CINXE.COM

Search results for: sequence-dependent setup

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: sequence-dependent setup</title> <meta name="description" content="Search results for: sequence-dependent setup"> <meta name="keywords" content="sequence-dependent setup"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="sequence-dependent setup" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="sequence-dependent setup"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 491</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: sequence-dependent setup</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">491</span> Development of a New Device for Bending Fatigue Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Mokhtarnia">B. Mokhtarnia</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Layeghi"> M. Layeghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presented an original bending fatigue-testing setup for fatigue characterization of composite materials. A three-point quasi-static setup was introduced that was capable of applying stress control load in different loading waveforms, frequencies, and stress ratios. This setup was equipped with computerized measuring instruments to evaluate fatigue damage mechanisms. A detailed description of its different parts and working features was given, and dynamic analysis was done to verify the functional accuracy of the device. Feasibility was validated successfully by conducting experimental fatigue tests. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending%20fatigue" title="bending fatigue">bending fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=quasi-static%20testing%20setup" title=" quasi-static testing setup"> quasi-static testing setup</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20fatigue%20testing" title=" experimental fatigue testing"> experimental fatigue testing</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a> </p> <a href="https://publications.waset.org/abstracts/165432/development-of-a-new-device-for-bending-fatigue-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">490</span> A Performance Comparison between Conventional and Flexible Box Erecting Machines Using Dispatching Rules</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min%20Kyu%20Kim">Min Kyu Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun%20Young%20Lee"> Eun Young Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Dong%20Woo%20Son"> Dong Woo Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Yoon%20Seok%20Chang"> Yoon Seok Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we introduce a flexible box erecting machine (BEM) that swiftly and automatically transforms cardboard into a three dimensional box. Recently, the parcel service and home-shopping industries have grown rapidly, and there is an increasing need for various box types to ship various products. However, workers cannot fold thousands of boxes manually in a day. As such, automatic BEMs are garnering greater attention. This study takes equipment operation into consideration as well as mechanical improvements in order to design a BEM that is able to outperform its conventional counterparts. We analyzed six dispatching rules – First In First Out (FIFO), Shortest Processing Time (SPT), Earliest Due Date (EDD), Setup Avoidance, EDD + SPT, and EDD + Setup Avoidance – to determine which one was most suitable for BEM operation. Consequently, SPT and Setup Avoidance were found to be the most critical rules, followed by EDD + Setup Avoidance, EDD + SPT, EDD, and FIFO. This hierarchy was valid for both our conventional BEM and our new flexible BEM from the viewpoint of processing time. We believe that this research can contribute to flexible BEM management, which has the potential to increase productivity and convenience. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automation" title="automation">automation</a>, <a href="https://publications.waset.org/abstracts/search?q=box%20erecting%20machine" title=" box erecting machine"> box erecting machine</a>, <a href="https://publications.waset.org/abstracts/search?q=dispatching%20rule" title=" dispatching rule"> dispatching rule</a>, <a href="https://publications.waset.org/abstracts/search?q=setup%20time" title=" setup time"> setup time</a> </p> <a href="https://publications.waset.org/abstracts/42437/a-performance-comparison-between-conventional-and-flexible-box-erecting-machines-using-dispatching-rules" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">489</span> A Methodology of Testing Beam to Column Connection under Lateral Impact Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Al-Rifaie">A. Al-Rifaie</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20W.%20Guan"> Z. W. Guan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20W.%20Jones"> S. W. Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Beam to column connection can be considered as the most important structural part that affects the response of buildings to progressive collapse. However, many studies were conducted to investigate the beam to column connection under accidental loads such as fire, blast and impact load to investigate the connection response. The study is a part of a PhD plan to investigate different types of connections under lateral impact load. The conventional test setups, such as cruciform setup, were designed to apply shear forces and bending moment on the connection, whilst, in the lateral impact case, the connection is subjected to combined tension and moment. Hence, a review is presented to introduce the previous test setup that is used to investigate the connection behaviour. Then, the design and fabrication of the novel test setup is presented. Finally, some trial test results to investigate the efficiency of the proposed setup are discussed. The final results indicate that the setup was efficient in terms of the simplicity and strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=connections" title="connections">connections</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20load" title=" impact load"> impact load</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20hammer" title=" drop hammer"> drop hammer</a>, <a href="https://publications.waset.org/abstracts/search?q=testing%20methods" title=" testing methods"> testing methods</a> </p> <a href="https://publications.waset.org/abstracts/76082/a-methodology-of-testing-beam-to-column-connection-under-lateral-impact-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76082.