CINXE.COM

Search results for: Sahin Yakut

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sahin Yakut</title> <meta name="description" content="Search results for: Sahin Yakut"> <meta name="keywords" content="Sahin Yakut"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sahin Yakut" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sahin Yakut"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 107</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sahin Yakut</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">107</span> Behavioral and EEG Reactions in Native Turkic-Speaking Inhabitants of Siberia and Siberian Russians during Recognition of Syntactic Errors in Sentences in Native and Foreign Languages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20N.%20Astakhova">Tatiana N. Astakhova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20%20E.%20Saprygin"> Alexander E. Saprygin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Golovko"> Tatyana A. Golovko</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20N.%20Savostyanov"> Alexander N. Savostyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Vlasov"> Mikhail S. Vlasov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20V.%20Borisova"> Natalia V. Borisova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandera%20G.%20Karpova"> Alexandera G. Karpova</a>, <a href="https://publications.waset.org/abstracts/search?q=Urana%20N.%20Kavai-ool"> Urana N. Kavai-ool</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20D.%20Mokur-ool"> Elena D. Mokur-ool</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20A.%20Kolchanov"> Nikolay A. Kolchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20I.%20Aftanas"> Lubomir I. Aftanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the study is to compare behaviorally and EEG reactions in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians during the recognition of syntax errors in native and foreign languages. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All participants completed a linguistic task, in which they had to find a syntax error in the written sentences. Russian participants completed the task in Russian and in English. Tuvinian and Yakut participants completed the task in Russian, English, and Tuvinian or Yakut, respectively. EEG’s were recorded during the solving of tasks. For Russian participants, EEG's were recorded using 128-channels. The electrodes were placed according to the extended International 10-10 system, and the signals were amplified using ‘Neuroscan (USA)’ amplifiers. For Tuvinians and Yakuts EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups 0.3-100 Hz analog filtering, sampling rate 1000 Hz were used. Response speed and the accuracy of recognition error were used as parameters of behavioral reactions. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The accuracy of solving tasks and response speed in Russians were higher for Russian than for English. The P300 amplitudes in Russians were higher for English; the P600 amplitudes in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages (Tuvinian and Yakut). However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. With Tuvinians, there were no differences in the P300 and P600 amplitudes and in cortical topology for Russian and Tuvinian, but there was a difference for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference and were reflected foreign language comprehension -while the Russian language comprehension was reflected native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20comprehension" title=" language comprehension"> language comprehension</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20and%20foreign%20languages" title=" native and foreign languages"> native and foreign languages</a>, <a href="https://publications.waset.org/abstracts/search?q=Siberian%20inhabitants" title=" Siberian inhabitants"> Siberian inhabitants</a> </p> <a href="https://publications.waset.org/abstracts/34256/behavioral-and-eeg-reactions-in-native-turkic-speaking-inhabitants-of-siberia-and-siberian-russians-during-recognition-of-syntactic-errors-in-sentences-in-native-and-foreign-languages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">106</span> Dielectric Spectroscopy Investigation of Hydrophobic Silica Aerogel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Bozoglu">Deniz Bozoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Deger"> Deniz Deger</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Ulutas"> Kemal Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut"> Sahin Yakut</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, silica aerogels have attracted great attention due to their outstanding properties, and their wide variety of potential applications such as microelectronics, nuclear and high-energy physics, optics and acoustics, superconductivity, space-physics. Hydrophobic silica aerogels were successfully synthesized in one-step by surface modification at ambient pressure. FT-IR result confirmed that Si-OH groups were successfully converted into hydrophobic and non-polar Si-CH3 groups by surface modification using trimethylchloro silane (TMCS) as co-precursor. Using Alpha-A High-Resolution Dielectric, Conductivity and Impedance Analyzer, AC conductivity of samples were examined at temperature range 293-423 K and measured over frequency range between 1-106 Hz. The characteristic relaxation time decreases with increasing temperature. The AC conductivity follows σ_AC (ω)=σ_t-σ_DC=Aω^s relation at frequencies higher than 10 Hz, and the dominant conduction mechanism is found to obey the Correlated Barrier Hopping (CBH) mechanism. At frequencies lower than 10 Hz, the electrical conduction is found to be in accordance with DC conduction mechanism. The activation energies obtained from AC conductivity results and it was observed two relaxation regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerogel" title="aerogel">aerogel</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20constant" title=" dielectric constant"> dielectric constant</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20loss" title=" dielectric loss"> dielectric loss</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation%20time" title=" relaxation time"> relaxation time</a> </p> <a href="https://publications.waset.org/abstracts/92943/dielectric-spectroscopy-investigation-of-hydrophobic-silica-aerogel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">105</span> Event-Related Potentials and Behavioral Reactions during Native and Foreign Languages Comprehension in Bilingual Inhabitants of Siberia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tatiana%20N.%20Astakhova">Tatiana N. Astakhova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20%20E.%20Saprygin"> Alexander E. Saprygin</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20A.%20Golovko"> Tatyana A. Golovko</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20N.%20Savostyanov"> Alexander N. Savostyanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20S.%20Vlasov"> Mikhail S. Vlasov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20V.%20Borisova"> Natalia V. Borisova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandera%20G.%20Karpova"> Alexandera G. Karpova</a>, <a href="https://publications.waset.org/abstracts/search?q=Urana%20N.