CINXE.COM

분자 궤도 - 위키백과, 우리 모두의 백과사전

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available" lang="ko" dir="ltr"> <head> <meta charset="UTF-8"> <title>분자 궤도 - 위키백과, 우리 모두의 백과사전</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-disabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )kowikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"ko", "wgMonthNames":["","1월","2월","3월","4월","5월","6월","7월","8월","9월","10월","11월","12월"],"wgRequestId":"7d49abcf-a29f-49f3-b04e-a7f52a604935","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"분자_궤도","wgTitle":"분자 궤도","wgCurRevisionId":36951550,"wgRevisionId":36951550,"wgArticleId":317103,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["해결되지 않은 속성이 있는 문서","위키데이터 속성 P373을 사용하는 문서","위키데이터 속성 P244를 사용하는 문서","위키데이터 속성 P691을 사용하는 문서","위키데이터 속성 P7859를 사용하는 문서","위키데이터 속성 P8189를 사용하는 문서","출처가 필요한 글/2013년 3월","출처가 필요한 모든 글","전체에 출처가 필요한 글","J9U 식별자를 포함한 위키백과 문서", "LCCN 식별자를 포함한 위키백과 문서","NKC 식별자를 포함한 위키백과 문서","분자물리학","양자화학","이론화학","계산화학","화학 결합"],"wgPageViewLanguage":"ko","wgPageContentLanguage":"ko","wgPageContentModel":"wikitext","wgRelevantPageName":"분자_궤도","wgRelevantArticleId":317103,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":true,"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"ko","pageLanguageDir":"ltr","pageVariantFallbacks":"ko"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":20000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q725417","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.gadget.SectionFont":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"}; RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.directcommons","ext.gadget.edittools","ext.gadget.refToolbar","ext.gadget.siteNotice","ext.gadget.scrollUpButton","ext.gadget.strikethroughTOC","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=ko&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=ext.gadget.SectionFont&amp;only=styles&amp;skin=vector-2022"> <link rel="stylesheet" href="/w/load.php?lang=ko&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/1200px-Dihydrogen-HOMO-phase-3D-balls.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1084"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/800px-Dihydrogen-HOMO-phase-3D-balls.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="723"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/640px-Dihydrogen-HOMO-phase-3D-balls.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="578"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="분자 궤도 - 위키백과, 우리 모두의 백과사전"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//ko.m.wikipedia.org/wiki/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84"> <link rel="alternate" type="application/x-wiki" title="편집" href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="위키백과 (ko)"> <link rel="EditURI" type="application/rsd+xml" href="//ko.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://ko.wikipedia.org/wiki/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.ko"> <link rel="alternate" type="application/atom+xml" title="위키백과 아톰 피드" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-분자_궤도 rootpage-분자_궤도 skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">본문으로 이동</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="주 메뉴" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">주 메뉴</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">주 메뉴</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">숨기기</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> 둘러보기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" title="대문으로 가기 [z]" accesskey="z"><span>대문</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C" title="위키의 최근 바뀐 목록 [r]" accesskey="r"><span>최근 바뀜</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/%ED%8F%AC%ED%84%B8:%EC%9A%94%EC%A6%98_%ED%99%94%EC%A0%9C" title="최근의 소식 알아 보기"><span>요즘 화제</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EC%9E%84%EC%9D%98%EB%AC%B8%EC%84%9C" title="무작위로 선택된 문서 불러오기 [x]" accesskey="x"><span>임의의 문서로</span></a></li> </ul> </div> </div> <div id="p-사용자_모임" class="vector-menu mw-portlet mw-portlet-사용자_모임" > <div class="vector-menu-heading"> 사용자 모임 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-projectchat" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EB%9E%91%EB%B0%A9"><span>사랑방</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%82%AC%EC%9A%A9%EC%9E%90_%EB%AA%A8%EC%9E%84" title="위키백과 참여자를 위한 토론/대화 공간입니다."><span>사용자 모임</span></a></li><li id="n-request" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%9A%94%EC%B2%AD"><span>관리 요청</span></a></li> </ul> </div> </div> <div id="p-편집_안내" class="vector-menu mw-portlet mw-portlet-편집_안내" > <div class="vector-menu-heading"> 편집 안내 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-helpintro" class="mw-list-item"><a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C"><span>소개</span></a></li><li id="n-help" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8F%84%EC%9B%80%EB%A7%90" title="도움말"><span>도움말</span></a></li><li id="n-policy" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%95%EC%B1%85%EA%B3%BC_%EC%A7%80%EC%B9%A8"><span>정책과 지침</span></a></li><li id="n-qna" class="mw-list-item"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A7%88%EB%AC%B8%EB%B0%A9"><span>질문방</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="위키백과" src="/static/images/mobile/copyright/wikipedia-wordmark-ko.svg" style="width: 7.5em; height: 1.75em;"> <img class="mw-logo-tagline" alt="" src="/static/images/mobile/copyright/wikipedia-tagline-ko.svg" width="120" height="13" style="width: 7.5em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B2%80%EC%83%89" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="위키백과 검색 [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>검색</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="위키백과 검색" aria-label="위키백과 검색" autocapitalize="sentences" title="위키백과 검색 [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="특수:검색"> </div> <button class="cdx-button cdx-search-input__end-button">검색</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="개인 도구"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="문서의 글꼴 크기, 폭, 색의 모습을 