CINXE.COM

Search results for: eggshell

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: eggshell</title> <meta name="description" content="Search results for: eggshell"> <meta name="keywords" content="eggshell"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="eggshell" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="eggshell"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 30</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: eggshell</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">30</span> A Radiographic Survey of Eggshell Powder Effect on Tibial Bone Defect Repair Tested in Dog</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Yadegari">M. Yadegari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nourbakhsh"> M. Nourbakhsh</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Arbabzadeh"> N. Arbabzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The skeletal system injuries are of major importance. In addition, it is recommended to use materials for hard tissue repair in open or closed fractures. It is important to use complex minerals with a beneficial effect on hard tissue repair, stimulating cell growth in the bone. Materials that could help avoid bone fracture inflammatory reaction and speed up bone fracture repair are of utmost importance in the treatment of bone fractures. Similar to minerals, the inner eggshell membrane consists of carbohydrates, lipids, proteins with the high pH, high calcium absorptive capacity and with faster bone fracture repair ability. In the present radiographic survey, eggshell-derived bone graft substitutes were used for bone defect repair in 8 dog tibia, measuring bone density on the day of implant placement and 30 and 60 days after placement. In fact, the result of this study shows the difference in bone growth and misshapen bones between treatment and control sites. Cell growth was adequate in treatment sites and misshapen bones were less frequent here than in control sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bone%20repair" title="bone repair">bone repair</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20powder" title=" eggshell powder"> eggshell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=implant" title=" implant"> implant</a>, <a href="https://publications.waset.org/abstracts/search?q=radiography" title=" radiography"> radiography</a> </p> <a href="https://publications.waset.org/abstracts/34008/a-radiographic-survey-of-eggshell-powder-effect-on-tibial-bone-defect-repair-tested-in-dog" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">29</span> Modification of Toothpaste Formula Using Pineapple Cobs and Eggshell Waste as a Way to Decrease Dental Caries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achmad%20Buhori">Achmad Buhori</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20Imam%20Pratama"> Reza Imam Pratama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tissa%20Wiraatmaja"> Tissa Wiraatmaja</a>, <a href="https://publications.waset.org/abstracts/search?q=Wanti%20Megawati"> Wanti Megawati</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Data from many countries indicates that there is a marked increase of dental caries. The increases in caries appear to occur in lower socioeconomic groups. It is possible that the benefits of prevention of dental caries are not reaching these groups. However, there is a way to decrease dental caries by adding 5% of bromelain and calcium as an active agent in toothpaste. Bromelain can break glutamine-alanine bond and arginine-alanine bond which is a constituent of amino acid that causes dental plague which is one of the factors of dental caries. Calcium help rebuilds the teeth by strengthening and repairing enamel. Bromelain can be found from the extraction of pineapple (Ananas comosus) cobs (88.86-94.22 % of bromelain recovery during extraction based on the enzyme unit) and calcium can be taken from eggshell (95% of dry eggshell consist of calcium). The aim of this experiment is to make a toothpaste which contains bromelain and calcium as an effective, cheap, and healthy way to decrease dental caries around the world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bromelain" title="bromelain">bromelain</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20caries" title=" dental caries"> dental caries</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20plague" title=" dental plague"> dental plague</a>, <a href="https://publications.waset.org/abstracts/search?q=toothpaste" title=" toothpaste"> toothpaste</a> </p> <a href="https://publications.waset.org/abstracts/54683/modification-of-toothpaste-formula-using-pineapple-cobs-and-eggshell-waste-as-a-way-to-decrease-dental-caries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">28</span> Development of Catalyst from Waste Egg Shell for Biodiesel Production by Using Waste Vegetable Oil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20Chinecherem%20Ejeke">Victor Chinecherem Ejeke</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Eze%20Nnam"> Raphael Eze Nnam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this research is to produce biodiesel from waste vegetable oil using activated eggshell waste as solid catalysts. A transesterification reaction was performed for the conversion to biodiesel. Waste eggshells were calcined at 700°C, 800°C and 900°C for a time period of 3hrs for the preparation of the renewable catalyst. The calcined waste eggshell catalyst was characterized using X-Ray Florescence (XRF) Spectroscopy, which revealed CaO as the major constituent (90.86%); this was further confirmed by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analyses. The prepared catalyst was used for transesterification reaction and the effects of calcination temperature (700 to 900°C), Deep Eutectic Solvent DES loading (3 to 18 wt. %), Waste Egg Shell (WES) catalyst loading (6 to 14 wt. %) on the conversion to biodiesel were studied. The yield of biodiesel using a waste eggshell catalyst (91%) is comparable to conventional catalyst like sodium hydroxide with a yield of 80-90%. The maximum biodiesel production yield was obtained at a specific oil-to methanol molar ratio of 1:10, a temperature of 65°C and a catalyst loading of 14g-wt%. The biodiesel produced was characterized as being composed of methyl Tetradecanoate (C₁₄H₂₈O₂) 30.92% using the Gas Chromatographic (GC-MS) analysis. The fuel properties of the biodiesel (Flashpoint 138ᵒC) were comparable to commercial diesel, and hence it can be used in compression-ignition engines. The results indicated that the catalysts derived from waste eggshell had high potential to be used as biodiesel production catalysts in transesterification of waste vegetable oil with the advantage of reusability and also not requiring water washing steps. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=waste%20vegetable%20oil" title="waste vegetable oil">waste vegetable oil</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst "> catalyst </a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel "> biodiesel </a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20egg%20shell" title=" waste egg shell"> waste egg shell</a> </p> <a href="https://publications.waset.org/abstracts/113339/development-of-catalyst-from-waste-egg-shell-for-biodiesel-production-by-using-waste-vegetable-oil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/113339.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">27</span> Calcium Uptake and Yield of Pleurotus ostreatus Cultivated in Rice Straw-Based Substrate Enriched with Natural Sources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arianne%20V.%20Julian">Arianne V. Julian</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20R.%20Umagat"> Michael R. Umagat</a>, <a href="https://publications.waset.org/abstracts/search?q=Renato%20G.%20Reyes"> Renato G. Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pleurotus ostreatus, which is one of the most widely cultivated mushrooms, is an excellent source of protein and other minerals but inherently contains low calcium level. Calcium plays several vital functions in human health; therefore, adequate daily intake is necessary. Supplementation of growth substrate is a significant approach in mushroom production to improve nutritional content and yield. This study focused on the influence of varying concentrations of Ca supplementation derived from natural sources including agricultural lime, eggshell and oyster shell in rice straw-based formulation for the production of P. ostreatus. The effect of Ca supplementation on the total yield and Ca content were obtained. Results revealed that these natural sources increased both the yield and Ca of P. ostreatus. Mushroom grown in substrate with 8-10% agricultural lime and 6% eggshell powder produced the highest yields while using oyster shell powder did not vary with the control. Meanwhile, substrate supplementation using agricultural lime and eggshell powder in all concentrations have increased Ca in fruiting bodies. However, Ca was not absorbed in the oyster shell powder-supplemented substrate. These findings imply the potential of agricultural lime and eggshell powder in the production of Ca-enriched mushrooms resulting in higher yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcium%20fortification" title="calcium fortification">calcium fortification</a>, <a href="https://publications.waset.org/abstracts/search?q=mushroom%20production" title=" mushroom production"> mushroom production</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20sources" title=" natural sources"> natural sources</a>, <a href="https://publications.waset.org/abstracts/search?q=Pleurotus%20ostreatus" title=" Pleurotus ostreatus"> Pleurotus ostreatus</a> </p> <a href="https://publications.waset.org/abstracts/86643/calcium-uptake-and-yield-of-pleurotus-ostreatus-cultivated-in-rice-straw-based-substrate-enriched-with-natural-sources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">26</span> Effect of Nano Packaging Containing Ag-TiO₂ in Inactivating the Selected Bacteria Experimentally Exposed to the