CINXE.COM
Search results for: rare earth doped ZnO
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: rare earth doped ZnO</title> <meta name="description" content="Search results for: rare earth doped ZnO"> <meta name="keywords" content="rare earth doped ZnO"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="rare earth doped ZnO" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="rare earth doped ZnO"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2270</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: rare earth doped ZnO</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2270</span> Structural and Optical Properties of Ce3+ Doped YPO4: Nanophosphors Synthesis by Sol Gel Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Kahouadji">B. Kahouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Guerbous"> L. Guerbous</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Lamiri"> L. Lamiri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mendoud"> A. Mendoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, nanomaterials are developed in the form of nano-films, nano-crystals and nano-pores. Lanthanide phosphates as a material find extensive application as laser, ceramic, sensor, phosphor, and also in optoelectronics, medical and biological labels, solar cells and light sources. Among the different kinds of rare-earth orthophosphates, yttrium orthophosphate has been shown to be an efficient host lattice for rare earth activator ions, which have become a research focus because of their important role in the field of light display systems, lasers, and optoelectronic devices. It is in this context that the 4fn- « 4fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies .Though there has been a few reports on Eu3+, Nd3+, Pr3+,Er3+, Ce3+, Tm3+ doped YPO4. The 4fn- « 4fn-1 5d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggesting to study on a very specific class of inorganic material that are orthophosphate doped with rare earth ions. This study focused on the effect of Ce3+ concentration on the structural and optical properties of Ce3+ doped YPO4 yttrium orthophosphate with powder form prepared by the Sol Gel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=YPO4" title="YPO4">YPO4</a>, <a href="https://publications.waset.org/abstracts/search?q=Ce3%2B" title=" Ce3+"> Ce3+</a>, <a href="https://publications.waset.org/abstracts/search?q=4fn-%20%3C-%3E4fn-1%205d%20transitions" title=" 4fn- <->4fn-1 5d transitions"> 4fn- <->4fn-1 5d transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a> </p> <a href="https://publications.waset.org/abstracts/6700/structural-and-optical-properties-of-ce3-doped-ypo4-nanophosphors-synthesis-by-sol-gel-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2269</span> Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Badis%20Kahouadji">Badis Kahouadji</a>, <a href="https://publications.waset.org/abstracts/search?q=Lakhdar%20Guerbous"> Lakhdar Guerbous</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyes%20Lamiri"> Lyes Lamiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title="rare earth">rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillator" title=" scintillator"> scintillator</a>, <a href="https://publications.waset.org/abstracts/search?q=YPO4%3APr3%2B%20nanophosphors" title=" YPO4:Pr3+ nanophosphors"> YPO4:Pr3+ nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=sol%20gel" title=" sol gel"> sol gel</a>, <a href="https://publications.waset.org/abstracts/search?q=4Fn-4Fn-15d%20transitions" title=" 4Fn-4Fn-15d transitions"> 4Fn-4Fn-15d transitions</a> </p> <a href="https://publications.waset.org/abstracts/9048/sol-gel-synthesis-and-photoluminescent-properties-of-ypo4-pr3-nanophosphors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2268</span> Effect of Yb and Sm doping on Thermoluminescence and Optical Properties of LiF Nanophosphor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rakesh%20Dogra">Rakesh Dogra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arun%20Kumar"> Arun Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arvind%20Kumar%20Sharma"> Arvind Kumar Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity, which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature, which are independent of the rare earth dopant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20flouride" title="lithium flouride">lithium flouride</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title=" thermoluminescence"> thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-VIS%20spectroscopy" title=" UV-VIS spectroscopy"> UV-VIS spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gamma%20radiations" title=" Gamma radiations"> Gamma radiations</a> </p> <a href="https://publications.waset.org/abstracts/164905/effect-of-yb-and-sm-doping-on-thermoluminescence-and-optical-properties-of-lif-nanophosphor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2267</span> Rare Earth Metal Ion-Doped SiO2 Nanocomposite Membranes for Gas Separation in Steam Atmosphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Hasan%20Zahir">Md. Hasan Zahir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Y2O3-doped silica membranes were synthesized with the sol-gel method by using a tetraethyl orthosilicate-derived sol mixed with yttrium nitrate hexahydrate. These solutions were used to fabricate hydrogen separation microporous membranes with a sandwich-type structure on γ-Al2O3 supported by tubular α-Al2O3. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano-permporometer. The gas permeance properties of the membranes were measured in the temperature range 100–500°C. The Y-doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39×10-7 mol m-2 s -1 Pa-1 for He and 6.19 ×10-10 mol m-2 s -1 Pa-1 for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y-doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2±0.2 and 21.3±0.7 kJ mol−1 for SiO2 and Si/Y, respectively. Very high permeances were obtained for N2 and O2, 2.2 and 5 × 10-8 mol m-2 s -1 Pa-1 respectively, which demonstrates that these materials are promising air purification and/or separation systems that block larger impurity molecules by molecular sieving effects. Y-doped SiO2 exhibits greater hydrothermal stability at high temperatures and higher selectivity than SiO2 membranes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membrane" title="ceramic membrane">ceramic membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20separation" title=" gas separation"> gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20stability" title=" hydrothermal stability"> hydrothermal stability</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped-Silica" title=" rare earth doped-Silica"> rare earth doped-Silica</a> </p> <a href="https://publications.waset.org/abstracts/47085/rare-earth-metal-ion-doped-sio2-nanocomposite-membranes-for-gas-separation-in-steam-atmosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2266</span> Thermodynamic Properties of Binary Gold-Rare Earth Compounds (Au-RE)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Krarchaa">H. Krarchaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ferroudj"> A. Ferroudj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the results of thermodynamic properties of intermetallic rare earth-gold compounds at different stoichiometric structures. It mentions the existence of the AuRE AuRE2, Au2RE, Au51RE14, Au6RE, Au3RE and Au4RE phases in the majority of Au-RE phase diagrams. It's observed that equiatomic composition is a common compound for all gold rare earth alloys and it has the highest melting temperature. Enthalpies of the formation of studied compounds are calculated based on a new reformulation of Miedema’s