CINXE.COM

Search results for: nilpotent orbits

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nilpotent orbits</title> <meta name="description" content="Search results for: nilpotent orbits"> <meta name="keywords" content="nilpotent orbits"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nilpotent orbits" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nilpotent orbits"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 53</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nilpotent orbits</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">53</span> The Weights of Distinguished sl2-Subalgebras in Dn</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yassir%20I.%20Dinar">Yassir I. Dinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We computed the weights of the adjoint action of distinguished sl2-triples in Lie algebra of type Dn using mathematical induction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lie%20algebra" title="lie algebra">lie algebra</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20systems" title=" root systems"> root systems</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title=" representation theory"> representation theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nilpotent%20orbits" title=" nilpotent orbits"> nilpotent orbits</a> </p> <a href="https://publications.waset.org/abstracts/41148/the-weights-of-distinguished-sl2-subalgebras-in-dn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41148.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">52</span> Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20M.%20Rashid">M. H. M. Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Banach space operator T obeys property (gm) if the isolated points of the spectrum &sigma;(T) of T which are eigenvalues are exactly those points &lambda; of the spectrum for which T &minus; &lambda;I is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weyl%27s%20Theorem" title="Weyl&#039;s Theorem">Weyl&#039;s Theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=Weyl%20Spectrum" title=" Weyl Spectrum"> Weyl Spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Polaroid%20operators" title=" Polaroid operators"> Polaroid operators</a>, <a href="https://publications.waset.org/abstracts/search?q=property%20%28gm%29" title=" property (gm)"> property (gm)</a> </p> <a href="https://publications.waset.org/abstracts/102478/stability-of-property-gm-under-perturbation-and-spectral-properties-type-weyl-theorems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">51</span> Causes for the Precession of the Perihelion in the Planetary Orbits</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kwan%20U.%20Kim">Kwan U. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sim"> Jin Sim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryong%20Jin%20Jang"> Ryong Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Duk%20Kim"> Sung Duk Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is Leverrier that discovered the precession of the perihelion in the planetary orbits for the first time in the world, while it is Einstein that explained the astronomical phenomenom for the first time in the world. The amount of the precession of the perihelion for Einstein’s theory of gravitation has been explained by means of the inverse fourth power force(inverse third power potential) introduced totheory of gravitation through Schwarzschild metric However, the methodology has a serious shortcoming that it is impossible to explain the cause for the precession of the perihelion in the planetary orbits. According to our study, without taking the cause for the precession of the perihelion, 6 methods can explain the amount of the precession of the perihelion discovered by Leverrier. Therefore, the problem of what caused the perihelion to precess in the planetary orbits must be solved for physics because it is a profound scientific and technological problem for a basic experiment in construction of relativistic theory of gravitation. The scientific solution to the problem proved that Einstein’s explanation for the planetary orbits is a magic made by the numerical expressions obtained from fictitious gravitation introduced to theory of gravitation and wrong definition of proper time The problem of the precession of the perihelion seems solved already by means of general theory of relativity, but, in essence, the cause for the astronomical phenomenon has not been successfully explained for astronomy yet. The right solution to the problem comes from generalized theory of gravitation. Therefore, in this paper, it has been shown that by means of Schwarzschild field and the physical quantities of relativistic Lagrangian redflected in it, fictitious gravitation is not the main factor which can cause the perihelion to precess in the planetary orbits. In addition to it, it has been shown that the main factor which can cause the perihelion to precess in the planetary orbits is the inverse third power force existing really in the relativistic region in the Solar system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inverse%20third%20power%20force" title="inverse third power force">inverse third power force</a>, <a href="https://publications.waset.org/abstracts/search?q=precession%20of%20the%20perihelion" title=" precession of the perihelion"> precession of the perihelion</a>, <a href="https://publications.waset.org/abstracts/search?q=fictitious%20gravitation" title=" fictitious gravitation"> fictitious gravitation</a>, <a href="https://publications.waset.org/abstracts/search?q=planetary%20orbits" title=" planetary orbits"> planetary orbits</a> </p> <a href="https://publications.waset.org/abstracts/192598/causes-for-the-precession-of-the-perihelion-in-the-planetary-orbits" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">50</span> Several Spectrally Non-Arbitrary Ray Patterns of Order 4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ling%20Zhang">Ling Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Liu"> Feng Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A matrix is called a ray pattern matrix if its entries are either 0 or a ray in complex plane which originates from 0. A ray pattern <em>A </em>of order <em>n </em>is called spectrally arbitrary if the complex matrices in the ray pattern class of <em>A</em> give rise to all possible <em>n</em>th degree complex polynomial. Otherwise, it is said to be spectrally non-arbitrary ray pattern<em>.