%20Kavai-ool"> Urana N. Kavai-ool</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20D.%20Mokur-ool"> Elena D. Mokur-ool</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20A.%20Kolchanov"> Nikolay A. Kolchanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20I.%20Aftanas"> Lubomir I. Aftanas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is dedicated to the research of brain activity in bilingual inhabitants of Siberia. We compared behavioral reactions and event-related potentials in Turkic-speaking inhabitants of Siberia (Tuvinians and Yakuts) and Russians. 63 healthy aboriginals of the Tyva Republic, 29 inhabitants of the Sakha (Yakutia) Republic, and 55 Russians from Novosibirsk participated in the study. All the healthy and right-handed participants, matched on age and sex, were students of different universities. EEG’s were recorded during the solving of linguistic tasks. In these tasks, participants had to find a syntax error in the written sentences. There were four groups of sentences: Russian, English, Tuvinian, and Yakut. All participants completed the tasks in Russian and English. Additionally, Tuvinians and Yakuts completed the tasks in Tuvinian or Yakut respectively. For Russians, EEG's were recorded using 128-channels according to the extended International 10-10 system, and the signals were amplified using “Neuroscan (USA)” amplifiers. For Tuvinians and Yakuts, EEG's were recorded using 64-channels and amplifiers Brain Products, Germany. In all groups, 0.3-100 Hz analog filtering and sampling rate 1000 Hz were used. As parameters of behavioral reactions, response speed and the accuracy of recognition were used. Event-related potentials (ERP) responses P300 and P600 were used as indicators of brain activity. The behavioral reactions showed that in Russians, the response speed for Russian was faster than for English. Also, the accuracy of solving tasks was higher for Russian than for English. The peak P300 in Russians were higher for English, the peak P600 in the left temporal cortex were higher for the Russian language. Both Tuvinians and Yakuts have no difference in accuracy of solving tasks in Russian and in their respective national languages. However, the response speed was faster for tasks in Russian than for tasks in their national language. Tuvinians and Yakuts showed bad accuracy in English, but the response speed was higher for English than for Russian and the national languages. This can be explained by the fact that they did not think carefully and gave a random answer for English. In Tuvinians, The P300 and P600 amplitudes and cortical topology were the same for Russian and Tuvinian and different for English. In Yakuts, the P300 and P600 amplitudes and topology of ERP for Russian were the same as what Russians had for Russian. In Yakuts, brain reactions during Yakut and English comprehension had no difference, and were reflected to foreign language comprehension - while the Russian language comprehension was reflected to native language comprehension. We found out that the Tuvinians recognized both Russian and Tuvinian as native languages, and English as a foreign language. The Yakuts recognized both English and Yakut as a foreign language, and only Russian as a native language. According to the inquirer, both Tuvinians and Yakuts use the national language as a spoken language, whereas they don’t use it for writing. It can well be a reason that Yakuts perceive the Yakut writing language as a foreign language while writing Russian as their native. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=ERP" title=" ERP"> ERP</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20and%20foreign%20languages%20comprehension" title=" native and foreign languages comprehension"> native and foreign languages comprehension</a>, <a href="https://publications.waset.org/abstracts/search?q=Siberian%20inhabitants" title=" Siberian inhabitants"> Siberian inhabitants</a> </p> <a href="https://publications.waset.org/abstracts/34667/event-related-potentials-and-behavioral-reactions-during-native-and-foreign-languages-comprehension-in-bilingual-inhabitants-of-siberia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">561</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">104</span> Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onur%20Potok">Onur Potok</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Deger"> Deniz Deger</a>, <a href="https://publications.waset.org/abstracts/search?q=Kemal%20Ulutas"> Kemal Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut"> Sahin Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Bozoglu"> Deniz Bozoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=thallium%20selenide" title=" thallium selenide"> thallium selenide</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=binary%20compounds" title=" binary compounds"> binary compounds</a> </p> <a href="https://publications.waset.org/abstracts/92950/dielectric-properties-of-thalium-selenide-thin-films-at-radio-wave-frequencies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92950.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">103</span> Effect of Plasma Discharge Power on Activation Energies of Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut">Sahin Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kemal%20Ulutas"> H. Kemal Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=Deniz%20Deger"> Deniz Deger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma Assisted Physical Vapor Deposition (PAPVD) method used to produce Poly(ethylene oxide) (pPEO) thin films. Depositions were progressed at various plasma discharge powers as 0, 2, 5 and 30 W for pPEO at 500nm film thicknesses. The capacitance and dielectric dissipation of the thin films were measured at 0,1-107 Hz frequency range and 173-353 K temperature range by an impedance analyzer. Then, alternative conductivity (σac) and activation energies were derived from capacitance and dielectric dissipation. σac of conventional PEO (PEO precursor) was measured to determine the effect of plasma discharge. Differences were observed between the alternative conductivity of PEO’s and pPEO’s depending on plasma discharge power. By this purpose, structural characterization techniques such as Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared Spectroscopy (FT-IR) were applied on pPEO thin films. Structural analysis showed that density of crosslinking is plasma power dependent. The crosslinking density increases with increasing plasma discharge power and this increase is displayed as increasing dynamic glass transition temperatures at DSC results. Also, shifting of frequencies of some type of bond vibrations, belonging to bond vibrations produced after fragmentation because of plasma discharge, were observed at FTIR results. The dynamic glass transition temperatures obtained from alternative conductivity results for pPEO consistent with the results of DSC. Activation energies exhibit Arrhenius behavior. Activation energies decrease with increasing plasma discharge power. This behavior supports the suggestion expressing that long polymer chains and long oligomers are fragmented into smaller oligomers or radicals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title="activation energy">activation energy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20thin%20films" title=" organic thin