model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title="rare earth element">rare earth element</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20formation" title=" enthalpy of formation"> enthalpy of formation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20properties" title=" thermodynamic properties"> thermodynamic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=macroscopic%20model" title=" macroscopic model"> macroscopic model</a> </p> <a href="https://publications.waset.org/abstracts/191105/thermodynamic-properties-of-binary-gold-rare-earth-compounds-au-re" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2265</span> Fused Salt Electrolysis of Rare-Earth Materials from the Domestic Ore and Preparation of Rare-Earth Hydrogen Storage Alloys</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeong-Hyun%20Yoo">Jeong-Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanjung%20Kwon"> Hanjung Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Wook%20Cho"> Sung-Wook Cho</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fused salt electrolysis was studied to make the high purity rare-earth metals using domestic rare-earth ore. The target metals of the fused salt electrolysis were Mm (Misch metal), La, Ce, Nd, etc. Fused salt electrolysis was performed with the supporting salt such as chloride and fluoride at the various temperatures and ampere. The metals made by fused salt electrolysis were analyzed to identify the phase and composition using the methods of XRD and ICP. As a result, the acquired rare-earth metals were the high purity ones which had more than 99% purity. Also, VIM (vacuum induction melting) was studied to make the kg level rare-earth alloy for the use of secondary battery and hydrogen storage. In order to indentify the physicochemical properties such as phase, impurity gas, alloy composition and hydrogen storage, the alloys were investigated. The battery characteristics were also analyzed through the various tests in the real production line of a battery company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=domestic%20rare-earth%20ore" title="domestic rare-earth ore">domestic rare-earth ore</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20salt%20electrolysis" title=" fused salt electrolysis"> fused salt electrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rare-earth%20materials" title=" rare-earth materials"> rare-earth materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20storage%20alloy" title=" hydrogen storage alloy"> hydrogen storage alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20battery" title=" secondary battery"> secondary battery</a> </p> <a href="https://publications.waset.org/abstracts/17072/fused-salt-electrolysis-of-rare-earth-materials-from-the-domestic-ore-and-preparation-of-rare-earth-hydrogen-storage-alloys" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17072.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">533</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2264</span> Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raghvendra%20Singh%20Yadav">Raghvendra Singh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivo%20Ku%C5%99itka"> Ivo Kuřitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaromir%20Havlica"> Jaromir Havlica</a>, <a href="https://publications.waset.org/abstracts/search?q=Zuzana%20Kozakova"> Zuzana Kozakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Masilko"> Jiri Masilko</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukas%20Kalina"> Lukas Kalina</a>, <a href="https://publications.waset.org/abstracts/search?q=Miroslava%20Hajd%C3%BAchov%C3%A1"> Miroslava Hajdúchová</a>, <a href="https://publications.waset.org/abstracts/search?q=Vojt%C4%9Bch%20Enev"> Vojtěch Enev</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaromir%20Wasserbauer"> Jaromir Wasserbauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=starch" title="starch">starch</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20combustion%20method" title=" sol-gel combustion method"> sol-gel combustion method</a>, <a href="https://publications.waset.org/abstracts/search?q=rare-earth%20ions" title=" rare-earth ions"> rare-earth ions</a>, <a href="https://publications.waset.org/abstracts/search?q=spinel%20ferrite%20nanoparticles" title=" spinel ferrite nanoparticles"> spinel ferrite nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20properties" title=" magnetic properties"> magnetic properties</a> </p> <a href="https://publications.waset.org/abstracts/57632/structural-and-magnetic-properties-of-cofe2o4nd3dy3pr3gd3-nanoparticles-synthesized-by-starch-assisted-sol-gel-auto-combustion-method-and-annealing-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2263</span> Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bekhedda%20Kheira">Bekhedda Kheira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title=" rare earth"> rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporation" title=" evaporation"> evaporation</a> </p> <a href="https://publications.waset.org/abstracts/171251/opto-electronic-study-of-the-silicon-nitride-doped-cerium-thin-films-deposed-by-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2262</span> Luminescence and Local Environment: Identification of Thermal History</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Veronique%20Jubera">Veronique Jubera</a>, <a href="https://publications.waset.org/abstracts/search?q=Guillaume%20Salek"> Guillaume Salek</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuel%20Gaudon"> Manuel Gaudon</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Garcia"> Alain Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Alain%20Demourgues"> Alain Demourgues</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=emission" title="emission">emission</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20sensing" title=" thermal sensing"> thermal sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20metal" title=" transition metal"> transition metal</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20eath%20element" title=" rare eath element"> rare eath element</a> </p> <a href="https://publications.waset.org/abstracts/60286/luminescence-and-local-environment-identification-of-thermal-history" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2261</span> Separation of Rare-Earth Metals from E-Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gulsara%20%20Akanova">Gulsara Akanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Akmaral%20Ismailova"> Akmaral Ismailova</a>, <a href="https://publications.waset.org/abstracts/search?q=Duisek%20Kamysbayev"> Duisek Kamysbayev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The separation of rare earth metals (REM) from a neodymium magnet has been widely studied in the last year. The waste of computer hard disk contains 25.41 % neodymium, 64.09 % iron, and <<1 % boron. To further the separation of rare-earth metals, the magnet dissolved in open and closed systems with nitric acid. In the closed system, the magnet was dissolved in a microwave sample preparation system at different temperatures and pressures and the dissolution process lasted 1 hour. In the open system, the acid dissolution of the magnet was conducted at room temperature and the process lasted 30-40 minutes. To remove the iron in the magnet, oxalic acid was used and precipitated as oxalates under both conditions. For separation of rare earth metals (Nd, Pr and Dy) from magnet waste is used sorption method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissolution%20of%20the%20magnet" title="dissolution of the magnet">dissolution of the magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Neodymium%20magnet" title=" Neodymium magnet"> Neodymium magnet</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorption" title=" Sorption"> Sorption</a> </p> <a href="https://publications.waset.org/abstracts/138763/separation-of-rare-earth-metals-from-e-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2260</span> Rare-Earth Ions Doped Lithium Niobate Crystals: Luminescence and Raman Spectroscopy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ninel%20Kokanyan">Ninel Kokanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Edvard%20Kokanyan"> Edvard Kokanyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anush%20Movsesyan"> Anush Movsesyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Marc%20D.