</em> We call that a spectrally arbitrary ray pattern <em>A </em>of order <em>n </em>is minimally spectrally arbitrary if any nonzero entry of <em>A</em> is replaced, then <em>A </em>is not spectrally arbitrary. In this paper, we find that is not spectrally arbitrary when n equals to 4 for any &theta; which is greater than or equal to 0 and less than or equal to n. In this article, we give several ray patterns A(&theta;) of order n that are not spectrally arbitrary for some &theta; which is greater than or equal to 0 and less than or equal to n. by using the nilpotent-Jacobi method. One example is given in our paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spectrally%20arbitrary" title="spectrally arbitrary">spectrally arbitrary</a>, <a href="https://publications.waset.org/abstracts/search?q=nilpotent%20matrix" title=" nilpotent matrix "> nilpotent matrix </a>, <a href="https://publications.waset.org/abstracts/search?q=ray%20patterns" title=" ray patterns"> ray patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=sign%20patterns" title=" sign patterns"> sign patterns</a> </p> <a href="https://publications.waset.org/abstracts/108116/several-spectrally-non-arbitrary-ray-patterns-of-order-4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">49</span> The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Matthaios%20Katsanikas">Matthaios Katsanikas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamical%20systems" title="dynamical systems">dynamical systems</a>, <a href="https://publications.waset.org/abstracts/search?q=galactic%20dynamics" title=" galactic dynamics"> galactic dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=chaos" title=" chaos"> chaos</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20space" title=" phase space"> phase space</a> </p> <a href="https://publications.waset.org/abstracts/125080/the-structure-of-invariant-manifolds-after-a-supercritical-hamiltonian-hopf-bifurcation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">48</span> Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajib%20Mia">Rajib Mia</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exoplanetary%20systems" title="exoplanetary systems">exoplanetary systems</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20points" title=" lagrangian points"> lagrangian points</a>, <a href="https://publications.waset.org/abstracts/search?q=periodic%20orbit" title=" periodic orbit"> periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=restricted%20three%20body%20problem" title=" restricted three body problem"> restricted three body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/28253/motion-of-an-infinitesimal-particle-in-binary-stellar-systems-kepler-34-kepler-35-kepler-16-kepler-413" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">47</span> A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20M.%20Masu"> L. M. Masu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=a%20breathing%20crack" title="a breathing crack">a breathing crack</a>, <a href="https://publications.waset.org/abstracts/search?q=fault" title=" fault"> fault</a>, <a href="https://publications.waset.org/abstracts/search?q=FFT" title=" FFT"> FFT</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit" title=" orbit"> orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor-stator%20rub" title=" rotor-stator rub"> rotor-stator rub</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a> </p> <a href="https://publications.waset.org/abstracts/37670/a-fault-analysis-cracked-rotor-to-stator-rub-and-unbalance-by-vibration-analysis-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">46</span> A Sociocybernetics Data Analysis Using Causality in Tourism Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lloret-Climent">M. Lloret-Climent</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Nescolarde-Selva"> J. Nescolarde-Selva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to propose a mathematical model to determine invariant sets, set covering, orbits and, in particular, attractors in the set of tourism variables. Analysis was carried out based on a pre-designed algorithm and applying our interpretation of chaos theory developed in the context of General Systems Theory. This article sets out the causal relationships associated with tourist flows in order to enable the formulation of appropriate strategies. Our results can be applied to numerous cases. For example, in the analysis of tourist flows, these findings can be used to determine whether the behaviour of certain groups affects that of other groups and to analyse tourist behaviour in terms of the most relevant variables. Unlike statistical analyses that merely provide information on current data, our method uses orbit analysis to forecast, if attractors are found, the behaviour of tourist variables in the immediate future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attractor" title="attractor">attractor</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20set" title=" invariant set"> invariant set</a>, <a href="https://publications.waset.org/abstracts/search?q=tourist%20flows" title=" tourist flows"> tourist flows</a>, <a href="https://publications.waset.org/abstracts/search?q=orbits" title=" orbits"> orbits</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20responsibility" title=" social responsibility"> social responsibility</a>, <a href="https://publications.waset.org/abstracts/search?q=tourism" title=" tourism"> tourism</a>, <a href="https://publications.waset.org/abstracts/search?q=tourist%20variables" title=" tourist variables"> tourist variables</a> </p> <a href="https://publications.waset.org/abstracts/8323/a-sociocybernetics-data-analysis-using-causality-in-tourism-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">45</span> Stability of Out-Of-Plane Equilibrium Points in the Elliptic Restricted Three-Body Problem with Oblateness up to Zonal Harmonic J₄ of Both Primaries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanshio%20Richard%20Tyokyaa">Kanshio Richard Tyokyaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadish%20Singh"> Jagadish Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we examined the location and stability of Out-Of-Plane Equilibrium points in the elliptic restricted three-body problem of an infinitesimal body when both primaries are taken as oblate spheroids with oblateness up to zonal harmonic J₄. The positions of the Equilibrium points L₆,₇ and their stability depend on the oblateness of the primaries and the eccentricity of their orbits. We explored the problem numerically to show the effects of parameters involved in the position and stability of the Out-Of-Plane Equilibrium points for the systems: HD188753 and Gliese 667. It is found that their positions are affected by the oblateness of the primaries, eccentricity and the semi-major axis of the orbits, but its stability behavior remains unchanged and is unstable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=out-of-plane" title="out-of-plane">out-of-plane</a>, <a href="https://publications.waset.org/abstracts/search?q=equilibrium%20points" title=" equilibrium points"> equilibrium points</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20restricted%20three-body%20problem" title=" elliptic restricted three-body problem"> elliptic restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=oblateness" title=" oblateness"> oblateness</a>, <a href="https://publications.waset.org/abstracts/search?q=zonal%20harmonic" title=" zonal harmonic"> zonal harmonic</a> </p> <a href="https://publications.waset.org/abstracts/91381/stability-of-out-of-plane-equilibrium-points-in-the-elliptic-restricted-three-body-problem-with-oblateness-up-to-zonal-harmonic-j4-of-both-primaries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">193</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">44</span> Studies on Influence of Rub on Vibration Signature of Rotating Machines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20N.