma" data-language-autonym="Latviešu" data-language-local-name="латышский" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-mk mw-list-item"><a href="https://mk.wikipedia.org/wiki/%D0%9F%D1%82%D0%BE%D0%BB%D0%BE%D0%BC%D0%B5%D0%B5%D0%B2%D0%B0_%D1%82%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0" title="Птоломеева теорема — македонский" lang="mk" hreflang="mk" data-title="Птоломеева теорема" data-language-autonym="Македонски" data-language-local-name="македонский" class="interlanguage-link-target"><span>Македонски</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Stelling_van_Ptolemaeus" title="Stelling van Ptolemaeus — нидерландский" lang="nl" hreflang="nl" data-title="Stelling van Ptolemaeus" data-language-autonym="Nederlands" data-language-local-name="нидерландский" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Ptolemaios-satsen" title="Ptolemaios-satsen — нюнорск" lang="nn" hreflang="nn" data-title="Ptolemaios-satsen" data-language-autonym="Norsk nynorsk" data-language-local-name="нюнорск" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Twierdzenie_Ptolemeusza" title="Twierdzenie Ptolemeusza — польский" lang="pl" hreflang="pl" data-title="Twierdzenie Ptolemeusza" data-language-autonym="Polski" data-language-local-name="польский" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Teorema_de_Ptolomeu" title="Teorema de Ptolomeu — португальский" lang="pt" hreflang="pt" data-title="Teorema de Ptolomeu" data-language-autonym="Português" data-language-local-name="португальский" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Teorema_lui_Ptolemeu" title="Teorema lui Ptolemeu — румынский" lang="ro" hreflang="ro" data-title="Teorema lui Ptolemeu" data-language-autonym="Română" data-language-local-name="румынский" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Ptolemajev_izrek" title="Ptolemajev izrek — словенский" lang="sl" hreflang="sl" data-title="Ptolemajev izrek" data-language-autonym="Slovenščina" data-language-local-name="словенский" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Ptolemaios_sats" title="Ptolemaios sats — шведский" lang="sv" hreflang="sv" data-title="Ptolemaios sats" data-language-autonym="Svenska" data-language-local-name="шведский" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-sw mw-list-item"><a href="https://sw.wikipedia.org/wiki/Uhakiki_wa_Ptolemaio" title="Uhakiki wa Ptolemaio — суахили" lang="sw" hreflang="sw" data-title="Uhakiki wa Ptolemaio" data-language-autonym="Kiswahili" data-language-local-name="суахили" class="interlanguage-link-target"><span>Kiswahili</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%A4%E0%AF%8A%E0%AE%B2%E0%AF%86%E0%AE%AE%E0%AE%BF%E0%AE%AF%E0%AE%BF%E0%AE%A9%E0%AF%8D_%E0%AE%A4%E0%AF%87%E0%AE%B1%E0%AF%8D%E0%AE%B1%E0%AE%AE%E0%AF%8D" title="தொலெமியின் தேற்றம் — тамильский" lang="ta" hreflang="ta" data-title="தொலெமியின் தேற்றம்" data-language-autonym="தமிழ்" data-language-local-name="тамильский" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Batlamyus_teoremi" title="Batlamyus teoremi — турецкий" lang="tr" hreflang="tr" data-title="Batlamyus teoremi" data-language-autonym="Türkçe" data-language-local-name="турецкий" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A2%D0%B5%D0%BE%D1%80%D0%B5%D0%BC%D0%B0_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F" title="Теорема Птолемея — украинский" lang="uk" hreflang="uk" data-title="Теорема Птолемея" data-language-autonym="Українська" data-language-local-name="украинский" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Ptoleme" title="Định lý Ptoleme — вьетнамский" lang="vi" hreflang="vi" data-title="Định lý Ptoleme" data-language-autonym="Tiếng Việt" data-language-local-name="вьетнамский" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%89%98%E5%8B%92%E5%AF%86%E5%AE%9A%E7%90%86" title="托勒密定理 — китайский" lang="zh" hreflang="zh" data-title="托勒密定理" data-language-autonym="中文" data-language-local-name="китайский" class="interlanguage-link-target"><span>中文</span></a></li><li class="interlanguage-link interwiki-zh-classical mw-list-item"><a href="https://zh-classical.wikipedia.org/wiki/%E6%89%98%E5%8B%92%E5%AF%86%E5%AE%9A%E7%90%86" title="托勒密定理 — Literary Chinese" lang="lzh" hreflang="lzh" data-title="托勒密定理" data-language-autonym="文言" data-language-local-name="Literary Chinese" class="interlanguage-link-target"><span>文言</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q459547#sitelinks-wikipedia" title="Править ссылки на другие языки" class="wbc-editpage">Править ссылки</a></span></div> </div> </nav> </div> </div> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> Эта страница в последний раз была отредактирована 1 июня 2024 в 05:53.