%20%20Fontana"> Marc D. Fontana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium Niobate (LN) is one of the widely used ferroelectrics having a wide number of applications such as phase-conjugation, holographic storage, frequency doubling, SAW sensors. Furthermore, the possibility of doping with rare-earth ions leads to new laser applications. Ho and Tm dopants seem interesting due to laser emission obtained at around 2 µm. Raman spectroscopy is a powerful spectroscopic technique providing a possibility to obtain a number of information about physicochemical and also optical properties of a given material. Polarized Raman measurements were carried out on Ho and Tm doped LN crystals with excitation wavelengths of 532nm and 785nm. In obtained Raman anti-Stokes spectra, we detect expected modes according to Raman selection rules. In contrast, Raman Stokes spectra are significantly different compared to what is expected by selection rules. Additional forbidden lines are detected. These lines have quite high intensity and are well defined. Moreover, the intensity of mentioned additional lines increases with an increase of Ho or Tm concentrations in the crystal. These additional lines are attributed to emission lines reflecting the photoluminescence spectra of these crystals. It means that in our case we were able to detect, within a very good resolution, in the same Stokes spectrum, the transitions between the electronic states, and the vibrational states as well. The analysis of these data is reported as a function of Ho and Tm content, for different polarizations and wavelengths, of the incident laser beam. Results also highlight additional information about π and σ polarizations of crystals under study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobate" title="lithium niobate">lithium niobate</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=rare-earth%20ions%20doped%20lithium%20niobate" title=" rare-earth ions doped lithium niobate"> rare-earth ions doped lithium niobate</a> </p> <a href="https://publications.waset.org/abstracts/94217/rare-earth-ions-doped-lithium-niobate-crystals-luminescence-and-raman-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94217.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">221</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2259</span> Structural Properties of Surface Modified PVA: Zn97Pr3O Polymer Nanocomposite Free Standing Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pandiyarajan%20Thangaraj">Pandiyarajan Thangaraj</a>, <a href="https://publications.waset.org/abstracts/search?q=Mangalaraja%20Ramalinga%20Viswanathan"> Mangalaraja Ramalinga Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=Karthikeyan%20Balasubramanian"> Karthikeyan Balasubramanian</a>, <a href="https://publications.waset.org/abstracts/search?q=H%C3%A9ctor%20D.%20Mansilla"> Héctor D. Mansilla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Ruiz"> José Ruiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth ions doped semiconductor nanostructures gained much attention due to their novel physical and chemical properties which lead to potential applications in laser technology as inexpensive luminescent materials. Doping of rare earth ions into ZnO semiconductor alter its electronic structure and emission properties. Surface modification (polymer covering) is one of the simplest techniques to modify the emission characteristics of host materials. The present work reports the synthesis and structural properties of PVA:Zn97Pr3O polymer nanocomposite free standing films. To prepare Pr3+ doped ZnO nanostructures and PVA:Zn97Pr3O polymer nanocomposite free standing films, the colloidal chemical and solution casting techniques were adopted, respectively. The formation of PVA:Zn97Pr3O films were confirmed through X-ray diffraction (XRD), absorption and Fourier transform infrared (FTIR) spectroscopy analyses. XRD measurements confirm the prepared materials are crystalline having hexagonal wurtzite structure. Polymer composite film exhibits the diffraction peaks of both PVA and ZnO structures. TEM images reveal the pure and Pr3+ doped ZnO nanostructures exhibit sheet like morphology. Optical absorption spectra show free excitonic absorption band of ZnO at 370 nm and, the PVA:Zn97Pr3O polymer film shows absorption bands at ~282 and 368 nm and these arise due to the presence of carbonyl containing structures connected to the PVA polymeric chains, mainly at the ends and free excitonic absorption of ZnO nanostructures, respectively. Transmission spectrum of as prepared film shows 57 to 69% of transparency in the visible and near IR region. FTIR spectral studies confirm the presence of A1 (TO) and E1 (TO) modes of Zn-O bond vibration and the formation of polymer composite materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO" title="rare earth doped ZnO">rare earth doped ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization" title=" structural characterization"> structural characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20modification" title=" surface modification"> surface modification</a> </p> <a href="https://publications.waset.org/abstracts/14358/structural-properties-of-surface-modified-pva-zn97pr3o-polymer-nanocomposite-free-standing-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2258</span> Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=George%20B.%20Abaka-Wood">George B. Abaka-Wood</a>, <a href="https://publications.waset.org/abstracts/search?q=Massimiliano%20%20Zanin"> Massimiliano Zanin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Addai-Mensah"> Jonas Addai-Mensah</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20Skinner"> William Skinner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=depressants" title="depressants">depressants</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation" title=" flotation"> flotation</a>, <a href="https://publications.waset.org/abstracts/search?q=oleic%20acid" title=" oleic acid"> oleic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20oleate" title=" sodium oleate"> sodium oleate</a> </p> <a href="https://publications.waset.org/abstracts/97243/flotation-of-rare-earth-oxides-from-iron-oxide-silicate-rich-tailings-using-fatty-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2257</span> Rare Earth Element (REE) Geochemistry of Tepeköy Sandstones (Central Anatolia, Turkey)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Yavuz%20H%C3%BCseyinca">Mehmet Yavuz Hüseyinca</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Euayip%20K%C3%BCpeli"> Şuayip Küpeli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandstones from Upper Eocene - Oligocene Tepeköy formation (Member of Mezgit Group) that exposed on the eastern edge of Tuz Gölü (Salt Lake) were analyzed for their rare earth element (REE) contents. Average concentrations of ΣREE, ΣLREE (Total light rare earth elements) and ΣHREE (Total heavy rare earth elements) were determined as 31.37, 26.47 and 4.55 ppm respectively. These values are lower than UCC (Upper continental