%20Umesh">K. N. Umesh</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Srinivasan"> K. S. Srinivasan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of rotor rub was studied with respect to light rub and heavy rub conditions. The investigations were carried out for both below and above critical speeds. The time domain waveform has revealed truncation of the waveform during rubbing conditions. The quantum of rubbing has been indicated by the quantum of truncation. The orbits for light rub have indicated a single loop whereas for heavy rub multi looped orbits have been observed. In the heavy rub condition above critical speed both sub harmonics and super harmonics are exhibited. The orbit precess in a direction opposite to the direction of the rotation of the rotor. When the rubbing was created above the critical speed the orbit shape was of '8' shape indicating the rotor instability. Super-harmonics and sub-harmonics of vibration signals have been observed for light rub and heavy rub conditions and for speeds above critical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotor%20rub" title="rotor rub">rotor rub</a>, <a href="https://publications.waset.org/abstracts/search?q=orbital%20analysis" title=" orbital analysis"> orbital analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20analysis" title=" frequency analysis"> frequency analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20signatures" title=" vibration signatures"> vibration signatures</a> </p> <a href="https://publications.waset.org/abstracts/31028/studies-on-influence-of-rub-on-vibration-signature-of-rotating-machines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">43</span> Simulation Study on Spacecraft Surface Charging Induced by Jovian Plasma Environment with Particle in Cell Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yipan%20Guo"> Yipan Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a>, <a href="https://publications.waset.org/abstracts/search?q=Pengyu%20Tian"> Pengyu Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Space plasma caused spacecraft surface charging is the major space environment hazard. Particle in cell (PIC) method can be used to simulate the interaction between space plasma and spacecraft. It was proved that surface charging level of spacecraft in Jupiter’s orbits was high for its’ electron-heavy plasma environment. In this paper, Jovian plasma environment is modeled and surface charging analysis is carried out by PIC based software Spacecraft Plasma Interaction System (SPIS). The results show that the spacecraft charging potentials exceed 1000V at 2Rj, 15Rj and 25Rj polar orbits in the dark side at worst case plasma model. Furthermore, the simulation results indicate that the large Jovian magnetic field increases the surface charging level for secondary electron gyration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jupiter" title="Jupiter">Jupiter</a>, <a href="https://publications.waset.org/abstracts/search?q=PIC" title=" PIC"> PIC</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20plasma" title=" space plasma"> space plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charging" title=" surface charging"> surface charging</a> </p> <a href="https://publications.waset.org/abstracts/106455/simulation-study-on-spacecraft-surface-charging-induced-by-jovian-plasma-environment-with-particle-in-cell-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">42</span> Parallel Vector Processing Using Multi Level Orbital DATA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nagi%20Mekhiel">Nagi Mekhiel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many applications use vector operations by applying single instruction to multiple data that map to different locations in conventional memory. Transferring data from memory is limited by access latency and bandwidth affecting the performance gain of vector processing. We present a memory system that makes all of its content available to processors in time so that processors need not to access the memory, we force each location to be available to all processors at a specific time. The data move in different orbits to become available to other processors in higher orbits at different time. We use this memory to apply parallel vector operations to data streams at first orbit level. Data processed in the first level move to upper orbit one data element at a time, allowing a processor in that orbit to apply another vector operation to deal with serial code limitations inherited in all parallel applications and interleaved it with lower level vector operations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Memory%20Organization" title="Memory Organization">Memory Organization</a>, <a href="https://publications.waset.org/abstracts/search?q=Parallel%20Processors" title=" Parallel Processors"> Parallel Processors</a>, <a href="https://publications.waset.org/abstracts/search?q=Serial%0D%0ACode" title=" Serial Code"> Serial Code</a>, <a href="https://publications.waset.org/abstracts/search?q=Vector%20Processing" title=" Vector Processing"> Vector Processing</a> </p> <a href="https://publications.waset.org/abstracts/59115/parallel-vector-processing-using-multi-level-orbital-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">41</span> On the Girth of the Regular Digraph of Ideals of a ‎Commutative ‎Ring</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Karimi">Masoud Karimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ‎Let R be a commutative ring‎. ‎The regular digraph of ideals of R, which is denoted by‎ Γ(R)‎, ‎is a digraph whose vertex-set is the set of all ‎non-‎trivial ideals of R and‎, ‎for every‎ two distinct vertices I and J‎, ‎there is an arc from I to J‎, ‎whenever I contains‎ a non-zero-divisor on J. In this article, ‎we ‎show ‎that an indecomposable ‎Noetherian ring ‎‎‎R ‎is ‎Artinian ‎local ‎if ‎and ‎only ‎if Z(I)=Z(R) ‎for ‎every ‎non-nilpotent ‎ideal ‎‎‎I‎. ‎Then ‎we ‎conclude ‎that ‎‎the ‎girth ‎of‎ Γ(R)‎ ‎is ‎not ‎equal ‎to ‎four. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commutative%20ring%E2%80%8E" title="commutative ring‎">commutative ring‎</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%8Egirth%E2%80%8E" title=" ‎girth‎"> ‎girth‎</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20digraph%E2%80%8E" title=" regular digraph‎"> regular digraph‎</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-divisor" title=" zero-divisor"> zero-divisor</a> </p> <a href="https://publications.waset.org/abstracts/14244/on-the-girth-of-the-regular-digraph-of-ideals-of-a-commutative-ring" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">40</span> Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar%20Yadav">Arun Kumar Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Badam%20Singh%20Kushvah"> Badam Singh Kushvah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20electric%20sail" title="solar electric sail">solar electric sail</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20restricted%20three-body%20problem%20%28CRTBP%29" title=" circular restricted three-body problem (CRTBP)"> circular restricted three-body problem (CRTBP)</a>, <a href="https://publications.waset.org/abstracts/search?q=displaced%20orbit" title=" displaced orbit"> displaced orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=feedback%20linearization%20control" title=" feedback linearization control"> feedback linearization control</a> </p> <a href="https://publications.waset.org/abstracts/83358/stabilization-of-displaced-periodic-orbit-using-feedback-linearization-control-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">39</span> Orbit Determination from Two Position Vectors Using Finite Difference Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akhilesh%20Kumar">Akhilesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sathyanarayan%20G."