변경합니다" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="보이기" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">보이기</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko" class=""><span>기부</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다" class=""><span>계정 만들기</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o" class=""><span>로그인</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="더 많은 옵션" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="개인 도구" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">개인 도구</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="사용자 메뉴" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="//donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_ko.wikipedia.org&amp;uselang=ko"><span>기부</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EA%B3%84%EC%A0%95%EB%A7%8C%EB%93%A4%EA%B8%B0&amp;returnto=%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" title="계정을 만들고 로그인하는 것이 좋습니다. 하지만 필수는 아닙니다"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>계정 만들기</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EB%A1%9C%EA%B7%B8%EC%9D%B8&amp;returnto=%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" title="위키백과에 로그인하면 여러가지 편리한 기능을 사용할 수 있습니다. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>로그인</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> 로그아웃한 편집자를 위한 문서 <a href="/wiki/%EB%8F%84%EC%9B%80%EB%A7%90:%EC%86%8C%EA%B0%9C" aria-label="편집에 관해 더 알아보기"><span>더 알아보기</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EA%B8%B0%EC%97%AC" title="이 IP 주소의 편집 목록 [y]" accesskey="y"><span>기여</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%82%B4%EC%82%AC%EC%9A%A9%EC%9E%90%ED%86%A0%EB%A1%A0" title="현재 사용하는 IP 주소에 대한 토론 문서 [n]" accesskey="n"><span>토론</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="사이트"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="목차" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">목차</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">숨기기</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">처음 위치</div> </a> </li> <li id="toc-개요" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#개요"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>개요</span> </div> </a> <ul id="toc-개요-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-분자_오비탈의_형성" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#분자_오비탈의_형성"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>분자 오비탈의 형성</span> </div> </a> <ul id="toc-분자_오비탈의_형성-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-정성적인_논의" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#정성적인_논의"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>정성적인 논의</span> </div> </a> <ul id="toc-정성적인_논의-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-예시" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#예시"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>예시</span> </div> </a> <ul id="toc-예시-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-정량적_접근" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#정량적_접근"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>정량적 접근</span> </div> </a> <ul id="toc-정량적_접근-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-물리적_의미" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#물리적_의미"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>물리적 의미</span> </div> </a> <ul id="toc-물리적_의미-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-분자_궤도의_명명법" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#분자_궤도의_명명법"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>분자 궤도의 명명법</span> </div> </a> <ul id="toc-분자_궤도의_명명법-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-동종_이원자_분자의_분자_궤도_표기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#동종_이원자_분자의_분자_궤도_표기"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>동종 이원자 분자의 분자 궤도 표기</span> </div> </a> <ul id="toc-동종_이원자_분자의_분자_궤도_표기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-논의" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#논의"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>논의</span> </div> </a> <button aria-controls="toc-논의-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>논의 하위섹션 토글하기</span> </button> <ul id="toc-논의-sublist" class="vector-toc-list"> <li id="toc-원자_궤도_함수_선형_결합_(Linear_Combination_of_Atomic_Orbitals;LCAO)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#원자_궤도_함수_선형_결합_(Linear_Combination_of_Atomic_Orbitals;LCAO)"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>원자 궤도 함수 선형 결합 (Linear Combination of Atomic Orbitals;LCAO)</span> </div> </a> <ul id="toc-원자_궤도_함수_선형_결합_(Linear_Combination_of_Atomic_Orbitals;LCAO)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-보른-오펜하이머_근사법_(Born-Oppenheimer_approximation)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#보른-오펜하이머_근사법_(Born-Oppenheimer_approximation)"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.2</span> <span>보른-오펜하이머 근사법 (Born-Oppenheimer approximation)</span> </div> </a> <ul id="toc-보른-오펜하이머_근사법_(Born-Oppenheimer_approximation)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-&#039;&quot;`UNIQ--postMath-00000019-QINU`&quot;&#039;의_분자_오비탈(molecular_orbital;_MO)" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#&#039;&quot;`UNIQ--postMath-00000019-QINU`&quot;&#039;의_분자_오비탈(molecular_orbital;_MO)"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>'"`UNIQ--postMath-00000019-QINU`"'의 분자 오비탈(molecular orbital; MO)</span> </div> </a> <button aria-controls="toc-&#039;&quot;`UNIQ--postMath-00000019-QINU`&quot;&#039;의_분자_오비탈(molecular_orbital;_MO)-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>'"`UNIQ--postMath-00000019-QINU`"'의 분자 오비탈(molecular orbital; MO) 하위섹션 토글하기</span> </button> <ul id="toc-&#039;&quot;`UNIQ--postMath-00000019-QINU`&quot;&#039;의_분자_오비탈(molecular_orbital;_MO)-sublist" class="vector-toc-list"> <li id="toc-분자_궤도가_갖는_에너지" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#분자_궤도가_갖는_에너지"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>분자 궤도가 갖는 에너지</span> </div> </a> <ul id="toc-분자_궤도가_갖는_에너지-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-분자_궤도의_파동_함수" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#분자_궤도의_파동_함수"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.2</span> <span>분자 궤도의 파동 함수</span> </div> </a> <ul id="toc-분자_궤도의_파동_함수-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-같이_보기" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#같이_보기"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>같이 보기</span> </div> </a> <ul id="toc-같이_보기-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-출처" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#출처"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>출처</span> </div> </a> <ul id="toc-출처-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="목차" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="목차 토글" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">목차 토글</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">분자 궤도</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="다른 언어로 문서를 방문합니다. 