crust) which indicates grain size and/or CaO dilution effect. The chondrite-normalized REE pattern is characterized by the average ratios of (La/Yb)cn = 6.20, (La/Sm)cn = 4.06, (Gd/Lu)cn = 1.10, Eu/Eu* = 0.99 and Ce/Ce* = 0.94. Lower values of ΣLREE/ΣHREE (Average 5.97) and (La/Yb)cn suggest lower fractionation of overall REE. Moreover (La/Sm)cn and (Gd/Lu)cn ratios define less inclined LREE and almost flat HREE pattern when compared with UCC. Almost no Ce anomaly (Ce/Ce*) emphasizes that REE were originated from terrigenous material. Also depleted LREE and no Eu anomaly (Eu/Eu*) suggest an undifferentiated mafic provenance for the sandstones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=central%20Anatolia" title="central Anatolia">central Anatolia</a>, <a href="https://publications.waset.org/abstracts/search?q=provenance" title=" provenance"> provenance</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title=" rare earth elements"> rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=REE" title=" REE"> REE</a>, <a href="https://publications.waset.org/abstracts/search?q=Tepek%C3%B6y%20sandstone" title=" Tepeköy sandstone"> Tepeköy sandstone</a> </p> <a href="https://publications.waset.org/abstracts/31994/rare-earth-element-ree-geochemistry-of-tepekoy-sandstones-central-anatolia-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31994.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2256</span> Investigation Of Eugan's, Optical Properties With Dft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahieddine.%20Bouabdellah">Bahieddine. Bouabdellah</a>, <a href="https://publications.waset.org/abstracts/search?q=Benameur.%20Amiri"> Benameur. Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader.nouri"> Abdelkader.nouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Europium-doped gallium nitride (EuGaN) is a promising material for optoelectronic and thermoelectric devices. This study investigates its optical properties using density functional theory (DFT) with the FP-LAPW method and MBJ+U correction. The simulation substitutes a gallium atom with europium in a hexagonal GaN lattice (6% doping). Distinct absorption peaks are observed in the optical analysis. These results highlight EuGaN's potential for various applications and pave the way for further research on rare earth-doped materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eugan" title="eugan">eugan</a>, <a href="https://publications.waset.org/abstracts/search?q=fp-lapw" title=" fp-lapw"> fp-lapw</a>, <a href="https://publications.waset.org/abstracts/search?q=dft" title=" dft"> dft</a>, <a href="https://publications.waset.org/abstracts/search?q=wien2k" title=" wien2k"> wien2k</a>, <a href="https://publications.waset.org/abstracts/search?q=mbj%20hubbard" title=" mbj hubbard"> mbj hubbard</a> </p> <a href="https://publications.waset.org/abstracts/185924/investigation-of-eugans-optical-properties-with-dft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2255</span> Deformability of the Rare Earth Metal Modified Metastable-β Alloy Ti-15Mo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Brunke">F. Brunke</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Waalkes"> L. Waalkes</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Siemers"> C. Siemers</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to reduced stiffness, research on second generation titanium alloys for implant applications, like the metastable β-titanium alloy Ti-15Mo, become more and more important in the recent years. The machinability of these alloys is generally poor leading to problems during implant production and comparably large production costs. Therefore, in the present study, Ti 15Mo was alloyed with 0.8 wt.-% of the rare earth metals lanthanum (Ti-15Mo+0.8La) and neodymium (Ti-15Mo+0.8Nd) to improve its machinability. Their microstructure consisted of a titanium matrix and micrometer-size particles of the rare earth metals and two of their oxides. The particles stabilized the micro structure as grain growth was minimized. As especially the ductility might be affected by the precipitates, the behavior of Ti-15Mo+0.8La and Ti-15Mo+0.8Nd was investigated during static and dynamic deformation at elevated temperature to develop a processing route. The resulting mechanical properties (static strength and ductility) were similar in all investigated alloys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ti%2015Mo" title="Ti 15Mo">Ti 15Mo</a>, <a href="https://publications.waset.org/abstracts/search?q=titanium%20alloys" title=" titanium alloys"> titanium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20metals" title=" rare earth metals"> rare earth metals</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20machining%20alloy" title=" free machining alloy "> free machining alloy </a> </p> <a href="https://publications.waset.org/abstracts/10012/deformability-of-the-rare-earth-metal-modified-metastable-v-alloy-ti-15mo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10012.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2254</span> Rare-Earth Ions Doped Zirconium Oxide Layers for Optical and Photovoltaic Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylwia%20Gieraltowska">Sylwia Gieraltowska</a>, <a href="https://publications.waset.org/abstracts/search?q=Lukasz%20Wachnicki"> Lukasz Wachnicki</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartlomiej%20S.%20Witkowski"> Bartlomiej S. Witkowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Godlewski"> Marek Godlewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oxide layers doped with rare-earth (RE) ions in optimized way can absorb short (ultraviolet light), which will be converted to visible light by so-called down-conversion. Down-conversion mechanisms are usually exploited to modify the incident solar spectrum. In down conversion, multiple low-energy photons are generated to exploit the energy of one incident high-energy photon. These RE-doped oxide materials have attracted a great deal of attention from researchers because of their potential for optical manipulation in optical devices (detectors, temperature sensors, and compact solid-state lasers, light-emitting diodes), bio-analysis, medical therapy, display technologies, and light harvesting (such as in photovoltaic cells). The zirconium dioxide (ZrO2) doped RE ions (Eu, Tb, Ce) multilayer structures were tested as active layers, which can convert short wave emission to light in the visible range (the down-conversion mechanism). For these applications original approach of deposition ZrO2 layers using the Atomic Layer Deposition (ALD) method and doping these layers with RE ions using the spin-coating technique was used. ALD films are deposited at relatively low temperature (well below 250°C). This can be an effective method to achieve the white-light emission and to improve on this way light conversion efficiency, by an extension of absorbed spectral range by a solar cell material. Photoluminescence (PL), X-ray diffraction (XRD), scanning electron microscope (SEM) and atomic force microscope (AFM) measurement are analyzed. The research was financially supported by the National Science Centre (decision No. DEC-2012/06/A/ST7/00398 and DEC- 2013/09/N/ST5/00901). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20layers" title=" oxide layers"> oxide layers</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a> </p> <a href="https://publications.waset.org/abstracts/45965/rare-earth-ions-doped-zirconium-oxide-layers-for-optical-and-photovoltaic-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2253</span> Ab initio Simulation of Y2O3 -Doped Cerium Using Heyd–Scuseria–Ernzerhof HSE Hybrid Functional and DFT+U Approaches</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Taibeche">M. Taibeche</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Guerbous"> L. Guerbous</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kechouane"> M. Kechouane</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nedjar"> R. Nedjar</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zergoug"> T. Zergoug</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is known that Y2O3 Material is the most important among the sesquioxides within the general class of refractory ceramics. Indeed, this compound has many applications such as sintering optical windows, components for rare-earth doped lasers as well as inorganic scintillators in the detection scintillation. In particular Eu2+ and Ce3+ are favored dopants in many the scintillators due to its allowed optical 5d-4f transition. In this work, we present new results concerning structural and electronic properties of Ce-doped Y2O3, investigated by density functional theory (DFT), using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional and DFT+U two approaches. When, we compared the results from the two methods we obtain a good agreement available experimental data. Furthermore, the effect of cerium on the material has also been studied and discussed in the same framework. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=vienne%20ab%20initio%20simulation%20packages" title=" vienne ab initio simulation packages"> vienne ab initio simulation packages</a>, <a href="https://publications.waset.org/abstracts/search?q=scintillators" title=" scintillators"> scintillators</a>, <a href="https://publications.waset.org/abstracts/search?q=Heyd%E2%80%93Scuseria%E2%80%93Ernzerhof%20%28HSE%29%20hybrid%20functional" title=" Heyd–Scuseria–Ernzerhof (HSE) hybrid functional"> Heyd–Scuseria–Ernzerhof (HSE) hybrid functional</a> </p> <a href="https://publications.waset.org/abstracts/16526/ab-initio-simulation-of-y2o3-doped-cerium-using-heyd-scuseria-ernzerhof-hse-hybrid-functional-and-dftu-approaches" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">518</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2252</span> Magnetic Properties of Layered Rare-Earth Oxy-Carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=U.%20Arjun">U. Arjun</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Brinda"> K. Brinda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Padmanabhan"> M. Padmanabhan</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Nath"> R. Nath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline samples of rare-earth oxy-carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy) are synthesized, and their structural and magnetic properties are investigated. All of them crystallize in a hexagonal structure with space group P6_3/mmc. They form a double layered structure with frustrated triangular arrangement of rare-earth magnetic ions. An antiferromagnetic transition is observed at TN ≈ 1.25 K, 0.61 K, and 1.21 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. From the analysis of magnetic susceptibility, the value of the Curie-Weiss temperature θ_CW is obtained to be ≈ 21.7 K, 18 K, and 10.6 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. The magnetic frustration parameter f ( = |θ_CW|/T_N) is calculated to be ≈ 17.4, 31, and 8.8 for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively which indicates that Sm2O2CO3 is strongly frustrated compared to its Nd and Dy analogues. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20synthesis" title="chemical synthesis">chemical synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=exchange%20and%20superexchange" title=" exchange and superexchange"> exchange and superexchange</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20capacity" title=" heat capacity"> heat capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetically%20ordered%20materials" title=" magnetically ordered materials"> magnetically ordered materials</a> </p> <a href="https://publications.waset.org/abstracts/51205/magnetic-properties-of-layered-rare-earth-oxy-carbonates-ln2o2co3-ln-nd-sm-and-dy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2251</span> Doped and Co-doped ZnO Based Nanoparticles and their Photocatalytic and Gas Sensing Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neha%20Verma">Neha Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=Manik%20Rakhra"> Manik Rakhra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Statement of the Problem: Nowadays, a tremendous increase in population and advanced industrialization augment the problems related to air and water pollutions. Growing industries promoting environmental danger, which is an alarming threat to the ecosystem. For safeguard, the environment, detection of perilous gases and release of colored wastewater is required for eutrophication pollution. Researchers around the globe are trying their best efforts to save the environment. For this remediation advanced oxidation process is used for potential applications. ZnO is an important semiconductor photocatalyst with high photocatalytic and gas sensing activities. For efficient photocatalytic and gas sensing properties, it is necessary to prepare a doped/co-doped ZnO compound to decrease the electron-hole recombination rates. However, lanthanide doped and co-doped metal oxide is seldom studied for photocatalytic and gas sensing applications. The purpose of this study is to describe the best photocatalyst for the photodegradation of dyes and gas sensing properties. Methodology & Theoretical Orientation: Economical framework has to be used for the synthesis of ZnO. In the depth literature survey, a simple combustion method is utilized for gas sensing and photocatalytic activities. Findings: Rare earth doped and co-doped ZnO nanoparticles were the best photocatalysts for photodegradation of organic dyes and different gas sensing applications by varying various factors such as pH, aging time, and different concentrations of doping and codoping metals in ZnO. Complete degradation of dye was observed only in min. Gas sensing nanodevice showed a better response and quick recovery time for doped/co-doped ZnO. Conclusion & Significance: In order to prevent air and water pollution, well crystalline ZnO nanoparticles were synthesized by rapid and economic method, which is used as photocatalyst for photodegradation of organic dyes and gas sensing applications to sense the release of hazardous gases from the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO" title="ZnO">ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalyst" title=" photocatalyst"> photocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=photodegradation%20of%20dye" title=" photodegradation of dye"> photodegradation of dye</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a> </p> <a href="https://publications.waset.org/abstracts/142117/doped-and-co-doped-zno-based-nanoparticles-and-their-photocatalytic-and-gas-sensing-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2250</span> Adsorption of Cerium as One of the Rare Earth Elements Using Multiwall Carbon Nanotubes from Aqueous Solution: Modeling, Equilibrium and Kinetics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeb%20Ahmadi">Saeb Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Vafaie%20Sefti"> Mohsen Vafaie Sefti</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mahdi%20Shadman"> Mohammad Mahdi Shadman</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Tangestani"> Ebrahim Tangestani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon nanotube has shown great potential for the removal of various inorganic and organic components due to properties such as large surface area and high adsorption