> Sathyanarayan G.</a>, <a href="https://publications.waset.org/abstracts/search?q=Nirmala%20S."> Nirmala S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20difference%20method" title="finite difference method">finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20generation" title=" grid generation"> grid generation</a>, <a href="https://publications.waset.org/abstracts/search?q=NavIC%20system" title=" NavIC system"> NavIC system</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit%20perturbation" title=" orbit perturbation"> orbit perturbation</a> </p> <a href="https://publications.waset.org/abstracts/168715/orbit-determination-from-two-position-vectors-using-finite-difference-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168715.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">84</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">38</span> Analysis of Autonomous Orbit Determination for Lagrangian Navigation Constellation with Different Dynamical Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gao%20Youtao">Gao Youtao</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Tanran"> Zhao Tanran</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin%20Bingyu"> Jin Bingyu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xu%20Bo"> Xu Bo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global navigation satellite system(GNSS) can deliver navigation information for spacecraft orbiting on low-Earth orbits and medium Earth orbits. However, the GNSS cannot navigate the spacecraft on high-Earth orbit or deep space probes effectively. With the deep space exploration becoming a hot spot of aerospace, the demand for a deep space satellite navigation system is becoming increasingly prominent. Many researchers discussed the feasibility and performance of a satellite navigation system on periodic orbits around the Earth-Moon libration points which can be called Lagrangian point satellite navigation system. Autonomous orbit determination (AOD) is an important performance for the Lagrangian point satellite navigation system. With this ability, the Lagrangian point satellite navigation system can reduce the dependency on ground stations. AOD also can greatly reduce total system cost and assure mission continuity. As the elliptical restricted three-body problem can describe the Earth-Moon system more accurately than the circular restricted three-body problem, we study the autonomous orbit determination of Lagrangian navigation constellation using only crosslink range based on elliptical restricted three body problem. Extended Kalman filter is used in the autonomous orbit determination. In order to compare the autonomous orbit determination results based on elliptical restricted three-body problem to the results of autonomous orbit determination based on circular restricted three-body problem, we give the autonomous orbit determination position errors of a navigation constellation include four satellites based on the circular restricted three-body problem. The simulation result shows that the Lagrangian navigation constellation can achieve long-term precise autonomous orbit determination using only crosslink range. In addition, the type of the libration point orbit will influence the autonomous orbit determination accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-periodic%20orbit" title=" quasi-periodic orbit"> quasi-periodic orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72040/analysis-of-autonomous-orbit-determination-for-lagrangian-navigation-constellation-with-different-dynamical-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">37</span> Comparison of Extended Kalman Filter and Unscented Kalman Filter for Autonomous Orbit Determination of Lagrangian Navigation Constellation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youtao%20Gao">Youtao Gao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bingyu%20Jin"> Bingyu Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanran%20Zhao"> Tanran Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bo%20Xu"> Bo Xu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The history of satellite navigation can be dated back to the 1960s. From the U.S. Transit system and the Russian Tsikada system to the modern Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS), performance of satellite navigation has been greatly improved. Nowadays, the navigation accuracy and coverage of these existing systems have already fully fulfilled the requirement of near-Earth users, but these systems are still beyond the reach of deep space targets. Due to the renewed interest in space exploration, a novel high-precision satellite navigation system is becoming even more important. The increasing demand for such a deep space navigation system has contributed to the emergence of a variety of new constellation architectures, such as the Lunar Global Positioning System. Apart from a Walker constellation which is similar to the one adopted by GPS on Earth, a novel constellation architecture which consists of libration point satellites in the Earth-Moon system is also available to construct the lunar navigation system, which can be called accordingly, the libration point satellite navigation system. The concept of using Earth-Moon libration point satellites for lunar navigation was first proposed by Farquhar and then followed by many other researchers. Moreover, due to the special characteristics of Libration point orbits, an autonomous orbit determination technique, which is called ‘Liaison navigation’, can be adopted by the libration point satellites. Using only scalar satellite-to-satellite tracking data, both the orbits of the user and libration point satellites can be determined autonomously. In this way, the extensive Earth-based tracking measurement can be eliminated, and an autonomous satellite navigation system can be developed for future space exploration missions. The method of state estimate is an unnegligible factor which impacts on the orbit determination accuracy besides type of orbit, initial state accuracy and measurement accuracy. We apply the extended Kalman filter(EKF) and the unscented Kalman filter(UKF) to determinate the orbits of Lagrangian navigation satellites. The autonomous orbit determination errors are compared. The simulation results illustrate that UKF can improve the accuracy and z-axis convergence to some extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title="extended Kalman filter">extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20orbit%20determination" title=" autonomous orbit determination"> autonomous orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=unscented%20Kalman%20filter" title=" unscented Kalman filter"> unscented Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=navigation%20constellation" title=" navigation constellation"> navigation constellation</a> </p> <a href="https://publications.waset.org/abstracts/72788/comparison-of-extended-kalman-filter-and-unscented-kalman-filter-for-autonomous-orbit-determination-of-lagrangian-navigation-constellation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72788.