41개 언어로 읽을 수 있습니다" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-41" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">41개 언어</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Molekul%C3%AAre_orbitaal" title="Molekulêre orbitaal – 아프리칸스어" lang="af" hreflang="af" data-title="Molekulêre orbitaal" data-language-autonym="Afrikaans" data-language-local-name="아프리칸스어" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-an mw-list-item"><a href="https://an.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 아라곤어" lang="an" hreflang="an" data-title="Orbital molecular" data-language-autonym="Aragonés" data-language-local-name="아라곤어" class="interlanguage-link-target"><span>Aragonés</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%85%D8%AF%D8%A7%D8%B1_%D8%AC%D8%B2%D9%8A%D8%A6%D9%8A" title="مدار جزيئي – 아랍어" lang="ar" hreflang="ar" data-title="مدار جزيئي" data-language-autonym="العربية" data-language-local-name="아랍어" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 아스투리아어" lang="ast" hreflang="ast" data-title="Orbital molecular" data-language-autonym="Asturianu" data-language-local-name="아스투리아어" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%86%E0%A6%A3%E0%A6%AC%E0%A6%BF%E0%A6%95_%E0%A6%95%E0%A6%95%E0%A7%8D%E0%A6%B7%E0%A6%95" title="আণবিক কক্ষক – 벵골어" lang="bn" hreflang="bn" data-title="আণবিক কক্ষক" data-language-autonym="বাংলা" data-language-local-name="벵골어" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-bs mw-list-item"><a href="https://bs.wikipedia.org/wiki/Molekulska_orbitala" title="Molekulska orbitala – 보스니아어" lang="bs" hreflang="bs" data-title="Molekulska orbitala" data-language-autonym="Bosanski" data-language-local-name="보스니아어" class="interlanguage-link-target"><span>Bosanski</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 카탈로니아어" lang="ca" hreflang="ca" data-title="Orbital molecular" data-language-autonym="Català" data-language-local-name="카탈로니아어" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Molekulov%C3%BD_orbital" title="Molekulový orbital – 체코어" lang="cs" hreflang="cs" data-title="Molekulový orbital" data-language-autonym="Čeština" data-language-local-name="체코어" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%9C%CE%BF%CF%81%CE%B9%CE%B1%CE%BA%CF%8C_%CF%84%CF%81%CE%BF%CF%87%CE%B9%CE%B1%CE%BA%CF%8C" title="Μοριακό τροχιακό – 그리스어" lang="el" hreflang="el" data-title="Μοριακό τροχιακό" data-language-autonym="Ελληνικά" data-language-local-name="그리스어" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-en mw-list-item"><a href="https://en.wikipedia.org/wiki/Molecular_orbital" title="Molecular orbital – 영어" lang="en" hreflang="en" data-title="Molecular orbital" data-language-autonym="English" data-language-local-name="영어" class="interlanguage-link-target"><span>English</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 스페인어" lang="es" hreflang="es" data-title="Orbital molecular" data-language-autonym="Español" data-language-local-name="스페인어" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Molekulaarorbitaal" title="Molekulaarorbitaal – 에스토니아어" lang="et" hreflang="et" data-title="Molekulaarorbitaal" data-language-autonym="Eesti" data-language-local-name="에스토니아어" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Orbital_molekular" title="Orbital molekular – 바스크어" lang="eu" hreflang="eu" data-title="Orbital molekular" data-language-autonym="Euskara" data-language-local-name="바스크어" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D9%88%D8%B1%D8%A8%DB%8C%D8%AA%D8%A7%D9%84_%D9%85%D9%88%D9%84%DA%A9%D9%88%D9%84%DB%8C" title="اوربیتال مولکولی – 페르시아어" lang="fa" hreflang="fa" data-title="اوربیتال مولکولی" data-language-autonym="فارسی" data-language-local-name="페르시아어" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Molekyyliorbitaali" title="Molekyyliorbitaali – 핀란드어" lang="fi" hreflang="fi" data-title="Molekyyliorbitaali" data-language-autonym="Suomi" data-language-local-name="핀란드어" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Orbitale_mol%C3%A9culaire" title="Orbitale moléculaire – 프랑스어" lang="fr" hreflang="fr" data-title="Orbitale moléculaire" data-language-autonym="Français" data-language-local-name="프랑스어" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%90%D7%95%D7%A8%D7%91%D7%99%D7%98%D7%9C_%D7%9E%D7%95%D7%9C%D7%A7%D7%95%D7%9C%D7%A8%D7%99" title="אורביטל מולקולרי – 히브리어" lang="he" hreflang="he" data-title="אורביטל מולקולרי" data-language-autonym="עברית" data-language-local-name="히브리어" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%86%E0%A4%A3%E0%A5%8D%E0%A4%B5%E0%A4%BF%E0%A4%95_%E0%A4%95%E0%A4%95%E0%A5%8D%E0%A4%B7%E0%A4%95" title="आण्विक कक्षक – 힌디어" lang="hi" hreflang="hi" data-title="आण्विक कक्षक" data-language-autonym="हिन्दी" data-language-local-name="힌디어" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Molekulap%C3%A1lya" title="Molekulapálya – 헝가리어" lang="hu" hreflang="hu" data-title="Molekulapálya" data-language-autonym="Magyar" data-language-local-name="헝가리어" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Orbital_molekul" title="Orbital molekul – 인도네시아어" lang="id" hreflang="id" data-title="Orbital molekul" data-language-autonym="Bahasa Indonesia" data-language-local-name="인도네시아어" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Orbitale_molecolare" title="Orbitale molecolare – 이탈리아어" lang="it" hreflang="it" data-title="Orbitale