CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 284 results for author: <span class="mathjax">Iorio, L</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/gr-qc" aria-role="search"> Searching in archive <strong>gr-qc</strong>. <a href="/search/?searchtype=author&query=Iorio%2C+L">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Iorio, L"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Iorio%2C+L&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Iorio, L"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2503.07264">arXiv:2503.07264</a> <span> [<a href="https://arxiv.org/pdf/2503.07264">pdf</a>, <a href="https://arxiv.org/format/2503.07264">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-025-13964-x">10.1140/epjc/s10052-025-13964-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Will LAGEOS and LARES 2 succeed in accurately measuring frame-dragging? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2503.07264v1-abstract-short" style="display: inline;"> The current LAGEOS-LARES 2 experiment aims to accurately measure the general relativistic Lense-Thirring effect in the gravitomagnetic field of the spinning Earth generated by the latter's angular momentum $\boldsymbol{J}$. The key quantity to a priori analytically assess the overall systematic uncertainty is the ratio $\mathcal{R}^{J_2}$ of the sum of the classical precessions of the satellites'… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07264v1-abstract-full').style.display = 'inline'; document.getElementById('2503.07264v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2503.07264v1-abstract-full" style="display: none;"> The current LAGEOS-LARES 2 experiment aims to accurately measure the general relativistic Lense-Thirring effect in the gravitomagnetic field of the spinning Earth generated by the latter's angular momentum $\boldsymbol{J}$. The key quantity to a priori analytically assess the overall systematic uncertainty is the ratio $\mathcal{R}^{J_2}$ of the sum of the classical precessions of the satellites' nodes $惟$ induced by the Earth's oblateness $J_2$ to the sum of their post-Newtonian counterparts. $In$ $principle$, if the sum of the inclinations $I$ of both satellites were $exactly$ $180^\circ$, the semimajor axes $a$ and the eccentricities $e$ being $identical$, $\mathcal{R}^{J_2}$ would $exactly$ vanish. Actually, it is $not$ so by a large amount because of the departures of the $real$ satellites' orbital configurations from their $ideal$ ones. Thus, $J_2$ impacts not only directly through its own uncertainty, but also $indirectly$ through the errors in all the other physical and orbital parameters entering $\mathcal{R}^{J_2}$. The consequences of this fact are examined in greater details than done so far in the literature. The Van Patten and Everitt's proposal in 1976 of looking at the sum of the node precessions of two counter-orbiting spacecraft in (low-altitude) circular polar orbits is revamped rebranding it POLAr RElativity Satellites (POLARES). (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2503.07264v1-abstract-full').style.display = 'none'; document.getElementById('2503.07264v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2025. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 17 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 85, 255 (2025) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2412.03945">arXiv:2412.03945</a> <span> [<a href="https://arxiv.org/pdf/2412.03945">pdf</a>, <a href="https://arxiv.org/format/2412.03945">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe10120447">10.3390/universe10120447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Using the Difference of the Inclinations of a Pair of Counter-Orbiting Satellites to Measure the Lense-Thirring Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2412.03945v1-abstract-short" style="display: inline;"> Let two test particles A and B revolving about a spinning primary along ideally identical orbits in opposite directions be considered. From the general expressions of the precessions of the orbital inclination induced by the post-Newtonian gravitomagnetic and Newtonian quadrupolar fields of the central object, it turns out that the Lense-Thirring inclination rates of A and B are equal and opposite… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03945v1-abstract-full').style.display = 'inline'; document.getElementById('2412.03945v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2412.03945v1-abstract-full" style="display: none;"> Let two test particles A and B revolving about a spinning primary along ideally identical orbits in opposite directions be considered. From the general expressions of the precessions of the orbital inclination induced by the post-Newtonian gravitomagnetic and Newtonian quadrupolar fields of the central object, it turns out that the Lense-Thirring inclination rates of A and B are equal and opposite, while the Newtonian ones due to the primary's oblateness are identical. Thus, the difference of the inclination shifts of the two orbiters would allow, in principle, to cancel out the classical effects by enhancing the general relativistic ones. The conditions affecting the orbital configurations that must be satisfied for this to occur and possible observable consequences in the field of Earth are investigated. In particular, a scenario involving two spacecraft in polar orbits, branded POLAr RElativity Satellites (POLARES) and reminiscent of an earlier proposal by Van Patten and Everitt in the mid-1970s, is considered. A comparison with the ongoing experiment with the LAser GEOdynamics Satellite (LAGEOS) and LAser RElativity Satellite (LARES) 2 is made. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2412.03945v1-abstract-full').style.display = 'none'; document.getElementById('2412.03945v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 11 pages, no tables, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2024, 10(12), 447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11292">arXiv:2411.11292</a> <span> [<a href="https://arxiv.org/pdf/2411.11292">pdf</a>, <a href="https://arxiv.org/format/2411.11292">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staf099">10.1093/mnras/staf099 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The no-hair theorems at work in M87$^\ast$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11292v2-abstract-short" style="display: inline;"> Recently, a perturbative calculation to the first post-Newtonian order has shown that the analytically worked out Lense-Thirring precession of the orbital angular momentum of a test particle following a circular path around a massive spinning primary is able to explain the measured features of the jet precession of the supermassive black hole at the centre of the giant elliptical galaxy M87. It is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11292v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11292v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11292v2-abstract-full" style="display: none;"> Recently, a perturbative calculation to the first post-Newtonian order has shown that the analytically worked out Lense-Thirring precession of the orbital angular momentum of a test particle following a circular path around a massive spinning primary is able to explain the measured features of the jet precession of the supermassive black hole at the centre of the giant elliptical galaxy M87. It is shown that also the hole's mass quadrupole moment $Q_2$, as given by the no-hair theorems, has a dynamical effect which cannot be neglected, as, instead, done so far in the literature. New allowed regions for the hole's dimensionless spin parameter $a^\ast$ and the effective radius $r_0$ of the accretion disk, assumed tightly coupled with the jet, are obtained by including both the Lense-Thirring and the quadrupole effects in the dynamics of the effective test particle modeling the accretion disk. One obtains that, by numerically integrating the resulting averaged equations for the rates of change of the angles $畏$ and $蠁$ characterizing the orientation of the orbital angular momentum with $a^\ast = +0.98$ and $r_0=14.1$ gravitational radii, it is possible to reproduce, both quantitatively and qualitatively, the time series for them recently measured with the Very Long Baseline Interferometry technique. Instead, the resulting time series produced with $a^\ast = -0.95$ and $r_0=16$ gravitational radii turn out to be out of phase with respect to the observationally determined ones, while maintaining the same amplitudes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11292v2-abstract-full').style.display = 'none'; document.getElementById('2411.11292v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 7 pages, 2 figures, no tables. Accepted for publication in Monthly Notices of the Royal Astronomical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.537:1470-1474,2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.08686">arXiv:2411.08686</a> <span> [<a href="https://arxiv.org/pdf/2411.08686">pdf</a>, <a href="https://arxiv.org/format/2411.08686">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.111.044035">10.1103/PhysRevD.111.044035 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Lense-Thirring effect at work in M87$^\ast$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.08686v5-abstract-short" style="display: inline;"> Recently, the temporal evolution of the angles characterizing the spatial configuration of the jet in the supermassive black hole M87$^\ast$ was measured exhibiting a precessional pattern around the hole's spin axis. It would be due to the dragging induced by the fact that the hole's external spacetime is described by the Kerr metric. Here, it is shown that the Lense-Thirring orbital precessions o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08686v5-abstract-full').style.display = 'inline'; document.getElementById('2411.08686v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.08686v5-abstract-full" style="display: none;"> Recently, the temporal evolution of the angles characterizing the spatial configuration of the jet in the supermassive black hole M87$^\ast$ was measured exhibiting a precessional pattern around the hole's spin axis. It would be due to the dragging induced by the fact that the hole's external spacetime is described by the Kerr metric. Here, it is shown that the Lense-Thirring orbital precessions of a test particle moving about a rotating massive object, calculated perturbatively to the first post-Newtonian order, are able to fully reproduce all the measured features of the jet axis of M87$^\ast$. In particular, by assuming that the latter is aligned with the angular momentum of the accretion disk, modelled as an effective particle moving along a circular orbit, the condition that the absolute value of the predicted Lense-Thirring precessional frequency of the disk agrees with the measured value of $0.56\pm 0.02$ radians per year of the jet's one is satisfied for a range of physically meaningful values of the hole's spin parameter, close to unity, and of the effective disk radius, of the order of just over a dozen gravitational radii. Relying upon such assumptions and results, it is possible to predict that the angle between the hole's spin axis and the jet's one stays constant over the years amounting to $1.16^\circ$, in agreement with its measured value of $1.25^\circ\pm 0.18^\circ$. Furthermore, also the temporal pattern and the amplitudes of the time series of the jet's angles are reproduced by the aforementioned Lense-Thirring precessional model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.08686v5-abstract-full').style.display = 'none'; document.getElementById('2411.08686v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 March, 2025; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex2e, 15 pages, no tables, 6 figures. A mistake about the relation between the longitude of the ascending node and the position angle corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 111, 044035, 2025 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.12063">arXiv:2409.12063</a> <span> [<a href="https://arxiv.org/pdf/2409.12063">pdf</a>, <a href="https://arxiv.org/format/2409.12063">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad8dc6">10.3847/1538-4357/ad8dc6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Post-Keplerian perturbations of the hyperbolic motion in the field of a rotating massive object. Analysis in terms of osculating and nonosculating (contact) elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.12063v4-abstract-short" style="display: inline;"> The perturbations of the hyperbolic motion of a test particle due to the general relativistic gravitoelectromagnetic Schwarzschild and Lense-Thirring components of the gravitational field of a rotating massive body are analytically worked out to the first post-Newtonian level in terms of the osculating Keplerian orbital elements. To the Newtonian order, the impact of the quadrupole mass moment of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12063v4-abstract-full').style.display = 'inline'; document.getElementById('2409.12063v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.12063v4-abstract-full" style="display: none;"> The perturbations of the hyperbolic motion of a test particle due to the general relativistic gravitoelectromagnetic Schwarzschild and Lense-Thirring components of the gravitational field of a rotating massive body are analytically worked out to the first post-Newtonian level in terms of the osculating Keplerian orbital elements. To the Newtonian order, the impact of the quadrupole mass moment of the source is calculated as well. The resulting analytical expressions are valid for a generic orientation in space of both the orbital plane of the probe and the spin axis of the primary, and for arbitrary values of the eccentricity. They are applied to 'Oumuamua, an interstellar asteroid which recently visited our solar system along an unbound heliocentric orbit, and to the Near Earth Asteroid Rendezvous (NEAR) spacecraft during its flyby of the Earth. The calculational approach developed can be straightforwardly extended to any alternative models of gravity as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.12063v4-abstract-full').style.display = 'none'; document.getElementById('2409.12063v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 22 pages, 5 tables, no figures. Accepted for publication in The Astrophysical Journal. Typo corrected in Equation (34)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 977 44 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.11895">arXiv:2409.11895</a> <span> [<a href="https://arxiv.org/pdf/2409.11895">pdf</a>, <a href="https://arxiv.org/format/2409.11895">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe10090375">10.3390/universe10090375 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the Euler-type gravitomagnetic orbital effects in the field of a precessing body </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.11895v1-abstract-short" style="display: inline;"> To the first post-Newtonian order, the gravitational action of mass-energy currents is encoded by the off-diagonal gravitomagnetic components of the spacetime metric tensor. If they are time-dependent, a further acceleration enters the equations of motion of a moving test particle. Let the source of the gravitational field be an isolated, massive body rigidly rotating whose spin angular momentum e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11895v1-abstract-full').style.display = 'inline'; document.getElementById('2409.11895v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.11895v1-abstract-full" style="display: none;"> To the first post-Newtonian order, the gravitational action of mass-energy currents is encoded by the off-diagonal gravitomagnetic components of the spacetime metric tensor. If they are time-dependent, a further acceleration enters the equations of motion of a moving test particle. Let the source of the gravitational field be an isolated, massive body rigidly rotating whose spin angular momentum experiences a slow precessional motion. The impact of the aforementioned acceleration on the orbital motion of a test particle is analytically worked out in full generality. The resulting averaged rates of change are valid for any orbital configuration of the satellite; furthermore, they hold for an arbitrary orientation of the precessional velocity vector of the spin of the central object. In general, all the orbital elements, with the exception of the mean anomaly at epoch, undergo nonvanishing long-term variations which, in the case of the Juno spacecraft currently orbiting Jupiter and the double pulsar PSR J0737-3039 A/B turn out to be quite small. Such effects might become much more relevant in a star-supermassive black hole scenario; as an example, the relative change of the semimajor axis of a putative test particle orbiting a Kerr black hole as massive as the one at the Galactic Centre at, say, 100 Schwarzschild radii may amount up to about $7\%$ per year if the hole's spin precessional frequency is $10\%$ of the particle's orbital one. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.11895v1-abstract-full').style.display = 'none'; document.getElementById('2409.11895v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 10 pages, no figures, no tables. Accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2024, 10(9), 375 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.09864">arXiv:2404.09864</a> <span> [<a href="https://arxiv.org/pdf/2404.09864">pdf</a>, <a href="https://arxiv.org/format/2404.09864">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe10050206">10.3390/universe10050206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring a gravitomagentic effect with the triple pulsar PSR J0337+1715 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.09864v1-abstract-short" style="display: inline;"> To the first post--Newtonian order, the orbital angular momentum of the fast--revolving inner binary of the triple system PSR J0337+1715, made of a millisecond pulsar and a white dwarf, induces an annular gravitomagnetic field which displaces the line of apsides of the slower orbit of the other, distant white dwarf by $-1.2$ milliarcseconds per year. The current accuracy in determining the periast… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09864v1-abstract-full').style.display = 'inline'; document.getElementById('2404.09864v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.09864v1-abstract-full" style="display: none;"> To the first post--Newtonian order, the orbital angular momentum of the fast--revolving inner binary of the triple system PSR J0337+1715, made of a millisecond pulsar and a white dwarf, induces an annular gravitomagnetic field which displaces the line of apsides of the slower orbit of the other, distant white dwarf by $-1.2$ milliarcseconds per year. The current accuracy in determining the periastron of the outer orbit is $63.9$ milliarcseconds after 1.38 years of data collection. By hypothesizing a constant rate of measurement of the pulsar's times of arrivals over the next 10 years, assumed equal to the present one, it can be argued that the periastron will be finally known to a $\simeq 0.15$ milliarcseconds level, while its cumulative gravitomagnetic retrograde shift will be as large as $-12$ milliarcseconds. The competing post--Newtonian gravitolectric periastron advance due to the inner binary's masses, nominally amounting to $74.3$ milliarcseconds per year, can be presently modelled to an accuracy level as good as $\simeq 0.04$ milliarcseconds per year. The mismodelling in the much larger Newtonian periastron rate due to the quadrupolar term of the multipolar expansion of the gravitational potential of a massive ring, whose nominal size for PSR J0337+1715 is $0.17$ degrees per year, might be reduced down to the $\simeq 0.5$ milliarcseconds per year level over the next 10 years. Thus, a first measurement of such a novel form of gravitomagnetism, although challenging, may be somehow feasible in a not too distant future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.09864v1-abstract-full').style.display = 'none'; document.getElementById('2404.09864v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 6 pages, no figures, no tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2024, 10(5), 206 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14311">arXiv:2310.14311</a> <span> [<a href="https://arxiv.org/pdf/2310.14311">pdf</a>, <a href="https://arxiv.org/format/2310.14311">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/timespace1010002">10.3390/timespace1010002 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> When the anomalistic, draconitic and sidereal orbital periods do not coincide: the impact of post-Keplerian perturbing accelerations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14311v2-abstract-short" style="display: inline;"> In a purely Keplerian picture, the anomalistic, draconitic and sidereal orbital periods of a test particle orbiting a massive body coincide with each other. Such a degeneracy is removed when a post-Keplerian perturbing acceleration enters the equations of motion yielding generally different corrections to the Keplerian period for the three aforementioned characteristic orbital timescales. They are… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14311v2-abstract-full').style.display = 'inline'; document.getElementById('2310.14311v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14311v2-abstract-full" style="display: none;"> In a purely Keplerian picture, the anomalistic, draconitic and sidereal orbital periods of a test particle orbiting a massive body coincide with each other. Such a degeneracy is removed when a post-Keplerian perturbing acceleration enters the equations of motion yielding generally different corrections to the Keplerian period for the three aforementioned characteristic orbital timescales. They are analytically worked out in the case of the accelerations induced by the general relativistic post-Newtonian gravitoelectromagnetic fields and, to the Newtonian level, by the oblateness of the central body as well. The resulting expressions hold for completely general orbital configurations and spatial orientations of the spin axis of the primary. Astronomical systems characterized by extremely accurate measurements of the orbital periods like, e.g., transiting exoplanets and binary pulsars, may offer potentially viable scenarios for measuring such post--Keplerian features of motion, at least in principle. As an example, the sidereal period of the brown dwarf WD1032 + 011 b is currently known with an uncertainty as small as $\simeq 10^{-5}\,\mathrm{s}$, while its predicted post-Newtonian gravitoelectric correction amounts to $0.07\,\mathrm{s}$; however, the accuracy with which the Keplerian period can be calculated is just 572 s. For the double pulsar PSR J0737-3039, the largest relativistic correction to the anomalistic period amounts to a few tenths of a second, given a measurement error of such a characteristic orbital timescale as small as $\simeq 10^{-6}\,\mathrm{s}$. On the other hand, the Keplerian term can be currently calculated just to a $\simeq 9$ s accuracy. In principle, measuring at least two of the three characteristic orbital periods for the same system independently would allow to cancel out their common Keplerian component provided that their difference is taken. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14311v2-abstract-full').style.display = 'none'; document.getElementById('2310.14311v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 29 pages, 17 figures, no tables. Accepted for publication in Time and Space</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Time Space 2024, 1(1), 3-34 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13118">arXiv:2310.13118</a> <span> [<a href="https://arxiv.org/pdf/2310.13118">pdf</a>, <a href="https://arxiv.org/ps/2310.13118">ps</a>, <a href="https://arxiv.org/format/2310.13118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/andp.202300466">10.1002/andp.202300466 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Review of the Gravitomagnetic Clock Effect </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Mashhoon%2C+B">Bahram Mashhoon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13118v6-abstract-short" style="display: inline;"> The general relativistic gravitomagnetic clock effect, in its simplest form, consists of the non-vanishing difference in the orbital periods of two counter-orbiting objects moving in opposite directions along circular orbits lying in the equatorial plane of a central rotating source. We briefly review both the theoretical and observational aspects of such an intriguing consequence of Einstein's th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13118v6-abstract-full').style.display = 'inline'; document.getElementById('2310.13118v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13118v6-abstract-full" style="display: none;"> The general relativistic gravitomagnetic clock effect, in its simplest form, consists of the non-vanishing difference in the orbital periods of two counter-orbiting objects moving in opposite directions along circular orbits lying in the equatorial plane of a central rotating source. We briefly review both the theoretical and observational aspects of such an intriguing consequence of Einstein's theory of gravitation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13118v6-abstract-full').style.display = 'none'; document.getElementById('2310.13118v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex2e, 33 pages, no figures, no tables, 132 references. Typo in Eq.(38) corrected, references added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Ann. Phys. (Berlin) 536, 2300466 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02838">arXiv:2310.02838</a> <span> [<a href="https://arxiv.org/pdf/2310.02838">pdf</a>, <a href="https://arxiv.org/ps/2310.02838">ps</a>, <a href="https://arxiv.org/format/2310.02838">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1007/s10714-023-03184-7">10.1007/s10714-023-03184-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The post-Newtonian motion around an oblate spheroid: the mixed orbital effects due to the Newtonian oblateness and the post-Newtonian mass monopole accelerations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02838v4-abstract-short" style="display: inline;"> When a test particle moves about an oblate spheroid, it is acted upon, among other things, by two standard perturbing accelerations. One, of Newtonian origin, is due to the quadrupole mass moment $J_2$ of the orbited body. The other one, of the order of $\mathcal{O}\left(1/c^2\right)$, is caused by the static, post-Newtonian field arising solely from the mass of the central object. Both of them co… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02838v4-abstract-full').style.display = 'inline'; document.getElementById('2310.02838v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02838v4-abstract-full" style="display: none;"> When a test particle moves about an oblate spheroid, it is acted upon, among other things, by two standard perturbing accelerations. One, of Newtonian origin, is due to the quadrupole mass moment $J_2$ of the orbited body. The other one, of the order of $\mathcal{O}\left(1/c^2\right)$, is caused by the static, post-Newtonian field arising solely from the mass of the central object. Both of them concur to induce \textrm{indirect}, \textrm{mixed} orbital effects of the order of $\mathcal{O}\left(J_2/c^2\right)$. They are of the same order of magnitude of the \textrm{direct} ones induced by the post-Newtonian acceleration arising in presence of an oblate source, not treated here. We calculate these less known features of motion in their full generality in terms of the osculating Keplerian orbital elements. Subtleties pertaining the correct calculation of their mixed net \textrm{precessions} per orbit to the full order of $\mathcal{O}\left(J_2/c^2\right)$ are elucidated. The obtained results hold for arbitrary orbital geometries and for any orientation of the body's spin axis $\mathbf{\hat{k}}$ in space. The method presented is completely general, and can be extended to any pair of post-Keplerian accelerations entering the equations of motion of the satellite, irrespectively of their physical nature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02838v4-abstract-full').style.display = 'none'; document.getElementById('2310.02838v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, no Figures, no Tables, 20 pages. Version accepted for publication in General Relativity and Gravitation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Gen. Relativ. Gravit. 55 (2023) 136 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.02834">arXiv:2310.02834</a> <span> [<a href="https://arxiv.org/pdf/2310.02834">pdf</a>, <a href="https://arxiv.org/ps/2310.02834">ps</a>, <a href="https://arxiv.org/format/2310.02834">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ad1833">10.3847/1538-3881/ad1833 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Post-Newtonian orbital effects induced by the mass quadrupole and spin octupole moments of an axisymmetric body </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.02834v5-abstract-short" style="display: inline;"> The post-Newtonian orbital effects induced by the mass quadrupole and spin octupole moments of an isolated, oblate spheroid of constant density that is rigidly and uniformly rotating on the motion of a test particle are analytically worked out for an arbitrary orbital configuration and without any preferred orientation of the body's spin axis. The resulting expressions are specialized to the cases… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02834v5-abstract-full').style.display = 'inline'; document.getElementById('2310.02834v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.02834v5-abstract-full" style="display: none;"> The post-Newtonian orbital effects induced by the mass quadrupole and spin octupole moments of an isolated, oblate spheroid of constant density that is rigidly and uniformly rotating on the motion of a test particle are analytically worked out for an arbitrary orbital configuration and without any preferred orientation of the body's spin axis. The resulting expressions are specialized to the cases of (a) equatorial and (b) polar orbits. The opportunity offered by a hypothetical new spacecraft moving around Jupiter along a Juno-like highly elliptical, polar orbit to measure them is preliminarily studied. Although more difficult to be practically implemented, also the case of a less elliptical orbit is considered since it yields much larger figures for the relativistic effects of interest. The possibility of using the S stars orbiting the supermassive black hole in Sgr A$^\ast$ at the Galactic Center as probes to potentially constrain some parameters of the predicted extended mass distribution surrounding the hole by means of the aforementioned orbital effects is briefly examined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.02834v5-abstract-full').style.display = 'none'; document.getElementById('2310.02834v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 6 Figures, 2 Tables, 22 pages. Version matching the one at press in The Astronomical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron. J. 167 (2024) 78 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.17432">arXiv:2306.17432</a> <span> [<a href="https://arxiv.org/pdf/2306.17432">pdf</a>, <a href="https://arxiv.org/ps/2306.17432">ps</a>, <a href="https://arxiv.org/format/2306.17432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace34a">10.3847/1538-4357/ace34a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Is it possible to measure the Lense-Thirring orbital shifts of the short-period S-star S4716 orbiting Sgr A$^\ast$? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.17432v1-abstract-short" style="display: inline;"> The maximal values of the general relativistic Lense-Thirring (LT) orbital shifts $螖I^\mathrm{LT},\,螖惟^\mathrm{LT}$ and $螖蠅^\mathrm{LT}$ of the inclination $I$, the longitude of the ascending node $惟$ and the perinigricon $蠅$ of the recently discovered star S4716, which has the shortest orbital period $\left(P_\mathrm{b}=4.02\,\mathrm{yr}\right)$ of all the S-stars that orbit the supermassive blac… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17432v1-abstract-full').style.display = 'inline'; document.getElementById('2306.17432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.17432v1-abstract-full" style="display: none;"> The maximal values of the general relativistic Lense-Thirring (LT) orbital shifts $螖I^\mathrm{LT},\,螖惟^\mathrm{LT}$ and $螖蠅^\mathrm{LT}$ of the inclination $I$, the longitude of the ascending node $惟$ and the perinigricon $蠅$ of the recently discovered star S4716, which has the shortest orbital period $\left(P_\mathrm{b}=4.02\,\mathrm{yr}\right)$ of all the S-stars that orbit the supermassive black hole (SMBH) in Sgr A$^\ast$, are of the order of $\simeq 5-16$ arcseconds per revolution $\left(^{\prime\prime}\,\mathrm{rev}^{-1}\right)$. Given the current error $蟽_蠅= 0.02^\circ$ in determining $蠅$, which is the most accurate orbital parameter of S4716 among all those affected by the SMBH's gravitomagnetic field through its angular momentum ${\boldsymbol{J}}_\bullet$, about 48 yr would be needed to reduce $蟽_蠅$ to $\simeq 10\%$ of the cumulative LT perinigricon shift over the same time span. Measuring $螖I^\mathrm{LT}$ and $螖惟^\mathrm{LT}$ to the same level of accuracy would take even much longer. Instead, after just 16 yr, a per cent measurement of the larger gravitoelectric (GE) Schwarzschild-like perinigricon shift $螖蠅^\mathrm{GE}$, which depends only on the SMBH's mass $M_\bullet$, would be possible. On the other hand, the uncertainties in the physical and orbital parameters entering $螖蠅^\mathrm{GE}$ would cause a huge systematic bias of $螖蠅^\mathrm{LT}$ itself. The SMBH's quadrupole mass moment $Q_2^\bullet$ induces orbital shifts as little as $\simeq 0.01-0.05\,^{\prime\prime}\,\mathrm{rev}^{-1}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.17432v1-abstract-full').style.display = 'none'; document.getElementById('2306.17432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 13 pages, 4 tables, 1 figure. Accepted for publication in The Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 954 (2023) 219 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.14649">arXiv:2304.14649</a> <span> [<a href="https://arxiv.org/pdf/2304.14649">pdf</a>, <a href="https://arxiv.org/ps/2304.14649">ps</a>, <a href="https://arxiv.org/format/2304.14649">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe9050211">10.3390/universe9050211 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Limitations in Testing the Lense-Thirring Effect with LAGEOS and the Newly Launched Geodetic Satellite LARES 2 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.14649v1-abstract-short" style="display: inline;"> The new geodetic satellite LARES 2, cousin of LAGEOS and sharing with it almost the same orbital parameters apart from the inclination, displaced by 180 deg, was launched last year. Its proponents suggest using the sum of the nodes of LAGEOS and of LARES 2 to measure the sum of the Lense-Thirring node precessions independently of the systematic bias caused by the even zonal harmonics of the geopot… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14649v1-abstract-full').style.display = 'inline'; document.getElementById('2304.14649v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.14649v1-abstract-full" style="display: none;"> The new geodetic satellite LARES 2, cousin of LAGEOS and sharing with it almost the same orbital parameters apart from the inclination, displaced by 180 deg, was launched last year. Its proponents suggest using the sum of the nodes of LAGEOS and of LARES 2 to measure the sum of the Lense-Thirring node precessions independently of the systematic bias caused by the even zonal harmonics of the geopotential, claiming a final $\simeq 0.2$ percent total accuracy. In fact, the actual orbital configurations of the two satellites do not allow one to attain the sought for mutual cancellation of their classical node precessions due to the Earth's quadrupole mass moment, as their sum is still $\simeq 5000$ times larger than the added general relativistic rates. This has important consequences. One is that the current uncertainties in the eccentricities and the inclinations of both satellites do not presently allow the stated accuracy goal to be met, needing improvements of 3-4 orders of magnitude. Furthermore, the imperfect knowledge of the Earth's angular momentum $S$ impacts the uncancelled sum of the node precessions, from 150 to 4900 percent of the relativistic signal depending on the uncertainty assumed in $S$. It is finally remarked that the real breakthrough in reliably testing the gravitomagnetic field of the Earth would consist in modeling it and simultaneously estimating one or more dedicated parameter(s) along with other ones characterising the geopotential, as is customarily performed for any other dynamical feature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.14649v1-abstract-full').style.display = 'none'; document.getElementById('2304.14649v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 17 pages, no figures, no tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2023, 9(5), 211 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.02289">arXiv:2304.02289</a> <span> [<a href="https://arxiv.org/pdf/2304.02289">pdf</a>, <a href="https://arxiv.org/ps/2304.02289">ps</a>, <a href="https://arxiv.org/format/2304.02289">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe9070304">10.3390/universe9070304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Lense-Thirring effect on the Galilean moons of Jupiter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.02289v2-abstract-short" style="display: inline;"> The perspectives of detecting the general relativistic gravitomagnetic Lense-Thirring effect on the orbits of the Galilean moons of Jupiter induced by the angular momentum ${\boldsymbol{S}}$ of the latter are preliminarily investigated. Numerical integrations over one century show that the expected gravitomagnetic signatures of the directly observable right ascension $伪$ and declination $未$ of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02289v2-abstract-full').style.display = 'inline'; document.getElementById('2304.02289v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.02289v2-abstract-full" style="display: none;"> The perspectives of detecting the general relativistic gravitomagnetic Lense-Thirring effect on the orbits of the Galilean moons of Jupiter induced by the angular momentum ${\boldsymbol{S}}$ of the latter are preliminarily investigated. Numerical integrations over one century show that the expected gravitomagnetic signatures of the directly observable right ascension $伪$ and declination $未$ of the satellites are as large as tens of arcseconds for Io, while for Callisto they drop to the $\simeq 0.2\,\mathrm{arcseconds}$ level. Major competing effects due to the mismodeling in the zonal multipoles $J_\ell,\,\ell=2,\,3,\,4,\,\ldots$ of the Jovian non-spherically symmetric gravity field and in the Jupiter's spin axis ${\boldsymbol{\hat{k}}}$ should have a limited impact, especially in view of the future improvements in determining such parameters expected after the completion of the ongoing Juno mission in the next few years. On the other hand, the masses of the satellites, responsible of their mutual $N-$body perturbations, should be known better than now. Such a task should be accomplished with the future JUICE and Clipper missions to the Jovian system. Present-day accuracy in knowing the orbits of the Jovian Galilean satellites is of the order of 10 milliarcseconds, to be likely further improved thanks to the ongoing re-reduction of old photographic plates. This suggests that, in the next future, the Lense-Thirring effect in the main Jovian system of moons might be detectable with dedicated data reductions in which the gravitomagnetic field is explicitly modeled and solved-for. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.02289v2-abstract-full').style.display = 'none'; document.getElementById('2304.02289v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 20 pages, 4 figures, no tables. Refereed version accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2023, 9(7), 304 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.00812">arXiv:2303.00812</a> <span> [<a href="https://arxiv.org/pdf/2303.00812">pdf</a>, <a href="https://arxiv.org/format/2303.00812">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad1446">10.1093/mnras/stad1446 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> One EURO for Uranus: the Elliptical Uranian Relativity Orbiter mission </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Girija%2C+A+P">Athul P. Girija</a>, <a href="/search/gr-qc?searchtype=author&query=Durante%2C+D">Daniele Durante</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.00812v3-abstract-short" style="display: inline;"> Recent years have seen increasing interest in sending a mission to Uranus, visited so far only by Voyager 2 in 1986. EURO (Elliptical Uranian Relativity Orbiter) is a preliminary mission concept investigating the possibility of dynamically measuring the planet's angular momentum by means of the Lense-Thirring effect affecting a putative Uranian orbiter. It is possible, at least in principle, to se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00812v3-abstract-full').style.display = 'inline'; document.getElementById('2303.00812v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.00812v3-abstract-full" style="display: none;"> Recent years have seen increasing interest in sending a mission to Uranus, visited so far only by Voyager 2 in 1986. EURO (Elliptical Uranian Relativity Orbiter) is a preliminary mission concept investigating the possibility of dynamically measuring the planet's angular momentum by means of the Lense-Thirring effect affecting a putative Uranian orbiter. It is possible, at least in principle, to separate the relativistic precessions of the orbital inclination to the Celestial Equator and of the longitude of the ascending node of the spacecraft from its classical rates of the pericentre induced by the multipoles of the planet's gravity field by adopting an appropriate orbital configuration. For a wide and elliptical $2\,000\times 100\,000\,\mathrm{km}$ orbit, the gravitomagnetic signatures amount to tens of milliarcseconds per year, while, for a suitable choice of the initial conditions, the peak-to-peak amplitude of the range-rate shift can reach the level of $\simeq 1.5\times 10^{-3}$ millimetre per second in a single pericentre passage of a few hours. By lowering the apocentre height to $10\,000\,\mathrm{km}$, the Lense-Thirring precessions are enhanced to the level of hundreds of milliarcseconds per year. The uncertainties in the orientation of the planetary spin axis and in the inclination are major sources of systematic bias; it turns out that they should be determined with accuracies as good as $\simeq 0.1-1$ and $\simeq 1-10$ milliarcseconds, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.00812v3-abstract-full').style.display = 'none'; document.getElementById('2303.00812v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 40 pages, 7 figures, no tables. Minor revisions. Accepted in Monthly Notices of the Royal Astronomical Society</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.523:3595-3614,2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.07323">arXiv:2212.07323</a> <span> [<a href="https://arxiv.org/pdf/2212.07323">pdf</a>, <a href="https://arxiv.org/ps/2212.07323">ps</a>, <a href="https://arxiv.org/format/2212.07323">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe9010037">10.3390/universe9010037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Might the 2PN perihelion precession of Mercury become measurable in the next future? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.07323v2-abstract-short" style="display: inline;"> The Hermean average perihelion rate $\dot蠅^\mathrm{2PN}$, calculated to the second post-Newtonian (2PN) order with the Gauss perturbing equations and the osculating Keplerian orbital elements, ranges from $-18$ to $-4$ microarcseconds per century $\left(渭\mathrm{as\,cty}^{-1}\right)$, depending on the true anomaly at epoch $f_0$. It is the sum of four contributions: one of them is the direct conse… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07323v2-abstract-full').style.display = 'inline'; document.getElementById('2212.07323v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.07323v2-abstract-full" style="display: none;"> The Hermean average perihelion rate $\dot蠅^\mathrm{2PN}$, calculated to the second post-Newtonian (2PN) order with the Gauss perturbing equations and the osculating Keplerian orbital elements, ranges from $-18$ to $-4$ microarcseconds per century $\left(渭\mathrm{as\,cty}^{-1}\right)$, depending on the true anomaly at epoch $f_0$. It is the sum of four contributions: one of them is the direct consequence of the 2PN acceleration entering the equations of motion, while the other three are indirect effects of the 1PN component of the Sun's gravitational field. An evaluation of the merely formal uncertainty of the experimental Mercury's perihelion rate $\dot蠅_\mathrm{exp}$ recently published by the present author, based on 51 years of radiotechnical data processed with the EPM2017 planetary ephemerides by the astronomers E.V. Pitjeva and N.P. Pitjev, is $蟽_{\dot蠅_\mathrm{exp}}\simeq 8\,渭\mathrm{as\,cty}^{-1}$, corresponding to a relative accuracy of $2\times 10^{-7}$ for the combination $\left(2 + 2纬- 尾\right)/3$ of the PPN parameters $尾$ and $纬$ scaling the well known 1PN perihelion precession. In fact, the realistic uncertainty may be up to $\simeq 10-50$ times larger, despite reprocessing the now available raw data of the former MESSENGER mission with a recent improved solar corona model should ameliorate our knowledge of the Hermean orbit. The BepiColombo spacecraft, currently en route to Mercury, might reach a $\simeq 10^{-7}$ accuracy level in constraining $尾$ and $纬$ in an extended mission, despite $\simeq 10^{-6}$ seems more likely according to most of the simulations currently available in the literature. Thus, it might be that in the not too distant future it will be necessary to include the 2PN acceleration in the Solar System's dynamics as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.07323v2-abstract-full').style.display = 'none'; document.getElementById('2212.07323v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 13 pages, 1 figure, no tables. Accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2023, 9(1), 37 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09154">arXiv:2210.09154</a> <span> [<a href="https://arxiv.org/pdf/2210.09154">pdf</a>, <a href="https://arxiv.org/ps/2210.09154">ps</a>, <a href="https://arxiv.org/format/2210.09154">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe8100546">10.3390/universe8100546 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Frame-Dragging in Extrasolar Circumbinary Planetary Systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09154v1-abstract-short" style="display: inline;"> Extrasolar circumbinary planets are so called because they orbit two stars instead of just one; to date, an increasing number of such planets have been discovered with a variety of techniques. If the orbital frequency of the hosting stellar pair is much higher than the planetary one, the tight stellar binary can be considered as a matter ring current generating its own post-Newtonian stationary gr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09154v1-abstract-full').style.display = 'inline'; document.getElementById('2210.09154v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09154v1-abstract-full" style="display: none;"> Extrasolar circumbinary planets are so called because they orbit two stars instead of just one; to date, an increasing number of such planets have been discovered with a variety of techniques. If the orbital frequency of the hosting stellar pair is much higher than the planetary one, the tight stellar binary can be considered as a matter ring current generating its own post-Newtonian stationary gravitomagnetic field through its orbital angular momentum. It affects the orbital motion of a relatively distant planet with Lense-Thirring-type precessional effects which, under certain circumstances, may amount to a significant fraction of the static, gravitoelectric ones, analogous to the well known Einstein perihelion precession of Mercury, depending only on the masses of the system's bodies. Instead, when the gravitomagnetic field is due solely to the spin of each of the central star(s), the Lense-Thirring shifts are several orders of magnitude smaller than the gravitoelectric ones. In view of the growing interest in the scientific community about the detection of general relativistic effects in exoplanets, the perspectives of finding new scenarios for testing such a further manifestation of general relativity might be deemed worth of further investigations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09154v1-abstract-full').style.display = 'none'; document.getElementById('2210.09154v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 15 pages, no tables, 2 figures. Accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2022, 8(10), 546 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.10191">arXiv:2208.10191</a> <span> [<a href="https://arxiv.org/pdf/2208.10191">pdf</a>, <a href="https://arxiv.org/ps/2208.10191">ps</a>, <a href="https://arxiv.org/format/2208.10191">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe8090443">10.3390/universe8090443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of some modified models of gravity on the radial velocity of binary systems </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Ruggiero%2C+M+L">Matteo Luca Ruggiero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.10191v2-abstract-short" style="display: inline;"> For many classes of astronomical and astrophysical binary systems, long observational records of their radial velocity $V$, which is their directly observable quantity, are available. For exoplanets close to their parent stars, they cover several full orbital revolutions, while for wide binaries like, e.g., the Proxima/$伪$ Centauri AB system, only relatively short orbital arcs are sampled by exist… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10191v2-abstract-full').style.display = 'inline'; document.getElementById('2208.10191v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.10191v2-abstract-full" style="display: none;"> For many classes of astronomical and astrophysical binary systems, long observational records of their radial velocity $V$, which is their directly observable quantity, are available. For exoplanets close to their parent stars, they cover several full orbital revolutions, while for wide binaries like, e.g., the Proxima/$伪$ Centauri AB system, only relatively short orbital arcs are sampled by existing radial velocity measurements. Here, the changes $螖V$ induced on a binary's radial velocity by some long-range modified models of gravity are analytically calculated. In particular, extra-potentials proportional to $r^{-N},\,N=2,\,3$ and $r^2$ are considered; the Cosmological Constant $螞$ belongs to the latter group. Both the net shift per orbit and the instantaneous one are explicitly calculated for each model. The Cosmological Constant induces a shift in the radial velocity of the Proxima/$伪$ Centauri AB binary as little as $\left|螖V\right|\lesssim 10^{-7}\,\mathrm{m\,s}^{-1}$, while the present-day accuracy in measuring its radial velocity is $蟽_V\simeq 30\,\mathrm{m\,s}^{-1}$. The calculational scheme presented here is quite general, and can be straightforwardly extended to any other modified gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.10191v2-abstract-full').style.display = 'none'; document.getElementById('2208.10191v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 19 pages, no tables, no figures. Version matching the one at press in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2022, 8(9), 443 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.04628">arXiv:2208.04628</a> <span> [<a href="https://arxiv.org/pdf/2208.04628">pdf</a>, <a href="https://arxiv.org/ps/2208.04628">ps</a>, <a href="https://arxiv.org/format/2208.04628">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stac2610">10.1093/mnras/stac2610 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Post-Newtonian effects on some characteristic timescales of transiting exoplanets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.04628v3-abstract-short" style="display: inline;"> Some measurable characteristic timescales $\left\{t_\mathrm{trn}\right\}$ of transiting exoplanets are investigated in order to check preliminarily if their cumulative shifts over the years induced by the post-Newtonian (pN) gravitoelectric (Schwarzschild) and gravitomagnetic (Lense-Thirring) components of the stellar gravitational field are, at least in principle, measurable. Both the primary (pl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04628v3-abstract-full').style.display = 'inline'; document.getElementById('2208.04628v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.04628v3-abstract-full" style="display: none;"> Some measurable characteristic timescales $\left\{t_\mathrm{trn}\right\}$ of transiting exoplanets are investigated in order to check preliminarily if their cumulative shifts over the years induced by the post-Newtonian (pN) gravitoelectric (Schwarzschild) and gravitomagnetic (Lense-Thirring) components of the stellar gravitational field are, at least in principle, measurable. Both the primary (planet in front of the star) and the secondary (planet behind the star) transits are considered along with their associated characteristic time intervals: the total transit duration $t_D$, the ingress/egress transit duration $蟿$, the full width at half maximum primary transit duration $t_H$, and also the time of conjunction $t_\mathrm{cj}$. For each of them, the net changes per orbit $\langle螖t_D\rangle,\,\langle螖蟿\rangle,\,\langle螖t_H\rangle,\,\langle螖t_\mathrm{cj}\rangle$ induced by the aforementioned pN accelerations are analytically obtained; also the Newtonian effect of the star's quadrupole mass moment $J_2^\star$ is worked out. They are calculated for a fictitious Sun-Jupiter system in an edge-on elliptical orbit, and the results are compared with the present-day experimental accuracies for the HD 286123 b exoplanet. Its pN gravitoelectric shift $\left\langle螖t_\mathrm{cj}^\mathrm{1pN}\right\rangle$ may become measurable, at least in principle, at a $\simeq 8\times 10^{-5}$ level of (formal) relative accuracy after about 30 years of continuous monitoring corresponding to about 1000 transits. Systematics like, e.g., confusing time standards, neglecting star spots, neglecting clouds, would likely deteriorate the actual accuracy. The method presented is general enough to be applied also to modified models of gravity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.04628v3-abstract-full').style.display = 'none'; document.getElementById('2208.04628v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 27 pages, 2 figures, no tables. Remark about the temporal features of the pN signatures added</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.518:2599-2613,2023 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.14657">arXiv:2206.14657</a> <span> [<a href="https://arxiv.org/pdf/2206.14657">pdf</a>, <a href="https://arxiv.org/ps/2206.14657">ps</a>, <a href="https://arxiv.org/format/2206.14657">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe8110608">10.3390/universe8110608 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of Lorentz violation models on exoplanets dynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Gallerati%2C+A">Antonio Gallerati</a>, <a href="/search/gr-qc?searchtype=author&query=Ruggiero%2C+M+L">Matteo Luca Ruggiero</a>, <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.14657v1-abstract-short" style="display: inline;"> Many exoplanets were detected thanks to the radial velocity method, according to which the motion of a binary system around its center of mass can produce a periodical variation of the Doppler effect of the light emitted by the host star. These variations are influenced by both Newtonian and non-Newtonian perturbations to the dominant inverse-square acceleration; accordingly, exoplanetary systems… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14657v1-abstract-full').style.display = 'inline'; document.getElementById('2206.14657v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.14657v1-abstract-full" style="display: none;"> Many exoplanets were detected thanks to the radial velocity method, according to which the motion of a binary system around its center of mass can produce a periodical variation of the Doppler effect of the light emitted by the host star. These variations are influenced by both Newtonian and non-Newtonian perturbations to the dominant inverse-square acceleration; accordingly, exoplanetary systems lend themselves to test theories of gravity alternative to General Relativity. In this paper, we consider the impact of Standard Model Extension (a model that can be used to test all possible Lorentz violations) on the perturbation of radial velocity, and suggest that suitable exoplanets configurations and improvements in detection techniques may contribute to obtain new constraints on the model parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.14657v1-abstract-full').style.display = 'none'; document.getElementById('2206.14657v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 1 figure, comments are welcome</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2022, 8(11), 608 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.12951">arXiv:2203.12951</a> <span> [<a href="https://arxiv.org/pdf/2203.12951">pdf</a>, <a href="https://arxiv.org/ps/2203.12951">ps</a>, <a href="https://arxiv.org/format/2203.12951">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe8040203">10.3390/universe8040203 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Why the mean anomaly at epoch is not used in tests of non-Newtonian gravity? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.12951v1-abstract-short" style="display: inline;"> The mean anomaly at epoch $畏$ is one of the standard six Keplerian orbital elements in terms of which the motion of the two-body problem is parameterized. Along with the argument of pericenter $蠅$, $畏$ experiences long-term rates of change induced, among other things, by general relativity and several modified models of gravity. Thus, in principle, it may be fruitfully adopted together with $蠅$ in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12951v1-abstract-full').style.display = 'inline'; document.getElementById('2203.12951v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.12951v1-abstract-full" style="display: none;"> The mean anomaly at epoch $畏$ is one of the standard six Keplerian orbital elements in terms of which the motion of the two-body problem is parameterized. Along with the argument of pericenter $蠅$, $畏$ experiences long-term rates of change induced, among other things, by general relativity and several modified models of gravity. Thus, in principle, it may be fruitfully adopted together with $蠅$ in several tests of post-Newtonian gravity performed with astronomical and astrophysical binary systems. This would allow to enhance the gravitational signature one is interested in and to disentangle some competing disturbing effects acting as sources of systematic bias. Nonetheless, for some reasons unknown to the present author, $畏$ has never been used so far by astronomers in actual data reductions. This note aims to raise interest in the community about the possible practical use of such an orbital element or, at least, to induce experts in astronomical data processing to explicitly make clear if it is not possible to use $畏$ for testing gravitational models and, in this case, why. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.12951v1-abstract-full').style.display = 'none'; document.getElementById('2203.12951v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 7 pages, no figures, no tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2022, 8(4), 203 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07126">arXiv:2107.07126</a> <span> [<a href="https://arxiv.org/pdf/2107.07126">pdf</a>, <a href="https://arxiv.org/format/2107.07126">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe7110443">10.3390/universe7110443 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the 2PN periastron precession of the Double Pulsar PSR J0737-3039A/B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07126v1-abstract-short" style="display: inline;"> One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit $k^\mathrm{PK}$. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession $\dot蠅^\mathrm{PK}$. It was recently remarked that the periastron $蠅$ of PSR J0737--3039A/B may be used to measu… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07126v1-abstract-full').style.display = 'inline'; document.getElementById('2107.07126v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07126v1-abstract-full" style="display: none;"> One of the post-Keplerian (PK) parameters determined in timing analyses of several binary pulsars is the fractional periastron advance per orbit $k^\mathrm{PK}$. Along with other PK parameters, it is used in testing general relativity once it is translated into the periastron precession $\dot蠅^\mathrm{PK}$. It was recently remarked that the periastron $蠅$ of PSR J0737--3039A/B may be used to measure/constrain the moment of inertia of A through the extraction of the general relativistic Lense-Thirring precession $\dot蠅^\mathrm{LT,\,A}\simeq -0.00060^\circ\,\mathrm{yr}^{-1}$ from the experimentally determined periastron rate $\dot蠅_\mathrm{obs}$ provided that the other post--Newtonian (PN) contributions to $\dot蠅_\mathrm{exp}$ can be accurately modeled. Among them, the 2PN one seems to be of the same order of magnitude of $\dot蠅^\mathrm{LT,\,A}$. An analytical expression of the total 2PN periastron precession $\dot蠅^\mathrm{2PN}$ in terms of the osculating Keplerian orbital elements, valid not only for binary pulsars, is provided elucidating the subtleties implied in correctly calculating it from $k^\mathrm{1PN}+k^\mathrm{2PN}$ and correcting some past errors by the present author. The formula for $\dot蠅^\mathrm{2PN}$ is demonstrated to be equivalent to that obtainable from $k^\mathrm{1PN}+k^\mathrm{2PN}$ by Damour and Sch盲fer expressed in the Damour-Deruelle (DD) parameterization. $\dot蠅^\mathrm{2PN}$ actually depends on the initial orbital phase, hidden in the DD picture, so that $-0.00080^\circ\,\mathrm{yr}^{-1} \leq\dot蠅^\mathrm{2PN}\leq -0.00045^\circ\,\mathrm{\,yr}^{-1}$. A recently released prediction of $\dot蠅^\mathrm{2PN}$ for \psrab\, is discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07126v1-abstract-full').style.display = 'none'; document.getElementById('2107.07126v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 16 pages, 2 figures, no tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2021, 7(11), 443 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.07118">arXiv:2107.07118</a> <span> [<a href="https://arxiv.org/pdf/2107.07118">pdf</a>, <a href="https://arxiv.org/format/2107.07118">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stab2152">10.1093/mnras/stab2152 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The impact of the spin-orbit misalignment and of the spin of B on the Lense-Thrirring orbital precessions of the Double Pulsar PSR J0737-3039A/B </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.07118v3-abstract-short" style="display: inline;"> In the Double Pulsar, the Lense-Thirring periastron precession $\dot蠅^\mathrm{LT}$ should be measured by the end of this decade. The analyses recently appeared in the literature rely upon a formula for $\dot蠅^\mathrm{LT,\,A}$ induced by the spin angular momentum ${\boldsymbol{S}}^\mathrm{A}$ of A valid if the orbital angular momentum $\boldsymbol{L}$ and ${\boldsymbol{S}}^\mathrm{A}$ are aligned,… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07118v3-abstract-full').style.display = 'inline'; document.getElementById('2107.07118v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.07118v3-abstract-full" style="display: none;"> In the Double Pulsar, the Lense-Thirring periastron precession $\dot蠅^\mathrm{LT}$ should be measured by the end of this decade. The analyses recently appeared in the literature rely upon a formula for $\dot蠅^\mathrm{LT,\,A}$ induced by the spin angular momentum ${\boldsymbol{S}}^\mathrm{A}$ of A valid if the orbital angular momentum $\boldsymbol{L}$ and ${\boldsymbol{S}}^\mathrm{A}$ are aligned, and neglecting $\dot蠅^\mathrm{LT,\,B}$ because of the smallness of ${\boldsymbol{S}}^\mathrm{B}$. The impact on $\dot蠅^\mathrm{LT,\,A}$ of the departures of the ${\boldsymbol{S}}^\mathrm{A}$-$\boldsymbol{L}$ geometry from the ideal alignment is calculated. With the current upper bound on the misalignment angle $未_\mathrm{A}$ between them, the angles $位_\mathrm{A},\,畏_\mathrm{A}$ of ${\boldsymbol{S}}^\mathrm{A}$ are constrained within $85^\circ \lesssim 位_\mathrm{A}\lesssim 92^\circ,\, 266^\circ \lesssim 畏_\mathrm{A} \lesssim 274^\circ$. In units of $\dot蠅^\mathrm{GR}=16.89^\circ\,\mathrm{yr}^{-1}$, a range variation as little as $螖\dot蠅^\mathrm{LT,\,A}\doteq\dot蠅^\mathrm{LT,\,A}_\mathrm{max} - \dot蠅^\mathrm{LT,\,A}_\mathrm{min} = 8\times 10^{-8}\,蠅^\mathrm{GR}$ is implied. The experimental uncertainty $蟽_{\dot蠅_\mathrm{obs}}$ in measuring the periastron rate with the SKA 1-mid telescope should become smaller by 2028-2030. Then, the spatial orientation of ${\boldsymbol{S}}^\mathrm{B}$ is constrained from the existing bounds on the misalignment angle $未_\mathrm{B}$, and $\dot蠅^\mathrm{LT,\,B}\simeq 2\times 10^{-7}\,\dot蠅^\mathrm{GR}$ is correspondingly calculated. The error $蟽_{\dot蠅_\mathrm{obs}}$ should become smaller at the transition from MeerKAT+ facility to SKA 1-mid around 2025. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.07118v3-abstract-full').style.display = 'none'; document.getElementById('2107.07118v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 25 pages, 6 figures, no tables. Abstract abridged to comply with the limits by Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.507:421-430,2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14462">arXiv:2106.14462</a> <span> [<a href="https://arxiv.org/pdf/2106.14462">pdf</a>, <a href="https://arxiv.org/ps/2106.14462">ps</a>, <a href="https://arxiv.org/format/2106.14462">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1142/S0218271821500887">10.1142/S0218271821500887 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perturbations of the orbital elements due to the magnetic-like part of the field of a plane gravitational wave </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Ruggiero%2C+M+L">Matteo Luca Ruggiero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14462v1-abstract-short" style="display: inline;"> We focus on the secular changes of the orbital elements of a planet in the solar system, determined by the magnetic-like part of a gravitational wave field. Using Fermi coordinates we show that the total force acting on a test particle is made of two contributions: a gravito-electric one and a gravito-magnetic one. While the electric-like force has been thoroughly discussed in the past, the effect… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14462v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14462v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14462v1-abstract-full" style="display: none;"> We focus on the secular changes of the orbital elements of a planet in the solar system, determined by the magnetic-like part of a gravitational wave field. Using Fermi coordinates we show that the total force acting on a test particle is made of two contributions: a gravito-electric one and a gravito-magnetic one. While the electric-like force has been thoroughly discussed in the past, the effect of the gravito-magnetic force, which depends on the velocity of the test particle, has not been considered yet. We obtain approximated results to some orders in the orbital eccentricity and show that these effects are much smaller than the corresponding gravito-electric ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14462v1-abstract-full').style.display = 'none'; document.getElementById('2106.14462v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, to appear in International Journal of Modern Physics D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> International Journal of Modern Physics D Vol. 30, No. 12 (2021) 2150088 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.06024">arXiv:2106.06024</a> <span> [<a href="https://arxiv.org/pdf/2106.06024">pdf</a>, <a href="https://arxiv.org/format/2106.06024">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac09f8">10.3847/1538-3881/ac09f8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The impact of classical and General Relativistic obliquity precessions on the habitability of circumstellar neutron stars' planets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.06024v2-abstract-short" style="display: inline;"> Recently, it has been shown that rocky planets orbiting neutron stars can be habitable under non unrealistic circumstances. If a distant, pointlike source of visible light such as a Sun-like main sequence star or the gravitationally lensed accretion disk of a supermassive black hole is present as well, possible temporal variations $螖\varepsilon_\mathrm{p}(t)$ of the planet's axial tilt… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06024v2-abstract-full').style.display = 'inline'; document.getElementById('2106.06024v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.06024v2-abstract-full" style="display: none;"> Recently, it has been shown that rocky planets orbiting neutron stars can be habitable under non unrealistic circumstances. If a distant, pointlike source of visible light such as a Sun-like main sequence star or the gravitationally lensed accretion disk of a supermassive black hole is present as well, possible temporal variations $螖\varepsilon_\mathrm{p}(t)$ of the planet's axial tilt $\varepsilon_\mathrm{p}$ to the ecliptic plane should be included in the overall habitability budget since the obliquity determines the insolation at a given latitude on a body' s surface. I point out that, for rather generic initial spin-orbit initial configurations, general relativistic and classical spin variations induced by the post-Newtonian de Sitter and Lense-Thirring components of the field of the host neutron star and by its pull to the planetary oblateness $J_2^\mathrm{p}$ may induce huge and very fast variations of $\varepsilon_\mathrm{p}$ which would likely have an impact on the habitability of such worlds. In particular, for a planet's distance of, say, $0.005\,\mathrm{au}$ from a $1.4\,M_\odot$ neutron star corresponding to an orbital period $P_\mathrm{b}=0.109\,\mathrm{d}$, obliquity shifts $螖\varepsilon_\mathrm{p}$ as large as $\varepsilon^\mathrm{max}_\mathrm{p}-\varepsilon_\mathrm{p}^\mathrm{min}\simeq 50^\circ-100^\circ$ over characteristic timescales as short as $10\,\mathrm{d}$ ($J_2^\mathrm{p}$) to $3\,\mathrm{Myr}$ (Lense-Thirring) may occur for arbitrary orientations of the orbital and spin angular momenta $\boldsymbol{L},\,{\boldsymbol{S}}_\mathrm{ns},\,{\boldsymbol{S}}_\mathrm{p}$ of the planet-neutron star system. In view of this feature of their spins, I dub such hypothetical planets as ``nethotrons". <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.06024v2-abstract-full').style.display = 'none'; document.getElementById('2106.06024v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">laTex2e, 15 pages, 1 table, 4 figures. Version matching the one at press in The Astronomical Journal (AJ)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron. J. 162 (2021) 51 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.07815">arXiv:2102.07815</a> <span> [<a href="https://arxiv.org/pdf/2102.07815">pdf</a>, <a href="https://arxiv.org/format/2102.07815">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> </div> <p class="title is-5 mathjax"> Post-Keplerian obliquity variations and the habitability of rocky planets orbiting fast spinning, oblate late M dwarfs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.07815v2-abstract-short" style="display: inline;"> A couple of dozen Earth-like planets orbiting M dwarfs have been discovered so far. Some of them have attracted interest because of their potential long-term habitability; such a possibility is currently vigorously debated in the literature. I show that post-Keplerian (pK) orbit precessions may impact the habitability of a fictitious telluric planet orbiting an oblate late-type M dwarf of spectral… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07815v2-abstract-full').style.display = 'inline'; document.getElementById('2102.07815v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.07815v2-abstract-full" style="display: none;"> A couple of dozen Earth-like planets orbiting M dwarfs have been discovered so far. Some of them have attracted interest because of their potential long-term habitability; such a possibility is currently vigorously debated in the literature. I show that post-Keplerian (pK) orbit precessions may impact the habitability of a fictitious telluric planet orbiting an oblate late-type M dwarf of spectral class M9V with $M_\star=0.08\,M_\odot$ at $a=0.02\,\mathrm{au}$, corresponding to an orbital period $P_\mathrm{b}\simeq 4\,\mathrm{d}$, inducing long-term variations of the planetary obliquity $\varepsilon$ which, under certain circumstances, may not be deemed as negligible from the point of view of life's sustainability. I resume the analytical orbit-averaged equations of the pK precessions, both classical and general relativistic, of the unit vectors $\boldsymbol{\hat{S}},\,\boldsymbol{\hat{h}}$ of both the planet's spin and orbital angular momenta $\boldsymbol S,\,\boldsymbol{L}$ entering $\varepsilon$, and numerically integrate them by producing time series of the pK changes $螖\varepsilon(t)$ of the obliquity. For rapidly rotating M dwarfs with rotational periods of the order of $P_\star \simeq 0.1-1\,\mathrm{d}$, the planet's obliquity $\varepsilon$ can undergo classical pK large variations $螖\varepsilon(t)$ up to tens of degrees over timescales $螖t \simeq 20-200\,\mathrm{kyr}$, depending on the mutual orientations of the star's spin ${\boldsymbol J}_\star$, of $\boldsymbol S$, and of $\boldsymbol L$. Instead, $螖\varepsilon(t)$ are $\lesssim 1-1.5^\circ$ for the planet b of the Teegarden's Star. In certain circumstances, the M dwarf's oblateness $J_2^\star$ should be considered