films"> organic thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymer" title=" plasma polymer"> plasma polymer</a> </p> <a href="https://publications.waset.org/abstracts/66302/effect-of-plasma-discharge-power-on-activation-energies-of-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">102</span> Implementation of a Web-Based Wireless ECG Measuring and Recording System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onder%20Yakut">Onder Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=Serdar%20Solak"> Serdar Solak</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Dogru%20Bolat"> Emine Dogru Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Measuring the Electrocardiogram (ECG) signal is an essential process for the diagnosis of the heart diseases. The ECG signal has the information of the degree of how much the heart performs its functions. In medical diagnosis and treatment systems, Decision Support Systems processing the ECG signal are being developed for the use of clinicians while medical examination. In this study, a modular wireless ECG (WECG) measuring and recording system using a single board computer and e-Health sensor platform is developed. In this designed modular system, after the ECG signal is taken from the body surface by the electrodes first, it is filtered and converted to digital form. Then, it is recorded to the health database using Wi-Fi communication technology. The real time access of the ECG data is provided through the internet utilizing the developed web interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECG" title="ECG">ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=e-health%20sensor%20shield" title=" e-health sensor shield"> e-health sensor shield</a>, <a href="https://publications.waset.org/abstracts/search?q=Raspberry%20Pi" title=" Raspberry Pi"> Raspberry Pi</a>, <a href="https://publications.waset.org/abstracts/search?q=wiFi%20technology" title=" wiFi technology"> wiFi technology</a> </p> <a href="https://publications.waset.org/abstracts/35188/implementation-of-a-web-based-wireless-ecg-measuring-and-recording-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35188.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">101</span> HRV Analysis Based Arrhythmic Beat Detection Using kNN Classifier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onder%20Yakut">Onder Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=Oguzhan%20Timus"> Oguzhan Timus</a>, <a href="https://publications.waset.org/abstracts/search?q=Emine%20Dogru%20Bolat"> Emine Dogru Bolat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health diseases have a vital significance affecting human being's life and life quality. Sudden death events can be prevented owing to early diagnosis and treatment methods. Electrical signals, taken from the human being's body using non-invasive methods and showing the heart activity is called Electrocardiogram (ECG). The ECG signal is used for following daily activity of the heart by clinicians. Heart Rate Variability (HRV) is a physiological parameter giving the variation between the heart beats. ECG data taken from MITBIH Arrhythmia Database is used in the model employed in this study. The detection of arrhythmic heart beats is aimed utilizing the features extracted from the HRV time domain parameters. The developed model provides a satisfactory performance with ~89% accuracy, 91.7 % sensitivity and 85% specificity rates for the detection of arrhythmic beats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arrhythmic%20beat%20detection" title="arrhythmic beat detection">arrhythmic beat detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ECG" title=" ECG"> ECG</a>, <a href="https://publications.waset.org/abstracts/search?q=HRV" title=" HRV"> HRV</a>, <a href="https://publications.waset.org/abstracts/search?q=kNN%20classifier" title=" kNN classifier"> kNN classifier</a> </p> <a href="https://publications.waset.org/abstracts/41219/hrv-analysis-based-arrhythmic-beat-detection-using-knn-classifier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41219.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">100</span> Pruning Algorithm for the Minimum Rule Reduct Generation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahin%20Emrah%20Amrahov">Sahin Emrah Amrahov</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Aybar"> Fatih Aybar</a>, <a href="https://publications.waset.org/abstracts/search?q=Serhat%20Dogan"> Serhat Dogan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we consider the rule reduct generation problem. Rule Reduct Generation (RG) and Modified Rule Generation (MRG) algorithms, that are used to solve this problem, are well-known. Alternative to these algorithms, we develop Pruning Rule Generation (PRG) algorithm. We compare the PRG algorithm with RG and MRG. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rough%20sets" title="rough sets">rough sets</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20rules" title=" decision rules"> decision rules</a>, <a href="https://publications.waset.org/abstracts/search?q=rule%20induction" title=" rule induction"> rule induction</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/17254/pruning-algorithm-for-the-minimum-rule-reduct-generation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Toxicity of Bisphenol-A: Effects on Health and Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Fba%20%C3%96zdal">Tuğba Özdal</a>, <a href="https://publications.waset.org/abstracts/search?q=Ne%C5%9Fe%20%C5%9Eahin%20Ye%C5%9Fil%C3%A7ubuk"> Neşe Şahin Yeşilçubuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bisphenol-A (BPA) is one of the highest volume chemicals produced worldwide in the plastic industry. This compound is mostly used in producing polycarbonate plastics that are often used for food and beverage storage, and BPA is also a component of epoxy resins that are used to line food and beverage containers. Studies performed in this area indicated that BPA could be extracted from such products while they are in contact with food. Therefore, BPA exposure is presumed. In this paper, the chemical structure of BPA, factors affecting BPA migration to food and beverages, effects on health, and recent regulations will be reviewed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BPA" title="BPA">BPA</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=regulations" title=" regulations"> regulations</a>, <a href="https://publications.waset.org/abstracts/search?q=toxicity" title=" toxicity"> toxicity</a> </p> <a href="https://publications.waset.org/abstracts/2168/toxicity-of-bisphenol-a-effects-on-health-and-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Laser Beam Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih.%20V.%20%C3%87elebi"> Fatih. V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22254/laser-beam-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22254.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Laser Light Bending via Lenses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20Yildirim">Remzi Yildirim</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatih%20V.