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">36</span> Time-Evolving Wave Packet in Phase Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitsuyoshi%20Tomiya">Mitsuyoshi Tomiya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kentaro%20Kawamura"> Kentaro Kawamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoichi%20Sakamoto"> Shoichi Sakamoto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In chaotic billiard systems, scar-like localization has been found on time-evolving wave packet. We may call it the “dynamical scar” to separate it to the original scar in stationary states. It also comes out along the vicinity of classical unstable periodic orbits, when the wave packets are launched along the orbits, against the hypothesis that the waves become homogenous all around the billiard. Then time-evolving wave packets are investigated numerically in phase space. The Wigner function is adopted to detect the wave packets in phase space. The 2-dimensional Poincaré sections of the 4-dimensional phase space are introduced to clarify the dynamical behavior of the wave packets. The Poincaré sections of the coordinate (x or y) and the momentum (Px or Py) can visualize the dynamical behavior of the wave packets, including the behavior in the momentum degree also. For example, in “dynamical scar” states, a bit larger momentum component comes first, and then the a bit smaller and smaller components follow next. The sections made in the momentum space (Px or Py) elucidates specific trajectories that have larger contribution to the “dynamical scar” states. It is the fixed point observation of the momentum degrees at a specific fixed point(x0, y0) in the phase space. The accumulation are also calculated to search the “dynamical scar” in the Poincare sections. It is found the scars as bright spots in momentum degrees of the phase space. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20billiard" title="chaotic billiard">chaotic billiard</a>, <a href="https://publications.waset.org/abstracts/search?q=Poincar%C3%A9%20section" title=" Poincaré section"> Poincaré section</a>, <a href="https://publications.waset.org/abstracts/search?q=scar" title=" scar"> scar</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20packet" title=" wave packet"> wave packet</a> </p> <a href="https://publications.waset.org/abstracts/32869/time-evolving-wave-packet-in-phase-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32869.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">452</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">35</span> Study of Interplanetary Transfer Trajectories via Vicinity of Libration Points</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhe%20Xu">Zhe Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Li"> Jian Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Lvping%20Li"> Lvping Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Zezheng%20Dong"> Zezheng Dong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work is to study an optimized transfer strategy of connecting Earth and Mars via the vicinity of libration points, which have been playing an increasingly important role in trajectory designing on a deep space mission, and can be used as an effective alternative solution for Earth-Mars direct transfer mission in some unusual cases. The use of vicinity of libration points of the sun-planet body system is becoming potential gateways for future interplanetary transfer missions. By adding fuel to cargo spaceships located in spaceports, the interplanetary round-trip exploration shuttle mission of such a system facility can also be a reusable transportation system. In addition, in some cases, when the S/C cruising through invariant manifolds, it can also save a large amount of fuel. Therefore, it is necessary to make an effort on looking for efficient transfer strategies using variant manifold about libration points. It was found that Earth L1/L2 Halo/Lyapunov orbits and Mars L2/L1 Halo/Lyapunov orbits could be connected with reasonable fuel consumption and flight duration with appropriate design. In the paper, the halo hopping method and coplanar circular method are briefly introduced. The former used differential corrections to systematically generate low ΔV transfer trajectories between interplanetary manifolds, while the latter discussed escape and capture trajectories to and from Halo orbits by using impulsive maneuvers at periapsis of the manifolds about libration points. In the following, designs of transfer strategies of the two methods are shown here. A comparative performance analysis of interplanetary transfer strategies of the two methods is carried out accordingly. Comparison of strategies is based on two main criteria: the total fuel consumption required to perform the transfer and the time of flight, as mentioned above. The numeric results showed that the coplanar circular method procedure has certain advantages in cost or duration. Finally, optimized transfer strategy with engineering constraints is searched out and examined to be an effective alternative solution for a given direct transfer mission. This paper investigated main methods and gave out an optimized solution in interplanetary transfer via the vicinity of libration points. Although most of Earth-Mars mission planners prefer to build up a direct transfer strategy for the mission due to its advantage in relatively short time of flight, the strategies given in the paper could still be regard as effective alternative solutions since the advantages mentioned above and longer departure window than direct transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circular%20restricted%20three-body%20problem" title="circular restricted three-body problem">circular restricted three-body problem</a>, <a href="https://publications.waset.org/abstracts/search?q=halo%2FLyapunov%20orbit" title=" halo/Lyapunov orbit"> halo/Lyapunov orbit</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20manifolds" title=" invariant manifolds"> invariant manifolds</a>, <a href="https://publications.waset.org/abstracts/search?q=libration%20points" title=" libration points"> libration points</a> </p> <a href="https://publications.waset.org/abstracts/63162/study-of-interplanetary-transfer-trajectories-via-vicinity-of-libration-points" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">244</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">34</span> Anthropometric Measurements of Facial Proportions in Azerbaijan Population</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nigar%20Sultanova">Nigar Sultanova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Facial morphology is a constant topic of concern for clinicians. When anthropometric methods were introduced into clinical practice to quantify changes in the craniofacial framework, features distinguishing various ethnic group were discovered. Normative data of facial measurements are indispensable to precise determination of the degree of deviations from normal. Establish the reference range of facial proportions in Azerbaijan population by anthropometric measurements of craniofacial complex. The study group consisted of 350 healthy young subjects, 175 males and 175 females, 18 to 25 years of age, from 7 different regions of Azerbaijan. The anthropometric examination was performed according to L.Farkas's method with our modification. In order to determine the morphologic characteristics of seven regions of the craniofacial complex 42 anthropometric measurements were selected. The anthropometric examination. Included the usage of 33 anthropometric landmarks. The 80 indices of the facial proportions, suggested by Farkas and Munro, were calculated: head -10, face - 23, nose - 23, lips - 9, orbits - 11, ears - 4. The date base of the North American white population was used as a reference group. Anthropometric measurements of facial proportions in Azerbaijan population revealed a significant difference between mеn and womеn, according to sexual dimorphism. In comparison with North American whites, considerable differences of facial proportions were observed in the head, face, orbits, labio-oral, nose and ear region. However, in women of the Azerbaijani population, 29 out of 80 proportion indices were similar to the proportions of NAW women. In the men of the Azerbaijani population, 27 out of 80 proportion indices did not reveal a statistically significant difference from the proportions of NAW men. Estimation of the reference range of facial proportions in Azerbaijan population migth be helpful to formulate surgical plan in treatment of congenital or post-traumatic facial deformities successfully. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20morphology" title="facial morphology">facial morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropometry" title=" anthropometry"> anthropometry</a>, <a href="https://publications.waset.org/abstracts/search?q=indices%20of%20proportion" title=" indices of proportion"> indices of proportion</a>, <a href="https://publications.waset.org/abstracts/search?q=measurement" title=" measurement"> measurement</a> </p> <a href="https://publications.waset.org/abstracts/147472/anthropometric-measurements-of-facial-proportions-in-azerbaijan-population" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147472.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">33</span> Fractal Analysis of Some Bifurcations of Discrete Dynamical Systems in Higher Dimensions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lana%20Horvat%20Dmitrovi%C4%87">Lana Horvat Dmitrović</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this paper is to study the box dimension as fractal property of bifurcations of discrete dynamical systems in higher dimensions. The paper contains the fractal analysis of the orbits near the hyperbolic and non-hyperbolic fixed points in discrete dynamical systems. It is already known that in one-dimensional case the orbit near the hyperbolic fixed point has the box dimension equal to zero. On the other hand, the orbit near the non-hyperbolic fixed point has strictly positive box dimension which is connected to the non-degeneracy condition of certain bifurcation. One of the main results in this paper is the generalisation of results about box dimension near the hyperbolic and non-hyperbolic fixed points to higher dimensions. In the process of determining box dimension, the restriction of systems to stable, unstable and center manifolds, Lipschitz property of box dimension and the notion of projective box dimension are used. The analysis of the bifurcations in higher dimensions with one multiplier on the unit circle is done by using the normal forms on one-dimensional center manifolds. This specific change in box dimension of an orbit at the moment of bifurcation has already been explored for some bifurcations in one and two dimensions. It was shown that specific values of box dimension are connected to appropriate bifurcations such as fold, flip, cusp or Neimark-Sacker bifurcation. This paper further explores this connection of box dimension as fractal property to some specific bifurcations in higher dimensions, such as fold-flip and flip-Neimark-Sacker. Furthermore, the application of the results to the unit time map of continuous dynamical system near hyperbolic and non-hyperbolic singularities is presented. In that way, box dimensions which are specific for certain bifurcations of continuous systems can be obtained. The approach to bifurcation analysis by using the box dimension as specific fractal property of orbits can lead to better understanding of bifurcation phenomenon. It could also be useful in detecting the existence or nonexistence of bifurcations of discrete and continuous dynamical systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bifurcation" title="bifurcation">bifurcation</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20dimension" title=" box dimension"> box dimension</a>, <a href="https://publications.waset.org/abstracts/search?q=invariant%20manifold" title=" invariant manifold"> invariant manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit%20near%20fixed%20point" title=" orbit near fixed point"> orbit near fixed point</a> </p> <a href="https://publications.waset.org/abstracts/52891/fractal-analysis-of-some-bifurcations-of-discrete-dynamical-systems-in-higher-dimensions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">32</span> Derivatives Balance Method for Linear and Nonlinear Control Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Mohammed%20Ahmed%20Ali">Musaab Mohammed Ahmed Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Vodichev"> Vladimir Vodichev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> work deals with an universal control technique or single controller for linear and nonlinear stabilization and tracing control systems. These systems may be structured as SISO and MIMO. Parameters of controlled plants can vary over a wide range. Introduced a novel control systems design method, construction of stable platform orbits using derivative balance, solved transfer function stability preservation problem of linear system under partial substitution of a rational function. Universal controller is proposed as a polar system with the multiple orbits to simplify design procedure, where each orbit represent single order of controller transfer function. Designed controller consist of proportional, integral, derivative terms and multiple feedback and feedforward loops. The controller parameters synthesis method is presented. In generally, controller parameters depend on new polynomial equation where all parameters have a relationship with each other and have fixed values without requirements of retuning. The simulation results show that the proposed universal controller can stabilize infinity number of linear and nonlinear plants and shaping desired previously ordered performance. It has been proven that sensor errors and poor performance will be completely compensated and cannot affect system performance. Disturbances and noises effect on the controller loop will be fully rejected. Technical and economic effect of using proposed controller has been investigated and compared to adaptive, predictive, and robust controllers. The economic analysis shows the advantage of single controller with fixed parameters to drive infinity numbers of plants compared to above mentioned control techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=derivative%20balance" title="derivative balance">derivative balance</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20parameters" title=" fixed parameters"> fixed parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=stable%20platform" title=" stable platform"> stable platform</a>, <a href="https://publications.waset.org/abstracts/search?q=universal%20control" title=" universal control"> universal control</a> </p> <a href="https://publications.waset.org/abstracts/147745/derivatives-balance-method-for-linear-and-nonlinear-control-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147745.