Chicken-Eggshell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Ahari">Hamed Ahari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Farokhi"> Sepideh Farokhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Abedini"> Mohamad Reza Abedini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on inactivation of the growth of the bacterial mixture, Salmonella enteritidis, Staphylococcus aureus, Bacillus cereus and Escherichia coli, experimentally subjected to the chicken eggshell by two types of nano particle-Ag, composite film and colloidal spray carried out at concentrations of 500, 1000 and 2000 ppm over 28 days. The GLM, Repeated Measurement-ANOVA procedure was used to analyze the effect of time and concentration of nano groups on inactivation of bacteria, simultaneously. The maximum reduction of the bacterial growth was respected to the group “spray 2000 ppm” for which the value of the bacteria reached the minimum (0.93±0.42) on day 7, calculated to be 0.0 on days14 and 28 and followed by the group “spray 1000 ppm”. It was obviously concluded that increasing the dilution of nano coating in spray and film created a significant decrease in the number of bacteria colonies on the eggshells but the effect of packaging in different concentrations of nanocomposite was not statistically significant in different days of the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano%20particle" title="nano particle">nano particle</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20film" title=" composite film"> composite film</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell" title=" eggshell"> eggshell</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a> </p> <a href="https://publications.waset.org/abstracts/53151/effect-of-nano-packaging-containing-ag-tio2-in-inactivating-the-selected-bacteria-experimentally-exposed-to-the-chicken-eggshell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">394</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">25</span> Prediction of California Bearing Ratio of a Black Cotton Soil Stabilized with Waste Glass and Eggshell Powder using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biruhi%20Tesfaye">Biruhi Tesfaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Avinash%20M.%20Potdar"> Avinash M. Potdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The laboratory test process to determine the California bearing ratio (CBR) of black cotton soils is not only overpriced but also time-consuming as well. Hence advanced prediction of CBR plays a significant role as it is applicable In pavement design. The prediction of CBR of treated soil was executed by Artificial Neural Networks (ANNs) which is a Computational tool based on the properties of the biological neural system. To observe CBR values, combined eggshell and waste glass was added to soil as 4, 8, 12, and 16 % of the weights of the soil samples. Accordingly, the laboratory related tests were conducted to get the required best model. The maximum CBR value found at 5.8 at 8 % of eggshell waste glass powder addition. The model was developed using CBR as an output layer variable. CBR was considered as a function of the joint effect of liquid limit, plastic limit, and plastic index, optimum moisture content and maximum dry density. The best model that has been found was ANN with 5, 6 and 1 neurons in the input, hidden and output layer correspondingly. The performance of selected ANN has been 0.99996, 4.44E-05, 0.00353 and 0.0067 which are correlation coefficient (R), mean square error (MSE), mean absolute error (MAE) and root mean square error (RMSE) respectively. The research presented or summarized above throws light on future scope on stabilization with waste glass combined with different percentages of eggshell that leads to the economical design of CBR acceptable to pavement sub-base or base, as desired. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CBR" title="CBR">CBR</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title=" artificial neural network"> artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20limit" title=" liquid limit"> liquid limit</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20limit" title=" plastic limit"> plastic limit</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20dry%20density" title=" maximum dry density"> maximum dry density</a>, <a href="https://publications.waset.org/abstracts/search?q=OMC" title=" OMC"> OMC</a> </p> <a href="https://publications.waset.org/abstracts/139867/prediction-of-california-bearing-ratio-of-a-black-cotton-soil-stabilized-with-waste-glass-and-eggshell-powder-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139867.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">24</span> Partial Replacement for Cement and Coarse Aggregate in Concrete by Using Egg Shell Powder and Coconut Shell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20K.%20Jain">A. K. Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Paliwal"> M. C. Paliwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of cement leads to the emission of large amounts of carbon-dioxide gas into the atmosphere which is a major contributor for the greenhouse effect and the global warming; hence it is mandatory either to quest for another material or partly replace it with some other material. According to the practical demonstrations and reports, Egg Shell Powder (ESP) can be used as a binding material for different field applications as it contains some of the properties of lime. It can partially replace the cement and further; it can be used in different proportion for enhancing the performance of cement. It can be used as a first-class alternative, for material reuse and waste recycling practices. Eggshell is calcium rich and analogous to limestone in chemical composition. Therefore, use of eggshell waste for partial replacement of cement in concrete is feasible. Different studies reveal that plasticity index of the soil can be improved by adding eggshell wastes in all the clay soil and it has wider application in construction projects including earth canals and earthen dams. The scarcity of aggregates is also increasing nowadays. Utilization of industrial waste or secondary materials is increasing in different construction applications. Coconut shell was successfully used in the construction industry for partial or full replacement for coarse aggregates. The use of coconut shell gives advantage of using waste material to partially replace the coarse aggregate. Studies carried on coconut shell indicate that it can partially replace the aggregate. It has good strength and modulus properties along with the advantage of high lignin content. It absorbs relatively low moisture due to its low cellulose content. In the paper, study carried out on eggshell powder and coconut shell will be discussed. Optimum proportions of these materials to be used for partial replacement of cement and aggregate will also be discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse" title="greenhouse">greenhouse</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20shell%20powder" title=" egg shell powder"> egg shell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=binding%20material" title=" binding material"> binding material</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregates" title=" aggregates"> aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=coconut%20shell" title=" coconut shell"> coconut shell</a>, <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregates" title=" coarse aggregates"> coarse aggregates</a> </p> <a href="https://publications.waset.org/abstracts/71041/partial-replacement-for-cement-and-coarse-aggregate-in-concrete-by-using-egg-shell-powder-and-coconut-shell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">253</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">23</span> Continuous Fixed Bed Reactor Application for Decolourization of Textile Effluent by Adsorption on NaOH Treated Eggshell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Chafi">M. Chafi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Akazdam"> S. Akazdam</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Asrir"> C. Asrir</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Sebbahi"> L. Sebbahi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Gourich"> B. Gourich</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Barka"> N. Barka</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Essahli"> M. Essahli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fixed bed adsorption has become a frequently used industrial application in wastewater treatment processes. Various low cost adsorbents have been studied for their applicability in treatment of different types of effluents. In this work, the intention of the study was to explore the efficacy and feasibility for azo dye, Acid Orange 7 (AO7) adsorption onto fixed bed column of NaOH Treated eggshell (TES). The effect of various parameters like flow rate, initial dye concentration, and bed height were exploited in this study. The studies confirmed that the breakthrough curves were dependent on flow rate, initial dye concentration solution of AO7 and bed depth. The Thomas, Yoon&ndash;Nelson, and Adams and Bohart models were analysed to evaluate the column adsorption performance. The adsorption capacity, rate constant and correlation coefficient associated to each model for column adsorption was calculated and mentioned. The column experimental data were fitted well with Thomas model with coefficients of correlation R2 &ge;0.93 at different conditions but the Yoon&ndash;Nelson, BDST and Bohart&ndash;Adams model (R2=0.911), predicted poor performance of fixed-bed column. The (TES) was shown to be suitable adsorbent for adsorption of AO7 using fixed-bed adsorption column. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption%20models" title="adsorption models">adsorption models</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20orange%207" title=" acid orange 7"> acid orange 7</a>, <a href="https://publications.waset.org/abstracts/search?q=bed%20depth" title=" bed depth"> bed depth</a>, <a href="https://publications.waset.org/abstracts/search?q=breakthrough" title=" breakthrough"> breakthrough</a>, <a href="https://publications.waset.org/abstracts/search?q=dye%20adsorption" title=" dye adsorption"> dye adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed-bed%20column" title=" fixed-bed column"> fixed-bed column</a>, <a href="https://publications.waset.org/abstracts/search?q=treated%20eggshell" title=" treated eggshell"> treated eggshell</a> </p> <a href="https://publications.waset.org/abstracts/43408/continuous-fixed-bed-reactor-application-for-decolourization-of-textile-effluent-by-adsorption-on-naoh-treated-eggshell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Green Technology for the Treatment of Industrial Effluent Contaminated with Dyes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Afzaal%20Gulzar">Afzaal Gulzar</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafaq%20Mubarak"> Shafaq Mubarak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zia-Ur-Rehman"> M. Zia-Ur-Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Industrial waste waters put environmental constrains to the water quality of aqueous reserves. Number of techniques has been used to treat them before disposal to water bodies. In this work a novel green approach is study by using poultry waste eggshells as a low cost efficient adsorbent for the dyes present in industrial effluent of textile and paper industries. The developed technique not only used to treat contaminated waters but also resulted in the utilization of poultry eggshell waste which in turn assists in solid waste management. Batch sorption studies like contact time, adsorbent dose, dye concentration, temp and pH has been conducted to find the optimum adsorption parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=green%20technology" title="green technology">green technology</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20waste%20management" title=" solid waste management"> solid waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20effluent" title=" industrial effluent"> industrial effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20waste%20utilization" title=" eggshell waste utilization"> eggshell waste utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20water%20treatment" title=" waste water treatment"> waste water treatment</a> </p> <a href="https://publications.waset.org/abstracts/11994/green-technology-for-the-treatment-of-industrial-effluent-contaminated-with-dyes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Eggshell Waste Bioprocessing for Sustainable Acid Phosphatase Production and Minimizing Environmental Hazards</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Abubakr%20Abdelgalil">Soad Abubakr Abdelgalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaber%20Attia%20Abo-Zaid"> Gaber Attia Abo-Zaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Mohamed%20Yousri%20Kaddah"> Mohamed Mohamed Yousri Kaddah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The Environmental Protection Agency has listed eggshell waste as the 15th most significant food industry pollution hazard. The utilization of eggshell waste as a source of renewable energy has been a hot topic in recent years. Therefore, finding a sustainable solution for the recycling and valorization of eggshell waste by investigating its potential to produce acid phosphatase (ACP) and organic acids by the newly-discovered B. sonorensis was the target of the current investigation. Results: The most potent ACP-producing B. sonorensis strain ACP2 was identified as a local bacterial strain obtained from the effluent of paper and pulp industries on basis of molecular and morphological characterization. The use of consecutive statistical experimental approaches of Plackett-Burman Design (PBD), and Orthogonal Central Composite Design (OCCD), followed by pH-uncontrolled cultivation conditions in a 7 L bench-top bioreactor, revealed an innovative medium formulation that substantially improved ACP production, reaching 216 U L⁻¹ with ACP yield coefficient Yp/x of 18.2 and a specific growth rate (µ) of 0.1 h⁻¹. The metals Ag+, Sn+, and Cr+ were the most efficiently released from eggshells during the solubilization process by B. sonorensis. The uncontrolled pH culture condition is the most suited and favored setting for improving the ACP and organic acids production simultaneously. Quantitative and qualitative analyses of produced organic acids were carried out using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Lactic acid, citric acid, and hydroxybenzoic acid isomer were the most common organic acids produced throughout the cultivation process. The findings of thermogravimetric analysis (TGA), differential scan calorimeter (DSC), scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), Fourier-Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) analysis emphasize the significant influence of organic acids and ACP activity on the solubilization of eggshells particles. Conclusions: This study emphasized robust microbial engineering approaches for the large-scale production of a newly discovered acid phosphatase accompanied by organic acids production from B. sonorensis. The biovalorization of the eggshell waste and the production of cost-effective ACP and organic acids were integrated into the current study, and this was done through the implementation of a unique and innovative medium formulation design for eggshell waste management, as well as scaling up ACP production on a bench-top scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chicken%20eggshells%20waste" title="chicken eggshells waste">chicken eggshells waste</a>, <a href="https://publications.waset.org/abstracts/search?q=bioremediation" title=" bioremediation"> bioremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20experimental%20design" title=" statistical experimental design"> statistical experimental design</a>, <a href="https://publications.waset.org/abstracts/search?q=batch%20fermentation" title=" batch fermentation"> batch fermentation</a> </p> <a href="https://publications.waset.org/abstracts/159622/eggshell-waste-bioprocessing-for-sustainable-acid-phosphatase-production-and-minimizing-environmental-hazards" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159622.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">376</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Effects of Vitamin C and Spondias mombin Supplementation on Hematology, Growth, Egg Production Traits, and Eggshell Quality in Japanese Quails (Coturnix coturnix japonica) in a Hot-Humid Tropics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20O.%20Oyebanji">B. O. Oyebanji</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20O.%20Dudusola"> I. O. Dudusola</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Ademola"> C. T. Ademola</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Olaniyan"> S. A. Olaniyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 56 day study was conducted to evaluate the effect of dietary inclusion of Spondias mombin on hematological, growth, egg parameters and egg shell quality of Japanese quails, Cortunix cortunix japonica. One hundred birds were used for this study, and they were allocated randomly into 5 groups and replicated twice. Group 1 animals served as control without inclusion of extract, groups 2, 3, and 4 had 200 mg/kg, 400 mg/kg and 800 mg/kg inclusion of SM, group 5 had 600 mg/kg of vitamin C respectively. The birds were weighed weekly to determine weight change, the blood parameters analyzed at the completion of the experiment were PCV, Hb, RBC WBC, differential WBC count, MCH, MCH, and MCV were afterwards calculated from these parameters. 5 eggs were collected from each group and egg weight, eggshell weight, eggshell diameter, yolk weight, albumen weight, yolk diameter, yolk height, albumen percentage, yolk percentage and shell percentage were determined. There was no significant difference among the group for the hematological parameters measured and calculated. The egg weight and albumen weight of quails on 800 mg/kg was highest of all the groups, all other egg parameters measured showed no significant difference. The birds supplemented with Vitamin C had the highest weight gain (40.8±2.5 g) and the lowest feed conversion ratio (2.25). There was no mortality recorded in all the groups except in the SM800 group with 10% mortality. It can be concluded from this experiment that Vitamin C supplementation has positive effect on quail production in humid tropics and the inclusion of Spondias mombin leaf extract has a dose-dependent toxicity in quails. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematology" title="hematology">hematology</a>, <a href="https://publications.waset.org/abstracts/search?q=quails" title=" quails"> quails</a>, <a href="https://publications.waset.org/abstracts/search?q=Spondias%20mombin" title=" Spondias mombin"> Spondias mombin</a>, <a href="https://publications.waset.org/abstracts/search?q=vitamin%20C" title=" vitamin C "> vitamin C </a> </p> <a href="https://publications.waset.org/abstracts/41253/effects-of-vitamin-c-and-spondias-mombin-supplementation-on-hematology-growth-egg-production-traits-and-eggshell-quality-in-japanese-quails-coturnix-coturnix-japonica-in-a-hot-humid-tropics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41253.