%20%C3%87elebi"> Fatih V. Çelebi</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Haldun%20G%C3%B6kta%C5%9F"> H. Haldun Göktaş</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Behzat%20%C5%9Eahin"> A. Behzat Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is about a single component cylindrical structured lens with gradient curve which we used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independent of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single piece cylindrical lens that can bend laser beams is invented. Lenses are made of transparent, tinted or colored glasses and used for undermining or absorbing the energy of the laser beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser" title="laser">laser</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=lens" title=" lens"> lens</a>, <a href="https://publications.waset.org/abstracts/search?q=light" title=" light"> light</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20optics" title=" nonlinear optics"> nonlinear optics</a> </p> <a href="https://publications.waset.org/abstracts/22251/laser-light-bending-via-lenses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">703</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Thickness Dependence of AC Conductivity in Plasma Poly(Ethylene Oxide) Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Yakut">S. Yakut</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Deger"> D. Deger</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Ulutas"> K. Ulutas</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Bozoglu"> D. Bozoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasma poly(ethylene oxide) (pPEO) thin films were deposited between Aluminum (Al) electrodes on glass substrates by plasma assisted physical vapor deposition (PAPVD). The deposition was operated inside Argon plasma under 10⁻³ Torr and the thicknesses of samples were determined as 20, 100, 250, 500 nm. The plasma was produced at 5 W by magnetron connected to RF power supply. The capacitance C and dielectric loss factor tan δ were measured by Novovontrol Alpha-A high frequency empedance analyzer at freqquency and temperature intervals of 0,1 Hz and 1MHz, 193-353K, respectively. AC conductivity was derived from these values. AC conductivity results exhibited three different conductivity regions except for 20 nm. These regions can be classified as low, mid and high frequency regions. Low frequency region is observed at around 10 Hz and 300 K while mid frequency region is observed at around 1 kHz and 300 K. The last one, high frequency region, is observed at around 1 kHz and 200 K. There are some coinciding definitions for conduction regions, because these regions shift depending on temperature. Low frequency region behaves as DC-like conductivity while mid and high frequency regions show conductivities corresponding to mechanisms such as classical hopping, tunneling, etc. which are observed for amorphous materials. Unlike other thicknesses, for 20 nm sample low frequency region can not be detected in the investigated freuency range. It is thought that this is arised because of the presence of dead layer behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasma%20polymers" title="plasma polymers">plasma polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dead%20layer" title=" dead layer"> dead layer</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20spectroscopy" title=" dielectric spectroscopy"> dielectric spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=AC%20conductivity" title=" AC conductivity"> AC conductivity</a> </p> <a href="https://publications.waset.org/abstracts/92911/thickness-dependence-of-ac-conductivity-in-plasma-polyethylene-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Detection of Polymorphism of Growth Hormone Gene in Holstein Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emine%20%C5%9Eahin">Emine Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Soner%20Balc%C4%B1o%C4%9Flu"> Murat Soner Balcıoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to determine the growth hormone (bGH) gene polymorphism in the Holstein cattle growing around Antalya in Turkey. In order to determine the bGH-AluI polymorphism, polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) method was performed. A 891 bp fragment of bGH was amplified and two types of alleles C and D for bGH were observed. In this study, the frequencies of C and D alleles were 0.8438 and 0.1562, respectively. The genotype frequencies for CC, CD and DD were 0.787, 0.191 and 0.022, respectively. According to the results of the chi-square test, a significant deviation from the Hardy-Weinberg equilibrium was not determined for the bGH locus in the population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Growth%20Hormone%20Gene" title="Growth Hormone Gene">Growth Hormone Gene</a>, <a href="https://publications.waset.org/abstracts/search?q=Holstein" title=" Holstein "> Holstein </a>, <a href="https://publications.waset.org/abstracts/search?q=Polymorphism" title=" Polymorphism"> Polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=RFLP" title=" RFLP"> RFLP</a> </p> <a href="https://publications.waset.org/abstracts/63845/detection-of-polymorphism-of-growth-hormone-gene-in-holstein-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Structural and Magnetic Properties of Undoped and Ni Doped CdZnS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabit%20Horoz">Sabit Horoz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Ekicibil"> Ahmet Ekicibil</a>, <a href="https://publications.waset.org/abstracts/search?q=Omer%20Sahin"> Omer Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Akyol"> M. Akyol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, CdZnS and Ni-doped CdZnS quantum dots(QDs) were prepared by the wet-chemical method at room temperature using mercaptoethanol as a capping agent. The structural and magnetic properties of the CdZnS and CdZnS doped with different concentrations of Ni QDs were examined by XRD and magnetic susceptibility measurements, respectively. The average particles size of cubic QDs obtained by full-width half maxima (FWHM) analysis, increases with increasing doping concentrations. The investigation of the magnetic properties showed that the Ni-doped samples exhibit signs of ferromagnetism, on the other hand, un-doped CdZnS is diamagnetic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=un-doped%20and%20Ni%20doped%20CdZnS%20Quantum%20Dots%20%28QDs%29" title="un-doped and Ni doped CdZnS Quantum Dots (QDs)">un-doped and Ni doped CdZnS Quantum Dots (QDs)</a>, <a href="https://publications.waset.org/abstracts/search?q=co-precipitation%20method" title=" co-precipitation method"> co-precipitation method</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20and%20optical%20properties%20of%20QDs" title=" structural and optical properties of QDs"> structural and optical properties of QDs</a>, <a href="https://publications.waset.org/abstracts/search?q=diluted%20magnetic%20semiconductor%20materials%20%28DMSMs%29" title=" diluted magnetic semiconductor materials (DMSMs)"> diluted magnetic semiconductor materials (DMSMs)</a> </p> <a href="https://publications.waset.org/abstracts/55093/structural-and-magnetic-properties-of-undoped-and-ni-doped-cdzns" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Human Behaviour During an Earthquake: Descriptive Analysis on Indoor Video Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazlum%20%C3%87elik">Mazlum Çelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Burcu%20G%C3%BCrkan%20Ercan"> Burcu Gürkan