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">488</span> Minimizing Total Completion Time in No-Wait Flowshops with Setup Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi">Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The m-machine no-wait flowshop scheduling problem is addressed in this paper. The objective is to minimize total completion time subject to the constraint that the makespan value is not greater than a certain value. Setup times are treated as separate from processing times. Several recent algorithms are adapted and proposed for the problem. An extensive computational analysis has been conducted for the evaluation of the proposed algorithms. The computational analysis indicates that the best proposed algorithm performs significantly better than the earlier existing best algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=no-wait%20flowshop" title=" no-wait flowshop"> no-wait flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=setup%20times" title=" setup times"> setup times</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20completion%20time" title=" total completion time"> total completion time</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan "> makespan </a> </p> <a href="https://publications.waset.org/abstracts/4858/minimizing-total-completion-time-in-no-wait-flowshops-with-setup-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">487</span> Two Stage Assembly Flowshop Scheduling Problem Minimizing Total Tardiness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi">Ali Allahverdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek"> Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The two stage assembly flowshop scheduling problem has lots of application in real life. To the best of our knowledge, the two stage assembly flowshop scheduling problem with total tardiness performance measure and separate setup times has not been addressed so far, and hence, it is addressed in this paper. Different dominance relations are developed and several algorithms are proposed. Extensive computational experiments are conducted to evaluate the proposed algorithms. The computational experiments have shown that one of the algorithms performs much better than the others. Moreover, the experiments have shown that the best performing algorithm performs much better than the best existing algorithm for the case of zero setup times in the literature. Therefore, the proposed best performing algorithm not only can be used for problems with separate setup times but also for the case of zero setup times. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scheduling" title="scheduling">scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithm" title=" algorithm"> algorithm</a> </p> <a href="https://publications.waset.org/abstracts/48248/two-stage-assembly-flowshop-scheduling-problem-minimizing-total-tardiness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48248.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">486</span> Uncertainty Analysis of a Hardware in Loop Setup for Testing Products Related to Building Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balasundaram%20Prasaant">Balasundaram Prasaant</a>, <a href="https://publications.waset.org/abstracts/search?q=Ploix%20Stephane"> Ploix Stephane</a>, <a href="https://publications.waset.org/abstracts/search?q=Delinchant%20Benoit"> Delinchant Benoit</a>, <a href="https://publications.waset.org/abstracts/search?q=Muresan%20Cristian"> Muresan Cristian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hardware in Loop (HIL) testing is done to test and validate a particular product especially in building technology. When it comes to building technology, it is more important to test the products for their efficiency. The test rig in the HIL simulator may contribute to some uncertainties on measured efficiency. The uncertainties include physical uncertainties and scenario-based uncertainties. In this paper, a simple uncertainty analysis framework for an HIL setup is shown considering only the physical uncertainties. The entire modeling of the HIL setup is done in Dymola. The uncertain sources are considered based on available knowledge of the components and also on expert knowledge. For the propagation of uncertainty, Monte Carlo Simulation is used since it is the most reliable and easy to use. In this article it is shown how an HIL setup can be modeled and how uncertainty propagation can be performed on it. Such an approach is not common in building energy analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20in%20buildings" title="energy in buildings">energy in buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20in%20loop%20testing" title=" hardware in loop testing"> hardware in loop testing</a>, <a href="https://publications.waset.org/abstracts/search?q=modelica%20modelling" title=" modelica modelling"> modelica modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=Monte%20Carlo%20simulation" title=" Monte Carlo simulation"> Monte Carlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation "> uncertainty propagation </a> </p> <a href="https://publications.waset.org/abstracts/129384/uncertainty-analysis-of-a-hardware-in-loop-setup-for-testing-products-related-to-building-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">485</span> Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rudi%20Kurniawan%20Arief">Rudi Kurniawan Arief</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=press%20die" title="press die">press die</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20stamping" title=" metal stamping"> metal stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=QDC%20system" title=" QDC system"> QDC system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20minute%20exchange%20die" title=" single minute exchange die"> single minute exchange die</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20cost%20saving" title=" manufacturing cost saving"> manufacturing cost saving</a>, <a href="https://publications.waset.org/abstracts/search?q=SMED" title=" SMED"> SMED</a> </p> <a href="https://publications.waset.org/abstracts/86870/time-and-cost-efficiency-analysis-of-quick-die-change-system-on-metal-stamping-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86870.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">484</span> Optimization of Flexible Job Shop Scheduling Problem with Sequence-Dependent Setup Times Using Genetic Algorithm Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar%20Parjapati">Sanjay Kumar Parjapati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajai%20Jain"> Ajai Jain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents optimization of makespan for ‘n’ jobs and ‘m’ machines flexible job shop scheduling problem with sequence dependent setup time using genetic algorithm (GA) approach. A restart scheme has also been applied to prevent the premature convergence. Two case studies are taken into consideration. Results are obtained by considering crossover probability (pc = 0.85) and mutation probability (pm = 0.15). Five simulation runs for each case study are taken and minimum value among them is taken as optimal makespan. Results indicate that optimal makespan can be achieved with more than one sequence of jobs in a production order. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20job%20shop" title="flexible job shop">flexible job shop</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence%20dependent%20setup%20times" title=" sequence dependent setup times"> sequence dependent setup times</a> </p> <a href="https://publications.waset.org/abstracts/17085/optimization-of-flexible-job-shop-scheduling-problem-with-sequence-dependent-setup-times-using-genetic-algorithm-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">483</span> M-Machine Assembly Scheduling Problem to Minimize Total Tardiness with Non-Zero Setup Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek">Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi"> Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our objective is to minimize the total tardiness in an m-machine two-stage assembly flowshop scheduling problem. The objective is an important performance measure because of the fact that the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. In the literature, the problem is considered with zero setup times which may not be realistic and appropriate for some scheduling environments. Considering separate setup times from processing times increases machine utilization by decreasing the idle time and reduces total tardiness. We propose two new algorithms