molecolare" data-language-autonym="Italiano" data-language-local-name="이탈리아어" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E5%88%86%E5%AD%90%E8%BB%8C%E9%81%93" title="分子軌道 – 일본어" lang="ja" hreflang="ja" data-title="分子軌道" data-language-autonym="日本語" data-language-local-name="일본어" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9B%E1%83%9D%E1%83%9A%E1%83%94%E1%83%99%E1%83%A3%E1%83%9A%E1%83%A3%E1%83%A0%E1%83%98_%E1%83%9D%E1%83%A0%E1%83%91%E1%83%98%E1%83%A2%E1%83%90%E1%83%9A%E1%83%98" title="მოლეკულური ორბიტალი – 조지아어" lang="ka" hreflang="ka" data-title="მოლეკულური ორბიტალი" data-language-autonym="ქართული" data-language-local-name="조지아어" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kab mw-list-item"><a href="https://kab.wikipedia.org/wiki/Amezzay_acubran" title="Amezzay acubran – 커바일어" lang="kab" hreflang="kab" data-title="Amezzay acubran" data-language-autonym="Taqbaylit" data-language-local-name="커바일어" class="interlanguage-link-target"><span>Taqbaylit</span></a></li><li class="interlanguage-link interwiki-mn mw-list-item"><a href="https://mn.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8B%D0%BD_%D1%82%D0%BE%D0%B9%D1%80%D0%BE%D0%B3_%D0%B7%D0%B0%D0%BC" title="Молекулын тойрог зам – 몽골어" lang="mn" hreflang="mn" data-title="Молекулын тойрог зам" data-language-autonym="Монгол" data-language-local-name="몽골어" class="interlanguage-link-target"><span>Монгол</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Moleculair_orbitaal" title="Moleculair orbitaal – 네덜란드어" lang="nl" hreflang="nl" data-title="Moleculair orbitaal" data-language-autonym="Nederlands" data-language-local-name="네덜란드어" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Orbital_molekularny" title="Orbital molekularny – 폴란드어" lang="pl" hreflang="pl" data-title="Orbital molekularny" data-language-autonym="Polski" data-language-local-name="폴란드어" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 포르투갈어" lang="pt" hreflang="pt" data-title="Orbital molecular" data-language-autonym="Português" data-language-local-name="포르투갈어" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Orbital_molecular" title="Orbital molecular – 루마니아어" lang="ro" hreflang="ro" data-title="Orbital molecular" data-language-autonym="Română" data-language-local-name="루마니아어" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%B0%D1%8F_%D0%BE%D1%80%D0%B1%D0%B8%D1%82%D0%B0%D0%BB%D1%8C" title="Молекулярная орбиталь – 러시아어" lang="ru" hreflang="ru" data-title="Молекулярная орбиталь" data-language-autonym="Русский" data-language-local-name="러시아어" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Molekulska_orbitala" title="Molekulska orbitala – 세르비아-크로아티아어" lang="sh" hreflang="sh" data-title="Molekulska orbitala" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="세르비아-크로아티아어" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Molecular_orbital" title="Molecular orbital – Simple English" lang="en-simple" hreflang="en-simple" data-title="Molecular orbital" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Molekulov%C3%BD_orbit%C3%A1l" title="Molekulový orbitál – 슬로바키아어" lang="sk" hreflang="sk" data-title="Molekulový orbitál" data-language-autonym="Slovenčina" data-language-local-name="슬로바키아어" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%81%D0%BA%D0%B0_%D0%BE%D1%80%D0%B1%D0%B8%D1%82%D0%B0%D0%BB%D0%B0" title="Молекулска орбитала – 세르비아어" lang="sr" hreflang="sr" data-title="Молекулска орбитала" data-language-autonym="Српски / srpski" data-language-local-name="세르비아어" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Molekylorbital" title="Molekylorbital – 스웨덴어" lang="sv" hreflang="sv" data-title="Molekylorbital" data-language-autonym="Svenska" data-language-local-name="스웨덴어" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%AD%E0%B8%A3%E0%B9%8C%E0%B8%9A%E0%B8%B4%E0%B8%97%E0%B8%B1%E0%B8%A5%E0%B9%80%E0%B8%8A%E0%B8%B4%E0%B8%87%E0%B9%82%E0%B8%A1%E0%B9%80%E0%B8%A5%E0%B8%81%E0%B8%B8%E0%B8%A5" title="ออร์บิทัลเชิงโมเลกุล – 태국어" lang="th" hreflang="th" data-title="ออร์บิทัลเชิงโมเลกุล" data-language-autonym="ไทย" data-language-local-name="태국어" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Molek%C3%BCler_orbital" title="Moleküler orbital – 터키어" lang="tr" hreflang="tr" data-title="Moleküler orbital" data-language-autonym="Türkçe" data-language-local-name="터키어" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9C%D0%BE%D0%BB%D0%B5%D0%BA%D1%83%D0%BB%D1%8F%D1%80%D0%BD%D0%B0_%D0%BE%D1%80%D0%B1%D1%96%D1%82%D0%B0%D0%BB%D1%8C" title="Молекулярна орбіталь – 우크라이나어" lang="uk" hreflang="uk" data-title="Молекулярна орбіталь" data-language-autonym="Українська" data-language-local-name="우크라이나어" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/Orbital_ph%C3%A2n_t%E1%BB%AD" title="Orbital phân tử – 베트남어" lang="vi" hreflang="vi" data-title="Orbital phân tử" data-language-autonym="Tiếng Việt" data-language-local-name="베트남어" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E5%88%86%E5%AD%90%E8%BD%A8%E9%81%93" title="分子轨道 – 우어" lang="wuu" hreflang="wuu" data-title="分子轨道" data-language-autonym="吴语" data-language-local-name="우어" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E5%88%86%E5%AD%90%E8%BD%A8%E9%81%93" title="分子轨道 – 중국어" lang="zh" hreflang="zh" data-title="分子轨道" data-language-autonym="中文" data-language-local-name="중국어" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q725417#sitelinks-wikipedia" title="언어 간 링크 편집" class="wbc-editpage">링크 편집</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="이름공간"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84" title="본문 보기 [c]" accesskey="c"><span>문서</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/%ED%86%A0%EB%A1%A0:%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84" rel="discussion" title="문서의 내용에 대한 토론 문서 [t]" accesskey="t"><span>토론</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="언어 변종 바꾸기" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">한국어</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="보기"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84"><span>읽기</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=history" title="이 문서의 과거 편집 내역입니다. [h]" accesskey="h"><span>역사 