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Revolutionizing Manufacturing: Embracing Additive Manufacturing with Eggshell Polylactide (PLA) Polymer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Choy%20Sonny%20Yip%20Hong">Choy Sonny Yip Hong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This abstract presents an exploration into the creation of a sustainable bio-polymer compound for additive manufacturing, specifically 3D printing, with a focus on eggshells and polylactide (PLA) polymer. The project initially conducted experiments using a variety of food by-products to create bio-polymers, and promising results were obtained when combining eggshells with PLA polymer. The research journey involved precise measurements, drying of PLA to remove moisture, and the utilization of a filament-making machine to produce 3D printable filaments. The project began with exploratory research and experiments, testing various combinations of food by-products to create bio-polymers. After careful evaluation, it was discovered that eggshells and PLA polymer produced promising results. The initial mixing of the two materials involved heating them just above the melting point. To make the compound 3D printable, the research focused on finding the optimal formulation and production process. The process started with precise measurements of the PLA and eggshell materials. The PLA was placed in a heating oven to remove any absorbed moisture. Handmade testing samples were created to guide the planning for 3D-printed versions. The scrap PLA was recycled and ground into a powdered state. The drying process involved gradual moisture evaporation, which required several hours. The PLA and eggshell materials were then placed into the hopper of a filament-making machine. The machine's four heating elements controlled the temperature of the melted compound mixture, allowing for optimal filament production with accurate and consistent thickness. The filament-making machine extruded the compound, producing filament that could be wound on a wheel. During the testing phase, trials were conducted with different percentages of eggshell in the PLA mixture, including a high percentage (20%). However, poor extrusion results were observed for high eggshell percentage mixtures. Samples were created, and continuous improvement and optimization were pursued to achieve filaments with good performance. To test the 3D printability of the DIY filament, a 3D printer was utilized, set to print the DIY filament smoothly and consistently. Samples were printed and mechanically tested using a universal testing machine to determine their mechanical properties. This testing process allowed for the evaluation of the filament's performance and suitability for additive manufacturing applications. In conclusion, the project explores the creation of a sustainable bio-polymer compound using eggshells and PLA polymer for 3D printing. The research journey involved precise measurements, drying of PLA, and the utilization of a filament-making machine to produce 3D printable filaments. Continuous improvement and optimization were pursued to achieve filaments with good performance. The project's findings contribute to the advancement of additive manufacturing, offering opportunities for design innovation, carbon footprint reduction, supply chain optimization, and collaborative potential. The utilization of eggshell PLA polymer in additive manufacturing has the potential to revolutionize the manufacturing industry, providing a sustainable alternative and enabling the production of intricate and customized products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title=" 3D printing"> 3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20PLA%20polymer" title=" eggshell PLA polymer"> eggshell PLA polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20innovation" title=" design innovation"> design innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20footprint%20reduction" title=" carbon footprint reduction"> carbon footprint reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20optimization" title=" supply chain optimization"> supply chain optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20potential" title=" collaborative potential"> collaborative potential</a> </p> <a href="https://publications.waset.org/abstracts/171111/revolutionizing-manufacturing-embracing-additive-manufacturing-with-eggshell-polylactide-pla-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Effects of Flame Retardant Nano Bio-Filler on the Fire Behaviour of Thin Film Intumescent Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ming%20Chian%20Yew">Ming Chian Yew</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming%20Kun%20Yew"> Ming Kun Yew</a>, <a href="https://publications.waset.org/abstracts/search?q=Lip%20Huat%20Saw"> Lip Huat Saw</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Ching%20Ng"> Tan Ching Ng</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajkumar%20Durairaj"> Rajkumar Durairaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Han%20Beh"> Jing Han Beh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper analyzes the fire protection performance, char formation and heat release characteristics of the thin film intumescent coatings that incorporate waste eggshell (ES) as a nano bio-filler. In this study, the Bunsen burner and the fire propagation (BS 476: Part 6) tests of coatings were measured. Experiments on the samples were also tested to evaluate their fire behavior using a cone calorimeter according to ISO 5660-1 specifications. On exposure, the samples B, C and D had been certified to be Class 0 due to the fire propagation indexes of the samples were less than 12. Samples B and D showed a significant reduction in total heat rate (B=11.6 MJ/m² and D=12.0 MJ/m²) and uniform char structures with the addition of 3.30 wt.% and 2.75 wt.% ES nano bio-filler, respectively. As a result, ES nano bio-filler composition good to slow down the fire expanding and demonstrate better fire protection due to its positive synergistic effect with flame retardant ingredients on physical and chemical reactions in fire protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cone%20calorimeter" title="cone calorimeter">cone calorimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell" title=" eggshell"> eggshell</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20protection" title=" fire protection"> fire protection</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20release%20rate" title=" heat release rate"> heat release rate</a>, <a href="https://publications.waset.org/abstracts/search?q=intumescent%20coating" title=" intumescent coating"> intumescent coating</a> </p> <a href="https://publications.waset.org/abstracts/86229/effects-of-flame-retardant-nano-bio-filler-on-the-fire-behaviour-of-thin-film-intumescent-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86229.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effect of Different Levels of Distillery Yeast Sludge on Immune Level, Egg Quality and Performance of Layers as a Substitute for Soybean Meal </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rana%20Bilal">Rana Bilal</a>, <a href="https://publications.waset.org/abstracts/search?q=Faiz-Ul-Hassan"> Faiz-Ul-Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Moazzam%20Jameel"> Moazzam Jameel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is a dire need to replace high-cost protein with more economical protein to overcome animal protein shortage in developing nations especially countries like Pakistan. In conjunction with these efforts, the current study was planned to evaluate the effects of various dried distillery yeast sludge (DYS) levels on the immune level, egg quality, and performance of layers by replacing soybean meal. The study was designed with two hundred layers of Hy-Line variety. Distillery yeast sludge was dried and ground for 2 mm mesh size and after this proximate and mineral analysis was determined. Five isocaloric and isonitrogeneous feeds were given containing C (control), 5, 10, 15, 20% distillery yeast sludge by replacing soybean meal. The trial was performed in the completely randomized design with five treatments, 4 replicates and 10 hen per replicate. Results demonstrated that feed intake, egg production, feed conversion ratio decreased (P < 0.05) with the increased dietary DYS. However, statistically significant decrease (P < 0.05) was found in hens having DYS20 diet than control. Layers on Diets C, DYS5 and DYS10 exerted a higher immune level than DYS15 and DYS20 diets. Egg weight, eggshell weight, eggshell thickness, egg albumen height as well as haugh unit score were affected significantly by the increased level of DYS. In general, results of this study demonstrated that inclusion of DYS up to 10% showed no adverse effects on health and performance of layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg%20quality" title="egg quality">egg quality</a>, <a href="https://publications.waset.org/abstracts/search?q=immunity" title=" immunity"> immunity</a>, <a href="https://publications.waset.org/abstracts/search?q=layers" title=" layers"> layers</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a> </p> <a href="https://publications.waset.org/abstracts/90734/effect-of-different-levels-of-distillery-yeast-sludge-on-immune-level-egg-quality-and-performance-of-layers-as-a-substitute-for-soybean-meal" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Effect of Different Level of Pomegranate Molasses on Performance, Egg Quality Trait, Serological and Hematological Parameters in Older Laying Hens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Bayram">Ismail Bayram</a>, <a href="https://publications.waset.org/abstracts/search?q=Aamir%20Iqbal"> Aamir Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Eren%20Gultepe"> E. Eren Gultepe</a>, <a href="https://publications.waset.org/abstracts/search?q=Cangir%20Uyarlar"> Cangir Uyarlar</a>, <a href="https://publications.waset.org/abstracts/search?q=Umit%20Ozc%C4%B1nar"> Umit Ozcınar</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sadi%20Cetingul"> I. Sadi Cetingul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study was planned with the objective to explore the potential of pomegranate molasses (PM) on performance, egg quality and blood parameters in older laying hens. A total of 240 Babcock white laying hens (52 weeks old) were divided into 5 groups (n=48) with 8 subgroups having 6 hens in each. Pomegranate molasses was added in the drinking water to experimental groups with 0 %, 0.1%, 0.25 %, 0.5%, and 1%, respectively during one month. In our results, egg weight values were remained the same in all pomegranate molasses supplemented groups except 1% group over control. However, feed consumption, egg production, feed conversion ratio (FCR), egg mass, egg yolk cholesterol, body