and adapt four existing algorithms in the literature which are different versions of simulated annealing and genetic algorithms. Moreover, a dominance relation is developed based on the mathematical formulation of the problem. The developed dominance relation is incorporated in our proposed algorithms. Computational experiments are conducted to investigate the performance of the newly proposed algorithms. We find that one of the proposed algorithms performs significantly better than the others, i.e., the error of the best algorithm is less than those of the other algorithms by minimum 50%. The newly proposed algorithm is also efficient for the case of zero setup times and performs better than the best existing algorithm in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a> </p> <a href="https://publications.waset.org/abstracts/47645/m-machine-assembly-scheduling-problem-to-minimize-total-tardiness-with-non-zero-setup-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">482</span> Sensor Data Analysis for a Large Mining Major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Shanker%20Dasgupta">Sudipto Shanker Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=streaming%20analytics" title="streaming analytics">streaming analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20throughput" title=" high throughput"> high throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20data" title=" sensor data"> sensor data</a> </p> <a href="https://publications.waset.org/abstracts/32352/sensor-data-analysis-for-a-large-mining-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">481</span> Using the Dokeos Platform for Industrial E-Learning Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kherafa%20Abdennasser">Kherafa Abdennasser</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of Information and Communication Technologies (ICT) to the training area led to the creation of this new reality called E-learning. That last one is described like the marriage of multi- media (sound, image and text) and of the internet (diffusion on line, interactivity). Distance learning became an important totality for training and that last pass in particular by the setup of a distance learning platform. In our memory, we will use an open source platform named Dokeos for the management of a distance training of GPS called e-GPS. The learner is followed in all his training. In this system, trainers and learners communicate individually or in group, the administrator setup and make sure of this system maintenance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICT" title="ICT">ICT</a>, <a href="https://publications.waset.org/abstracts/search?q=E-learning" title=" E-learning"> E-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=learning%20plate-forme" title=" learning plate-forme"> learning plate-forme</a>, <a href="https://publications.waset.org/abstracts/search?q=Dokeos" title=" Dokeos"> Dokeos</a>, <a href="https://publications.waset.org/abstracts/search?q=GPS" title=" GPS"> GPS</a> </p> <a href="https://publications.waset.org/abstracts/30666/using-the-dokeos-platform-for-industrial-e-learning-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">480</span> Artificial Neural Network Model Based Setup Period Estimation for Polymer Cutting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zsolt%20J%C3%A1nos%20Viharos">Zsolt János Viharos</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriszti%C3%A1n%20Bal%C3%A1zs%20Kis"> Krisztián Balázs Kis</a>, <a href="https://publications.waset.org/abstracts/search?q=Imre%20Paniti"> Imre Paniti</a>, <a href="https://publications.waset.org/abstracts/search?q=G%C3%A1bor%20Bels%C5%91"> Gábor Belső</a>, <a href="https://publications.waset.org/abstracts/search?q=P%C3%A9ter%20N%C3%A9meth"> Péter Németh</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A1nos%20Farkas"> János Farkas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper presents the results and industrial applications in the production setup period estimation based on industrial data inherited from the field of polymer cutting. The literature of polymer cutting is very limited considering the number of publications. The first polymer cutting machine is known since the second half of the 20th century; however, the production of polymer parts with this kind of technology is still a challenging research topic. The products of the applying industrial partner must met high technical requirements, as they are used in medical, measurement instrumentation and painting industry branches. Typically, 20% of these parts are new work, which means every five years almost the entire product portfolio is replaced in their low series manufacturing environment. Consequently, it requires a flexible production system, where the estimation of the frequent setup periods&#39; lengths is one of the key success factors. In the investigation, several (input) parameters have been studied and grouped to create an adequate training information set for an artificial neural network as a base for the estimation of the individual setup periods. In the first group, product information is collected such as the product name and number of items. The second group contains material data like material type and colour. In the third group, surface quality and tolerance information are collected including the finest surface and tightest (or narrowest) tolerance. The fourth group contains the setup data like machine type and work shift. One source of these parameters is the Manufacturing Execution System (MES) but some data were also collected from Computer Aided Design (CAD) drawings. The number of the applied tools is one of the key factors on which the industrial partners&rsquo; estimations were based previously. The artificial neural network model was trained on several thousands of real industrial data. The mean estimation accuracy of the setup periods&#39; lengths was improved by 30%, and in the same time the deviation of the prognosis was also improved by 50%. Furthermore, an investigation on the mentioned parameter groups considering the manufacturing order was also researched. The paper also highlights the manufacturing introduction experiences and further improvements of the proposed methods, both on the shop floor and on the quotation preparation fields. Every week more than 100 real industrial setup events are given and the related data are collected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20series%20manufacturing" title=" low series manufacturing"> low series manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20cutting" title=" polymer cutting"> polymer cutting</a>, <a href="https://publications.waset.org/abstracts/search?q=setup%20period%20estimation" title=" setup period estimation"> setup period estimation</a> </p> <a href="https://publications.waset.org/abstracts/57280/artificial-neural-network-model-based-setup-period-estimation-for-polymer-cutting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">479</span> A Hybrid Model of Goal, Integer and Constraint Programming for Single Machine Scheduling Problem with Sequence Dependent Setup Times: A Case Study in Aerospace Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Didem%20Can">Didem Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scheduling problems are one of the most fundamental issues of production systems. Many different approaches and models have been developed according to the production processes of the parts and the main purpose of the problem. In this study, one of the bottleneck stations of a company serving in the aerospace industry is analyzed and considered as a single machine scheduling problem with sequence-dependent setup times. The objective of the problem is assigning a large number of similar parts to the same shift -to reduce chemical waste- while minimizing the number of tardy jobs. The goal programming method will be used to achieve two different objectives simultaneously. The assignment of parts to the shift will be expressed using the integer programming method. Finally, the constraint programming method will be used as it provides a way to find a result in a short time by avoiding worse resulting feasible solutions with the defined variables set. The model to be established will be tested and evaluated with real data in the application part. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=constraint%20programming" title="constraint programming">constraint programming</a>, <a href="https://publications.waset.org/abstracts/search?q=goal%20programming" title=" goal programming"> goal programming</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup" title="sequence-dependent setup">sequence-dependent setup</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20machine%20scheduling" title=" single machine scheduling"> single machine scheduling</a> </p> <a href="https://publications.waset.org/abstracts/144504/a-hybrid-model-of-goal-integer-and-constraint-programming-for-single-machine-scheduling-problem-with-sequence-dependent-setup-times-a-case-study-in-aerospace-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">478</span> Comparative Study on the Evaluation of Patient Safety in Malaysian Retail Pharmacy Setup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palanisamy%20Sivanandy">Palanisamy Sivanandy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Tyng%20Wei"> Tan Tyng Wei</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20Wee%20Loon"> Tan Wee Loon</a>, <a href="https://publications.waset.org/abstracts/search?q=Lim%20Chong%20Yee"> Lim Chong Yee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Patient safety has become a major concern over recent years with elevated medication errors; particularly prescribing and dispensing errors. Meticulous prescription screening and diligent drug dispensing is therefore important to prevent drug-related adverse events from inflicting harm to patients. Hence, pharmacists play a significant role in this scenario. The evaluation of patient safety in a pharmacy setup is crucial to contemplate current practices, attitude and perception of pharmacists towards patient safety. Method: The questionnaire for Pharmacy Survey on Patient Safety Culture developed by the Agency for Healthcare and Research Quality (AHRQ) was used to assess patient safety. Main objectives of the study was to evaluate the attitude and perception of pharmacists towards patient safety in retail pharmacies setup in Malaysia. Results: 417 questionnaire were distributed via convenience sampling in three different states of Malaysia, where 390 participants were responded and the response rate was 93.52%. The overall positive response rate (PRR) was ranged from 31.20% to 87.43% and the average PRR was found to be 67%. The overall patient safety grade for our pharmacies was appreciable and it ranges from good to very good. The study found a significant difference in the perception of senior and junior pharmacists towards patient safety. The internal consistency of the questionnaire contents /dimensions was satisfactory (Cronbach’s alpha - 0.92). Conclusion: Our results reflect that there was positive attitude and perception of retail pharmacists towards patient safety. Despite this, various efforts can be implemented in the future to amplify patient safety in retail pharmacies setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=patient%20safety" title="patient safety">patient safety</a>, <a href="https://publications.waset.org/abstracts/search?q=attitude" title=" attitude"> attitude</a>, <a href="https://publications.waset.org/abstracts/search?q=perception" title=" perception"> perception</a>, <a href="https://publications.waset.org/abstracts/search?q=positive%20response%20rate" title=" positive response rate"> positive response rate</a>, <a href="https://publications.waset.org/abstracts/search?q=medication%20errors" title=" medication errors"> medication errors</a> </p> <a href="https://publications.waset.org/abstracts/43765/comparative-study-on-the-evaluation-of-patient-safety-in-malaysian-retail-pharmacy-setup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43765.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">477</span> Experimental Study on Two-Step Pyrolysis of Automotive Shredder Residue</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Letizia%20Marchetti">Letizia Marchetti</a>, <a href="https://publications.waset.org/abstracts/search?q=Federica%20Annunzi"> Federica Annunzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Federico%20Fiorini"> Federico Fiorini</a>, <a href="https://publications.waset.org/abstracts/search?q=Cristiano%20Nicolella"> Cristiano Nicolella</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automotive shredder residue (ASR) is a mixture of waste that makes up 20-25% of end-of-life vehicles. For many years, ASR was commonly disposed of in landfills or incinerated, causing serious environmental problems. Nowadays, thermochemical treatments are a promising alternative, although the heterogeneity of ASR still poses some challenges. One of the emerging thermochemical treatments for ASR is pyrolysis, which promotes the decomposition of long polymeric chains by providing heat in the absence of an oxidizing agent. In this way, pyrolysis promotes the conversion of ASR into solid, liquid, and gaseous phases. This work aims to improve the performance of a two-step pyrolysis process. After the characterization of the analysed ASR, the focus is on determining the effects of residence time on product yields and gas composition. A batch experimental setup that reproduces the entire process was used. The setup consists of three sections: the pyrolysis section (made of two reactors), the separation section, and the analysis section. Two different residence times were investigated to find suitable conditions for the first sample of ASR. These first tests showed that the products obtained were more sensitive to residence time in the second reactor. Indeed, slightly increasing residence time in the second reactor managed to raise the yield of gas and carbon residue and decrease the yield of liquid fraction. Then, to test the versatility of the setup, the same conditions were applied to a different sample of ASR coming from a different chemical plant. The comparison between the two ASR samples shows that similar product yields and compositions are obtained using the same setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automotive%20shredder%20residue" title="automotive shredder residue">automotive shredder residue</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20tests" title=" experimental tests"> experimental tests</a>, <a href="https://publications.waset.org/abstracts/search?q=heterogeneity" title=" heterogeneity"> heterogeneity</a>, <a href="https://publications.waset.org/abstracts/search?q=product%20yields" title=" product yields"> product yields</a>, <a href="https://publications.waset.org/abstracts/search?q=two-step%20pyrolysis" title=" two-step pyrolysis"> two-step pyrolysis</a> </p> <a href="https://publications.waset.org/abstracts/174857/experimental-study-on-two-step-pyrolysis-of-automotive-shredder-residue" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">476</span> Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Joseph%20C.