보기</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="도구" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">도구</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">도구</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">숨기기</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="더 많은 옵션" > <div class="vector-menu-heading"> 동작 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84"><span>읽기</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit" title="이 문서의 원본 코드를 편집 [e]" accesskey="e"><span>편집</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=history"><span>역사 보기</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> 일반 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EA%B0%80%EB%A6%AC%ED%82%A4%EB%8A%94%EB%AC%B8%EC%84%9C/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84" title="여기를 가리키는 모든 위키 문서의 목록 [j]" accesskey="j"><span>여기를 가리키는 문서</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%A7%81%ED%81%AC%EC%B5%9C%EA%B7%BC%EB%B0%94%EB%80%9C/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84" rel="nofollow" title="이 문서에서 링크한 문서의 최근 바뀜 [k]" accesskey="k"><span>가리키는 글의 최근 바뀜</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/위키백과:파일_올리기" title="파일 올리기 [u]" accesskey="u"><span>파일 올리기</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/%ED%8A%B9%EC%88%98:%ED%8A%B9%EC%88%98%EB%AC%B8%EC%84%9C" title="모든 특수 문서의 목록 [q]" accesskey="q"><span>특수 문서 목록</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;oldid=36951550" title="이 문서의 이 판에 대한 고유 링크"><span>고유 링크</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=info" title="이 문서에 대한 자세한 정보"><span>문서 정보</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%9D%B4%EB%AC%B8%EC%84%9C%EC%9D%B8%EC%9A%A9&amp;page=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;id=36951550&amp;wpFormIdentifier=titleform" title="이 문서를 인용하는 방법에 대한 정보"><span>이 문서 인용하기</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:UrlShortener&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EB%25B6%2584%25EC%259E%2590_%25EA%25B6%25A4%25EB%258F%2584"><span>축약된 URL 얻기</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:QrCode&amp;url=https%3A%2F%2Fko.wikipedia.org%2Fwiki%2F%25EB%25B6%2584%25EC%259E%2590_%25EA%25B6%25A4%25EB%258F%2584"><span>QR 코드 다운로드</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> 인쇄/내보내기 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-create_a_book" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:%EC%B1%85&amp;bookcmd=book_creator&amp;referer=%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84"><span>책 만들기</span></a></li><li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=%ED%8A%B9%EC%88%98:DownloadAsPdf&amp;page=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=show-download-screen"><span>PDF로 다운로드</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;printable=yes" title="이 문서의 인쇄용 판 [p]" accesskey="p"><span>인쇄용 판</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> 다른 프로젝트 </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Molecular_orbitals" hreflang="en"><span>위키미디어 공용</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q725417" title="데이터 저장소에 연결된 항목을 가리키는 링크 [g]" accesskey="g"><span>위키데이터 항목</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="페이지 도구"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="보이기"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">보이기</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">사이드바로 이동</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">숨기기</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">위키백과, 우리 모두의 백과사전.</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="ko" dir="ltr"><p><span class="nowrap"></span> </p> <style data-mw-deduplicate="TemplateStyles:r36480376">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%;font-size:small}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}html.client-js body.skin-minerva .mw-parser-output .mbox-text-span{margin-left:23px!important}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}</style><table class="plainlinks metadata ambox ambox-content" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%B6%9C%EC%B2%98_%EB%B0%9D%ED%9E%88%EA%B8%B0" title="위키백과:출처 밝히기"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Question_mark_on_a_scroll.svg/40px-Question_mark_on_a_scroll.svg.png" decoding="async" width="40" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/47/Question_mark_on_a_scroll.svg/60px-Question_mark_on_a_scroll.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/47/Question_mark_on_a_scroll.svg/80px-Question_mark_on_a_scroll.svg.png 2x" data-file-width="100" data-file-height="100" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">이 문서의 내용은 <b><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%B6%9C%EC%B2%98_%EB%B0%9D%ED%9E%88%EA%B8%B0" title="위키백과:출처 밝히기">출처</a>가 분명하지 않습니다.</b><span class="hide-when-compact"><br />이 <span class="plainlinks"><a class="external text" href="https://ko.wikipedia.org/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit">문서를 편집</a></span>하여, <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%8B%A0%EB%A2%B0%ED%95%A0_%EC%88%98_%EC%9E%88%EB%8A%94_%EC%B6%9C%EC%B2%98" title="위키백과:신뢰할 수 있는 출처">신뢰할 수 있는 출처</a>를 표기해 주세요. <a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%ED%99%95%EC%9D%B8_%EA%B0%80%EB%8A%A5" title="위키백과:확인 가능">검증</a>되지 않은 내용은 삭제될 수도 있습니다. 내용에 대한 의견은 <a href="/wiki/%ED%86%A0%EB%A1%A0:%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84" title="토론:분자 궤도">토론 문서</a>에서 나누어 주세요.</span> <span class="date-container">(<small><span class="date">2013년 3월</span></small>)</span></div></td></tr></tbody></table> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:Dihydrogen-HOMO-phase-3D-balls.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/220px-Dihydrogen-HOMO-phase-3D-balls.svg.png" decoding="async" width="220" height="199" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/330px-Dihydrogen-HOMO-phase-3D-balls.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/19/Dihydrogen-HOMO-phase-3D-balls.svg/440px-Dihydrogen-HOMO-phase-3D-balls.svg.png 2x" data-file-width="1100" data-file-height="994" /></a><figcaption>H<sub>2</sub> 1sσ 의 분자 오비탈</figcaption></figure><p><b>분자 궤도함수</b>(molecular orbital; MO)는 분자 내에서 전자의 거동을 기술하는 수학적 함수이다. 