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">31</span> Tetrad field and torsion vectors in Schwarzschild solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.A.Bakry1">M.A.Bakry1</a>, <a href="https://publications.waset.org/abstracts/search?q=%2A">*</a>, <a href="https://publications.waset.org/abstracts/search?q=Aryn%20T.%20Shafeek1">Aryn T. Shafeek1</a>, <a href="https://publications.waset.org/abstracts/search?q=%2B">+</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, absolute Parallelism geometry is used to study the torsional gravitational field. And discovered the tetrad fields, torsion vector, and torsion scalar of Schwarzschild space. The new solution of the torsional gravitational field is a generalization of Schwarzschild in the context of general relativity. The results are applied to the planetary orbits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absolute%20parallelism%20geometry" title="absolute parallelism geometry">absolute parallelism geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=tetrad%20fields" title=" tetrad fields"> tetrad fields</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20vectors" title=" torsion vectors"> torsion vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20scalar" title=" torsion scalar"> torsion scalar</a> </p> <a href="https://publications.waset.org/abstracts/146382/tetrad-field-and-torsion-vectors-in-schwarzschild-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146382.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmaa%20Zaki%20M.">Asmaa Zaki M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abd%20El%20Aziz"> Ahmed Abd El Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Heba%20A.%20Fayed"> Heba A. Fayed</a>, <a href="https://publications.waset.org/abstracts/search?q=Moustafa%20H.%20Aly"> Moustafa H. Aly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20space%20optics%20%28FSO%29" title="free space optics (FSO)">free space optics (FSO)</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20of%20view%20%28FOV%29" title=" field of view (FOV)"> field of view (FOV)</a>, <a href="https://publications.waset.org/abstracts/search?q=inter%20satellite%20link%20%28ISL%29" title=" inter satellite link (ISL)"> inter satellite link (ISL)</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20wireless%20communication%20%28OWC%29" title=" optical wireless communication (OWC) "> optical wireless communication (OWC) </a> </p> <a href="https://publications.waset.org/abstracts/1928/the-impact-of-varying-the-detector-and-modulation-types-on-inter-satellite-link-isl-realizing-the-allowable-high-data-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1928.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Poisson Type Spherically Symmetric Spacetimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gonzalo%20Garc%C3%ADa-Reyes">Gonzalo García-Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Conformastat spherically symmetric exact solutions of Einstein's field equations representing matter distributions made of fluid both perfect and anisotropic from given solutions of Poisson's equation of Newtonian gravity are investigated. The approach is used in the construction of new relativistic models of thick spherical shells and three-component models of galaxies (bulge, disk, and dark matter halo), writing, in this case, the metric in cylindrical coordinates. In addition, the circular motion of test particles (rotation curves) along geodesics on the equatorial plane of matter configurations and the stability of the orbits against radial perturbations are studied. The models constructed satisfy all the energy conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=general%20relativity" title="general relativity">general relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=exact%20solutions" title=" exact solutions"> exact solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20symmetry" title=" spherical symmetry"> spherical symmetry</a>, <a href="https://publications.waset.org/abstracts/search?q=galaxy" title=" galaxy"> galaxy</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematics%20and%20dynamics" title=" kinematics and dynamics"> kinematics and dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=dark%20matter" title=" dark matter"> dark matter</a> </p> <a href="https://publications.waset.org/abstracts/151913/poisson-type-spherically-symmetric-spacetimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Artificial Intelligence-Aided Extended Kalman Filter for Magnetometer-Based Orbit Determination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gilberto%20Goracci">Gilberto Goracci</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Curti"> Fabio Curti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents a robust, light, and inexpensive algorithm to perform autonomous orbit determination using onboard magnetometer data in real-time. Magnetometers are low-cost and reliable sensors typically available on a spacecraft for attitude determination purposes, thus representing an interesting choice to perform real-time orbit determination without the need to add additional sensors to the spacecraft itself. Magnetic field measurements can be exploited by Extended/Unscented Kalman Filters (EKF/UKF) for orbit determination purposes to make up for GPS outages, yielding errors of a few kilometers and tens of meters per second in the position and velocity of a spacecraft, respectively. While this level of accuracy shows that Kalman filtering represents a solid baseline for autonomous orbit determination, it is not enough to provide a reliable state estimation in the absence of GPS signals. This work combines the solidity and reliability of the EKF with the versatility of a Recurrent Neural Network (RNN) architecture to further increase the precision of the state estimation. Deep learning models, in fact, can grasp nonlinear relations between the inputs, in this case, the magnetometer data and the EKF state estimations, and the targets, namely the true position, and velocity of the spacecraft. The model has been pre-trained on Sun-Synchronous orbits (SSO) up to 2126 kilometers of altitude with different initial conditions and levels of noise to cover a wide range of possible real-case scenarios. The orbits have been propagated considering J2-level dynamics, and the geomagnetic field has been modeled using the International Geomagnetic Reference Field (IGRF) coefficients up to the 13th order. The training of the module can be completed offline using the expected orbit of the spacecraft to heavily reduce the onboard computational burden. Once the spacecraft is launched, the model can use the GPS signal, if available, to fine-tune the parameters on the actual orbit onboard in real-time and work autonomously during GPS outages. In this way, the provided module shows versatility, as it can be applied to any mission operating in SSO, but at the same time, the training is completed and eventually fine-tuned, on the specific orbit, increasing performances and reliability. The results provided by this study show an increase of one order of magnitude in the precision of state estimate with respect to the use of the EKF alone. Tests on simulated and real data will be shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20Kalman%20filter" title=" extended Kalman filter"> extended Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=orbit%20determination" title=" orbit determination"> orbit determination</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a> </p> <a href="https://publications.waset.org/abstracts/163587/artificial-intelligence-aided-extended-kalman-filter-for-magnetometer-based-orbit-determination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163587.