weights, and water consumption remained unaffected (P > 0.05). During mid-study (15 Days) analyses, egg quality parameters such as Haugh unit, eggshell thickness, albumin index, yolk index, and egg yolk color were remained non-significant (P > 0.05) while after final (30 Days) egg analyses, only egg yolk color had positively (P < 0.05) increased in 0.5% group. Moreover, Haugh unit, eggshell thickness, and albumin index were not significantly (P > 0.05) affected by the supplementation of pomegranate molasses. Regarding serological parameters, pomegranate molasses did not show any positive effect on cholesterol, total protein, LDL, HDL, GGT, AST, ALT, and glucose level. Similarly, pomegranate molasses also showed non-significant (P > 0.05) results on different blood parameters such as HCT, RBC, MCV, MCH, MCHC, PLT, RDWC, MPV except hemoglobin level. Only hemoglobin level was increased in all experimental groups over control showing that pomegranate molasses can be used as an enhancer in animals with low hemoglobin level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pomegranate%20molasses" title="pomegranate molasses">pomegranate molasses</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20hen" title=" laying hen"> laying hen</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20yield" title=" egg yield"> egg yield</a>, <a href="https://publications.waset.org/abstracts/search?q=blood%20parameters" title=" blood parameters"> blood parameters</a> </p> <a href="https://publications.waset.org/abstracts/107654/effect-of-different-level-of-pomegranate-molasses-on-performance-egg-quality-trait-serological-and-hematological-parameters-in-older-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107654.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Ahmadi">Farhad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Kimiaee"> Hamed Kimiaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Fariba%20Rahimi"> Fariba Rahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg" title="egg">egg</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=physiology" title=" physiology"> physiology</a> </p> <a href="https://publications.waset.org/abstracts/187040/comparison-of-the-effect-of-nano-calcium-carbonate-and-caco3-on-egg-production-egg-traits-and-calcium-retention-in-laying-japanese-quail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">42</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Characterization of Fish Bone Catalyst for Biodiesel Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarina%20Sulaiman">Sarina Sulaiman</a>, <a href="https://publications.waset.org/abstracts/search?q=N.Khairudin"> N.Khairudin </a>, <a href="https://publications.waset.org/abstracts/search?q=P.Jamal"> P.Jamal</a>, <a href="https://publications.waset.org/abstracts/search?q=M.Z.%20Alam"> M.Z. Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaki%20Zainudin"> Zaki Zainudin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Azmi"> S. Azmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, fish bone waste was used as a new catalyst for biodiesel production. Instead of discarding the fish bone waste, it will be utilized as a source for catalyst that can provide significant benefit to the environment. Also, it can be substitute as a calcium oxide source instead of using eggshell, crab shell and snail shell. The XRD and SEM analysis proved that calcined fish bone contains calcium oxide, calcium phosphate and hydroxyapatite. The catalyst was characterized using Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=calcinations" title="calcinations">calcinations</a>, <a href="https://publications.waset.org/abstracts/search?q=fish%20bone" title=" fish bone"> fish bone</a>, <a href="https://publications.waset.org/abstracts/search?q=transesterification" title=" transesterification"> transesterification</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20catalyst" title=" waste catalyst"> waste catalyst</a> </p> <a href="https://publications.waset.org/abstracts/7717/characterization-of-fish-bone-catalyst-for-biodiesel-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Comparison of the Effect of Nano Calcium Carbonate and CaCO₃ on Egg Production, Egg Traits and Calcium Retention in Laying Japanese Quail</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Ahmadi">Farhad Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammed%20Kimiaee"> Hammed Kimiaee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This research study focuses on the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. The study aims to determine the impact of nano calcium carbonate (NCC) and calcium carbonate (CC) on these factors. Research Aim: The main objective of this research is to investigate the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail. Specifically, the study aims to compare the effects of NCC and CC on these parameters. Methodology: The research was conducted using a total of 280 laying quail with an average age of 8 weeks. The quails were randomly distributed in a completely randomized design (CRD) with 7 treatments, 4 replications, and 10 quails in each pen. The study lasted for 90 days. The experimental diets included a control group (T1) with a basal diet consisting of 3.17% CaCO₃, and other groups supplemented with different levels (0.5%, 0.1%, and 0.15%) of either calcium carbonate (CC) or nano calcium carbonate (NCC). The quails had free access to water and feed throughout the study period. Findings: The results of the study showed that NCC at the levels of 0.1% and 0.15% (T6 and T7) improved eggshell thickness, shell thickness, and shell breaking strength compared to the control group. Although not statistically significant, there was an increasing trend in quail egg production and calcium retention in the calcareous shell of the egg in birds that consumed the experimental diets containing different levels of NCC compared to the control and other treatment groups. Theoretical Importance: This research contributes to our understanding of the effect of NCC and CC on egg production, egg traits, and calcium retention in laying Japanese quail. It highlights the potential benefits of using NCC as a calcium source in quail diets, specifically in improving the quantity and quality of eggs and calcium retention. Data Collection and Analysis Procedures: Quail egg production was recorded monthly for each treatment group. At the end of the study, a total of 40 eggs (10 eggs/replicate) from each treatment group were randomly selected for analysis. Parameters such as eggshell thickness, shell thickness, shell breaking strength, and calcium retention were measured. Statistical analysis was performed to compare the results between the different treatment groups. Questions Addressed: This research aimed to answer the following questions: What is the effect of different levels and sources of calcium on egg production, egg traits, and calcium retention in laying Japanese quail? How does nano calcium carbonate compare to calcium carbonate in terms of these parameters? Conclusion: In conclusion, this study suggests that NCC at the levels of 0.1% and 0.15% can improve the quantity and quality of eggs and calcium retention in laying Japanese quail. These findings highlight the potential benefits of using NCC as a calcium source in quail diets. Further research could be conducted to explore the mechanisms behind these improvements and optimize the dosage of NCC for maximum effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg" title="egg">egg</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium" title=" calcium"> calcium</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=retention" title=" retention"> retention</a> </p> <a href="https://publications.waset.org/abstracts/176775/comparison-of-the-effect-of-nano-calcium-carbonate-and-caco3-on-egg-production-egg-traits-and-calcium-retention-in-laying-japanese-quail" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Effect of the Support Shape on Fischer-Tropsch Cobalt Catalyst Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Huang">Jian Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weixin%20Qian"> Weixin Qian</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma"> Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cobalt catalysts were supported on extruded silica carrier and different-type (SiO<sub>2</sub>, &gamma;-Al<sub>2</sub>O<sub>3</sub>) commercial supports with different shapes and sizes to produce heavy hydrocarbons for Fischer-Tropsch synthesis. The catalysts were characterized by N<sub>2</sub> physisorption and H<sub>2</sub>-TPR. The catalytic performance of the catalysts was tested in a fixed bed reactor. The results of Fischer-Tropsch synthesis performance showed that the cobalt catalyst supported on spherical silica supports displayed a higher activity and a higher selectivity to C<sub>5</sub><sup>+</sup> products, due to the fact that the active components were only distributed in the surface layer of spherical carrier, and the influence of gas diffusion restriction on catalytic performance was weakened. Therefore, it can be concluded that the eggshell cobalt catalyst was superior to precious metals modified catalysts in the synthesis of heavy hydrocarbons. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fischer-tropsch%20synthesis" title="fischer-tropsch synthesis">fischer-tropsch synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=cobalt%20catalyst" title=" cobalt catalyst"> cobalt catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20shape" title=" support shape"> support shape</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20hydrocarbons" title=" heavy hydrocarbons"> heavy hydrocarbons</a> </p> <a href="https://publications.waset.org/abstracts/86645/effect-of-the-support-shape-on-fischer-tropsch-cobalt-catalyst-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Microwave Assisted Sol-gel Synthesis And Characterization Of Nanocrystalline Zirconia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzana%20Majid">Farzana Majid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahwish%20Bashir"> Mahwish Bashir</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammara"> Ammara</a>, <a href="https://publications.waset.org/abstracts/search?q=Attia%20Falak"> Attia Falak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zirconia nanoparticles have gained significant attention due to their excellent mechanical strength, thermal properties, biocompatibility, and catalytic activity. Tetragonal zirconia holds the greatest efficacy for surgical implants and coatings when it comes to the three zirconia phases (monoclinic, tetragonal, and cubic). However, its stability at higher temperatures and transformation to the monoclinic phase upon cooling are challenging. In this research, zirconia nanoparticles were prepared using microwave-assisted sol-gel method with varying microwave powers (100 W, 300 W, 500 W, 700 W, & 900 W). Organic stabilizing agent, i.e., eggshell powder, was used to stabilize the tetragonal phase. Fourier transform infrared spectroscopy (FTIR) confirmed the phase-pure tetragonal zirconia, corroborating the XRD data. Optical properties, including the optical bandgap, were studied using UV/Visible and PL spectroscopies. The synthesized ZrO2 nanoparticles exhibited excellent photocatalytic degradation efficiency in the degradation of methylene blue (MB) dye under UV irradiation. The findings demonstrate the potential of these ZrO2 nanoparticles as a viable alternative photocatalyst for the efficient degradation of various dyes in contaminated water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zirconia%20nanoparticles" title="zirconia nanoparticles">zirconia nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=photocataylsis" title=" photocataylsis"> photocataylsis</a>, <a href="https://publications.waset.org/abstracts/search?q=wter%20purification" title=" wter purification"> wter purification</a> </p> <a href="https://publications.waset.org/abstracts/171320/microwave-assisted-sol-gel-synthesis-and-characterization-of-nanocrystalline-zirconia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171320.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Dietary Supplementation of Ashwagandha (Withania somnifera) on Performance of Commercial Layer Hens </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Arun%20Subhash">P. Arun Subhash</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20N.%20Suresh"> B. N. Suresh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Shivakumar"> M. C. Shivakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Suma"> N. Suma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experiment was conducted to study the effect of dietary supplementation of ashwagandha (Withania somnifera) root powder on the egg production performance and egg quality in commercial layer birds. A practical type layer diet was prepared as per Bureau of Indian Standards (1992) to serve as the control, and the test diet was prepared by supplementing control diet with ashwagandha powder at 1kg/ton of feed. Each diet was assigned to twenty replicate groups of 5 laying hens each for duration of 84 days. The result revealed that cumulative egg production (%) was comparable between control and test group. The feed consumption and its conversion efficiency were similar among both the groups. The egg weight and egg characteristics viz., yolk index, yolk color, haugh unit score, albumen index, egg shape index and eggshell thickness were also remained similar between both the groups. It was concluded that supplementation of ashwagandha powder at 1kg/ton in layer diets has no beneficial effect on egg production and egg quality parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ashwagandha" title="ashwagandha">ashwagandha</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20production" title=" egg production"> egg production</a>, <a href="https://publications.waset.org/abstracts/search?q=egg%20quality" title=" egg quality"> egg quality</a>, <a href="https://publications.waset.org/abstracts/search?q=layers" title=" layers"> layers</a> </p> <a href="https://publications.waset.org/abstracts/89790/effect-of-dietary-supplementation-of-ashwagandha-withania-somnifera-on-performance-of-commercial-layer-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Impact of Saline Water and Water Restriction in Laying Hens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Vakili">Reza Vakili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20pollutants" title="chemical pollutants">chemical pollutants</a>, <a href="https://publications.waset.org/abstracts/search?q=eggs" title=" eggs"> eggs</a>, <a href="https://publications.waset.org/abstracts/search?q=laying%20hens" title=" laying hens"> laying hens</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity" title=" salinity"> salinity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20quality" title=" water quality"> water quality</a> </p> <a href="https://publications.waset.org/abstracts/191494/impact-of-saline-water-and-water-restriction-in-laying-hens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Bifunctional Electrospun Fibers Based on Poly(Lactic Acid)/Calcium Oxide Nanocomposites as a Potential Scaffold for Bone Tissue Engineering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Canales">Daniel Canales</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabi%C3%A1n%20Alvarez"> Fabián Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Pablo%20Varela"> Pablo Varela</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcela%20Saavedra"> Marcela Saavedra</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Garc%C3%ADa"> Claudio García</a>, <a href="https://publications.waset.org/abstracts/search?q=Paula%20Zapata"> Paula Zapata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calcium oxide nanoparticles (n-CaO) ca. 8 nm were obtained from eggshell waste. The n-CaO was incorporated into Poly(lactic acid) PLA matrix in 10 and 20 wt.% of filler content by electrospinning process to obtain PLA/n-CaO nanocomposite fibers as a potential use in scaffold for bone tissue regeneration. The fibers morphology and diameter were homogeneity, the PLA had a diameter of 2.2 ± 0.8 µm and, with the nanoparticles incorporation (20wt.%), reached ca. 2.9 ± 0.9 µm. The PLA/n-CaO nanocomposites fibers showed in vitro bioactivity, capable of inducing the precipitation of hydroxyapatite (HA) layer in the fiber surface after 7 days in Simulated Body Solution (SBF). The biocidal and biological properties of PLA/n-Cao with 20 wt.% were evaluated, showing a 30% reduction in bacterial viability against S. aureus and 11% for E. coli after 6 hours of bacterial suspensions exposure. Furthermore, the fibers did not show a cytotoxic effect on the bone marrow ST-2 cell line, permitting the cell adhesion and proliferation in Roswell Park Memorial Institute medium (RPMI). The PLA/n-CaO with 20 wt.% of nanoparticles showed a higher capacity to promote the osteogenic differentiation, significantly increasing the alkaline phosphatase (ALP) expression after 7 days compared to PLA and cell control. The in vivo analysis corroborated the biocompatibility of scaffolds prepared, the presence of n-CaO in PLA reduced the formation of fibrous encapsulation of the material improve the healing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrospun%20scaffolds" title="electrospun scaffolds">electrospun scaffolds</a>, <a href="https://publications.waset.org/abstracts/search?q=PLA%20based%20nanocomposites" title=" PLA based nanocomposites"> PLA based nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20oxide%20nanoparticles" title=" calcium oxide nanoparticles"> calcium oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactive%20materials" title=" bioactive materials"> bioactive materials</a>, <a href="https://publications.waset.org/abstracts/search?q=tissue%20engineering" title=" tissue engineering"> tissue engineering</a> </p> <a href="https://publications.waset.org/abstracts/160186/bifunctional-electrospun-fibers-based-on-polylactic-acidcalcium-oxide-nanocomposites-as-a-potential-scaffold-for-bone-tissue-engineering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Improving Egg Production by Using Split-Phase Lighting Program</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Al-Khalaifah">Hanan Al-Khalaifah</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20Al-Nasser"> Afaf Al-Nasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The egg shell quality and oviposition in laying hens are influenced by a range of factors including strain of birds, age, nutrition, water quality, general stress, heat stress, disease, and lighting program inside houses. A layer experiment was conducted to investigate the effect of split-phase lighting program on egg production efficiency. Four different feeds and average phosphorus (av. P) levels were tested. Diet A was a ration with an av. P level of 0.471%; Diet B was a ration with an av. P level of 0.510%; Diet C contained an av. P level of 0.293%; and Diet D contained an av. P level of 0.327%. The split-phase lighting program tested was one that inserted a 7-hour dark period from 9 am to 4 pm to reduce the heat produced by the feeding increment and physical activity of the hens. Diet B produced significantly more eggs than Diet C, or Diet D. Diet A was not significantly different from any of the other diets. Diet B also had the best feed efficiency with the other three diets in the same order and significance as for egg production. Diet D produced eggshells significantly thicker than either Diet A, or Diet B. Diet C produced thicker eggshells than Diet B, whose shells were significantly thinner than the other three diets. There were no differences in egg size. From these data, it is apparent that the minimal av. P level for the Lohmann strain of layer in Kuwait is above 0.327%. There was no difference in egg production or eggshell thickness between the split-phase light treatment and the standard light program. There was no difference in oviposition frequency. The split-phase light used 3.66% less feed, however, which was significant. The standard light produced eggs that were significantly heavier (66.30g vs. 65.73g). These results