Ercan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Ayaz"> Ahmet Ayaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hilal%20Yakut%20%C4%B0peko%C4%9Flu"> Hilal Yakut İpekoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Furkan%20Baltac%C4%B1"> Furkan Baltacı</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kurto%C4%9Flu"> Mustafa Kurtoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilge%20Kalkavan"> Bilge Kalkavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sinem%20K%C3%BC%C3%A7%C3%BCky%C4%B1lmaz"> Sinem Küçükyılmaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Hikmet%20%C3%87a%C4%9Fr%C4%B1%20Yard%C4%B1mc%C4%B1"> Hikmet Çağrı Yardımcı</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeyma%20Sevgican"> Şeyma Sevgican</a>, <a href="https://publications.waset.org/abstracts/search?q=Cemile%20G%C3%B6k%C3%A7e%20Elkovan"> Cemile Gökçe Elkovan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20%C3%87ay%C4%B1r"> Bilal Çayır</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Emin%20D%C3%BCzcan"> Mehmet Emin Düzcan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The earthquake research literature generally examines emotional, cognitive, and behavioral responses after an earthquake. Studies concerning the behavioral responses to earthquakes reveal that after the earthquake, people either flee in a panic or do not act according to the stereotype that they act irrationally and anti-socially and sometimes give rational and adaptive reactions. However, the rareness of research dealing with human behavior experiencing the earthquake moment makes it necessary to pay particular attention to these behavior patterns. In this direction, this study aims to examine human behavior indoors in case of rising earthquake intensity. In Turkey, located on geography in the earthquake zone, devastating earthquakes took place, such as in "Istanbul" with a magnitude of 7.4 in 1999 and in "Elazığ" with a magnitude of 6.8 in 2020. Occurred recently, the "Kahramanmaraş" earthquake affected 11 provinces, with a magnitude of 7.7 and 7.6 in 2023. In addition, there is expected to be a devastating earthquake in Istanbul, experts warn. For this reason, it is essential to understand human behavior for disaster risk. Management and pre-disaster preparedness to be effective and efficient and to take realistic measures to protect human life. Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan. In this study, which is currently part of a project supported by The Scientific and Technological Council of Turkey (TUBITAK), the indoor recordings during the earthquakes in Elazig on January 24, 2020, and in İzmir on October 30, 2020, are examined, and the people's behavior during the earthquake is analyzed. In this direction, video recordings taken from the YouTube archives of İzmir and Elazığ Disaster and Emergency Management Presidency (AFAD) Directorates and metropolitan municipalities are examined. The researchers have created an observation form in line with the information in the relevant literature to classify people's behavior during an earthquake. It is intended to determine the behavioral patterns by classifying according to the form and video analysis of the people heading toward the door, remaining stable, taking protective measures, turning to people, and engaging in "other" behaviors outside of these behaviors during the earthquake. A total of 60 video analyzes are carried out from Elazığ and İzmir. The descriptive statistic has been used with the SPSS 23.0 package program in the data analysis. It is found that in the event of an increase in the severity of the earthquake, unlike Elazığ, in İzmir, protective action is preferred to the act of remaining stable. In addition, it is observed that with the increase in the earthquake's intensity, women attempt to take more protective action while men head toward the door. In contrast, a rise is observed in the behavior of young people heading toward the door and taking protective actions, while there is a decrease in their behavior directing to people. These findings, unlike the literature, reveal that human behavior during earthquakes cannot be reduced to a single behavior pattern, such as drop-cover-hold-on. The results show that it is necessary to understand the behaviors of individuals during the earthquake and to develop practical policy proposals for combating earthquakes by considering sociocultural, geographical, and demographic variables. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=descriptive%20analysis" title="descriptive analysis">descriptive analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20behaviour" title=" human behaviour"> human behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=disaster%20policy." title=" disaster policy."> disaster policy.</a> </p> <a href="https://publications.waset.org/abstracts/166536/human-behaviour-during-an-earthquake-descriptive-analysis-on-indoor-video-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166536.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> A Hazard Rate Function for the Time of Ruin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sule%20Sahin">Sule Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Basak%20Bulut%20Karageyik"> Basak Bulut Karageyik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a hazard rate function for the time of ruin to calculate the conditional probability of ruin for very small intervals. We call this function the force of ruin (FoR). We obtain the expected time of ruin and conditional expected time of ruin from the exact finite time ruin probability with exponential claim amounts. Then we introduce the FoR which gives the conditional probability of ruin and the condition is that ruin has not occurred at time t. We analyse the behavior of the FoR function for different initial surpluses over a specific time interval. We also obtain FoR under the excess of loss reinsurance arrangement and examine the effect of reinsurance on the FoR. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conditional%20time%20of%20ruin" title="conditional time of ruin">conditional time of ruin</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20time%20ruin%20probability" title=" finite time ruin probability"> finite time ruin probability</a>, <a href="https://publications.waset.org/abstracts/search?q=force%20of%20ruin" title=" force of ruin"> force of ruin</a>, <a href="https://publications.waset.org/abstracts/search?q=reinsurance" title=" reinsurance"> reinsurance</a> </p> <a href="https://publications.waset.org/abstracts/55648/a-hazard-rate-function-for-the-time-of-ruin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> The Effect of Mobile Technology Use in Education: A Meta-Analysis Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eirin%20K%C3%BC%C3%A7%C3%BCk">Şirin Küçük</a>, <a href="https://publications.waset.org/abstracts/search?q=Ay%C5%9Fe%20K%C3%B6k"> Ayşe Kök</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0smail%20%C5%9Eahin"> İsmail Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mobile devices are very popular and useful tools for assisting people in daily life. With the advancement of mobile technologies, the issue of mobile learning has been widely investigated in education. Many researches consider that it is important to integrate pedagogical and technical strengths of mobile technology into learning environments. For this reason, the purpose of this research is to examine the effect of mobile technology use in education with meta-analysis method. Meta-analysis is a statistical technique which combines the findings of independent studies in a specific subject. In this respect, the articles will be examined by searching the databases for researches which are conducted between 2005 and 2014. It is expected that the results of this research will contribute to future research related to mobile technology use in education. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobile%20learning" title="mobile learning">mobile learning</a>, <a href="https://publications.waset.org/abstracts/search?q=meta-analysis" title=" meta-analysis"> meta-analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20technology" title=" mobile technology"> mobile technology</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education"> education</a> </p> <a href="https://publications.waset.org/abstracts/20062/the-effect-of-mobile-technology-use-in-education-a-meta-analysis-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">721</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> A ZVT-ZCT-PWM DC-DC Boost Converter with Direct Power Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting">Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin"> Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a zero voltage transition-zero current transition (ZVT-ZCT)-PWM DC-DC boost converter with direct power transfer. In this converter, the main switch turns on with ZVT and turns off with ZCT. The auxiliary switch turns on and off with zero current switching (ZCS). The main diode turns on with ZVS and turns off with ZCS. Besides, the additional current or voltage stress does not occur on the main device. The converter has features as simple structure, fast dynamic response and easy control. Also, the proposed converter has direct power transfer feature as well as excellent soft switching techniques. In this study, the operating principle of the converter is presented and its operation is verified for 1 kW and 100 kHz model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20transfer" title="direct power transfer">direct power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=boost%20converter" title=" boost converter"> boost converter</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a> </p> <a href="https://publications.waset.org/abstracts/45333/a-zvt-zct-pwm-dc-dc-boost-converter-with-direct-power-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">822</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Experimental Investigation of the Effect of Temperature on A PEM Fuel Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin">Remzi Şahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sad%C4%B1k%20Ata"> Sadık Ata</a>, <a href="https://publications.waset.org/abstracts/search?q=Kevser%20Dincer"> Kevser Dincer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, performance of proton exchange membrane (PEM) fuel cell was experimentally investigated. The efficiency of energy conversion in PEM fuel cells is dependent on the catalytic activities of the catalysts used in the cathode and anode of membrane electrode assemblies. Membrane is considered the heart of PEM fuel cells without which they cannot produce electricity. PEM fuel cell performance increased with coating carbon nanotube (CNT). CNT show a unique combination of stiffness, strength, and tenacity compared to other fiber materials which usually lack one or more of these properties. Two different experiments were performed and the membrane performance has been determined by repeating the two experiments that were done before coating. The purposes of these experiments are the observation of power change due to a temperature change in the same voltage value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotube%20%28CNT%29" title="carbon nanotube (CNT)">carbon nanotube (CNT)</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20exchange%20membrane%20%28PEM%29" title=" proton exchange membrane (PEM)"> proton exchange membrane (PEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=fuel%20cell" title=" fuel cell"> fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20method" title=" spin method"> spin method</a> </p> <a href="https://publications.waset.org/abstracts/50261/experimental-investigation-of-the-effect-of-temperature-on-a-pem-fuel-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Conductive Clay Nanocomposite Using Smectite and Poly(O-Anisidine)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20%C5%9Eahi%CC%87n">M. Şahi̇n</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Erdem"> E. Erdem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sa%C3%A7ak"> M. Saçak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, Na-smectite crystals purificated of bentonite were used after being swelling with benzyltributylammonium bromide (BTBAB) as alkyl ammonium salt. Swelling process was carried out using 0.2 g of BTBAB for smectite of 0.8 g with 4 h of mixing time after investigated conditions such as mixing time, the swelling agent amount. Then, the conductive poly(o-anisidine) (POA)/smectite nanocomposite was prepared in the presence of swollen Na-smectite using ammonium persulfate (APS) as oxidant in aqueous acidic medium. The POA content and conductivity of the prepared nanocomposite were systematically investigated as a function of polymerization conditions such as the treatment time of swollen smectite in monomer solution and o-anisidine/APS mol ratio. POA/smectite nanocomposite was characterized by XRD, FTIR and SEM techniques and was compared separately with components of composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay" title="clay">clay</a>, <a href="https://publications.waset.org/abstracts/search?q=composite" title=" composite"> composite</a>, <a href="https://publications.waset.org/abstracts/search?q=conducting%20polymer" title=" conducting polymer"> conducting polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28o-anisidine%29" title=" poly(o-anisidine) "> poly(o-anisidine) </a> </p> <a href="https://publications.waset.org/abstracts/37132/conductive-clay-nanocomposite-using-smectite-and-polyo-anisidine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37132.