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">105</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Frobenius Manifolds Pairing and Invariant Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zainab%20Al-Maamari">Zainab Al-Maamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Yassir%20Dinar"> Yassir Dinar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The orbit space of an irreducible representation of a finite group is a variety with the ring of invariant polynomials as a coordinate ring. The invariant ring is a polynomial ring if and only if the representation is a reflection representation. Boris Dubrovin shows that the orbits spaces of irreducible real reflection representations acquire the structure of polynomial Frobenius manifolds. Dubrovin's method was also used to construct different examples of Frobenius manifolds on certain reflection representations. By successfully applying Dubrovin’s method on non-polynomial invariant rings of linear representations of dicyclic groups, it gives some results that magnify the relation between invariant theory and Frobenius manifolds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invariant%20ring" title="invariant ring">invariant ring</a>, <a href="https://publications.waset.org/abstracts/search?q=Frobenius%20manifold" title=" Frobenius manifold"> Frobenius manifold</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion" title=" inversion"> inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=representation%20theory" title=" representation theory"> representation theory</a> </p> <a href="https://publications.waset.org/abstracts/143099/frobenius-manifolds-pairing-and-invariant-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143099.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> A Simple Thermal Control Technique for the First Egyptian Pico Satellite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maged%20Assem%20Soliman%20Mossallam">Maged Assem Soliman Mossallam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the main prospectives on the demand of space exploration is to reduce the costs and efforts for satellite design. Concerning this issue satellite down scaling attracts space scientists and engineers. Picosatellite is the smallest category of satellites. The overall mass is less than 1 kg and dimensions are 10x10x3 cm3. Thermal control target is to keep the Pico-satellite board temperature within the permissible limits of temperature. Thermal design is completely passive which relies mainly on the enhancement of the thermo-optical properties of aluminum using anodization. Transient analysis is given for two different orbits, ISS orbit and 600 km altitude orbit. Results show that board temperature lies within 3 oC to 22 oC using black anodization which is a permissible limit for the satellite internal electronic board. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=satellite%20thermal%20control" title="satellite thermal control">satellite thermal control</a>, <a href="https://publications.waset.org/abstracts/search?q=small%20satellites" title=" small satellites"> small satellites</a>, <a href="https://publications.waset.org/abstracts/search?q=thermooptical%20properties" title=" thermooptical properties "> thermooptical properties </a>, <a href="https://publications.waset.org/abstracts/search?q=transient%20orbit%20analysis" title="transient orbit analysis">transient orbit analysis</a> </p> <a href="https://publications.waset.org/abstracts/151845/a-simple-thermal-control-technique-for-the-first-egyptian-pico-satellite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Quantom Magnetic Effects of P-B Fusion in Plasma Focus Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Habibi">M. Habibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The feasibility of proton-boron fusion in plasmoids caused by magneto hydrodynamics instabilities in plasma focus devices is studied analytically. In plasmoids, fusion power for 76 keV < Ti < 1500 keV exceeds bremsstrahlung loss (W/Pb=5.39). In such situation gain factor and the ratio of Te to Ti for a typical 150 kJ plasma focus device will be 7.8 and 4.8 respectively. Also with considering the ion viscous heating effect, W/Pb and Ti/Te will be 2.7 and 6 respectively. Strong magnetic field will reduces ion-electron collision rate due to quantization of electron orbits. While approximately there is no change in electron-ion collision rate, the effect of quantum magnetic field makes ions much hotter than electrons which enhance the fraction of fusion power to bremsstrahlung loss. Therefore self-sustained p-11B fusion reactions would be possible and it could be said that p-11B fuelled plasma focus device is a clean and efficient source of energy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmoids" title="plasmoids">plasmoids</a>, <a href="https://publications.waset.org/abstracts/search?q=p11B%20fuel" title=" p11B fuel"> p11B fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20viscous%20heating" title=" ion viscous heating"> ion viscous heating</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20magnetic%20field" title=" quantum magnetic field"> quantum magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20focus%20device" title=" plasma focus device"> plasma focus device</a> </p> <a href="https://publications.waset.org/abstracts/26776/quantom-magnetic-effects-of-p-b-fusion-in-plasma-focus-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26776.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Time-Frequency Modelling and Analysis of Faulty Rotor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20X.%20Tchomeni">B. X. Tchomeni</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Alugongo"> A. A. Alugongo</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Tengen"> T. B. Tengen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT) and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect non-linear signal, and obtained results provide a useful tool method for detecting machinery faults. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Continuous%20wavelet" title="Continuous wavelet">Continuous wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=crack" title=" crack"> crack</a>, <a href="https://publications.waset.org/abstracts/search?q=discrete%20wavelet" title=" discrete wavelet"> discrete wavelet</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20acceleration" title=" high acceleration"> high acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20acceleration" title=" low acceleration"> low acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear" title=" nonlinear"> nonlinear</a>, <a href="https://publications.waset.org/abstracts/search?q=rotor-stator" title=" rotor-stator"> rotor-stator</a>, <a href="https://publications.waset.org/abstracts/search?q=rub" title=" rub"> rub</a> </p> <a href="https://publications.waset.org/abstracts/33449/time-frequency-modelling-and-analysis-of-faulty-rotor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33449.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nilpotent%20orbits&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nilpotent%20orbits&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10