%20Chen">Joseph C. Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DMAIC" title="DMAIC">DMAIC</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision%20system" title=" machine vision system"> machine vision system</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20capability" title=" process capability"> process capability</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20Parameter%20Design" title=" Taguchi Parameter Design"> Taguchi Parameter Design</a> </p> <a href="https://publications.waset.org/abstracts/68243/optimizing-machine-vision-system-setup-accuracy-by-six-sigma-dmaic-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">475</span> Algorithms Minimizing Total Tardiness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harun%20Aydilek">Harun Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Asiye%20Aydilek"> Asiye Aydilek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Allahverdi"> Ali Allahverdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The total tardiness is a widely used performance measure in the scheduling literature. This performance measure is particularly important in situations where there is a cost to complete a job beyond its due date. The cost of scheduling increases as the gap between a job's due date and its completion time increases. Such costs may also be penalty costs in contracts, loss of goodwill. This performance measure is important as the fulfillment of due dates of customers has to be taken into account while making scheduling decisions. The problem is addressed in the literature, however, it has been assumed zero setup times. Even though this assumption may be valid for some environments, it is not valid for some other scheduling environments. When setup times are treated as separate from processing times, it is possible to increase machine utilization and to reduce total tardiness. Therefore, non-zero setup times need to be considered as separate. A dominance relation is developed and several algorithms are proposed. The developed dominance relation is utilized in the proposed algorithms. Extensive computational experiments are conducted for the evaluation of the algorithms. The experiments indicated that the developed algorithms perform much better than the existing algorithms in the literature. More specifically, one of the newly proposed algorithms reduces the error of the best existing algorithm in the literature by 40 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm" title="algorithm">algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=assembly%20flowshop" title=" assembly flowshop"> assembly flowshop</a>, <a href="https://publications.waset.org/abstracts/search?q=dominance%20relation" title=" dominance relation"> dominance relation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20tardiness" title=" total tardiness"> total tardiness</a> </p> <a href="https://publications.waset.org/abstracts/29889/algorithms-minimizing-total-tardiness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">474</span> Design of a Low Cost Motion Data Acquisition Setup for Mechatronic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Baris%20Can%20Yalcin">Baris Can Yalcin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motion sensors have been commonly used as a valuable component in mechatronic systems, however, many mechatronic designs and applications that need motion sensors cost enormous amount of money, especially high-tech systems. Design of a software for communication protocol between data acquisition card and motion sensor is another issue that has to be solved. This study presents how to design a low cost motion data acquisition setup consisting of MPU 6050 motion sensor (gyro and accelerometer in 3 axes) and Arduino Mega2560 microcontroller. Design parameters are calibration of the sensor, identification and communication between sensor and data acquisition card, interpretation of data collected by the sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title=" mechatronics"> mechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20sensor" title=" motion sensor"> motion sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20acquisition" title=" data acquisition"> data acquisition</a> </p> <a href="https://publications.waset.org/abstracts/10243/design-of-a-low-cost-motion-data-acquisition-setup-for-mechatronic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10243.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">473</span> Numerical Study Pile Installation Disturbance Zone Effects on Excess Pore Pressure Dissipation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang%20Liu">Kang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Liu"> Meng Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng-Long%20Wu"> Meng-Long Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Da-Chang%20Yue"> Da-Chang Yue</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Yi%20Pan"> Hong-Yi Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The soil setup is an important factor affecting pile bearing capacity; there are many factors that influence it, all of which are closely related to pile construction disturbances. During pile installation in soil, a significant amount of excess pore pressure is generated, creating disturbance zones around the pile. The dissipation rate of excess pore pressure is an important factor influencing the pile setup. The paper aims to examine how alterations in parameters within disturbance zones affect the dissipation of excess pore pressure. An axisymmetric FE model is used to simulate pile installation in clay, subsequently consolidation using Plaxis 3D. The influence of disturbed zone on setup is verified, by comparing the parametric studies in uniform field and non-uniform field. Three types of consolidation are employed: consolidation in three directions, vertical consolidation, horizontal consolidation. The results of the parametric study show that the permeability coefficient decreases, soil stiffness decreases, and reference pressure increases in the disturbance zone, resulting in an increase in the dissipation time of excess pore pressure and exhibiting a noticeable threshold phenomenon, which has been commonly overlooked in previous literature. The research in this paper suggests that significant thresholds occur when the coefficient of permeability decreases to half of the original site's value for three-directional and horizontal consolidation within the disturbed zone. Similarly, the threshold for vertical consolidation is observed when the coefficient of permeability decreases to one-fourth of the original site's value. Especially in pile setup research, consolidation is assumed to be horizontal; the study findings suggest that horizontal consolidation has experienced notable alterations as a result of the presence of disturbed zones. Furthermore, the selection of pile installation methods proves to be critical. A nonlinearity excess pore pressure formula is proposed based on cavity expansion theory, which includes the distribution of soil profile modulus with depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pile%20setup" title="pile setup">pile setup</a>, <a href="https://publications.waset.org/abstracts/search?q=threshold%20value%20effect" title=" threshold value effect"> threshold value effect</a>, <a href="https://publications.waset.org/abstracts/search?q=installation%20effects" title=" installation effects"> installation effects</a>, <a href="https://publications.waset.org/abstracts/search?q=uniform%20field" title=" uniform field"> uniform field</a>, <a href="https://publications.waset.org/abstracts/search?q=non-uniform%20field" title=" non-uniform field"> non-uniform field</a> </p> <a href="https://publications.waset.org/abstracts/185943/numerical-study-pile-installation-disturbance-zone-effects-on-excess-pore-pressure-dissipation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185943.