indicate that considerable savings in feed costs could be attained by using split-phase lighting, especially when cooling is not very efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=egg" title="egg">egg</a>, <a href="https://publications.waset.org/abstracts/search?q=laying" title=" laying"> laying</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=oviposition" title=" oviposition"> oviposition</a> </p> <a href="https://publications.waset.org/abstracts/72361/improving-egg-production-by-using-split-phase-lighting-program" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Study of the Physicochemical Characteristics of Liquid Effluents from the El Jadida Wastewater Treatment Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Assal">Aicha Assal</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20Mostapha%20Lotfi"> El Mostapha Lotfi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rapid industrialization and population growth are currently the main causes of energy and environmental problems associated with wastewater treatment. Wastewater treatment plants (WWTPs) aim to treat wastewater before discharging it into the environment, but they are not yet capable of treating non-biodegradable contaminants such as heavy metals. Toxic heavy metals can disrupt biological processes in WWTPs. Consequently, it is crucial to combine additional physico-chemical treatments with WWTPs to ensure effective wastewater treatment. In this study, the authors examined the pretreatment process for urban wastewater generated by the El Jadida WWTP in order to assess its treatment efficiency. Various physicochemical and spatiotemporal parameters of the WWTP's raw and treated water were studied, including temperature, pH, conductivity, biochemical oxygen demand (BOD5), chemical oxygen demand (COD), suspended solids (SS), total nitrogen, and total phosphorus. The results showed an improvement in treatment yields, with measured performance values of 77% for BOD5, 63% for COD, and 66% for TSS. However, spectroscopic analyses revealed persistent coloration in wastewater samples leaving the WWTP, as well as the presence of heavy metals such as Zn, cadmium, chromium, and cobalt, detected by inductively coupled plasma optical emission spectroscopy (ICP-OES). To remedy these staining problems and reduce the presence of heavy metals, a new low-cost, environmentally-friendly eggshell-based solution was proposed. This method eliminated most heavy metals such as cobalt, beryllium, silver, and copper and significantly reduced the amount of cadmium, lead, chromium, manganese, aluminium, and Zn. In addition, the bioadsorbent was able to decolorize wastewater by up to 84%. This adsorption process is, therefore, of great interest for ensuring the quality of wastewater and promoting its reuse in irrigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=WWTP" title="WWTP">WWTP</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater" title=" wastewater"> wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metals" title=" heavy metals"> heavy metals</a>, <a href="https://publications.waset.org/abstracts/search?q=decoloration" title=" decoloration"> decoloration</a>, <a href="https://publications.waset.org/abstracts/search?q=depollution" title=" depollution"> depollution</a>, <a href="https://publications.waset.org/abstracts/search?q=COD" title=" COD"> COD</a>, <a href="https://publications.waset.org/abstracts/search?q=BOD5" title=" BOD5"> BOD5</a> </p> <a href="https://publications.waset.org/abstracts/171014/study-of-the-physicochemical-characteristics-of-liquid-effluents-from-the-el-jadida-wastewater-treatment-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">64</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Investigation Into the Effects of Egg Shells Powder and Groundnut Husk Ash on the Properties of Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20B.M.">Usman B.M.</a>, <a href="https://publications.waset.org/abstracts/search?q=Basheer%20O.%20B."> Basheer O. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=.%20Ahmed%20A."> . Ahmed A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Amali%20N.%20U."> Amali N. U.</a>, <a href="https://publications.waset.org/abstracts/search?q=Taufeeq%20O.">Taufeeq O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an investigation into the improvement of strength properties of concrete using egg shell powder (ESP) and groundnut husk ash (GHA) as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. A standard consistency test was carried out on the egg shell powder and groundnut husk ash. A prescribed concrete mix ratio of 1:2:4 concrete cubes (150mm by 150mm) and water-cement ratio of 0.6 were casted. A total of One hundred and forty four (144) cubes were cast and cured for 3, 7 and 28 days and compressive strength subsequently determined in comparison with the relevant specifications. Consistency test on the cement paste at the various concentrations exhibited an increase in the setting time as the concentration increases with the highest value recorded at 5% egg shell powder and groundnut husk ash concentration as 219 minutes for the initial setting time and 275 minutes for the final setting time as against the control specimen of 159 minutes and 234 minutes for both initial and final setting times respectively. The results of the investigations showed that GHA was predominantly of Silicon oxide (56.73%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 66.75%; and the result of the investigations showed that ESP was predominantly of Calcium oxide (52.75%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 3.86%. The addition of GHA and ESP in concrete showed slight different in compressive strength with increase in GHA and ESP additive up to 5% and high decrease in compressive strength with further increase in GHA and ESP content. The 28 days compressive strength of the concrete cubes; compared with that of the control; showed a slight increase. Thus the use of GHA and ESP as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper concrete construction without comprising its strength <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive" title="additive">additive</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=eggshell%20powder" title=" eggshell powder"> eggshell powder</a>, <a href="https://publications.waset.org/abstracts/search?q=groundnut%20husk%20ash%20compressive%20strength" title=" groundnut husk ash compressive strength"> groundnut husk ash compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/164917/investigation-into-the-effects-of-egg-shells-powder-and-groundnut-husk-ash-on-the-properties-of-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> BTEX Removal from Water: A Comparative Analysis of Efficiency of Low Cost Adsorbents and Granular Activated Carbon</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliet%20Okoli">Juliet Okoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The removal of BTEX (Benzene, toluene, Ethylbenzene and p-Xylene) from water by orange peel and eggshell compared to GAC were investigated. The influence of various factors such as contact time, dosage and pH on BTEX removal by virgin orange peel and egg shell were accessed using the batch adsorption set-up. These were also compared to that of GAC which serves as a benchmark for this study. Further modification (preparation of Activated carbon) of these virgin low-cost adsorbents was also carried out. The batch adsorption result showed that the optimum contact time, dosage and pH for BTEX removal by virgin LCAs were 180 minutes, 0.5g and 7 and that of GAC was 30mintues, 0.2g and 7. The maximum adsorption capacity for total BTEX showed by orange peel and egg shell were 42mg/g and 59mg/g respectively while that of GAC was 864mg/g. The adsorbent preference for adsorbate were in order of X>E>T>B. A comparison of batch and column set-up showed that the batch set-up was more efficient than the column set-up. The isotherm data for the virgin LCA and GAC prove to fit the Freundlich isotherm better than the Langmuir model, which produced n values >1 in case of GAC and n< 1 in case of virgin LCAs; indicating a more appropriate adsorption of BTEX onto the GAC. The adsorption kinetics for the three studied adsorbents were described well by the pseudo-second order, suggesting chemisorption as the rate limiting step. This was further confirmed by desorption study, as low levels of BTEX (<10%) were recovered from the spent adsorbents especially for GAC (<3%). Further activation of the LCAs which was compared to the virgin LCAs, revealed that the virgin LCAs had minor higher adsorption capacity than the activated LCAs. Economic analysis revealed that the total cost required to clean-up 9,600m3 of BTEX contaminated water using LCA was just 2.8% lesser than GAC, a difference which could be considered negligible. However, this area still requires a more detailed cost-benefit analysis, and if similar conclusions are reached; a low-cost adsorbent, easy to obtain are still promising adsorbents for BTEX removal from aqueous solution; however, the GAC are still more superior to these materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activated%20carbon" title="activated carbon">activated carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=BTEX%20removal" title=" BTEX removal"> BTEX removal</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cost%20adsorbents" title=" low cost adsorbents"> low cost adsorbents</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20treatment" title=" water treatment"> water treatment</a> </p> <a href="https://publications.waset.org/abstracts/46087/btex-removal-from-water-a-comparative-analysis-of-efficiency-of-low-cost-adsorbents-and-granular-activated-carbon" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Simulating Studies on Phosphate Removal from Laundry Wastewater Using Biochar: Dudinin Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eric%20York">Eric York</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Tadio"> James Tadio</a>, <a href="https://publications.waset.org/abstracts/search?q=Silas%20Owusu%20Antwi"> Silas