이 함수는 특정 위치에서의 전자 발견 확률과 같은 화학적, 물리적 특성을 계산하기 위해 사용될 수 있다. 원소 수준에서 파동함수가 최대 진폭을 갖는 영역을 기술하기 위해서 쓰이기도 한다. 분자 궤도함수는 분자 내 각각의 원자의 <a href="/wiki/%EC%9B%90%EC%9E%90%EC%98%A4%EB%B9%84%ED%83%88" class="mw-redirect" title="원자오비탈">원자오비탈</a>과 <a href="/wiki/%ED%98%BC%EC%84%B1%EC%98%A4%EB%B9%84%ED%83%88" class="mw-redirect" title="혼성오비탈">혼성오비탈</a> 또는 원자 그룹의 다른 분자오비탈을 합친 형태이다. 이들은 하트리-폭 근사법(<a class="external text" href="https://en.wikipedia.org/wiki/Hartree%E2%80%93Fock_method">Hartree-Fock method</a>)이나 자체일관장(Self-consistent field, SCF)기법을 통해 정랑적인 계산이 가능하다. </p><p>분자 오비탈이란 용어는 1932년 one-electron orbital wave function의 축약형으로써 로버트 멀리컨이 제안했다.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> 분자 오비탈 이론은 원자가 결합 이론과 달리 슈뢰딩거의 파동함수에 보강간섭과 상쇄간섭 개념을 도입해 원자 오비탈과 독립적인 분자 오비탈을 도출한다. 그리고 원자오비탈과 독립적인 분자 오비탈을 원자 오비탈의 선형조합을 통해 새로이 설정하고 여기에 각 원자의 전자를 재배치한다. 이 이론에 따르면, 분자 전체를 에워싼 분자 오비탈에 위치한 전자는 어느 특정 원자에 편재되지 않게 된다. 분자 오비탈 이론은 1928년 더글라스하트리(1897~1958)와 블라디미르 포크(1898~1974)가 하트리-폭 방법을 제시해서 다원자 분자의 전자분포함수에 대한 계산의 틀을 제안하고, 1929년에는 존 레나드 존스(1894~1974)가 분자오비탈의 구심점이 되는 LCAO개념을 도입하였다. 이 이론은 로버트 멀리컨에 의해 체계적으로 정립되었다. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="개요"><span id=".EA.B0.9C.EC.9A.94"></span>개요</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=1" title="부분 편집: 개요"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>분자오비탈은 해당 궤도를 점유하는 하나의 전자가 발견될 수 있는 분자 내 영역을 나타내기 위해 사용된다. 분자 오비탈은 원자 오비탈의 결합으로 얻어진다. 분자오비탈은 분자 내 하나 또는 한쌍의 전자의 에너지나 공간적인 분배 즉, <a href="/wiki/%EC%A0%84%EC%9E%90%EB%B0%B0%EC%B9%98" class="mw-redirect" title="전자배치">분자의 전자배치</a>에 대한 정보를 줄 수 있다. 흔히 분자 오비탈은 <a href="/wiki/%EC%9B%90%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98_%EC%84%A0%ED%98%95_%EA%B2%B0%ED%95%A9" title="원자 궤도 함수 선형 결합">원자 오비탈의 선형결합</a>(LCAO-MO method)으로써 나타내는데, 이는 지극히 정성적인 방법이지만 상당히 유용하다.LCAO는 분자 궤도 이론을 통해 이해되는 분자 내 간단한 결합 모델을 제공하는데 매우 유용하다. 계산 화학의 최신 기법들은 계의 분자 오비탈을 계산하는 것으로부터 시작한다. 분자 오비탈은 핵에 의해 형성된 <a href="/wiki/%EC%A0%84%EA%B8%B0%EC%9E%A5" title="전기장">전기장</a> 내 한 원자의 거동과 다른 전자들의 평균적인 분포를 기술한다. 당연하게도 이는 근사이고, 분자의 전자에 대한 파동함수의 가장 정확한 설명은 궤도를 갖지 않는다는 것이다. </p><p>분자 궤도는 일반적으로 분자 전체에 비편재화되어 표현된다. 또한, 분자가 대칭 요소를 갖는다면, 그것의 비축퇴 분자 궤도는 이들 대칭 중 어느 하나에 대해 대칭이거나 반대칭이다. 즉, 분자 궤도 ψ에 대칭 연산 S (예를 들어, 반사, 회전 또는 반전)의 적용은 분자 궤도가 변경되지 않거나 부호가 역전된다.&#160;: Sψ = ± ψ. 예를 들어, 평면 분자에서, 분자 궤도는 분자 평면에서 반사와 관련하여 대칭 (σ) 또는 반 대칭 (π) 중 하나이다. 축퇴된 궤도 에너지를 가진 분자들도 고려한다면, 분자 궤도가 분자 대칭 그룹의 환원 불가능한 표현에 대한 기초를 형성한다는 보다 일반적인 진술이있다.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> 분자 오비탈의 대칭성은 비편재화가 분자 궤도 이론의 고유한 특징이며, 결합을 편재화된 전자쌍으로 보는 원자가 결합 이론과 근본적으로 다른(그리고 보완적임) 것을 의미한다. </p><p>이러한 대칭-반영 정준 분자 오비탈과 대조적으로, 국지적인 분자 오비탈은 특정한 수학적 변형을 정준궤도에 적용함으로써 형성될 수 있다. 이 접근법의 장점은 궤도가 루이스 구조로 묘사한 것처럼 분자의 결합에 더 가깝게 여겨진다는 것이다. 하지만 이와같이 국소화된 에너지 레벨은 더 이상 물리적 의미를 갖지 않는다는 단점이 있다.(이 문서의 나머지 부분에서는 정준 분자 궤도에 초점을 맞출 것이다. 국부적 분자 궤도에 대한 자세한 설명은 <a class="external text" href="https://en.wikipedia.org/wiki/Natural_bond_orbital">natural bond orbital</a> 과 <a class="external text" href="https://en.wikipedia.org/wiki/Sigma-pi_and_equivalent-orbital_models">sigma-pi and equivalent-orbital models</a>를 참조) </p> <div class="mw-heading mw-heading2"><h2 id="분자_오비탈의_형성"><span id=".EB.B6.84.EC.9E.90_.EC.98.A4.EB.B9.84.ED.83.88.EC.9D.98_.ED.98.95.EC.84.B1"></span>분자 오비탈의 형성</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=2" title="부분 편집: 분자 오비탈의 형성"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading2"><h2 id="정성적인_논의"><span id=".EC.A0.95.EC.84.B1.EC.A0.81.EC.9D.B8_.EB.85.BC.EC.9D.98"></span>정성적인 논의</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=3" title="부분 편집: 정성적인 논의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading2"><h2 id="예시"><span id=".EC.98.88.EC.8B.9C"></span>예시</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=4" title="부분 편집: 예시"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading2"><h2 id="정량적_접근"><span id=".EC.A0.95.EB.9F.89.EC.A0.81_.EC.A0.91.EA.B7.BC"></span>정량적 접근</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=5" title="부분 편집: 정량적 접근"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading2"><h2 id="물리적_의미"><span id=".EB.AC.BC.EB.A6.AC.EC.A0.81_.EC.9D.98.EB.AF.B8"></span>물리적 의미</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=6" title="부분 편집: 물리적 의미"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>분자 오비탈 이론은 원자들의 <a href="/wiki/%EC%A0%84%EC%9E%90_%EA%B5%AC%EB%A6%84" class="mw-redirect" title="전자 구름">전자 구름</a> 간의 상호작용에서 시작된다. 수소 분자를 예로 들자. 이 분자는 <a href="/wiki/%EC%96%91%EC%84%B1%EC%9E%90" title="양성자">양성자</a> 두개와 전자 두개로 이루어져 있다. 만약 두전자의 위상이 같다면, 두 전자 구름은 합쳐지고 하나(로 보이는)의 새로운 전자 구름을 형성하게 된다. 이 전자 구름의 궤도 함수를 '시그마 1s 결합 <a href="/w/index.php?title=%EA%B6%A4%EB%8F%84%ED%95%A8%EC%88%98&amp;action=edit&amp;redlink=1" class="new" title="궤도함수 (없는 문서)">궤도함수</a>'라고 한다. 만약에 두 전자의 위상이 다르다면, 두 전자 구름 사이에는 반발력이 생기고 마디면이 있는 전자 구름 형태로 바뀐다. 이 전자 구름의 궤도함수를 '시그마 1s* 궤도 함수'라고 한다. 그리고 반발력에 의해 생긴 마디면을 node 라고 한다. </p><p><br /> </p> <div class="mw-heading mw-heading2"><h2 id="분자_궤도의_명명법"><span id=".EB.B6.84.EC.9E.90_.EA.B6.A4.EB.8F.84.EC.9D.98_.EB.AA.85.EB.AA.85.EB.B2.95"></span>분자 궤도의 명명법</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=7" title="부분 편집: 분자 궤도의 명명법"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>분자 오비탈은 다음과 같은 형태로 나타낼 수 있고 각 분자 오비탈의 이름은 다음과 같이 정해진다.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup><br /> </p> <pre><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sigma _{u1s}^{*})^{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mn>1</mn> <mi>s</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sigma _{u1s}^{*})^{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83f455d35de4332bf8f9ca79adf8dcaa1578fb72" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.956ex; height:3.343ex;" alt="{\displaystyle (\sigma _{u1s}^{*})^{1}}"></span> </pre> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>는 핵간 축 주위의 전자에 대한 각운동량 성분을 나타낸다. 이는 핵간 축에 수직인 평면에서 봤을 때 축 주위에 전자 밀도가 어떻게 분포되어 있는지를 말해준다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>가 나타내는 각운동량의 값은 다음과 같다.<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C3;<!