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">46</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">472</span> Individual Actuators of a Car-Like Robot with Back Trailer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20El-Derini">Tarek El-Derini</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20El-Shenawy"> Ahmed El-Shenawy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the hardware implemented and validation for a special system to assist the unprofessional users of car with back trailers. The system consists of two platforms; the front car platform (C) and the trailer platform (T). The main objective is to control the Trailer platform using the actuators found in the front platform (c). The mobility of the platform (C) is investigated and inverse and forward kinematics model is obtained for both platforms (C) and (T). The system is simulated using Matlab M-file and the simulation examples results illustrated the system performance. The system is constructed with a hardware setup for the front and trailer platform. The hardware experimental results and the simulated examples outputs showed the validation of the hardware setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinematics" title="kinematics">kinematics</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=robot" title=" robot"> robot</a>, <a href="https://publications.waset.org/abstracts/search?q=MATLAB" title=" MATLAB"> MATLAB</a> </p> <a href="https://publications.waset.org/abstracts/18343/individual-actuators-of-a-car-like-robot-with-back-trailer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">471</span> Bayesian Optimization for Reaction Parameter Tuning: An Exploratory Study of Parameter Optimization in Oxidative Desulfurization of Thiophene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aman%20Sharma">Aman Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sonali%20Sengupta"> Sonali Sengupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study explores the utility of Bayesian optimization in tuning the physical and chemical parameters of reactions in an offline experimental setup. A comparative analysis of the influence of the acquisition function on the optimization performance is also studied. For proxy first and second-order reactions, the results are indifferent to the acquisition function used, whereas, while studying the parameters for oxidative desulphurization of thiophene in an offline setup, upper confidence bound (UCB) provides faster convergence along with a marginal trade-off in the maximum conversion achieved. The work also demarcates the critical number of independent parameters and input observations required for both sequential and offline reaction setups to yield tangible results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acquisition%20function" title="acquisition function">acquisition function</a>, <a href="https://publications.waset.org/abstracts/search?q=Bayesian%20optimization" title=" Bayesian optimization"> Bayesian optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=desulfurization" title=" desulfurization"> desulfurization</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=thiophene" title=" thiophene"> thiophene</a> </p> <a href="https://publications.waset.org/abstracts/135023/bayesian-optimization-for-reaction-parameter-tuning-an-exploratory-study-of-parameter-optimization-in-oxidative-desulfurization-of-thiophene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">470</span> Experimental Study and Analysis of Parabolic Trough Collector with Various Reflectors </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avadhesh%20Yadav">Avadhesh Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Balram%20Manoj%20Kumar"> Balram Manoj Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A solar powered air heating system using parabolic trough collector was experimentally investigated. In this experimental setup, the reflected solar radiations were focused on absorber tube which was placed at focal length of the parabolic trough. In this setup, air was used as working fluid which collects the heat from absorber tube. To enhance the performance of parabolic trough, collector with different type of reflectors were used. It was observed for aluminum sheet maximum temperature is 52.3ºC, which 24.22% more than steel sheet as reflector and 8.5% more than aluminum foil as reflector, also efficiency by using Aluminum sheet as reflector compared to steel sheet as reflector is 61.18% more. Efficiency by using aluminum sheet as reflector compared to aluminum foil as reflector is 18.98% more. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20collector" title="parabolic trough collector">parabolic trough collector</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectors" title=" reflectors"> reflectors</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20flow%20rates" title=" air flow rates"> air flow rates</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title=" solar power"> solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20sheet" title=" aluminum sheet"> aluminum sheet</a> </p> <a href="https://publications.waset.org/abstracts/2172/experimental-study-and-analysis-of-parabolic-trough-collector-with-various-reflectors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">469</span> Mariculture Trials of the Philippine Blue Sponge Xestospongia sp.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Clairecynth%20Yu">Clairecynth Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Geminne%20Manzano"> Geminne Manzano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mariculture potential of the Philippine blue sponge, Xestospongia sp. was assessed through the pilot sponge culture in the open-sea at two different biogeographic regions in the Philippines. Thirty explants were randomly allocated for the Puerto Galera, Oriental Mindoro culture setup and the other nine were transported to Lucero, Bolinao, Pangasinan. Two different sponge culture methods of the sponge explants- the lantern and the wall method, were employed to assess the production of the Renieramycin M. Both methods have shown to be effective in growing the sponge explants and that the Thin Layer Chromatography (TLC) results have shown that Renieramycin M is present on the sponges. The effect of partial harvesting in the growth and survival rates of the blue sponge in the Puerto Galera setup was also determined. Results showed that a higher growth rate was observed on the partially harvested explants on both culture methods as compared to the unharvested explants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20ecology" title="chemical ecology">chemical ecology</a>, <a href="https://publications.waset.org/abstracts/search?q=porifera" title=" porifera"> porifera</a>, <a href="https://publications.waset.org/abstracts/search?q=sponge" title=" sponge"> sponge</a>, <a href="https://publications.waset.org/abstracts/search?q=Xestospongia%20sp." title=" Xestospongia sp."> Xestospongia sp.