Owusu Antwi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Laundry wastewater contains a diverse range of chemical pollutants that can have detrimental effects on human health and the environment. In this study, simulation studies by Spyder Python software v 3.2 to assess the efficacy of biochar in removing PO₄³⁻ from wastewater were conducted. Through modeling and simulation, the mechanisms involved in the adsorption process of phosphate by biochar were studied by altering variables which is specific to the phosphate from common laundry phosphate detergents, such as the aqueous solubility, initial concentration, and temperature using the Dudinin Approach (DA). Results showed that the concentration equilibrate at near the highest concentrations for Sugar beet-120 mgL⁻¹, Tailing-85 mgL⁻¹, CaO- rich-50 mgL⁻¹, Eggshell and rice straw-48 mgL⁻¹, Undaria Pinnatifida Roots-190 mgL⁻¹, Ca-Alginate Granular Beads -240 mgL⁻¹, Laminaria Japonica Powder -900 mgL⁻¹, Pinesaw dust-57 mgL⁻¹, Ricehull-190 mgL⁻¹, sesame straw- 470 mgL⁻¹, Sugar Bagasse-380 mgL⁻¹, Miscanthus Giganteus-240 mgL⁻¹, Wood Bc-130 mgL⁻¹, Pine-25 mgL⁻¹, Sawdust-6.8 mgL⁻¹, Sewage Sludge-, Rice husk-12 mgL⁻¹, Corncob-117 mgL⁻¹, Maize straw- 1800 mgL⁻¹ while Peanut -Eucalyptus polybractea-, Crawfish equilibrated at near concentration. CO₂ activated Thalia, sewage sludge biochar, Broussonetia Papyrifera Leaves equilibrated just at the lower concentration. Only Soyer bean Stover exhibited a sharp rise and fall peak in mid-concentration at 2 mgL⁻¹ volume. The modelling results were consistent with experimental findings from the literature, ensuring the accuracy, repeatability, and reliability of the simulation study. The simulation study provided insights into adsorption for PO₄³⁻ from wastewater by biochar using concentration per volume that can be adsorbed ideally under the given conditions. Studies showed that applying the principle experimentally in real wastewater with all its complexity is warranted and not far-fetched. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=simulation%20studies" title="simulation studies">simulation studies</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphate%20removal" title=" phosphate removal"> phosphate removal</a>, <a href="https://publications.waset.org/abstracts/search?q=biochar" title=" biochar"> biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a> </p> <a href="https://publications.waset.org/abstracts/175967/simulating-studies-on-phosphate-removal-from-laundry-wastewater-using-biochar-dudinin-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> How to Break an Outbreak: Containment Measures of a Salmonella Outbreak Associated with Egg Consumption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gal%20Zagron">Gal Zagron</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitza%20Abramson"> Nitza Abramson</a>, <a href="https://publications.waset.org/abstracts/search?q=Deena%20R.%20Zimmerman"> Deena R. Zimmerman</a>, <a href="https://publications.waset.org/abstracts/search?q=Chen%20Stein-Zamir"> Chen Stein-Zamir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Salmonella enteritidis is a common cause of foodborne outbreaks, primarily associated with poultry eggs. S. enteritidis This is the only Salmonella type that is found inside the eggshell. A rise in Salmonella enteritidis notifications was noted in spring 2017. Aims: The aim of this study is to describe the epidemiological investigation of the outbreak in the Jerusalem district, along with the containment measures taken. Methods: This study is a population-based epidemiological study with a description of environmental control activities. Results: During the months May - July, 2017 848 salmonellosis cases were reported to the Jerusalem district health office compared to 294 cases May - July 2016. Salmonella enteritidis was isolated in 58% of reported cases. Clusters and outbreaks ( > 2 cases) were reported among nursery schools, nursing homes, persons residing in one kibbutz and several cases in different food service establishments in the Jerusalem district. Epidemiological investigations revealed eggs consumption as a common feature among the cases (uncooked or undercooked eggs in most cases). A national investigation among egg suppliers revealed that most cases consumed eggs provided by a single provider with isolation of Salmonella enteritidis at the source as well. Containment measures were taken to control the epidemic including distributing information via electronic and written media to the public, searching for all egg distribution centers, informing local authorities, the poultry council and food stores. The eggs originating from the provider were recalled and extinguished. Written instructions to all food preparation facilities in the district were distributed regarding the proper storage and preparation of eggs. The number of reported cases declined and the outbreak vanished during correlating months of 2018. Conclusions: The investigation of Salmonella enteritidis outbreaks should include epidemiological and laboratory investigations, tracing the source of the eggs and testing the eggs and the source of eggs. Health education activities are essential as to the proper handling of eggs and egg products aiming to minimize susceptibility to Salmonella infection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epidemiological%20investigation" title="epidemiological investigation">epidemiological investigation</a>, <a href="https://publications.waset.org/abstracts/search?q=food-borne%20disease" title=" food-borne disease"> food-borne disease</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20safety" title=" food safety"> food safety</a>, <a href="https://publications.waset.org/abstracts/search?q=Salmonella%20enteritidis" title=" Salmonella enteritidis"> Salmonella enteritidis</a> </p> <a href="https://publications.waset.org/abstracts/104871/how-to-break-an-outbreak-containment-measures-of-a-salmonella-outbreak-associated-with-egg-consumption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Morphology, Qualitative, and Quantitative Elemental Analysis of Pheasant Eggshells in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalaya%20Sribuddhachart">Kalaya Sribuddhachart</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuree%20Pumipaiboon"> Mayuree Pumipaiboon</a>, <a href="https://publications.waset.org/abstracts/search?q=Mayuva%20Youngsabanant-Areekijseree"> Mayuva Youngsabanant-Areekijseree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrastructure of 20 species of pheasant eggshells in Thailand, (Simese Fireback, Lophura diardi), (Silver Pheasant, Lophura nycthemera), (Kalij Pheasant, Lophura leucomelanos crawfurdii), (Kalij Pheasant, Lophura leucomelanos lineata), (Red Junglefowl, Gallus gallus spadiceus), (Crested Fireback, Lophura ignita rufa), (Green Peafowl, Pavo muticus), (Indian Peafowl, Pavo cristatus), (Grey Peacock Pheasant, Polyplectron bicalcaratum bicalcaratum), (Lesser Bornean Fireback, Lophura ignita ignita), (Green Junglefowl, Gallus varius), (Hume's Pheasant, Syrmaticus humiae humiae), (Himalayan Monal, Lophophorus impejanus), Golden Pheasant, Chrysolophus pictus, (Ring-Neck Pheasant, Phasianus sp.), (Reeves’s Pheasant, Syrmaticus reevesi), (Polish Chicken, Gallus sp.), (Brahma Chicken, Gallus sp.), (Yellow Golden Pheasant, Chrysolophus pictus luteus), and (Lady Amhersts Pheasant, Chrysolophus amherstiae) were studied by Secondary electron imaging (SEI) and Energy dispersive X-ray analysis (EDX) detectors of scanning electron microscope. Generally, all pheasant eggshells showed 3 layers of cuticle, palisade, and mammillary. The total thickness was ranging from 190.28±5.94-838.96±16.31µm. The palisade layer is the most thickness layer following by mammillary and cuticle layers. The palisade layer in all pheasant eggshells consisted of numerous vesicle holes that were firmly forming as network thorough the layer. The vesicle holes in all pheasant eggshells had difference porosity ranging from 0.44±0.11-0.23±0.05 µm. While the mammillary layer was the most compact layer with a variable shape (broad-base V and U-shape) connect to shell membrane. Elemental analysis by of 20 specie eggshells showed 9 apparent elements including carbon (C), oxygen (O), calcium (Ca), phosphorous (P), sulfur (S), magnesium (Mg), silicon (Si), aluminum (Al), and copper (Cu) at the percentage of 28.90- 8.33%, 60.64-27.61%, 55.30-14.49%, 1.97-0.03%, 0.08-0.03%, 0.50-0.16%, 0.30-0.04%, 0.06-0.02%, and 2.67-1.73%, respectively. It was found that Ca, C, and O showed highest elemental compositions, which essential for pheasant embryonic development, mainly presented as composited structure of calcium carbonate (CaCO3) more than 97%. Meanwhile, Mg, S, Si, Al, and P were major inorganic constituents of the eggshells which directly related to an increase of the shell hardness. Finally, the percentage of heavy metal copper (Cu) has been observed in 4 eggshell species. There are Golden Pheasant (2.67±0.16%), Indian Peafowl (2.61±0.13%), Green Peafowl (1.97±0.74%), and Silver Pheasant (1.73±0.11%), respectively. A non-significant difference was found in the percentages of 9 elements in all pheasant eggshells. This study is useful to provide the information of biology and taxonomic of pheasant study in Thailand for conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pheasants%20eggshells" title="pheasants eggshells">pheasants eggshells</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20electron%20imaging%20%28SEI%29%20and%20energy%20dispersive%20X-ray%20analysis%20%28EDX%29" title=" secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX)"> secondary electron imaging (SEI) and energy dispersive X-ray analysis (EDX)</a>, <a href="https://publications.waset.org/abstracts/search?q=morphology" title=" morphology"> morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=Thailand" title=" Thailand "> Thailand </a> </p> <a href="https://publications.waset.org/abstracts/55846/morphology-qualitative-and-quantitative-elemental-analysis-of-pheasant-eggshells-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10