-- σ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59f59b7c3e6fdb1d0365a494b81fb9a696138c36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle \sigma }"></span>&#160;: 각운동량 성분 = 0<br /><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span>&#160;: 각운동량 성분 = <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pm {\frac {h}{2\pi }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>h</mi> <mrow> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pm {\frac {h}{2\pi }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ae7fe2cf833a5e1b3f84d58ee39cca9d55b890b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.139ex; height:5.343ex;" alt="{\displaystyle \pm {\frac {h}{2\pi }}}"></span></li> <li>아래 첨자 g,u는 관찰점을 분자 중심에 대하여 뒤집을 때, 파동함수의 특이성이 어떻게 변화하는지를 설명한다. 분자의 중심을 기준으로 대칭이면 g(gerade&#160;: 짝수), 비대칭이면 u(ungerade&#160;: 홀수)로 표기한다. 즉, 원점을 분자 중심에 놓은 데카르트 좌표라 생각하고 (x,y,z)와 (-x,-y,-z)의 점에서 파동함수를 비교하면 된다. 만약 파동함수의 부호가 동일하면 g, 부호가 다르면 u로 표기한다.</li> <li>*는 반결합 오비탈을 표시한다. 결합 MO(bonding)의 경우는 공란으로 비워두고, 반결합 MO (anti-bonding MO)의 경우에 * 표시를 한다. 반결합 오비탈은 핵 사이에 훨씬 적은 전자 밀도를 가지며, 밀도는 핵간의 마디에서 0이 된다.</li> <li>g 또는 u 바로 옆에 아래첨자로 표기된 문자는 MO에 참여한 AO(atomic orbital)의 종류를 의미한다.</li> <li>괄호 바깥에 위첨자로 표기된 숫자는 MO에 있는 전자수를 의미한다.</li></ol> <div class="mw-heading mw-heading2"><h2 id="동종_이원자_분자의_분자_궤도_표기"><span id=".EB.8F.99.EC.A2.85_.EC.9D.B4.EC.9B.90.EC.9E.90_.EB.B6.84.EC.9E.90.EC.9D.98_.EB.B6.84.EC.9E.90_.EA.B6.A4.EB.8F.84_.ED.91.9C.EA.B8.B0"></span>동종 이원자 분자의 분자 궤도 표기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=8" title="부분 편집: 동종 이원자 분자의 분자 궤도 표기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg/220px-%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg.png" decoding="async" width="220" height="267" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/63/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg/330px-%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/63/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg/440px-%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%ED%95%A8%EC%88%98-2p.svg.png 2x" data-file-width="1062" data-file-height="1287" /></a><figcaption>동종 이원자 분자의 분자 궤도 함수 중 2p 오비탈끼리의 궤도</figcaption></figure> <pre>S오비탈<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{g2S}=C_{g}(2S^{A}+2S^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mn>2</mn> <mi>S</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{g2S}=C_{g}(2S^{A}+2S^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/298d3ca535d034725061223431c1fa0207bc6aa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:22.975ex; height:3.343ex;" alt="{\displaystyle \sigma _{g2S}=C_{g}(2S^{A}+2S^{B})}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{u2S}^{*}=C_{u}(2S^{A}-2S^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mn>2</mn> <mi>S</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{u2S}^{*}=C_{u}(2S^{A}-2S^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/425add2301e7fa5a941e31e9ece55847dfb5d5d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:23.277ex; height:3.343ex;" alt="{\displaystyle \sigma _{u2S}^{*}=C_{u}(2S^{A}-2S^{B})}"></span><br /> P<sub>z</sub>오비탈<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{g2P_{z}}=C_{g}(2P_{z}^{A}-2P_{z}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{g2P_{z}}=C_{g}(2P_{z}^{A}-2P_{z}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0d077309be4793a22d87428090c709f8de44336" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:24.358ex; height:3.176ex;" alt="{\displaystyle \sigma _{g2P_{z}}=C_{g}(2P_{z}^{A}-2P_{z}^{B})}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{u2P_{z}}^{*}=C_{u}(2P_{z}^{A}+2P_{z}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{u2P_{z}}^{*}=C_{u}(2P_{z}^{A}+2P_{z}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f045ddf26a331fc0a1895b3802c33215e1172706" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.661ex; height:3.509ex;" alt="{\displaystyle \sigma _{u2P_{z}}^{*}=C_{u}(2P_{z}^{A}+2P_{z}^{B})}"></span><br /> P<sub>x</sub>오비탈, P<sub>y</sub>오비탈<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{u2P_{x}}=C_{u}(2P_{x}^{A}+2P_{x}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{u2P_{x}}=C_{u}(2P_{x}^{A}+2P_{x}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d9bb3607f5354678250abc9bb316f0f5c092dfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.797ex; height:3.009ex;" alt="{\displaystyle \pi _{u2P_{x}}=C_{u}(2P_{x}^{A}+2P_{x}^{B})}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{g2P_{x}}^{*}=C_{g}(2P_{x}^{A}-2P_{x}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{g2P_{x}}^{*}=C_{g}(2P_{x}^{A}-2P_{x}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/891b5e1c4ac02e0368b4d095d4d41a15448a9017" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:24.495ex; height:3.509ex;" alt="{\displaystyle \pi _{g2P_{x}}^{*}=C_{g}(2P_{x}^{A}-2P_{x}^{B})}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{u2P_{y}}=C_{u}(2P_{y}^{A}+2P_{y}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> </msub> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{u2P_{y}}=C_{u}(2P_{y}^{A}+2P_{y}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67ed0dff8a22354a9eea24f21e00da71136939dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:24.697ex; height:3.343ex;" alt="{\displaystyle \pi _{u2P_{y}}=C_{u}(2P_{y}^{A}+2P_{y}^{B})}"></span><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi _{g2P_{y}}^{*}=C_{g}(2P_{y}^{A}-2P_{y}^{B})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> <mn>2</mn> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>g</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msubsup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msubsup> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi _{g2P_{y}}^{*}=C_{g}(2P_{y}^{A}-2P_{y}^{B})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/491c0c46e4612084310047d75ee4e9cf50e2e62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:24.395ex; height:3.676ex;" alt="{\displaystyle \pi _{g2P_{y}}^{*}=C_{g}(2P_{y}^{A}-2P_{y}^{B})}"></span><br /> </pre> <div class="mw-heading mw-heading2"><h2 id="논의"><span id=".EB.85.BC.EC.9D.98"></span>논의</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=9" title="부분 편집: 논의"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>완전히 정확한 값은 아니지만, 정성적으로 유용한 분자 구조의 의논을 위해서, 분자 궤도는 '원자 궤도 함수 <a href="/wiki/%EC%84%A0%ED%98%95_%EA%B2%B0%ED%95%A9" title="선형 결합">선형 결합</a>' (Linear Combination of Atomic Orbitals;LCAO) 또는 '보른-오펜하이머 근사법'(Born-Oppenheimer approximation)을 통해 얻어질 수 있다. </p> <div class="mw-heading mw-heading3"><h3 id="원자_궤도_함수_선형_결합_(Linear_Combination_of_Atomic_Orbitals;LCAO)"><span id=".EC.9B.90.EC.9E.90_.EA.B6.A4.EB.8F.84_.ED.95.A8.EC.88.98_.EC.84.A0.ED.98.95_.EA.B2.B0.ED.95.A9_.28Linear_Combination_of_Atomic_Orbitals.3BLCAO.29"></span>원자 궤도 함수 선형 결합 (Linear Combination of Atomic Orbitals;LCAO)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=10" title="부분 편집: 원자 궤도 함수 선형 결합 (Linear Combination of Atomic Orbitals;LCAO)"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>LCAO는 분자 오비탈을 계산하는 방법이다. 