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Required SNR for PPM in Downlink Gamma-Gamma Turbulence Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selami%20%C5%9Eahin">Selami Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, in order to achieve sufficient bit error rate (BER) according to zenith angle of the satellite to ground station, SNR requirement is investigated utilizing pulse position modulation (PPM). To realize explicit results, all parameters such as link distance, Rytov variance, scintillation index, wavelength, aperture diameter of the receiver, Fried's parameter and zenith angle have been taken into account. Results indicate that after some parameters are determined since the constraints of the system, to achieve desired BER, required SNR values are in wide range while zenith angle changes from small to large values. Therefore, in order not to utilize high link margin, either SNR should adjust according to zenith angle or link should establish with predetermined intervals of the zenith angle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Free-space%20optical%20communication" title="Free-space optical communication">Free-space optical communication</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20downlink%20channel" title=" optical downlink channel"> optical downlink channel</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20turbulence" title=" atmospheric turbulence"> atmospheric turbulence</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20optical%20communication" title=" wireless optical communication"> wireless optical communication</a> </p> <a href="https://publications.waset.org/abstracts/31718/required-snr-for-ppm-in-downlink-gamma-gamma-turbulence-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> An Investigation of Foam Glass Production from Sheet Glass Waste and SiC Foaming Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aylin%20Sahin">Aylin Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Recep%20Artir"> Recep Artir</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kara"> Mustafa Kara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Foam glass is a remarkable material with having incomparable properties like low weight, rigidity, high thermal insulation capacity and porous structure. In this study, foam glass production was investigated with using glass powder from sheet glass waste and SiC powder as foaming agent. Effects of SiC powders and sintering temperatures on foaming process were examined. It was seen that volume expansions (%), cellular structures and pore diameters of obtained foam glass samples were highly depending on composition ratios and sintering temperature. The study showed that various foam glass samples having with homogenous closed porosity, low weight and low thermal conductivity were achieved by optimizing composition ratios and sintering temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=foam%20glass" title="foam glass">foam glass</a>, <a href="https://publications.waset.org/abstracts/search?q=foaming" title=" foaming"> foaming</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20glass" title=" waste glass"> waste glass</a>, <a href="https://publications.waset.org/abstracts/search?q=silicon%20carbide" title=" silicon carbide"> silicon carbide</a> </p> <a href="https://publications.waset.org/abstracts/69062/an-investigation-of-foam-glass-production-from-sheet-glass-waste-and-sic-foaming-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Effect of Nano-CaCO₃ Addition on the Nano-Mechanical Properties of Cement Paste</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muzeyyen%20Balcikanli">Muzeyyen Balcikanli</a>, <a href="https://publications.waset.org/abstracts/search?q=Selma%20Ozaslan"> Selma Ozaslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Osman%20Sahin"> Osman Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Burak%20Uzal"> Burak Uzal</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Ozbay"> Erdogan Ozbay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of nano-CaCO3 replacement with cement on the nano-mechanical properties of cement paste was investigated. Hydrophobic and hydrophilic characteristics Two types of nano CaCO3 were replaced with Portland cement at 0, 0.5 and 1%. Water to (cement+nano-CaCO3) ratio was kept constant at 0.5 for all mixtures. 36 indentations were applied on each cement paste, and the values of nano-hardness and elastic modulus of cement pastes were determined from the indentation depth-load graphs. Then, by getting the average of them, nano-hardness and elastic modulus were identified for each mixture. Test results illustrate that replacement of hydrophilic n-CaCO3 with cement lead to a significant increase in nano-mechanical properties, however, replacement of hydrophobic n-CaCO3 with cement worsened the nano-mechanical properties considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoindenter" title="nanoindenter">nanoindenter</a>, <a href="https://publications.waset.org/abstracts/search?q=CaCO3" title=" CaCO3"> CaCO3</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-hardness" title=" nano-hardness"> nano-hardness</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-mechanical%20properties" title=" nano-mechanical properties"> nano-mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/54618/effect-of-nano-caco3-addition-on-the-nano-mechanical-properties-of-cement-paste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54618.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Compressive Strength and Capillary Water Absorption of Concrete Containing Recycled Aggregate </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ye%C5%9Fim%20Tosun">Yeşim Tosun</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin"> Remzi Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of compressive strength, capillary water absorption, and density tests conducted on concrete containing recycled aggregate (RCA) which is obtained from structural waste generated by the construction industry in Turkey. In the experiments, 0%, 15%, 30%, 45% and 60% of the normal (natural) coarse aggregate was replaced by the recycled aggregate. Maximum aggregate particle sizes were selected as 16 mm, 22,4 mm and 31,5 mm; and 0,06%, 0,13% and 0,20% of air-entraining agent (AEA) were used in mixtures. Fly ash and superplasticizer were used as a mineral and chemical admixture, respectively. The same type (CEM I 42.5) and constant dosage of cement were used in the study. Water/cement ratio was kept constant as 0.53 for all mixture. It was concluded that capillary water absorption, compressive strength, and density of concrete decreased with increasing RCA ratio. Increasing in maximum aggregate particle size and amount of AEA also affect the properties of concrete significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20water%20absorption" title="capillary water absorption">capillary water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates "> recycled concrete aggregates </a> </p> <a href="https://publications.waset.org/abstracts/29454/compressive-strength-and-capillary-water-absorption-of-concrete-containing-recycled-aggregate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Investigation of Heat Transfer of Nanofluids in Circular Microchannels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bayram%20Sahin">Bayram Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Hourieh%20Bayramian"> Hourieh Bayramian</a>, <a href="https://publications.waset.org/abstracts/search?q=Emre%20Mandev"> Emre Mandev</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=microchannel" title=" microchannel"> microchannel</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2-water%20nanofluid" title=" SiO2-water nanofluid"> SiO2-water nanofluid</a> </p> <a href="https://publications.waset.org/abstracts/91349/investigation-of-heat-transfer-of-nanofluids-in-circular-microchannels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin">Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting"> Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20factor%20correction" title="power factor correction">power factor correction</a>, <a href="https://publications.waset.org/abstracts/search?q=direct%20power%20transfer" title=" direct power transfer"> direct power transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20switching" title=" soft