</li> <li id="footer-info-copyright">Текст доступен по <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ru">лицензии Creative Commons «С указанием авторства — С сохранением условий» (CC BY-SA)</a>; в отдельных случаях могут действовать дополнительные условия. <span class="noprint">Подробнее см. <a class="external text" href="https://foundation.wikimedia.org/wiki/Policy:Terms_of_Use/ru">Условия использования</a>.</span><br /> Wikipedia®&#160;— зарегистрированный товарный знак некоммерческой организации <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/ru/">«Фонд Викимедиа» (Wikimedia Foundation, Inc.)</a></li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy/ru">Политика конфиденциальности</a></li> <li id="footer-places-about"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D0%BF%D0%B8%D1%81%D0%B0%D0%BD%D0%B8%D0%B5">Описание Википедии</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%D0%92%D0%B8%D0%BA%D0%B8%D0%BF%D0%B5%D0%B4%D0%B8%D1%8F:%D0%9E%D1%82%D0%BA%D0%B0%D0%B7_%D0%BE%D1%82_%D0%BE%D1%82%D0%B2%D0%B5%D1%82%D1%81%D1%82%D0%B2%D0%B5%D0%BD%D0%BD%D0%BE%D1%81%D1%82%D0%B8">Отказ от ответственности</a></li> <li id="footer-places-contact"><a href="//ru.wikipedia.org/wiki/Википедия:Контакты">Свяжитесь с нами</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Policy:Universal_Code_of_Conduct/ru">Кодекс поведения</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Разработчики</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ru.wikipedia.org">Статистика</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Заявление о куки</a></li> <li id="footer-places-mobileview"><a href="//ru.m.wikipedia.org/w/index.php?title=%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Мобильная версия</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> <script>(RLQ=window.RLQ||[]).push(function(){mw.log.warn("This page is using the deprecated ResourceLoader module \"codex-search-styles\".\n[1.43] Use a CodexModule with codexComponents to set your specific components used: https://www.mediawiki.org/wiki/Codex#Using_a_limited_subset_of_components");mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-qg7t2","wgBackendResponseTime":172,"wgPageParseReport":{"limitreport":{"cputime":"0.214","walltime":"0.361","ppvisitednodes":{"value":1403,"limit":1000000},"postexpandincludesize":{"value":11238,"limit":2097152},"templateargumentsize":{"value":3416,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":17122,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 223.158 1 -total"," 61.34% 136.889 1 Шаблон:Примечания"," 42.16% 94.080 1 Шаблон:Citation"," 23.80% 53.122 1 Шаблон:Hider"," 20.48% 45.708 1 Шаблон:Начало_скрытого_блока"," 14.80% 33.025 1 Шаблон:Cite_web"," 10.52% 23.474 9 Шаблон:Ifempty"," 8.75% 19.525 2 Шаблон:Книга"," 6.27% 13.984 1 Шаблон:Книга:Элементарная_геометрия._Понарин"," 6.12% 13.654 1 Шаблон:Книга:Факультативный_курс_по_математике._Никольская"]},"scribunto":{"limitreport-timeusage":{"value":"0.087","limit":"10.000"},"limitreport-memusage":{"value":3126298,"limit":52428800}},"cachereport":{"origin":"mw-web.eqiad.main-7c479b968-5gmgd","timestamp":"20241118033438","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\u041d\u0435\u0440\u0430\u0432\u0435\u043d\u0441\u0442\u0432\u043e \u041f\u0442\u043e\u043b\u0435\u043c\u0435\u044f","url":"https:\/\/ru.wikipedia.org\/wiki\/%D0%9D%D0%B5%D1%80%D0%B0%D0%B2%D0%B5%D0%BD%D1%81%D1%82%D0%B2%D0%BE_%D0%9F%D1%82%D0%BE%D0%BB%D0%B5%D0%BC%D0%B5%D1%8F","sameAs":"http:\/\/www.wikidata.org\/entity\/Q459547","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q459547","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"\u0424\u043e\u043d\u0434 \u0412\u0438\u043a\u0438\u043c\u0435\u0434\u0438\u0430","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2007-03-04T16:28:58Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/4\/4c\/Ptolemy_Inequality.svg","headline":"\u0441\u043e\u043e\u0442\u043d\u043e\u0448\u0435\u043d\u0438\u0435 \u043c\u0435\u0436\u0434\u0443 6 \u0440\u0430\u0441\u0441\u0442\u043e\u044f\u043d\u0438\u044f\u043c\u0438 \u043c\u0435\u0436\u0434\u0443 \u0447\u0435\u0442\u0432\u0451\u0440\u043a\u043e\u0439 \u0442\u043e\u0447\u0435\u043a \u043d\u0430 \u043f\u043b\u043e\u0441\u043a\u043e\u0441\u0442\u0438"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10