capacity. Central composite design is widely used method for determining optimal conditions. Also due to the economic reasons and wide application, the rare earth elements are important components. The analyses of cerium (Ce(III)) adsorption as one of the Rare Earth Elements (REEs) adsorption on Multiwall Carbon Nanotubes (MWCNTs) have been studied. The optimization process was performed using Response Surface Methodology (RSM). The optimum amount conditions were pH of 4.5, initial Ce (III) concentration of 90 mg/l and MWCNTs dosage of 80 mg. Under this condition, the optimum adsorption percentage of Ce (III) was obtained about 96%. Next, at the obtained optimum conditions the kinetic and isotherm studied and result showed the pseudo-second order and Langmuir isotherm are more fitted with experimental data than other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title=" rare earth element"> rare earth element</a>, <a href="https://publications.waset.org/abstracts/search?q=MWCNTs" title=" MWCNTs"> MWCNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/93022/adsorption-of-cerium-as-one-of-the-rare-earth-elements-using-multiwall-carbon-nanotubes-from-aqueous-solution-modeling-equilibrium-and-kinetics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93022.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2249</span> Effect of Rare Earth Elements on Liquidity and Mechanical Properties of Phase Formation Reaction Change in Cast Iron by Cooling Curve Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Park">S. Y. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20M.%20Lee"> S. M. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Lee"> S. H. Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Lim"> K. M. Lim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research analyzed the effects that phase formation reaction change in the grey cast iron makes on characteristics of microstructures, liquidity, and mechanical properties through cooling curve when adding rare earth elements (R.E). This research was analyzed with comparison between the case of not adding the rare earth elements (R.E) into the grey cast iron with the standard composition (as 3.3%C-2.1%Si-0.7%Mn-0.1%S) and the case of adding 0.3% rare earth elements (R.E). The thermal analysis parameters have been drawn through eutectic temperature theoretically calculated, recalescence temperature, and undercooling temperature measured from start of eutectic reaction to end of solidification in the cooling curve obtained by thermal analysis to analyze formation behavior of graphite, and the effects by addition of rare earth elements on this have been reviewed. When adding rare earth elements (R.E), the cause of liquidity slowdown was analyzed trough the solidification starting temperature and change of solidification ending temperature. The strength and hardness have been measured to evaluate the mechanical properties, and the sound tensile strength has been evaluated through quality coefficient after measuring relative hardness and normality degree of tensile strength by calculating theoretical tensile strength and theoretical hardness. The change of Pearlite Inter-lamellar Spacing of matrix microstructure and eutectic cell count of macrostructure was measured to analyze the effects of the rare earth elements on the sound tensile strength. The change of eutectic cell count has been clarified through activation of the eutectic reaction, and the cause of pearlite inter-lamellar spacing clarified through eutectoid reaction temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20curve" title="cooling curve">cooling curve</a>, <a href="https://publications.waset.org/abstracts/search?q=element" title=" element"> element</a>, <a href="https://publications.waset.org/abstracts/search?q=grey%20cast%20iron" title=" grey cast iron"> grey cast iron</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20analysis" title=" thermal analysis"> thermal analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20element" title=" rare earth element"> rare earth element</a> </p> <a href="https://publications.waset.org/abstracts/29287/effect-of-rare-earth-elements-on-liquidity-and-mechanical-properties-of-phase-formation-reaction-change-in-cast-iron-by-cooling-curve-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2248</span> Magnetic Structure and Transitions in 45% Mn Substituted HoFeO₃: A Neutron Diffraction Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karthika%20Chandran">Karthika Chandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Pulkit%20Prakash"> Pulkit Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=Amitabh%20Das"> Amitabh Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20P.%20N."> Santhosh P. N.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth orthoferrites (RFeO₃) exhibit interesting and useful magnetic properties like multiferroicity, magnetodielectric coupling, spin reorientation (SR) and exchange bias. B site doped RFeO₃ are attracting attention due to the complex and tuneable magnetic transitions. In this work, 45% Mn-doped HoFeO₃ polycrystalline sample (HoFe₀.₅₅Mn₀.₄₅O₃) was synthesized by a solid-state reaction method. The magnetic structure and transitions were studied by magnetization measurements and neutron powder diffraction methods. The neutron diffraction patterns were taken at 13 different temperatures from 7°K to 300°K (7°K and 25°K to 300°K in 25°K intervals). The Rietveld refinement was carried out by using a FULLPROF suite. The magnetic space groups and the irreducible representations were obtained by SARAh module. The room temperature neutron diffraction refinement results indicate that the sample crystallizes in an orthorhombic perovskite structure with Pnma space group with lattice parameters a = 5.6626(3) Ǻ, b = 7.5241(3) Ǻ and c = 5.2704(2) Ǻ. The temperature dependent magnetization (M-T) studies indicate the presence of two magnetic transitions in the system ( TN Fe/Mn~330°K and TSR Fe/Mn ~290°K). The inverse susceptibility vs. temperature curve shows a linear behavior above 330°K. The Curie-Weiss fit in this region gives negative Curie constant (-34.9°K) indicating the antiferromagnetic nature of the transition. The neutron diffraction refinement results indicate the presence of mixed magnetic phases Γ₄(AₓFᵧG <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neutron%20powder%20diffraction" title="neutron powder diffraction">neutron powder diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20orthoferrites" title=" rare earth orthoferrites"> rare earth orthoferrites</a>, <a href="https://publications.waset.org/abstracts/search?q=Rietveld%20analysis" title=" Rietveld analysis"> Rietveld analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=spin%20reorientation" title=" spin reorientation"> spin reorientation</a> </p> <a href="https://publications.waset.org/abstracts/105883/magnetic-structure-and-transitions-in-45-mn-substituted-hofeo3-a-neutron-diffraction-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2247</span> Rare Earth Doped Alkali Halide Crystals for Thermoluminescence Dosimetry Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooja%20Seth">Pooja Seth</a>, <a href="https://publications.waset.org/abstracts/search?q=Shruti%20Aggarwal"> Shruti Aggarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Europium (Eu) doped (0.02-0.1 wt %) lithium fluoride (LiF) crystal in the form of multicrystalline sheet was gown by the edge defined film fed growth (EFG) technique. Crystals were grown in argon gas atmosphere using graphite crucible and stainless steel die. The systematic incorporation of Eu inside the host LiF lattice was confirmed by X-ray diffractometry. Thermoluminescence (TL) glow curve was recorded