as one of the key dynamical features to be taken into account in compiling budgets of the long-term habitability of rocky planets around fast spinning late M dwarfs. (Abridged) <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.07815v2-abstract-full').style.display = 'none'; document.getElementById('2102.07815v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 26 pages, 6 figures, no tables. Changes suggested by an anonymous referee implemented</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.14245">arXiv:2012.14245</a> <span> [<a href="https://arxiv.org/pdf/2012.14245">pdf</a>, <a href="https://arxiv.org/format/2012.14245">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ac3d8b">10.3847/1538-3881/ac3d8b <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The effect of post-Newtonian spin precessions on the evolution of exomoons' obliquity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.14245v4-abstract-short" style="display: inline;"> Putative natural massive satellites (exomoons) has gained increasing attention, where they orbit Jupiter-like planets within the habitable zone of their host main sequence star. An exomoon is expected to move within the equatorial plane of its host planet, with its spin ${\boldsymbol S}_\mathrm{s}$ aligned with its orbital angular momentum $\boldsymbol L$ which, in turn, is parallel to the planeta… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14245v4-abstract-full').style.display = 'inline'; document.getElementById('2012.14245v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.14245v4-abstract-full" style="display: none;"> Putative natural massive satellites (exomoons) has gained increasing attention, where they orbit Jupiter-like planets within the habitable zone of their host main sequence star. An exomoon is expected to move within the equatorial plane of its host planet, with its spin ${\boldsymbol S}_\mathrm{s}$ aligned with its orbital angular momentum $\boldsymbol L$ which, in turn, is parallel to the planetary spin ${\boldsymbol S}_\mathrm{p}$. If, in particular, the common tilt of such angular momenta to the satellite-planet ecliptic plane, assumed fixed, has certain values, the latitudinal irradiation experienced on the exomoon from the star may allow it to sustain life as we know it, at least for certain orbital configurations. An Earth--analog (similar in mass, \textcolor{black}{radius, oblateness} and obliquity) is considered, which orbits within $5-10$ planetary radii $R_\mathrm{p}$ from its Jupiter-like host planet. The de Sitter and Lense--Thirring spin precessions due to the general relativistic post-Newtonian (pN) field of the host planet have an impact on an exomoon's habitability for a variety of different initial spin-orbit configurations. Here, I show it by identifying long--term variations in the satellite's obliquity $\varepsilon_\mathrm{s}$, where variations can be $\lesssim 10^\circ-100^\circ$, depending on the initial spin-orbit configuration, with a timescale of $\simeq 0.1-1$ million years. Also the satellite's quadrupole mass moment $J_2^\mathrm{s}$ induces obliquity variations which are faster than the pN ones, but do not cancel them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.14245v4-abstract-full').style.display = 'none'; document.getElementById('2012.14245v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 36 pages, 12 figures, 6 tables. Effects of exomoon's own oblateness on its obliquity precession included</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron. J. 163 (2022) 55 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2009.01158">arXiv:2009.01158</a> <span> [<a href="https://arxiv.org/pdf/2009.01158">pdf</a>, <a href="https://arxiv.org/ps/2009.01158">ps</a>, <a href="https://arxiv.org/format/2009.01158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/abbfb5">10.3847/1538-4357/abbfb5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The short-period S-stars S4711, S62, S4714 and the Lense-Thirring effect due to the spin of Sgr A$^\ast$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2009.01158v4-abstract-short" style="display: inline;"> Recently, some S-stars (S4711, S62, S4714) orbiting the supermassive black hole (SMBH) in Sgr A$^\ast$ with short orbital periods ($7.6\,\mathrm{yr}\leq P_\mathrm{b}\leq 12\,\mathrm{yr}$) were discovered. It was suggested that they may be used to measure the general relativistic Lense-Thirring (LT) precessions of their longitudes of ascending node $\mathit惟$ induced by the SMBH's angular momentum… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01158v4-abstract-full').style.display = 'inline'; document.getElementById('2009.01158v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2009.01158v4-abstract-full" style="display: none;"> Recently, some S-stars (S4711, S62, S4714) orbiting the supermassive black hole (SMBH) in Sgr A$^\ast$ with short orbital periods ($7.6\,\mathrm{yr}\leq P_\mathrm{b}\leq 12\,\mathrm{yr}$) were discovered. It was suggested that they may be used to measure the general relativistic Lense-Thirring (LT) precessions of their longitudes of ascending node $\mathit惟$ induced by the SMBH's angular momentum $\boldsymbol{J}_\bullet$. In fact, the proposed numerical estimates hold only in the particular case of a perfect alignment of $\boldsymbol{J}_\bullet$ with the line of sight, which does not seem to be the case. Moreover, also the inclination $I$ and the argument of perinigricon $蠅$ undergo LT precessions for an arbitrary orientation of $\boldsymbol{J}_\bullet$ in space. We explicitly show the analytical expressions of $\dot I^\mathrm{LT},\,\dot{\mathit惟}^\mathrm{LT},\,蠅^\mathrm{LT}$ in terms of the SMBH's spin polar angles $i^\bullet,\,\varepsilon^\bullet$ by finding the range of values for each of them in arcseconds per year ($^{\prime\prime}\,\mathrm{yr}^{-1}$). For each star, the corresponding values of $i^\bullet_\mathrm{max},\,\varepsilon^\bullet_\mathrm{max}$ and $i^\bullet_\mathrm{min},\,\varepsilon^\bullet_\mathrm{min}$ are determined as well, along with those $i_0^\bullet,\,\varepsilon_0^\bullet$ that cancel the LT precessions. The LT perinigricon precessions $\dot蠅^\mathrm{LT}$ are overwhelmed by the systematic uncertainties in the Schwarzschild ones due to the current errors in the stars' orbital parameters and the mass of Sgr A$^\ast$ itself. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2009.01158v4-abstract-full').style.display = 'none'; document.getElementById('2009.01158v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 September, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LateX2e, 14 pages, 5 tables, 3 figures. Sign in front of the periastron precession corrected in Equation (4) and Equation (10). Pictures for the periastron precessions replaced in Figures (1) to (3). Table 4 for the periastron precessions corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 904 (2020) 186 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.00600">arXiv:2007.00600</a> <span> [<a href="https://arxiv.org/pdf/2007.00600">pdf</a>, <a href="https://arxiv.org/ps/2007.00600">ps</a>, <a href="https://arxiv.org/format/2007.00600">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe7020037">10.3390/universe7020037 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the 2PN pericentre precession in the general theory of relativity and the recently discovered fast orbiting S-stars in Sgr A$^\ast$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.00600v5-abstract-short" style="display: inline;"> Recently, the secular pericentre precession was analytically computed to the second post-Newtonian (2PN) order by the present author with the Gauss equations in terms of the osculating Keplerian orbital elements in order to obtain closer contact with the observations in astronomical and astrophysical scenarios of potential interest. A discrepancy with previous results by other authors was found. M… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00600v5-abstract-full').style.display = 'inline'; document.getElementById('2007.00600v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.00600v5-abstract-full" style="display: none;"> Recently, the secular pericentre precession was analytically computed to the second post-Newtonian (2PN) order by the present author with the Gauss equations in terms of the osculating Keplerian orbital elements in order to obtain closer contact with the observations in astronomical and astrophysical scenarios of potential interest. A discrepancy with previous results by other authors was found. Moreover, some of such findings by the same authors were deemed as mutually inconsistent. In this paper, it is demonstrated that, in fact, two calculational errors plagued the most recent calculation by the present author. They are explicitly disclosed and corrected. As a result, all the examined approaches mutually agree yielding the same analytical expression for the total 2PN pericentre precession once the appropriate conversions from the adopted parameterizations are made. It is also shown that, in future, it may become measurable, at least in principle, for some of the recently discovered short-period S-stars in Sgr A$^\ast$ like S62 and S4714. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.00600v5-abstract-full').style.display = 'none'; document.getElementById('2007.00600v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 15 pages, 1 table, 1 figure. Typo in Eq.(7) of the previous version, equal to Eq.(53) in Iorio L., 2020, Universe, 6, 53, corrected. Eqs. (25)-(26) correct Eqs. (51)-(52) in Iorio L., 2020a, Universe, 6, 53. Accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2021, 7(2), 37 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.05404">arXiv:2006.05404</a> <span> [<a href="https://arxiv.org/pdf/2006.05404">pdf</a>, <a href="https://arxiv.org/ps/2006.05404">ps</a>, <a href="https://arxiv.org/format/2006.05404">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe6060085">10.3390/universe6060085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Is there still something left that Gravity Probe B can measure? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.05404v1-abstract-short" style="display: inline;"> We perform a full analytical and numerical treatment, to the first post-Newtonian (1pN) order, of the general relativistic long-term spin precession of an orbiting gyroscope due to the mass quadrupole moment $J_2$ of its primary without any restriction on either the gyro's orbital configuration and the orientation in space of the symmetry axis $\boldsymbol{\hat{k}}$ of the central body. We apply o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05404v1-abstract-full').style.display = 'inline'; document.getElementById('2006.05404v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.05404v1-abstract-full" style="display: none;"> We perform a full analytical and numerical treatment, to the first post-Newtonian (1pN) order, of the general relativistic long-term spin precession of an orbiting gyroscope due to the mass quadrupole moment $J_2$ of its primary without any restriction on either the gyro's orbital configuration and the orientation in space of the symmetry axis $\boldsymbol{\hat{k}}$ of the central body. We apply our results to the past spaceborne Gravity Probe B (GP-B) mission by finding a secular rate of its spin's declination $未$ which may be as large as $\lesssim 30-40\,\mathrm{milliarcseconds\,per\,year\,(\mathrm{mas\,yr}^{-1}})$, depending on the initial orbital phase $f_0$. Both our analytical calculation and our simultaneous integration of the equations for the parallel transport of the spin 4-vector and of the geodesic equations of motion of the gyroscope confirm such a finding. For GP-B, the reported mean error in measuring the spin's declination rate amounts to $蟽^\mathrm{GP-B}_{\dot未}=18.3\,\mathrm{mas\,yr}^{-1}$. We also calculate the general analytical expressions of the gravitomagnetic spin precession induced by the primary's angular momentum $\boldsymbol J$. In view of their generality, our results can be extended also to other astronomical and astrophysical scenarios of interest like, e.g., stars orbiting galactic supermassive black holes, exoplanets close to their parent stars, tight binaries hosting compact stellar corpses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.05404v1-abstract-full').style.display = 'none'; document.getElementById('2006.05404v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LateX2e, 31 pages, 1 table, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2020, 6(6), 85 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.08244">arXiv:2003.08244</a> <span> [<a href="https://arxiv.org/pdf/2003.08244">pdf</a>, <a href="https://arxiv.org/ps/2003.08244">ps</a>, <a href="https://arxiv.org/format/2003.08244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/staa1322">10.1093/mnras/staa1322 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A comment on "Lense-Thirring frame dragging induced by a fast-rotating white dwarf in a binary pulsar system" by V. Venkatraman Krishnan et al </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.08244v3-abstract-short" style="display: inline;"> We comment on a recent study reporting evidence for the general relativistic Lense-Thirring secular precession of the inclination $I$ of the orbital plane to the plane of the sky of the tight binary system PSR J1141-6545 made of a white dwarf and an emitting radiopulsar of comparable masses. The quadrupole mass moment $Q_2^\mathrm{c}$ and the angular momentum ${\boldsymbol S}^\mathrm{c}$ of the wh… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08244v3-abstract-full').style.display = 'inline'; document.getElementById('2003.08244v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.08244v3-abstract-full" style="display: none;"> We comment on a recent study reporting evidence for the general relativistic Lense-Thirring secular precession of the inclination $I$ of the orbital plane to the plane of the sky of the tight binary system PSR J1141-6545 made of a white dwarf and an emitting radiopulsar of comparable masses. The quadrupole mass moment $Q_2^\mathrm{c}$ and the angular momentum ${\boldsymbol S}^\mathrm{c}$ of the white dwarf cause the detectable effects on $I$ with respect to the present-day accuracy in the pulsar's timing. The history-dependent and model-dependent assumptions to be made on $Q_2^\mathrm{c}$ and ${\boldsymbol S}^\mathrm{c}$, required even just to calculate the analytical expressions for the resulting post-Keplerian precessions, may be deemed as too wide in order to claim a successful test of the Einsteinian gravitomagnetic effect. Moreover, depending on how $Q_2^\mathrm{c}$ is calculated, the competing quadrupole-induced rate of change, which is a major source of systematic uncertainty, may be up to $\lesssim 30-50\%$ of the Lense-Thirring effect for most of the allowed values in the 3D parameter space spanned by the white dwarf's spin period $P_\mathrm{s}$, and the polar angles $i_\mathrm{c},\,味_\mathrm{c}$ of its spin axis. The possible use of the longitude of periastron $\dot\varpi$ is investigated as well. It turns out that a measurement of its secular precession, caused, among other things, also by $Q_2^\mathrm{c},\,{\boldsymbol{S}}^\mathrm{c}$, could help in further restricting the permitted regions in the white dwarf's parameter space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.08244v3-abstract-full').style.display = 'none'; document.getElementById('2003.08244v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 20 pages, 3 figures, no tables. Due to arXiv's space limitations, low-resolution pictures have been upoloaded. Version at press in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.495:2777-2785,2020 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.10364">arXiv:2002.10364</a> <span> [<a href="https://arxiv.org/pdf/2002.10364">pdf</a>, <a href="https://arxiv.org/ps/2002.10364">ps</a>, <a href="https://arxiv.org/format/2002.10364">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe6040053">10.3390/universe6040053 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revisiting the 2PN pericentre precession in view of possible future measurements of it </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.10364v4-abstract-short" style="display: inline;"> At the second post-Newtonian (2PN) order, the secular pericentre precession $\dot蠅^\mathrm{2PN}$ of either a full two-body system made of well detached non-rotating monopole masses of comparable size and a restricted two-body system composed of a point particle orbiting a fixed central mass have been analytically computed so far with a variety of approaches. We offer our contribution by analytical… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10364v4-abstract-full').style.display = 'inline'; document.getElementById('2002.10364v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.10364v4-abstract-full" style="display: none;"> At the second post-Newtonian (2PN) order, the secular pericentre precession $\dot蠅^\mathrm{2PN}$ of either a full two-body system made of well detached non-rotating monopole masses of comparable size and a restricted two-body system composed of a point particle orbiting a fixed central mass have been analytically computed so far with a variety of approaches. We offer our contribution by analytically computing $\dot蠅^\mathrm{2PN}$ in a perturbative way with the method of variation of elliptical elements by explicitly calculating both the direct contribution due to the 2PN acceleration ${\boldsymbol A}^\mathrm{2PN}$, and also an indirect part arising from the self-interaction of the 1PN acceleration ${\boldsymbol A}^\mathrm{1PN}$ in the orbital average accounting for the instantaneous shifts induced by ${\boldsymbol A}^\mathrm{1PN}$ itself. Explicit formulas are straightforwardly obtained for both the point particle and full two-body cases without recurring to simplifying assumptions on the eccentricity $e$. Two different numerical integrations of the equations of motion confirm our analytical results for both the direct and indirect precessions. The values of the resulting effects for Mercury and some binary pulsars are confronted with the present-day level of experimental accuracies in measuring/constraining their pericentre precessions. The supermassive binary black hole in the BL Lac object OJ 287 is considered as well. A comparison with some of the results appeared in the literature is made. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.10364v4-abstract-full').style.display = 'none'; document.getElementById('2002.10364v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 24 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex2e, 25 pages, 2 figures, no tables. Accepted for publication in Universe</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2020, 6(4), 53 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04122">arXiv:2001.04122</a> <span> [<a href="https://arxiv.org/pdf/2001.04122">pdf</a>, <a href="https://arxiv.org/ps/2001.04122">ps</a>, <a href="https://arxiv.org/format/2001.04122">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2020/06/042">10.1088/1475-7516/2020/06/042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing a $r^{-n}$ modification of the Newtonian potential with Exoplanets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Ruggiero%2C+M+L">Matteo Luca Ruggiero</a>, <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04122v3-abstract-short" style="display: inline;"> The growing availability of increasingly accurate data on transiting exoplanets suggests the possibility of using these systems as possible testbeds for modified models of gravity. In particular, we suggest that the post-Keplerian (pK) dynamical effects from the perturbations of the Newtonian potential falling off as the square or the cube of the distance from the mass of the host star break the d… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04122v3-abstract-full').style.display = 'inline'; document.getElementById('2001.04122v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04122v3-abstract-full" style="display: none;"> The growing availability of increasingly accurate data on transiting exoplanets suggests the possibility of using these systems as possible testbeds for modified models of gravity. In particular, we suggest that the post-Keplerian (pK) dynamical effects from the perturbations of the Newtonian potential falling off as the square or the cube of the distance from the mass of the host star break the degeneracy of the anomalistic, draconitic and sidereal periods. The latter are characteristic temporal intervals in the motion of a binary system, and all coincide in the purely Keplerian case. We work out their analytical expressions in presence of the aforementioned perturbations to yield preliminary insights on the potential of the method proposed for constraining the modified models of gravity considered. A comparison with other results existing in the literature is made. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04122v3-abstract-full').style.display = 'none'; document.getElementById('2001.04122v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, references added; revised to match the version accepted for publication in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP06(2020)042 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1912.01518">arXiv:1912.01518</a> <span> [<a href="https://arxiv.org/pdf/1912.01518">pdf</a>, <a href="https://arxiv.org/ps/1912.01518">ps</a>, <a href="https://arxiv.org/format/1912.01518">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Popular Physics">physics.pop-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab9121">10.3847/1538-4357/ab9121 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of the general relativistic spin precessions on the habitability of rogue planets orbiting supermassive black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1912.01518v5-abstract-short" style="display: inline;"> Recently, the possibility that several starless telluric planets may form around supermassive black holes (SMBHs) and receive an energy input from the hole's accretion disk, which, under certain plausible circumstances, may make them habitable in a terrestrial sense, has gained increasing attention. In particular, an observer on a planet orbiting at distance $r=100$ Schwarzschild radii from a maxi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01518v5-abstract-full').style.display = 'inline'; document.getElementById('1912.01518v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1912.01518v5-abstract-full" style="display: none;"> Recently, the possibility that several starless telluric planets may form around supermassive black holes (SMBHs) and receive an energy input from the hole's accretion disk, which, under certain plausible circumstances, may make them habitable in a terrestrial sense, has gained increasing attention. In particular, an observer on a planet orbiting at distance $r=100$ Schwarzschild radii from a maximally rotating Kerr SMBH with mass $M_\bullet = 1\times 10^8\,M_\odot$ in a plane slightly outside the equator of the latter, would see the gravitationally lensed accretion disk the same size as the Sun as seen from the Earth. Moreover, the accretion rate might be imagined to be set in such a way that the apparent disk's temperature would be identical to that of the solar surface. We demonstrate that the post-Newtonian (pN) de Sitter and Lense--Thirring precessions of the spin axis of such a world would rapidly change, among other things, its tilt, $\varepsilon$, to its orbital plane by tens to hundreds of degrees over a time span of, say, just $螖t =400\,\mathrm{yr}$, strongly depending on the obliquity $畏_\bullet$ of the SMBH's spin to the orbital plane. Thus, such relativistic features would have per se a relevant impact on the long-term habitability of the considered planet. Other scenarios are examined as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1912.01518v5-abstract-full').style.display = 'none'; document.getElementById('1912.01518v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 19 pages, 7 figures, no tables. Minor stylistic changes. At press in The Astrophysical Journal (ApJ)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 896 (2020) 82 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1910.07760">arXiv:1910.07760</a> <span> [<a href="https://arxiv.org/pdf/1910.07760">pdf</a>, <a href="https://arxiv.org/ps/1910.07760">ps</a>, <a href="https://arxiv.org/format/1910.07760">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ab5d2a">10.3847/1538-4357/ab5d2a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> What Would Happen If We Were About 1 pc Away from a Supermassive Black Hole? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1910.07760v3-abstract-short" style="display: inline;"> We consider a hypothetical planet with the same mass $m$, radius $R$, angular momentum $\boldsymbol{S}$, oblateness $J_2$, semimajor axis $a$, eccentricity $e$, inclination $I$, and obliquity $\varepsilon$ of the Earth orbiting a main-sequence star with the same mass $M_\star$ and radius $R_\star$ of the Sun at a distance $r_\bullet \simeq 1\,\mathrm{parsec}\,\left(\mathrm{pc}\right)$ from a super… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07760v3-abstract-full').style.display = 'inline'; document.getElementById('1910.07760v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1910.07760v3-abstract-full" style="display: none;"> We consider a hypothetical planet with the same mass $m$, radius $R$, angular momentum $\boldsymbol{S}$, oblateness $J_2$, semimajor axis $a$, eccentricity $e$, inclination $I$, and obliquity $\varepsilon$ of the Earth orbiting a main-sequence star with the same mass $M_\star$ and radius $R_\star$ of the Sun at a distance $r_\bullet \simeq 1\,\mathrm{parsec}\,\left(\mathrm{pc}\right)$ from a supermassive black hole in the center of the hosting galaxy with the same mass $M_\bullet$ of, say, $\mathrm{M87}^\ast$. We preliminarily investigate some dynamical consequences of its presence in the neighborhood of such a stellar system on the planet's possibility of sustaining complex life over time. In particular, we obtain general analytic expressions for the long-term rates of change, doubly averaged over both the planetary and the galactocentric orbital periods $P_\mathrm{b}$ and $P_\bullet$, of $e,\,I,\,\varepsilon$, which are the main quantities directly linked to the stellar insolation. We find that, for certain orbital configurations, the planet's perihelion distance $q=a\left(1-e\right)$ may greatly shrink and lead to, in some cases, an impact with the star. $I$ may also notably change, with variations even of the order of tens of degrees. On the other hand, $\varepsilon$ does not seem to be particularly affected, being shifted, at most, by $\simeq 0^\circ.02$ over 1 Myr. Our results strongly depend on the eccentricity $e_\bullet$ of the galactocentric motion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1910.07760v3-abstract-full').style.display = 'none'; document.getElementById('1910.07760v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 17 pages, no tables, 3 figures. Version matching the one published in The Astrophysical Journal (ApJ)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys. J. 889 (2020) 152 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1908.09670">arXiv:1908.09670</a> <span> [<a href="https://arxiv.org/pdf/1908.09670">pdf</a>, <a href="https://arxiv.org/ps/1908.09670">ps</a>, <a href="https://arxiv.org/format/1908.09670">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-020-7897-7">10.1140/epjc/s10052-020-7897-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> New general relativistic contributions to Mercury's orbital elements and their measurability </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1908.09670v3-abstract-short" style="display: inline;"> We numerically and analytically work out the first-order post-Newtonian (1pN) orbital effects induced on the semimajor axis $a$, the eccentricity $e$, the inclination $I$, the longitude of the ascending node $惟$, the longitude of perihelion $\varpi$, and the mean longitude at epoch $蔚$ of a test particle orbiting its primary, assumed static and spherically symmetric, by a distant massive third bod… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09670v3-abstract-full').style.display = 'inline'; document.getElementById('1908.09670v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1908.09670v3-abstract-full" style="display: none;"> We numerically and analytically work out the first-order post-Newtonian (1pN) orbital effects induced on the semimajor axis $a$, the eccentricity $e$, the inclination $I$, the longitude of the ascending node $惟$, the longitude of perihelion $\varpi$, and the mean longitude at epoch $蔚$ of a test particle orbiting its primary, assumed static and spherically symmetric, by a distant massive third body X. For Mercury, the rates of change of the linear trends found are $\dot I_\mathrm{1pN}^\mathrm{X} = -4.3\,\mathrm{microarcseconds\,per\,century}\,\left(渭\mathrm{as\,cty}^{-1}\right)$, $\dot惟_\mathrm{1pN}^\mathrm{X} = 18.2\,渭\mathrm{as\,cty}^{-1}$, $\dot\varpi_\mathrm{1pN}^\mathrm{X} = 30.4\,渭\mathrm{as\,cty}^{-1}$, $\dot蔚_\mathrm{1pN}^\mathrm{X} = 271.4\,渭\mathrm{as\,cty}^{-1}$, respectively. Such values, which are due to the added actions of the other planets from Venus to Saturn, are essentially at the same level of, or larger by one order of magnitude than, the latest formal errors in the Hermean orbital precessions calculated with the EPM2017 ephemerides. The perihelion precession $\dot\varpi_\mathrm{1pN}^\mathrm{X}$ turns out to be smaller than some values recently appeared in the literature in view of a possible measurement with the ongoing BepiColombo mission. Linear combinations of the supplementary advances of the Keplerian orbital elements for several planets, if determined experimentally by the astronomers, could be set up in order to disentangle the 1pN $N$-body effects of interest from the competing larger precessions like those due to the Sun's quadrupole moment $J_2$ and angular momentum $\boldsymbol{S}$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1908.09670v3-abstract-full').style.display = 'none'; document.getElementById('1908.09670v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 14 pages, 1 figure, no tables. Accepted for publication in The European Physical Journal C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2020) 80: 338 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.00922">arXiv:1907.00922</a> <span> [<a href="https://arxiv.org/pdf/1907.00922">pdf</a>, <a href="https://arxiv.org/ps/1907.00922">ps</a>, <a href="https://arxiv.org/format/1907.00922">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz2175">10.1093/mnras/stz2175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Are the planetary orbital effects of the Solar dark matter wake detectable? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.00922v3-abstract-short" style="display: inline;"> Recently, a discussion about the effects of the anisotropy in the spatial density of Dark Matter in the Solar neighbourhood due to the motion of the Sun through the Galactic halo on the orbital motion of the solar system's planets and their ability to be effectively constrained by the radiotechnical observations collected by the Cassini spacecraft appeared in the literature. We show that the semil… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00922v3-abstract-full').style.display = 'inline'; document.getElementById('1907.00922v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.00922v3-abstract-full" style="display: none;"> Recently, a discussion about the effects of the anisotropy in the spatial density of Dark Matter in the Solar neighbourhood due to the motion of the Sun through the Galactic halo on the orbital motion of the solar system's planets and their ability to be effectively constrained by the radiotechnical observations collected by the Cassini spacecraft appeared in the literature. We show that the semilatus rectum $p$, the eccentricity $e$, the inclination $I$, the longitude of the ascending node $惟$, the longitude of perihelion $\varpi$, and the mean anomaly at epoch $畏$ of a test particle of a restricted two-body system affected by the gravity of a Dark Matter wake undergo secular rates of change. In the case of Saturn, they are completely negligible, being at the $\simeq 0.1$ millimeter per century and $\simeq 0.05-2$ nanoarcseconds per century level; the current (formal) accuracy level in constraining any anomalous orbital precessions is of the order of $\simeq 0.002-2$ milliarcseconds per century for Saturn. We also numerically simulate the Earth-Saturn range signature $螖蟻(t)$ due to the Dark Matter wake over the same time span (2004-2017) covered by the Cassini data record. We find that it is as little as $\simeq 0.1-0.2\,\mathrm{m}$, while the existing range residuals, computed by the astronomers without modeling any Dark Matter wake effect, are at the $\simeq 30\,\mathrm{m}$ level. The local Dark Matter density $\varrho_\mathrm{DM}$ should be larger than the currently accepted value of $\varrho_\mathrm{DM}=0.018\,\mathrm{M}_\odot\,\mathrm{pc}^{-3}$ by a factor of $2.5\times 10^6$ in order to induce a geocentric Kronian range signature so large as to make it discernible in the present-day residuals. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.00922v3-abstract-full').style.display = 'none'; document.getElementById('1907.00922v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 10 pages, 2 figures, 1 table. Minor stylistic changes to match the version published in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.489:723-726,2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.06705">arXiv:1906.06705</a> <span> [<a href="https://arxiv.org/pdf/1906.06705">pdf</a>, <a href="https://arxiv.org/ps/1906.06705">ps</a>, <a href="https://arxiv.org/format/1906.06705">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7337-8">10.1140/epjc/s10052-019-7337-8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On the mean anomaly and the mean longitude in tests of post-Newtonian gravity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.06705v2-abstract-short" style="display: inline;"> The distinction between the mean anomaly $\mathcal{M}(t)$ and the mean anomaly at epoch $畏$, and the mean longitude $l(t)$ and the mean longitude at epoch $蔚$ is clarified in the context of a possible use of such orbital elements in post-Keplerian tests of gravity, both Newtonian and post-Newtonian. In particular, the perturbations induced on $\mathcal{M}(t),\,畏,\,l(t),\,蔚$ by the post-Newtonian S… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06705v2-abstract-full').style.display = 'inline'; document.getElementById('1906.06705v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.06705v2-abstract-full" style="display: none;"> The distinction between the mean anomaly $\mathcal{M}(t)$ and the mean anomaly at epoch $畏$, and the mean longitude $l(t)$ and the mean longitude at epoch $蔚$ is clarified in the context of a possible use of such orbital elements in post-Keplerian tests of gravity, both Newtonian and post-Newtonian. In particular, the perturbations induced on $\mathcal{M}(t),\,畏,\,l(t),\,蔚$ by the post-Newtonian Schwarzschild and Lense-Thirring fields, and the classical accelerations due to the atmospheric drag and the oblateness $J_2$ of the central body are calculated for an arbitrary orbital configuration of the test particle and a general orientation of the primary's spin axis $\boldsymbol{\hat{S}}$. They provide us with further observables which could be fruitfully used, e.g., in better characterizing astrophysical binary systems and in more accurate satellite-based tests around major bodies of the Solar System. Some erroneous and misleading claims by Ciufolini and Pavlis appeared in the literature are confuted. In particular, it is shown that there are no net perturbations of the Lense-Thirring acceleration on either the semimajor axis $a$ and the mean motion $n_\mathrm{b}$. Furthermore, the quadratic signatures on $\mathcal{M}(t)$ and $l(t)$ due to certain disturbing non-gravitational accelerations like the atmospheric drag can be effectively disentangled from the post-Newtonian linear trends of interest provided that a sufficiently extended temporal interval for the data analysis is assumed. A possible use of $畏$ along with the longitudes of the ascending node $惟$ in tests of general relativity with the existing LAGEOS and LAGEOS II satellites is suggested. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.06705v2-abstract-full').style.display = 'none'; document.getElementById('1906.06705v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 34 pages, 1 Table, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2019) 79: 816 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1906.05728">arXiv:1906.05728</a> <span> [<a href="https://arxiv.org/pdf/1906.05728">pdf</a>, <a href="https://arxiv.org/ps/1906.05728">ps</a>, <a href="https://arxiv.org/format/1906.05728">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe5070165">10.3390/universe5070165 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A HERO for general relativity </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1906.05728v1-abstract-short" style="display: inline;"> HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios: a fast, 4-hr orbit with high perigee height of… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05728v1-abstract-full').style.display = 'inline'; document.getElementById('1906.05728v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1906.05728v1-abstract-full" style="display: none;"> HERO (Highly Eccentric Relativity Orbiter) is a space-based mission concept aimed to perform several tests of post-Newtonian gravity around the Earth with a preferably drag-free spacecraft moving along a highly elliptical path fixed in its plane undergoing a relatively fast secular precession. We considered two possible scenarios: a fast, 4-hr orbit with high perigee height of $1,047\,\mathrm{km}$, and a slow, 21-hr path with a low perigee height of $642\,\mathrm{km}$. HERO may detect, for the first time, the post-Newtonian orbital effects induced by the mass quadrupole moment $J_2$ of the Earth which affects the semimajor axis $a$ via a secular trend of $\simeq 4-12\,\mathrm{cm\,yr}^{-1}$, depending on the orbital configuration. Recently, the secular decay of the semimajor axis of the passive satellite LARES was measured with an error as little as $0.7\,\mathrm{cm\,yr}^{-1}$. Also the post-Newtonian spin dipole (Lense-Thirring) and mass monopole (Schwarzschild) effects could be tested to a high accuracy depending on the level of compensation of the non-gravitational perturbations. Moreover, the large eccentricity of the orbit would allow to constrain several long-range modified models of gravity and to accurately measure the gravitational red-shift as well. Each of the six Keplerian orbital elements could be individually monitored to extract the $GJ_2/c^2$ signature, or they could be suitably combined in order to disentangle the post-Newtonian effect(s) of interest from the competing mismodeled Newtonian secular precessions induced by the zonal harmonic multipoles $J_\ell$ of the geopotential. In the latter case, the systematic uncertainty due to the current formal errors $蟽_{J_\ell}$ of a recent global Earth's gravity field model are better than $1\%$ for all the post-Newtonian effects considered, with a peak of $\simeq 10^{-7}$ for the Schwarzschild-like shifts. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1906.05728v1-abstract-full').style.display = 'none'; document.getElementById('1906.05728v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 35 pages, 9 tables, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2019, 5(7), 165 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1905.05514">arXiv:1905.05514</a> <span> [<a href="https://arxiv.org/pdf/1905.05514">pdf</a>, <a href="https://arxiv.org/format/1905.05514">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-7194-5">10.1140/epjc/s10052-019-7194-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Classical and general relativistic post-Keplerian effects in binary pulsars hosting fast rotating main sequence stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Rieutord%2C+M">Michel Rieutord</a>, <a href="/search/gr-qc?searchtype=author&query=Rozelot%2C+J">Jean-Pierre Rozelot</a>, <a href="/search/gr-qc?searchtype=author&query=de+Souza%2C+A+D">Armando Domiciano de Souza</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1905.05514v4-abstract-short" style="display: inline;"> We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations $螖\left(未蟿\right)$ of the R酶mer-like, orbital component of the pulsar's time delay $未蟿$ induced ov… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05514v4-abstract-full').style.display = 'inline'; document.getElementById('1905.05514v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1905.05514v4-abstract-full" style="display: none;"> We consider a binary system composed of a pulsar and a massive, fast rotating, highly distorted main sequence star as a potential scenario to dynamically put to the test certain post-Keplerian effects of both Newtonian and post-Newtonian nature. We numerically produce time series of the perturbations $螖\left(未蟿\right)$ of the R酶mer-like, orbital component of the pulsar's time delay $未蟿$ induced over 10 years by the pN gravitoelectric mass monopole, quadrupole, gravitomagnetic spin dipole and octupole accelerations along with the Newtonian quadrupolar one. We do not deal with the various propagation time delays due to the travelling electromagnetic waves. It turns out that, for a Be-type star with $M = 15\ \textrm{M}_\odot$, $R_\textrm{e} = 5.96\ \textrm{R}_\odot$, $谓= 0.203$, $S = 3.41\times 10^{45}\ \textrm{J}\ \textrm{s}$, $J_2 = 1.92\times 10^{-3}$ orbited by a pulsar with an orbital period $P_\textrm{b}\simeq 40-70\ \textrm{d}$, the classical oblateness-driven effects are at the $\lesssim 4-150\ \textrm{s}$ level, while the pN shifts are of the order of $\lesssim 1.5-20\ \textrm{s}\ \left(GMc^{-2}\right)$, $\lesssim 10-40\ \textrm{ms}\ \left(GMR^2_\textrm{e} J_2 c^{-2}\right)$, $\lesssim 0.5 - 6\ \textrm{ms}\ \left(GSc^{-2}\right)$, $\lesssim 5 - 20\ 渭\textrm{s}\ \left(GSR^2_\textrm{e} \varepsilon^2 c^{-2}\right)$, depending on their orbital configuration. The root-mean-square (rms) timing residuals $蟽_蟿$ of almost all the existing non-recycled, non-millisecond pulsars orbiting massive, fast rotating main sequence stars are $\lesssim\textrm{ms}$. Thus, such kind of binaries have the potential to become interesting laboratories to measure, or, at least, constrain, some Newtonian and post-Newtonian key features of the distorted gravitational fields of the fast rotating stars hosted by them [Abridged]. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1905.05514v4-abstract-full').style.display = 'none'; document.getElementById('1905.05514v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 May, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex2e, 24 pages, 5 figures, 3 tables. One affiliation corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2019) 79: 690 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.13415">arXiv:1810.13415</a> <span> [<a href="https://arxiv.org/pdf/1810.13415">pdf</a>, <a href="https://arxiv.org/ps/1810.13415">ps</a>, <a href="https://arxiv.org/format/1810.13415">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-3881/ab19bf">10.3847/1538-3881/ab19bf <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.13415v3-abstract-short" style="display: inline;"> I tentatively compile the formal uncertainties in the secular rates of change of the orbital elements $a,~e,~I,~惟$ and $\varpi$ of the planets of the solar system from the recently released formal errors in $a$ and the nonsingular elements $h,~k,~p$ and $q$ estimated for the same bodies with the EPM2017 ephemerides by E.\,V. Pitjeva and N.\,P. Pitjev. The highest accuracies occur for the inner pla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13415v3-abstract-full').style.display = 'inline'; document.getElementById('1810.13415v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.13415v3-abstract-full" style="display: none;"> I tentatively compile the formal uncertainties in the secular rates of change of the orbital elements $a,~e,~I,~惟$ and $\varpi$ of the planets of the solar system from the recently released formal errors in $a$ and the nonsingular elements $h,~k,~p$ and $q$ estimated for the same bodies with the EPM2017 ephemerides by E.\,V. Pitjeva and N.\,P. Pitjev. The highest accuracies occur for the inner planets and Saturn in view of the extensive use of radiotechnical data collected over the last decades. For the inclination $I$, node $惟$ and perihelion $\varpi$ of Mercury and Mars, I obtain accuracies $蟽_{\dot I},\,蟽_{\dot惟},\,蟽_{\dot \varpi}\simeq 1-10\,渭\textrm{as~cty}^{-1}$, while for Saturn they are $蟽_{\dot I},\,蟽_{\dot惟},\,蟽_{\dot \varpi}\simeq 10\,渭\textrm{as~cty}^{-1}-1\,\textrm{mas~cty}^{-1}$. As far as the semimajor axis $a$ is concerned, its rates for the inner planets are accurate to the $蟽_{\dot a}\simeq 1-100\,\textrm{mm~cty}^{-1}$ level, while for Saturn I obtain $蟽_{\dot a}\simeq 17\,\textrm{m~cty}^{-1}$. In terms of the parameterized post-Newtonian (PPN) parameters $尾$ and $纬$, a formal error as little as $8\,渭\textrm{as~cty}^{-1}$ for the Hermean apsidal rate corresponds to a $\simeq 2\times 10^{-7}$ bias in the combination $\left(2 + 2纬- 尾\right)/3$ parameterizing the Schwarzschild-type periehlion precession of Mercury. The realistic uncertainties of the planetary precessions may be up to one order of magnitude larger. I discuss their potential multiple uses in fundamental physics, astronomy, and planetology. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.13415v3-abstract-full').style.display = 'none'; document.getElementById('1810.13415v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 9 pages, no figures, 1 tables. Combination of the PPN parameters in front of the perihelion precession corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astron. J. 157 (2019) 220 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.09288">arXiv:1810.09288</a> <span> [<a href="https://arxiv.org/pdf/1810.09288">pdf</a>, <a href="https://arxiv.org/format/1810.09288">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stz304">10.1093/mnras/stz304 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The post-Newtonian gravitomagnetic spin-octupole moment of an oblate rotating body and its effects on an orbiting test particle; are they measurable in the Solar System? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.09288v6-abstract-short" style="display: inline;"> We analytically work out the orbital effects induced by the gravitomagnetic spin-octupole moment of an extended spheroidal rotating body endowed with angular momentum $\boldsymbol{S}$ and quadrupole mass moment $J_2$. Our results, proportional to $S J_2 c^{-2}$, hold for an arbitrary orientation of the body's symmetry axis $\boldsymbol{\hat{S}}$ and a generic orbital configuration of the test part… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09288v6-abstract-full').style.display = 'inline'; document.getElementById('1810.09288v6-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.09288v6-abstract-full" style="display: none;"> We analytically work out the orbital effects induced by the gravitomagnetic spin-octupole moment of an extended spheroidal rotating body endowed with angular momentum $\boldsymbol{S}$ and quadrupole mass moment $J_2$. Our results, proportional to $S J_2 c^{-2}$, hold for an arbitrary orientation of the body's symmetry axis $\boldsymbol{\hat{S}}$ and a generic orbital configuration of the test particle. Such effects may be measurable, in principle, with a dedicated spacecraft-based mission to Jupiter. For a moderately eccentric and fast path, the gravitomagnetic precessions of the node and the pericenter of a dedicated orbiter could be as large as $400~\textrm{milliarcseconds~per~year}$ or even $1,600-4,000~\textrm{milliarcseconds~per~year}$ depending on the orientation of its orbital plane in space. Numerical simulations of the Earth-probe range-rate signal confirm such expectations since its magnitude reaches the $\simeq 0.03-0.3~\textrm{millimeter~per~second}$ level after just 1 day. The precision of the current two-way Ka-band Doppler measurements of the spacecraft Juno, presently orbiting Jupiter, amounts to $\simeq 0.003~\textrm{millimeter~per~second}$ after $1,000$ seconds. Also other general relativistic effects could be measurable, including also those proportional to $GMJ_2c^{-2}$, never put to the test so far. Most of the competing Newtonian signals due to the classical multipoles of the planet's gravity field have quite different temporal signatures with respect to the post-Newtonian ones, making, thus, potentially easier disentangling them. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.09288v6-abstract-full').style.display = 'none'; document.getElementById('1810.09288v6-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 July, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 45 pages, 5 tables, 20 figures. Some minor typos fixed. Version matching the one published in Monthly Notices of the Royal Astronomical Society. An erratum can be found at the end of the present replacement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.484:4811-4832,2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1810.00397">arXiv:1810.00397</a> <span> [<a href="https://arxiv.org/pdf/1810.00397">pdf</a>, <a href="https://arxiv.org/ps/1810.00397">ps</a>, <a href="https://arxiv.org/format/1810.00397">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe5040087">10.3390/universe5040087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A post-Newtonian gravitomagnetic effect on the orbital motion of a test particle around its primary induced by the spin of a distant third body </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1810.00397v2-abstract-short" style="display: inline;"> We study a general relativistic gravitomagnetic 3-body effect induced by the spin angular momentum ${\boldsymbol S}_\textrm{X}$ of a rotating mass $M_\textrm{X}$ orbited at distance $r_\textrm{X}$ by a local gravitationally bound restricted two-body system $\mathcal{S}$ of size $r\ll r_\textrm{X}$ consisting of a test particle revolving around a massive body $M$. At the lowest post-Newtonian order… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00397v2-abstract-full').style.display = 'inline'; document.getElementById('1810.00397v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1810.00397v2-abstract-full" style="display: none;"> We study a general relativistic gravitomagnetic 3-body effect induced by the spin angular momentum ${\boldsymbol S}_\textrm{X}$ of a rotating mass $M_\textrm{X}$ orbited at distance $r_\textrm{X}$ by a local gravitationally bound restricted two-body system $\mathcal{S}$ of size $r\ll r_\textrm{X}$ consisting of a test particle revolving around a massive body $M$. At the lowest post-Newtonian order, we analytically work out the doubly averaged rates of change of the Keplerian orbital elements of the test particle by finding non-vanishing long-term effects for the inclination $I$, the node $惟$ and the pericenter $蠅$. Such theoretical results are confirmed by a numerical integration of the equations of motion for a fictitious 3-body system. We numerically calculate the magnitudes of the post-Newtonian gravitomagnetic 3-body precessions for some astronomical scenarios in our solar system. For putative man-made orbiters of the natural moons Enceladus and Europa in the external fields of Saturn and Jupiter, the relativistic precessions due to the angular momenta of the gaseous giant planets can be as large as $\simeq 10-50~\textrm{milliarcseconds~per~year}~\left(\textrm{mas~yr}^{-1}\right)$. A preliminary numerical simulation shows that, for certain orbital configurations of a hypothetical Europa orbiter, its range-rate signal $螖\dot蟻$ can become larger than the current Doppler accuracy of the existing spacecraft Juno at Jupiter, i.e. $蟽_{\dot蟻}=0.015~\textrm{mm~s}^{-1}$, after 1 d. The effects induced by the Sun's angular momentum on artificial probes of Mercury and the Earth are at the level of $\simeq 1-0.1~\textrm{microarcseconds~per~year}~\left(渭\textrm{as~yr}^{-1}\right)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1810.00397v2-abstract-full').style.display = 'none'; document.getElementById('1810.00397v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 February, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 19 pages, 3 tables, 2 figures. New material added: numerical confirmation of the analytical precessions and numerically computed Earth-probe range-rate in a Jupiter-Europa-spacecraft scenario</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2019, 5(4), 87 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.07620">arXiv:1809.07620</a> <span> [<a href="https://arxiv.org/pdf/1809.07620">pdf</a>, <a href="https://arxiv.org/ps/1809.07620">ps</a>, <a href="https://arxiv.org/format/1809.07620">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe4110113">10.3390/universe4110113 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> On testing frame-dragging with LAGEOS and a recently announced geodetic satellite </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.07620v2-abstract-short" style="display: inline;"> Recently, Ciufolini and coworkers announced the forthcoming launch of a new cannonball geodetic satellite in 2019. It should be injected in an essentially circular path with the same semimajor axis $a$ of LAGEOS, in orbit since 1976, and an inclination $I$ of its orbital plane supplementary with respect to that of its existing cousin. According to their proponents, the sum of the satellites' prece… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07620v2-abstract-full').style.display = 'inline'; document.getElementById('1809.07620v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.07620v2-abstract-full" style="display: none;"> Recently, Ciufolini and coworkers announced the forthcoming launch of a new cannonball geodetic satellite in 2019. It should be injected in an essentially circular path with the same semimajor axis $a$ of LAGEOS, in orbit since 1976, and an inclination $I$ of its orbital plane supplementary with respect to that of its existing cousin. According to their proponents, the sum of the satellites' precessions of the longitudes of the ascending nodes $惟$ should allow one to test the general relativistic Lense-Thirring effect to a $\simeq 0.2\%$ accuracy level, with a contribution of the mismodeling in the even zonal harmonics $J_\ell,~\ell=2,4,6,\ldots$ of the geopotential to the total error budget as little as $0.1\%$. Actually, such an ambitious goal seems to be hardly attainable because of the direct and indirect impact of, at least, the first even zonal $J_2$. On the one hand, the lingering scatter of the estimated values of such a key geophysical parameter from different recent GRACE/GOCE-based global gravity field solutions is representative of an uncertainty which may directly impact the summed Lense-Thirring node precessions at a $\simeq 70-80\%$ in the worst scenarios, and to a $\simeq 3-10\%$ level in other, more favorable cases. On the other hand, the phenomenologically measured secular decay $\dot a$ of the semimajor axis of LAGEOS (and, presumably, of the other satellite as well), currently known at a $蟽_{\dot a}\simeq 0.03~\textrm{m~yr}^{-1}$ level after more than 30 yr, will couple with the sum of the $J_2$-induced node precessions yielding an overall bias as large as $\simeq 20-40\%$ after $5-10$ yr. A further systematic error of the order of $\simeq 2-14\%$ may arise from an analogous interplay of the secular decay of the inclination $\dot I$ with the oblateness-driven node precessions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.07620v2-abstract-full').style.display = 'none'; document.getElementById('1809.07620v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 27 pages, 3 tables, 7 figures. Accepted for publication</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe 2018, 4(11), 113 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06119">arXiv:1809.06119</a> <span> [<a href="https://arxiv.org/pdf/1809.06119">pdf</a>, <a