</a> </p> <a href="https://publications.waset.org/abstracts/53573/mariculture-trials-of-the-philippine-blue-sponge-xestospongia-sp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">468</span> Multi-Objective Optimization of Assembly Manufacturing Factory Setups</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andreas%20Lind">Andreas Lind</a>, <a href="https://publications.waset.org/abstracts/search?q=Aitor%20Iriondo%20Pascual"> Aitor Iriondo Pascual</a>, <a href="https://publications.waset.org/abstracts/search?q=Dan%20Hogberg"> Dan Hogberg</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Hanson"> Lars Hanson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=factory%20setup" title="factory setup">factory setup</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective" title=" multi-objective"> multi-objective</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/134195/multi-objective-optimization-of-assembly-manufacturing-factory-setups" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">467</span> Density Measurement of Underexpanded Jet Using Stripe Patterned Background Oriented Schlieren Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shinsuke%20Udagawa">Shinsuke Udagawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Masato%20Yamagishi"> Masato Yamagishi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masanori%20Ota"> Masanori Ota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Schlieren method, which has been conventionally used to visualize high-speed flows, has disadvantages such as the complexity of the experimental setup and the inability to quantitatively analyze the amount of refraction of light. The Background Oriented Schlieren (BOS) method proposed by Meier is one of the measurement methods that solves the problems, as mentioned above. The refraction of light is used for BOS method same as the Schlieren method. The BOS method is characterized using a digital camera to capture the images of the background behind the observation area. The images are later analyzed by a computer to quantitatively detect the amount of shift of the background image. The experimental setup for BOS does not require concave mirrors, pinholes, or color filters, which are necessary in the conventional Schlieren method, thus simplifying the experimental setup. However, the defocusing of the observation results is caused in case of using BOS method. Since the focus of camera on the background image leads to defocusing of the observed object. The defocusing of object becomes greater with increasing the distance between the background and the object. On the other hand, the higher sensitivity can be obtained. Therefore, it is necessary to adjust the distance between the background and the object to be appropriate for the experiment, considering the relation between the defocus and the sensitivity. The purpose of this study is to experimentally clarify the effect of defocus on density field reconstruction. In this study, the visualization experiment of underexpanded jet using BOS measurement system with ronchi ruling as the background that we constructed, have been performed. The reservoir pressure of the jet and the distance between camera and axis of jet is fixed, and the distance between background and axis of jet has been changed as the parameter. The images have been later analyzed by using personal computer to quantitatively detect the amount of shift of the background image from the comparison between the background pattern and the captured image of underexpanded jet. The quantitatively measured amount of shift have been reconstructed into a density flow field using the Abel transformation and the Gradstone-Dale equation. From the experimental results, it is found that the reconstructed density image becomes blurring, and noise becomes decreasing with increasing the distance between background and axis of underexpanded jet. Consequently, it is cralified that the sensitivity constant should be greater than 20, and the circle of confusion diameter should be less than 2.7mm at least in this experimental setup. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BOS%20method" title="BOS method">BOS method</a>, <a href="https://publications.waset.org/abstracts/search?q=underexpanded%20jet" title=" underexpanded jet"> underexpanded jet</a>, <a href="https://publications.waset.org/abstracts/search?q=abel%20transformation" title=" abel transformation"> abel transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20field%20visualization" title=" density field visualization"> density field visualization</a> </p> <a href="https://publications.waset.org/abstracts/170604/density-measurement-of-underexpanded-jet-using-stripe-patterned-background-oriented-schlieren-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170604.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">466</span> Experimental Set-Up for Investigation of Fault Diagnosis of a Centrifugal Pump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maamar%20Ali%20Saud%20Al%20Tobi">Maamar Ali Saud Al Tobi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geraint%20Bevan"> Geraint Bevan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Ramachandran"> K. P. Ramachandran</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Wallace"> Peter Wallace</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Harrison"> David Harrison</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Centrifugal pumps are complex machines which can experience different types of fault. Condition monitoring can be used in centrifugal pump fault detection through vibration analysis for mechanical and hydraulic forces. Vibration analysis methods have the potential to be combined with artificial intelligence systems where an automatic diagnostic method can be approached. An automatic fault diagnosis approach could be a good option to minimize human error and to provide a precise machine fault classification. This work aims to introduce an approach to centrifugal pump fault diagnosis based on artificial intelligence and genetic algorithm systems. An overview of the future works, research methodology and proposed experimental setup is presented and discussed. The expected results and outcomes based on the experimental work are illustrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pump%20setup" title="centrifugal pump setup">centrifugal pump setup</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration%20analysis" title=" vibration analysis"> vibration analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title=" artificial intelligence"> artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/66155/experimental-set-up-for-investigation-of-fault-diagnosis-of-a-centrifugal-pump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">465</span> Enhancement of Material Removal Rate of Complex Featured Surfaces in Vibratory Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunal%20Ahluwalia">Kunal Ahluwalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Ampara%20Aramcharoen"> Ampara Aramcharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chan%20Wai%20Luen"> Chan Wai Luen</a>, <a href="https://publications.waset.org/abstracts/search?q=Swee%20Hock%20Yeo"> Swee Hock Yeo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The different process engineering applications of vibratory finishing technology have led to its versatile use in the development of aviation components. The most noteworthy applications of vibratory finishing include deburring and imparting the required surface finish. In this paper, vibratory finishing has been used to study its effectiveness in removal of laser shock peened (LSP) layers from Titanium workpieces. A vibratory trough operating at a frequency of 25 Hz, amplitude 3.5 mm and titanium specimens (Ti-6Al-4V, Grade 5) of dimensions 50 x 50 x 10 mm³ were utilized for the experiments. A vibrating fixture operating at 200 Hz was used to provide vibration to the test piece and was immersed in the vibratory trough. It was evident that there is an increase in efficiency of removal of the complex featured layer and smoother surface finish with the introduction of the vibrating fixture in the vibratory finishing setup as compared to the conventional vibratory finishing setup wherein the fixture is not vibrating. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20shock%20peening" title="laser shock peening">laser shock peening</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20removal" title=" material removal"> material removal</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20roughness" title=" surface roughness"> surface roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=vibrating%20fixture" title=" vibrating fixture"> vibrating fixture</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20finishing" title=" vibratory finishing"> vibratory finishing</a> </p> <a href="https://publications.waset.org/abstracts/78478/enhancement-of-material-removal-rate-of-complex-featured-surfaces-in-vibratory-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">464</span> Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saeed%20Khandan%20Siar">Saeed Khandan Siar</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefan%20Tenbohlen"> Stefan Tenbohlen</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Breuer"> Christian Breuer</a>, <a href="https://publications.waset.org/abstracts/search?q=Raphael%20Lebreton"> Raphael Lebreton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20heat%20transfer" title=" conjugated heat transfer"> conjugated heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20transformers" title=" power transformers"> power transformers</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/58425/numerical-investigation-of-fluid-flow-and-temperature-distribution-on-power-transformer-windings-using-open-foam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">422</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">463</span> Performances of the Double-Crystal Setup at CERN SPS Accelerator for Physics beyond Colliders Experiments</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrii%20Natochii">Andrii Natochii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We are currently presenting the recent results from the CERN accelerator facilities obtained in the frame of the UA9 Collaboration. The UA9 experiment investigates how a tiny silicon bent crystal (few millimeters long) can be used for various high-energy physics applications. Due to the huge electrostatic field (tens of GV/cm) between crystalline planes, there is a probability for charged particles, impinging the crystal, to be trapped in the channeling regime. It gives a possibility to steer a high intensity and momentum beam by bending the crystal: channeled particles will follow the crystal curvature and deflect on the certain angle (from tens microradians for LHC to few milliradians for SPS energy ranges). The measurements at SPS, performed in 2017 and 2018, confirmed that the protons deflected by the first crystal, inserted in the primary beam halo, can be caught and channeled by the second crystal. In this configuration, we measure the single pass deflection efficiency of the second crystal and prove our opportunity to perform the fixed target experiment at SPS accelerator (LHC in the future). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=channeling" title="channeling">channeling</a>, <a href="https://publications.waset.org/abstracts/search?q=double-crystal%20setup" title=" double-crystal setup"> double-crystal setup</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20target%20experiment" title=" fixed target experiment"> fixed target experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=Timepix%20detector" title=" Timepix detector"> Timepix detector</a> </p> <a href="https://publications.waset.org/abstracts/101941/performances-of-the-double-crystal-setup-at-cern-sps-accelerator-for-physics-beyond-colliders-experiments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">462</span> Utilization of Sphagnum Moss as a Jeepney Emission Filter for Smoke Density Reduction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monique%20Joyce%20L.%20Disamburum">Monique Joyce L. Disamburum</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20C.%20Faustino"> Nicole C. Faustino</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashley%20Angela%20A.%20Fazon"> Ashley Angela A. Fazon</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessie%20F.%20Rubonal"> Jessie F. Rubonal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traditional jeepneys contribute significantly to air pollution in the Philippines, negatively affecting both the environment and people. In response, the researchers investigated Sphagnum moss which has high adsorbent properties and can be used as a filter. Therefore, this research aims to create a muffler filter additive to reduce the smoke density emitted by traditional jeepneys. Various materials, such as moss, cornstarch, a metal pipe, bolts, and a papermaking screen frame, were gathered. The moss underwent a blending process with a cornstarch mixture until it achieved a pulp-like consistency, subsequently molded using a papermaking screen frame and left for sun drying. Following this, a metal prototype was created by drilling holes around the tumbler and inserting bolts. The mesh wire containing the filter was carefully placed into the hole, secured by two bolts. In the final phase, there were three setups, each undergoing one trial in the LTO emission testing. Each trial consisted of six rounds of purging, and after that the average smoke density was measured. According to the findings of this study, the filter aided in lowering the average smoke density. The one layer setup produced an average of 1.521, whereas the two layer setup produced an average of 1.082. Using One-Way Anova, it was demonstrated that there is a significant difference between the setups. Furthermore, the Tukey HSD Post Hoc test revealed that Setups A and C differed significantly (p = 0.04604), with Setup C being the most successful in reducing smoke density (mean difference -1.4128). Overall, the researchers came to the conclusion that employing Sphagnum moss as a filter can lower the average smoke density released by traditional jeepneys. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sphagnum%20moss" title="sphagnum moss">sphagnum moss</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeepney%20filter" title=" Jeepney filter"> Jeepney filter</a>, <a href="https://publications.waset.org/abstracts/search?q=smoke%20density" title=" smoke density"> smoke density</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeepney%20emission" title=" Jeepney emission"> Jeepney emission</a> </p> <a href="https://publications.waset.org/abstracts/183150/utilization-of-sphagnum-moss-as-a-jeepney-emission-filter-for-smoke-density-reduction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=16">16</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=17">17</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=sequence-dependent%20setup&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10