on annealed (AN) crystals after irradiation with a gamma dose of 15 Gy. The effect of different concentration of Eu in enhancing the thermoluminescence (TL) intensity of LiF was studied. The normalized peak height of the Eu-doped LiF crystal was nearly 12 times that of the LiF crystals. The optimized concentration of Eu in LiF was found to be 0.05wt% at which maximum TL intensity was observed with main TL peak positioned at 185 °C. At higher concentration TL intensity decreases due to the formation of precipitates in the form of clusters or aggregates. The nature of the energy traps in Eu doped LiF was analysed through glow curve deconvolution. The trap depth was found to be in the range of 0.2 – 0.5 eV. These results showed that doping with Eu enhances the TL intensity by creating more defect sites for capturing of electron and holes during irradiation which might be useful for dosimetry application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermoluminescence" title="thermoluminescence">thermoluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=crystals" title=" crystals"> crystals</a> </p> <a href="https://publications.waset.org/abstracts/76943/rare-earth-doped-alkali-halide-crystals-for-thermoluminescence-dosimetry-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2246</span> Study of Adsorption Isotherm Models on Rare Earth Elements Biosorption for Separation Purposes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nice%20Vasconcelos%20Coimbra">Nice Vasconcelos Coimbra</a>, <a href="https://publications.waset.org/abstracts/search?q=F%C3%A1bio%20dos%20Santos%20Gon%C3%A7alves"> Fábio dos Santos Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=Marisa%20Nascimento"> Marisa Nascimento</a>, <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Cristine%20Giese"> Ellen Cristine Giese</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of chemical routes for the recovery and separation of rare earth elements (REE) is seen as a priority and strategic action by several countries demanding these elements. Among the possibilities of alternative routes, the biosorption process has been evaluated in our laboratory. In this theme, the present work attempts to assess and fit the solution equilibrium data in Langmuir, Freundlich and DKR isothermal models, based on the biosorption results of the lanthanum and samarium elements by <em>Bacillus subtilis</em> immobilized on calcium alginate gel. It was observed that the preference of adsorption of REE by the immobilized biomass followed the order Sm (III)> La (III). It can be concluded that among the studied isotherms models, the Langmuir model presented better mathematical results than the Freundlich and DKR models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth%20elements" title="rare earth elements">rare earth elements</a>, <a href="https://publications.waset.org/abstracts/search?q=biosorption" title=" biosorption"> biosorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20subtilis" title=" Bacillus subtilis"> Bacillus subtilis</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption%20isotherm%20models" title=" adsorption isotherm models"> adsorption isotherm models</a> </p> <a href="https://publications.waset.org/abstracts/95469/study-of-adsorption-isotherm-models-on-rare-earth-elements-biosorption-for-separation-purposes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2245</span> Comparison of Methods for the Synthesis of Eu+++, Tb+++, and Tm+++ Doped Y2O3 Nanophosphors by Sol-Gel and Hydrothermal Methods for Bioconjugation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravindra%20P.%20Singh">Ravindra P. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Drupad%20Ram"> Drupad Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20K.%20Gupta"> Dinesh K. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rare earth ions doped metal oxides are a class of luminescent materials which have been proved to be excellent for applications in field emission displays and cathode ray tubes, plasma display panels. Under UV irradiation Eu+++ doped Y2O3 is a red phosphor and Tb+++ doped Y 2O3 is a green phosphor. It is possible that, due to their high quantum efficiency, they might serve as improved luminescent markers for identification of biomolecules, as already reported for CdSe and CdSe/ZnS nanocrystals. However, for any biological applications these particle powders must be suspended in water while retaining their phosphorescence. We hereby report synthesis and characterization of Eu+++ and Tb+++ doped yttrium oxide nanoparticles by sol-gel and hydrothermal processes. Eu+++ and Tb+++ doped Y2O3 nanoparticles have been synthesized by hydrothermal process using yttrium oxo isopropoxide [Y5O(OPri)13] (crystallized twice) and it’s acetyl acetone modified product [Y(O)(acac)] as precursors. Generally the sol-gel derived metal oxides are required to be annealed to the temperature ranging from 400°C-800°C in order to develop crystalline phases. However, this annealing also results in the development of aggregates which are undesirable for bio-conjugation experiments. In the hydrothermal process, we have achieved crystallinity of the nanoparticles at 300°C and the development of crystalline phases has been found to be proportional to the time of heating of the reactor. The average particle sizes as calculated from XRD were found to be 28 nm, 32 nm, and 34 nm by hydrothermal process. The particles were successfully suspended in chloroform in the presence of trioctyl phosphene oxide and TEM investigations showed the presence of single particles along with agglomerates. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanophosphors" title="nanophosphors">nanophosphors</a>, <a href="https://publications.waset.org/abstracts/search?q=Y2O3%3AEu%2B3" title=" Y2O3:Eu+3"> Y2O3:Eu+3</a>, <a href="https://publications.waset.org/abstracts/search?q=Y2O3%3ATb%2B3" title=" Y2O3:Tb+3"> Y2O3:Tb+3</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20method" title=" hydrothermal method"> hydrothermal method</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD "> XRD </a> </p> <a href="https://publications.waset.org/abstracts/14766/comparison-of-methods-for-the-synthesis-of-eu-tb-and-tm-doped-y2o3-nanophosphors-by-sol-gel-and-hydrothermal-methods-for-bioconjugation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14766.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2244</span> Photoluminescence Spectroscopy to Probe Mixed Valence State in Eu-Doped Nanocrystalline Glass-Ceramics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ruchika%20Bagga">Ruchika Bagga</a>, <a href="https://publications.waset.org/abstracts/search?q=Mauro%20Falconieri"> Mauro Falconieri</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Achanta"> Venu Gopal Achanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20M.%20F.%20Ferreira"> José M. F. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Goel"> Ashutosh Goel</a>, <a href="https://publications.waset.org/abstracts/search?q=Gopi%20Sharma"> Gopi Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mixed valence Eu-doped nanocrystalline NaAlSiO4/NaY9Si6O26 glass-ceramics have been prepared by controlled crystallization of melt quenched bulk glasses. XRD and SEM techniques were employed to characterize the crystallization process of the precursor glass and their resultant glass-ceramics. Photoluminescence spectroscopy was used to analyze the formation of divalent europium (Eu2+) from Eu3+ ions during high temperature synthesis under ambient atmosphere and is explained on the basis of optical basicity model. The observed luminescence properties of Eu: NaY9Si6O26 are compared with that of well explored Eu: β-PbF2 nanocrystals and their marked differences are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rare%20earth" title="rare earth">rare earth</a>, <a href="https://publications.waset.org/abstracts/search?q=oxyfluoride%20glasses" title=" oxyfluoride glasses"> oxyfluoride glasses</a>, <a href="https://publications.waset.org/abstracts/search?q=nano-crystalline%20glass-ceramics" title=" nano-crystalline glass-ceramics"> nano-crystalline glass-ceramics</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence%20spectroscopy" title=" photoluminescence spectroscopy"> photoluminescence spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/44173/photoluminescence-spectroscopy-to-probe-mixed-valence-state-in-eu-doped-nanocrystalline-glass-ceramics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2243</span> Synthesis of Rare-Earth Pyrazolate Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazli%20Eslamirad">Nazli Eslamirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20C.%20Junk"> Peter C. Junk</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Wang"> Jun Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Glen%20B.%20Deacon"> Glen B. Deacon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since coordination behavior of pyrazoles and pyrazolate ions are widely versatile towards a great range of metals such as d-block, f-block as well as main group elements; they attract interest as ligands for preparing compounds. A variety of rare-earth pyrazolate complexes have been synthesized by redox transmetalation/protolysis (RTP) previously, therefore, a variety of rare-earth pyrazolate complexes using two pyrazoles, 3,5-dimethylpyrazole (Me₂pzH) and 3,5-di-tert -butylpyrazolate (t-Bu₂pzH), in which the structures span the whole La-Lu array beside Sc and Y has been synthesized by RTP reaction. There have been further developments in this study: Synthesizing structure of [Tb(Me₂pz)₃(thf)]₂ which is isomorphous with those of the previously reported [Dy(Me₂pz)₃(thf)]₂ and [Lu(Me₂pz)₃(thf)]₂ analogous that has two µ-1(N):2(Nʹ)-Me2pz ligands (the most common pyrazolate ligation for non-rare-earth complexes). Previously most of the reported compounds using t-Bu2pzH were monomeric compounds however the lanthanum derivative [La(Me₂pz)₃thf₂] ,which has been reported previously without crystal structure, has now been structurally characterized, along with cerium and lutetium analogue. Also a polymeric structure with samarium has now been synthesized which the neodymium analogue has been reported previously and comparing these polymeric structures can support the idea that the geometry of Sm(tBu₂pz)₃ affect the coordination of the solvent. Also, by using 1,2-dimethoxyethane (DME) instead of tetrahydrofuran (THF) new [Er(tBu₂pz)₃ (dme)₂] has now been reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lanthanoid%20complexes" title="lanthanoid complexes">lanthanoid complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrazolate" title=" pyrazolate"> pyrazolate</a>, <a href="https://publications.waset.org/abstracts/search?q=redox%20transmetalation%2Fprotolysis" title=" redox transmetalation/protolysis"> redox transmetalation/protolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20crystal%20structures" title=" x-ray crystal structures"> x-ray crystal structures</a> </p> <a href="https://publications.waset.org/abstracts/74197/synthesis-of-rare-earth-pyrazolate-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2242</span> Preparation of Nano-Scaled linbo3 by Polyol Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriella%20Dravecz">Gabriella Dravecz</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20P%C3%A9ter"> László Péter</a>, <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20Kis"> Zsolt Kis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abstract— The growth of optical LiNbO3 single crystal and its physical and chemical properties are well known on the macroscopic scale. Nowadays the rare-earth doped single crystals became important for coherent quantum optical experiments: electromagnetically induced transparency, slow down of light pulses, coherent quantum memory. The expansion of applications is increasingly requiring the production of nano scaled LiNbO3 particles. For example, rare-earth doped nanoscaled particles of lithium niobate can be act like single photon source which can be the bases of a coding system of the quantum computer providing complete inaccessibility to strangers. The polyol method is a chemical synthesis where oxide formation occurs instead of hydroxide because of the high temperature. Moreover the polyol medium limits the growth and agglomeration of the grains producing particles with the diameter of 30-200 nm. In this work nano scaled LiNbO3 was prepared by the polyol method. The starting materials (niobium oxalate and LiOH) were diluted in H2O2. Then it was suspended in ethylene glycol and heated up to about the boiling point of the mixture with intensive stirring. After the thermal equilibrium was reached, the mixture was kept in this temperature for 4 hours. The suspension was cooled overnight. The mixture was centrifuged and the particles were filtered. Dynamic Light Scattering (DLS) measurement was carried out and the size of the particles were found to be 80-100 nms. This was confirmed by Scanning Electron Microscope (SEM) investigations. The element analysis of SEM showed large amount of Nb in the sample. The production of LiNbO3 nano particles were succesful by the polyol method. The agglomeration of the particles were avoided and the size of 80-100nm could be reached. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium-niobate" title="lithium-niobate">lithium-niobate</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=polyol" title=" polyol"> polyol</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/136694/preparation-of-nano-scaled-linbo3-by-polyol-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2241</span> Novel Spoke-Type BLDC Motor Design for Cost Effective and High Power Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suyong%20Kim">Suyong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently because of the rise in the price of rare earth magnet, interest of non-rare earth or less-rare earth motor is growing. Especially to achieve the high power density, Spoke-Type BLDC (Brushless Permanent Magnet) Motor with ferrite permanent magnet are spotlighted. But Spoke-Type Ferrite BLDC Motor has much of magnetic flux leakage in the direction of rotor shaft. In order to solve this problem, there are two conventional ways. But conventional ways bring the increases of product cost or the decreases of the power density. Therefore, this paper proposes new Spoke-Type BLDC Rotor shape that has the advantages of both conventional methods. The new shape is consists of a one-piece core. The inside and the outside of the rotor are open alternately. So it can take reduced production cost and high power density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motor" title="motor">motor</a>, <a href="https://publications.waset.org/abstracts/search?q=BLDC" title=" BLDC"> BLDC</a>, <a href="https://publications.waset.org/abstracts/search?q=spoke" title=" spoke"> spoke</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrite" title=" ferrite"> ferrite</a> </p> <a href="https://publications.waset.org/abstracts/26835/novel-spoke-type-bldc-motor-design-for-cost-effective-and-high-power-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">573</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=75">75</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=76">76</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=rare%20earth%20doped%20ZnO&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>