href="https://arxiv.org/ps/1809.06119">ps</a>, <a href="https://arxiv.org/format/1809.06119">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6382/aaf6d4">10.1088/1361-6382/aaf6d4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring general relativistic dragging effects in the Earth's gravitational field with ELXIS: a proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06119v5-abstract-short" style="display: inline;"> In a geocentric kinematically rotating ecliptical coordinate system in geodesic motion through the deformed spacetime of the Sun, both the longitude of the ascending node $惟$ and the inclination $I$ of an artificial satellite of the spinning Earth are affected by the post-Newtonian gravitoelectric De Sitter and gravitomagnetic Lense-Thirring effects. By choosing a circular orbit with $I = 惟= 90掳$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06119v5-abstract-full').style.display = 'inline'; document.getElementById('1809.06119v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06119v5-abstract-full" style="display: none;"> In a geocentric kinematically rotating ecliptical coordinate system in geodesic motion through the deformed spacetime of the Sun, both the longitude of the ascending node $惟$ and the inclination $I$ of an artificial satellite of the spinning Earth are affected by the post-Newtonian gravitoelectric De Sitter and gravitomagnetic Lense-Thirring effects. By choosing a circular orbit with $I = 惟= 90掳$ for a potential new spacecraft, which we propose to name ELXIS, it would be possible to measure each of the gravitomagnetic precessions separately at a percent level, or, perhaps, even better depending on the level of accuracy of the current and future global ocean tide models since the competing classical long-term perturbations on $I,~惟$ due to the even and odd zonal harmonics $J_\ell,~\ell=2,~3,~4,\ldots$ of the geopotential vanish. Moreover, a suitable linear combination of $I,~惟$ would be able to cancel out the solid and ocean tidal perturbations induced by the $K_1$ tide and, at the same time, enforce the geodetic precessions yielding a secular trend of $-8.3~\textrm{milliarcseconds~per~year}$, thus strengthening the goal of a $\simeq 10^{-5}$ test of the De Sitter effect recently proposed in the literature in the case of an equatorial coordinate system. Relatively mild departures $螖I = 螖惟\simeq 0.01-0.1掳$ from the ideal orbital configuration with $I = 惟= 90掳$ are allowed. [Abridged] <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06119v5-abstract-full').style.display = 'none'; document.getElementById('1809.06119v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 40 pages, 2 tables, 11 figures. Two figures and one table added. Typo corrected (0 deg -> 90 deg) at pag. 3 of this draft and pag. 2 of the published version. Definition of the Sun's ecliptic longitude added in Appendix A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Class. Quant. Gravit.36:035002,2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.01730">arXiv:1809.01730</a> <span> [<a href="https://arxiv.org/pdf/1809.01730">pdf</a>, <a href="https://arxiv.org/ps/1809.01730">ps</a>, <a href="https://arxiv.org/format/1809.01730">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-019-6599-5">10.1140/epjc/s10052-019-6599-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring the De Sitter precession with a new Earth's satellite to the $\mathbf{\simeq 10^{-5}}$ level: a proposal </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.01730v3-abstract-short" style="display: inline;"> The inclination $I$ of an Earth's satellite in polar orbit undergoes a secular De Sitter precession of $-7.6$ milliarcseconds per year for a suitable choice of the initial value of its non-circulating node $惟$. The competing long-periodic harmonic rates of change of $I$ due to the even and odd zonal harmonics of the geopotential vanish for either a circular or polar orbit, while no secular rates o… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01730v3-abstract-full').style.display = 'inline'; document.getElementById('1809.01730v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.01730v3-abstract-full" style="display: none;"> The inclination $I$ of an Earth's satellite in polar orbit undergoes a secular De Sitter precession of $-7.6$ milliarcseconds per year for a suitable choice of the initial value of its non-circulating node $惟$. The competing long-periodic harmonic rates of change of $I$ due to the even and odd zonal harmonics of the geopotential vanish for either a circular or polar orbit, while no secular rates occur at all. This may open up, in principle, the possibility of measuring the geodesic precession in the weak-field limit with an accurately tracked satellite by improving the current bound of $9\times 10^{-4}$ from Lunar Laser Ranging, which, on the other hand, may be even rather optimistic, by one order of magnitude, or, perhaps, even better. The most insidious competing effects are due to the solid and ocean components of the $K_1$ tide since their perturbations have nominal huge amplitudes and the same temporal pattern of the De Sitter signature. They vanish for polar orbits. Departures of $\simeq 10^{-5}-10^{-3}~\textrm{deg}$ from the ideal polar geometry allow to keep the $K_1$ tidal perturbations to a sufficiently small level. Most of the other gravitational and non-gravitational perturbations vanish for the proposed orbital configuration, while the non-vanishing ones either have different temporal signatures with respect to the De Sitter effect or can be modeled with sufficient accuracy. In order to meet the proposed goal, the measurement accuracy of $I$ should be better than $\simeq 35~\textrm{microarcseconds}=0.034~\textrm{milliarcseconds}$ over, say, 5 yr. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.01730v3-abstract-full').style.display = 'none'; document.getElementById('1809.01730v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 27 pages, 1 table, 5 figures. Version accepted for publication in The European Physical Journal C (EPJC)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2019) 79: 64 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1807.11807">arXiv:1807.11807</a> <span> [<a href="https://arxiv.org/pdf/1807.11807">pdf</a>, <a href="https://arxiv.org/ps/1807.11807">ps</a>, <a href="https://arxiv.org/format/1807.11807">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2018/10/021">10.1088/1475-7516/2018/10/021 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Constraining some $r^{-n}$ extra-potentials in modified gravity models with LAGEOS-type laser-ranged geodetic satellites </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a>, <a href="/search/gr-qc?searchtype=author&query=Ruggiero%2C+M+L">Matteo Luca Ruggiero</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1807.11807v2-abstract-short" style="display: inline;"> We focus on several models of modified gravity which share the characteristic of leading to perturbations of the Newtonian potential $\propto K_2~r^{-2}$ and $\propto K_3~r^{-3}$. In particular, by using existing long data records of the LAGEOS satellites, tracked on an almost continuous basis with the Satellite Laser Ranging (SLR) technique, we set preliminary constraints on the free parameters… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11807v2-abstract-full').style.display = 'inline'; document.getElementById('1807.11807v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1807.11807v2-abstract-full" style="display: none;"> We focus on several models of modified gravity which share the characteristic of leading to perturbations of the Newtonian potential $\propto K_2~r^{-2}$ and $\propto K_3~r^{-3}$. In particular, by using existing long data records of the LAGEOS satellites, tracked on an almost continuous basis with the Satellite Laser Ranging (SLR) technique, we set preliminary constraints on the free parameters $K_2,~K_3$ in a model-independent, phenomenological way. We obtain $\left|K_2\right|\lesssim 2.1\times 10^6~\textrm{m}^4~\textrm{s}^{-2},~ -2.5\times 10^{12}~\textrm{m}^5~\textrm{s}^{-2}\lesssim K_3 \lesssim 4.1\times 10^{12}~\textrm{m}^5~\textrm{s}^{-2}.$ They are several orders of magnitude tighter than corresponding bounds existing in the literature inferred with different techniques and in other astronomical and astrophysical scenarios. Then, we specialize them to the different parameters characterizing the various models considered. The availability of SLR data records of increasing length and accuracy will allow to further refine and strengthen the present results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1807.11807v2-abstract-full').style.display = 'none'; document.getElementById('1807.11807v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 October, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 July, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">20 pages, 4 figures; revised to match the version accepted for publication in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP10(2018)021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1805.08027">arXiv:1805.08027</a> <span> [<a href="https://arxiv.org/pdf/1805.08027">pdf</a>, <a href="https://arxiv.org/ps/1805.08027">ps</a>, <a href="https://arxiv.org/format/1805.08027">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-018-6011-x">10.1140/epjc/s10052-018-6011-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Is it possible to measure new general relativistic third-body effects on the orbit of Mercury with BepiColombo? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1805.08027v4-abstract-short" style="display: inline;"> Recently, Will calculated an additional contribution to the Mercury's precession of the longitude of perihelion $\varpi$ of the order of $\dot\varpi_\textrm{W}\simeq 0.22$ $\textrm{milliarcseconds per century}$ ($\textrm{mas cty}^{-1}$). It is partly a direct consequence of certain 1pN third-body accelerations entering the planetary equations of motion, and partly an indirect, mixed effect due to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08027v4-abstract-full').style.display = 'inline'; document.getElementById('1805.08027v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1805.08027v4-abstract-full" style="display: none;"> Recently, Will calculated an additional contribution to the Mercury's precession of the longitude of perihelion $\varpi$ of the order of $\dot\varpi_\textrm{W}\simeq 0.22$ $\textrm{milliarcseconds per century}$ ($\textrm{mas cty}^{-1}$). It is partly a direct consequence of certain 1pN third-body accelerations entering the planetary equations of motion, and partly an indirect, mixed effect due to the simultaneous interplay of the standard 1pN pointlike acceleration of the primary with the Newtonian $N$-body acceleration, to the quadrupole order, in the analytical calculation of the secular perihelion precession with the Gauss equations. We critically discuss the actual measurability of the mixed effects with respect to direct ones. The current uncertainties in either the magnitude of the Sun's angular momentum $S_\odot$ and the orientation of its spin axis ${\boldsymbol{\hat{S}}}_\odot$ impact the precessions $\dot\varpi_{J_2^\odot},~\dot\varpi_\textrm{LT}$ induced by the Sun's quadrupole mass moment and angular momentum via the Lense-Thirring effect to a level which makes almost impossible to measure $\dot\varpi_\textrm{W}$ even in the hypothesis that it comes entirely from the aforementioned 1pN third-body accelerations. On the other hand, from the point of view of the Lense-Thirring effect itself, the mismodeled quadrupolar precession $未\dot\varpi_{J_2^\odot}$ due to the uncertainties in ${\boldsymbol{\hat{S}}}_\odot$ corresponds to a bias of $\simeq 9\%$ of the relativistic one. The resulting simulated mismodeled range and range-rate times series of BepiColombo are at about the per cent level of the nominal gravitomagnetic ones. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1805.08027v4-abstract-full').style.display = 'none'; document.getElementById('1805.08027v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 15 pages, 2 tables, 3 figures. Equation (5) for the PPN combination of the parameters beta and gamma in front of the 1PN perihelion precession corrected</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2018) 78: 549 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1712.09106">arXiv:1712.09106</a> <span> [<a href="https://arxiv.org/pdf/1712.09106">pdf</a>, <a href="https://arxiv.org/ps/1712.09106">ps</a>, <a href="https://arxiv.org/format/1712.09106">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3390/universe4040059">10.3390/universe4040059 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Perspectives on constraining a cosmological constant-type parameter with pulsar timing in the Galactic Center </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1712.09106v3-abstract-short" style="display: inline;"> Independent tests aiming to constrain the value of the cosmological constant $螞$ are usually difficult because of its extreme smallness $\left(螞\simeq 1\times 10^{-52}~\textrm{m}^{-2},~\textrm{or}~2.89\times 10^{-122}~\textrm{in Planck units}\right)$. Bounds on it from Solar System orbital motions determined with spacecraft tracking are currently at the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09106v3-abstract-full').style.display = 'inline'; document.getElementById('1712.09106v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1712.09106v3-abstract-full" style="display: none;"> Independent tests aiming to constrain the value of the cosmological constant $螞$ are usually difficult because of its extreme smallness $\left(螞\simeq 1\times 10^{-52}~\textrm{m}^{-2},~\textrm{or}~2.89\times 10^{-122}~\textrm{in Planck units}\right)$. Bounds on it from Solar System orbital motions determined with spacecraft tracking are currently at the $\simeq 10^{-43}-10^{-44}~\textrm{m}^{-2}~\left(5-1\times 10^{-113}~\textrm{in Planck units}\right)$ level, but they may turn out to be somewhat optimistic since $螞$ has not yet been explicitly modeled in the planetary data reductions. Accurate $\left(蟽_{蟿_\textrm{p}}\simeq 1-10~渭\textrm{s}\right)$ timing of expected pulsars orbiting the Black Hole at the Galactic Center, preferably along highly eccentric and wide orbits, might, at least in principle, improve the planetary constraints by several orders of magnitude. By looking at the average time shift per orbit $\overline{螖未蟿}^螞_\textrm{p}$, a S2-like orbital configuration with $e=0.8839,~P_\textrm{b}=16~\textrm{yr}$ would allow to obtain preliminarily an upper bound of the order of $\left|螞\right|\lesssim 9\times 10^{-47}~\textrm{m}^{-2}~\left(\lesssim 2\times 10^{-116}~\textrm{in Planck units}\right)$ if only $蟽_{蟿_\textrm{p}}$ were to be considered. Our results can be easily extended to modified models of gravity using $螞-$type parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1712.09106v3-abstract-full').style.display = 'none'; document.getElementById('1712.09106v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 December, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Latex2e, 12 pages, 1 table, 1 figure, 79 references</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Universe (2018) 4: 59 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1705.11091">arXiv:1705.11091</a> <span> [<a href="https://arxiv.org/pdf/1705.11091">pdf</a>, <a href="https://arxiv.org/ps/1705.11091">ps</a>, <a href="https://arxiv.org/format/1705.11091">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Space Physics">physics.space-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/sty351">10.1093/mnras/sty351 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Analytically calculated post-Keplerian range and range-rate perturbations: the solar Lense-Thirring effect and BepiColombo </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/gr-qc?searchtype=author&query=Iorio%2C+L">Lorenzo Iorio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1705.11091v5-abstract-short" style="display: inline;"> We analytically calculate the time series for the perturbations $螖蟻(t),~螖\dot蟻(t)$ induced by a general disturbing acceleration $\boldsymbol{A}$ on the mutual range $蟻$ and range-rate $\dot蟻$ of two test particles $\textrm{A},~\textrm{B}$ orbiting the same spinning body. We apply it to the general relativistic Lense-Thirring effect, due to the primary's spin $\boldsymbol{S}$, and the classical per… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11091v5-abstract-full').style.display = 'inline'; document.getElementById('1705.11091v5-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1705.11091v5-abstract-full" style="display: none;"> We analytically calculate the time series for the perturbations $螖蟻(t),~螖\dot蟻(t)$ induced by a general disturbing acceleration $\boldsymbol{A}$ on the mutual range $蟻$ and range-rate $\dot蟻$ of two test particles $\textrm{A},~\textrm{B}$ orbiting the same spinning body. We apply it to the general relativistic Lense-Thirring effect, due to the primary's spin $\boldsymbol{S}$, and the classical perturbation arising from its quadrupole mass moment $J_2$ for arbitrary orbital geometries and orientation of the source's symmetry axis $\boldsymbol{\hat{S}}$. The Earth-Mercury range and range-rate are nominally affected by the Sun's gravitomagnetic field to the $10~\textrm{m},~10^{-3}~\textrm{cm s}^{-1}$ level, respectively, during the extended phase (2026-2028) of the forthcoming BepiColombo mission to Mercury whose expected tracking accuracy is of the order of $\simeq 0.1~\textrm{m},~2\times 10^{-4}~\textrm{cm s}^{-1}$. The competing signatures due to the solar quadrupole $J_2^\odot$, if modelled at the $蟽_{J_2^\odot}\simeq 10^{-9}$ level of the latest planetary ephemerides INPOP17a, are nearly 10 times smaller than the relativistic gravitomagnetic effects. The position and velocity vectors $\mathbf{r},~\mathbf{v}$ of Mercury and Earth are changed by the solar Lense-Thirring effect by about $10~\textrm{m},~1.5~\textrm{m}$ and $10^{-3}~\textrm{cm s}^{-1},~10^{-5}~\textrm{cm s}^{-1}$, respectively, over 2 yr; neglecting such shifts may have an impact on long-term integrations of the inner solar system dynamics over $\sim\textrm{Gyr}$ timescales. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1705.11091v5-abstract-full').style.display = 'none'; document.getElementById('1705.11091v5-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 May, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">LaTex2e, 29 pages, 8 figures, no tables. Matching the version at press in Monthly Notices of the Royal Astronomical Society (MNRAS)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Mon.Not.Roy.Astron.Soc.476:1811-1825,2018 </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Iorio%2C+L&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>