switching"> soft switching</a> </p> <a href="https://publications.waset.org/abstracts/45336/1-kw-power-factor-correction-soft-switching-boost-converter-with-an-active-snubber-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">962</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Effect of Strength Class of Concrete and Curing Conditions on Capillary Water Absorption of Self-Compacting and Conventional Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Ebru%20Demirci">E. Ebru Demirci</a>, <a href="https://publications.waset.org/abstracts/search?q=Remzi%20%C5%9Eahin"> Remzi Şahin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this study is to compare Self Compacting Concrete (SCC) and Conventional Concrete (CC) in terms of their capillary water absorption. During the comparison of SCC and CC, the effects of two different factors were also investigated: concrete strength class and curing condition. In the study, both SCC and CC were produced in three different concrete classes (C25, C50 and C70) and the other parameter (i.e curing condition) was determined as two levels: moisture and air curing. It was observed that, for both curing environments and all strength classes of concrete, SCCs had lower capillary water absorption values than that of CCs. It was also detected that, for both SCC and CC, capillary water absorption values of samples kept in moisture curing were significantly lower than that of samples stored in air curing. Additionally, it was determined that capillary water absorption values for both SCC and CC decrease with increasing strength class of concrete for both curing environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capillary%20water%20absorption" title="capillary water absorption">capillary water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20condition" title=" curing condition"> curing condition</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20beam" title=" reinforced concrete beam"> reinforced concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=self-compacting%20concrete" title=" self-compacting concrete"> self-compacting concrete</a> </p> <a href="https://publications.waset.org/abstracts/19558/effect-of-strength-class-of-concrete-and-curing-conditions-on-capillary-water-absorption-of-self-compacting-and-conventional-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> A Single Phase ZVT-ZCT Power Factor Correction Boost Converter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin">Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting"> Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20factor%20correction" title="power factor correction">power factor correction</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20switching" title=" soft switching"> soft switching</a> </p> <a href="https://publications.waset.org/abstracts/43261/a-single-phase-zvt-zct-power-factor-correction-boost-converter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">803</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Management of Behcet&#039;s Disease Patient&#039;s Mandibular Total Edentulism with Custom Made Implant Supported Bar Retainer: A Case Report </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Faruk%20Emir">Faruk Emir</a>, <a href="https://publications.waset.org/abstracts/search?q=Simel%20Ayy%C4%B1ld%C4%B1z"> Simel Ayyıldız</a>, <a href="https://publications.waset.org/abstracts/search?q=Cem%20%C5%9Eahin"> Cem Şahin </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Behçet’s disease or Behçet’s syndrome is a chronic and multi-systemic inflammatory disease of unknown cause. This syndrome often presents with mucous membrane ulceration and ocular problems. As a systemic disease Behcet includes triple-symptom complex of recurrent oral aphthous ulcers, genital ulcers, and uveitis. Nearly all patients present with some form of painful oral mucocutaneous ulcerations in the form of aphthous ulcers. The aim of the treatment plan for Behçet’s Disease patients is to eliminate oral problems and increase the patient comfort.This clinical report represents the prosthodontic rehabilitation of Behcet’s disease patients mandibular total edentulism with the use of implant supported prosthesis that planned on custom abutments and bar retainers via CAD/CAM technology and patient satisfaction has been achieved in function and aesthetics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beh%C3%A7et%E2%80%99s%20disease" title="Behçet’s disease">Behçet’s disease</a>, <a href="https://publications.waset.org/abstracts/search?q=CAD%2FCAM" title=" CAD/CAM"> CAD/CAM</a>, <a href="https://publications.waset.org/abstracts/search?q=custom-made%20manufacturing" title=" custom-made manufacturing"> custom-made manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20milled%20bar%20retainer" title=" titanium milled bar retainer "> titanium milled bar retainer </a> </p> <a href="https://publications.waset.org/abstracts/27308/the-management-of-behcets-disease-patients-mandibular-total-edentulism-with-custom-made-implant-supported-bar-retainer-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> A Soft Switching PWM DC-DC Boost Converter with Increased Efficiency by Using ZVT-ZCT Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yakup%20Sahin">Yakup Sahin</a>, <a href="https://publications.waset.org/abstracts/search?q=Naim%20Suleyman%20Ting"> Naim Suleyman Ting</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Aksoy"> Ismail Aksoy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an improved active snubber cell is proposed on account of soft switching (SS) family of pulse width modulation (PWM) DC-DC converters. The improved snubber cell provides zero-voltage transition (ZVT) turn on and zero-current transition (ZCT) turn off for main switch. The snubber cell decreases EMI noise and operates with SS in a wide range of line and load voltages. Besides, all of the semiconductor devices in the converter operate with SS. There is no additional voltage and current stress on the main devices. Additionally, extra voltage stress does not occur on the auxiliary switch and its current stress is acceptable value. The improved converter has a low cost and simple structure. The theoretical analysis of converter is clarified and the operating states are given in detail. The experimental results of converter are obtained by prototype of 500 W and 100 kHz. It is observed that the experimental results and theoretical analysis of converter are suitable with each other perfectly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20snubber%20cells" title="active snubber cells">active snubber cells</a>, <a href="https://publications.waset.org/abstracts/search?q=DC-DC%20converters" title=" DC-DC converters"> DC-DC converters</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-voltage%20transition" title=" zero-voltage transition"> zero-voltage transition</a>, <a href="https://publications.waset.org/abstracts/search?q=zero-current%20transition" title=" zero-current transition"> zero-current transition</a> </p> <a href="https://publications.waset.org/abstracts/43259/a-soft-switching-pwm-dc-dc-boost-converter-with-increased-efficiency-by-using-zvt-zct-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1020</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Sahin%20Yakut&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10