원자오비탈이 기초함수를 이루기 때문에 분자오비탈을 원자오비탈의 무한합으로 표현할 수 있다. 이는 마치 임의의 함수를 테일러 전개하는 것과 같은 원리이다. LCAO를 근사법이라고 말하는 사람들이 있는데 이는 잘못된 것이다. LCAO 자체는 근사법이 아니며 수학적으로 정당하다.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> 하나의 원자 안에서는 파동함수로 전자의 배치를 표현할 수 있는데, 화학결합 후에 이러한 파동함수는 원래 각각의 원자들이 가지고 있던 파동함수와 달라진다. 분자 오비탈을 LCAO로 전개한 뒤 적당한 leading term (주로 2개)를 제외하고 모두 없애는 방식으로 근사한다. </p> <pre>:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{i}=\sum _{r}c_{ri}\psi _{i}=c_{1i}\psi _{i}+c_{2i}\psi _{i}+c_{3i}\psi _{i}+...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> </mrow> </munder> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> <mi>i</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>+</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{i}=\sum _{r}c_{ri}\psi _{i}=c_{1i}\psi _{i}+c_{2i}\psi _{i}+c_{3i}\psi _{i}+...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1b2602247e795c437f4f28ed8ee40df781c1295" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.14ex; height:5.509ex;" alt="{\displaystyle \psi _{i}=\sum _{r}c_{ri}\psi _{i}=c_{1i}\psi _{i}+c_{2i}\psi _{i}+c_{3i}\psi _{i}+...}"></span> </pre> <p>위 식에서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{ri}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{ri}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13678ba7d1317cdb57345c5daa6605a7860663b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.548ex; height:2.009ex;" alt="{\displaystyle c_{ri}}"></span>는 상수인데, 각 원자 오비탈들이 분자 오비탈에 얼마나 기여했는가를 나타내는 기여도이다. 이 기여도는 시스템의 총 에너지를 최소화하는 적절한 상수이며, 이를 결정하는 방법은 하트리-폭 근사법이다. 또한 각 핵들과 하나의 전자만을 묶어 원자 오비탈이라고 생각한다. 즉, 화합물에 10개의 전자가 있으면 10개의 원자 오비탈들이 있어야 하는 것이다. 보통 이러한 근사는 수소나 헬륨 형태의 원자가 결합된 화합물, 즉 화합물을 이루는 원자들의 원자번호가 작고 전자 수가 적을수록 정확해진다. </p><p>1929년 존 레너드존스 경이 H와 He의 조합으로 이중분자를 만들고, 이 결합을 표현하기 위해 LCAO를 발표하였는데, 라이너스 폴링의 경우 H2분자를 계산하면서 이보다 앞서서 이 방법을 사용하였다.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> </p><p>하지만 컴퓨터 화학의 발달 이후 LCAO는 최적화된 파동함수로 여겨지지 않게 되었다. 대신 현대적인 방법으로 얻은 결과를 예측하고 합리화하는데 유용한 정성적인 분석의 수단으로 여겨진다. </p> <div class="mw-heading mw-heading3"><h3 id="보른-오펜하이머_근사법_(Born-Oppenheimer_approximation)"><span id=".EB.B3.B4.EB.A5.B8-.EC.98.A4.ED.8E.9C.ED.95.98.EC.9D.B4.EB.A8.B8_.EA.B7.BC.EC.82.AC.EB.B2.95_.28Born-Oppenheimer_approximation.29"></span>보른-오펜하이머 근사법 (Born-Oppenheimer approximation)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=11" title="부분 편집: 보른-오펜하이머 근사법 (Born-Oppenheimer approximation)"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>보른-오펜하이머 근사는 전자의운동과 핵의 운동을 분리시킬 수 있다는 가설이다. 즉, 분자의 파동함수를 전자의 파동함수와 핵의 파동함수로 분리시킬 수 있다는 뜻이다. 이는 핵의 질량이 전자의 질량의 1833배나 무겁기 때문에 핵의 위치를 정지해 있다고 보는 것이다. 이를 식으로 표현하면 아래와 같다. </p> <pre>:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{molecule}({\vec {r}}_{i},{\vec {R}}_{j})=\psi _{electrons}({\vec {r}}_{i},{\vec {R}}_{j})\times \psi _{nuclei}({\vec {R}}_{j})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mi>o</mi> <mi>l</mi> <mi>e</mi> <mi>c</mi> <mi>u</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> <mi>l</mi> <mi>e</mi> <mi>c</mi> <mi>t</mi> <mi>r</mi> <mi>o</mi> <mi>n</mi> <mi>s</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>r</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>,</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mi>u</mi> <mi>c</mi> <mi>l</mi> <mi>e</mi> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>R</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{molecule}({\vec {r}}_{i},{\vec {R}}_{j})=\psi _{electrons}({\vec {r}}_{i},{\vec {R}}_{j})\times \psi _{nuclei}({\vec {R}}_{j})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2783527b6bb772b0246d86048bc84c7c9cc0d7a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:48.229ex; height:3.509ex;" alt="{\displaystyle \psi _{molecule}({\vec {r}}_{i},{\vec {R}}_{j})=\psi _{electrons}({\vec {r}}_{i},{\vec {R}}_{j})\times \psi _{nuclei}({\vec {R}}_{j})}"></span> </pre> <p>이를 설명하기 위해 가장 간단한 분자인 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>로 예로 들겠다. 두 핵사이의 거리를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{AB}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{AB}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/baa22b9617fe3558b77fc9e242bb5e851f495c55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.476ex; height:2.509ex;" alt="{\displaystyle R_{AB}}"></span>이라 하고, 전자와 핵사이의 거리를 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{a}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{a}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da5f0781a46ba20129a554237056b6ade78b956f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.151ex; height:2.009ex;" alt="{\displaystyle r_{a}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle r_{b}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle r_{b}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c22eac9d11ab84da51b891d29ee2e5de75eab1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.986ex; height:2.009ex;" alt="{\displaystyle r_{b}}"></span>라 한다. 전자와 핵의 위치는 아래의 그림과 같게 배치한다. 이 때 이 분자의 위치에너지를 구해보면 보면 아래와 같다. </p> <pre>:<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V(R_{AB})={\frac {e^{2}}{4\pi \epsilon _{0}R_{AB}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo stretchy="false">(</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V(R_{AB})={\frac {e^{2}}{4\pi \epsilon _{0}R_{AB}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f47430725f78dd55d315b3ecf9a108b40b28bfd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:42.357ex; height:6.176ex;" alt="{\displaystyle V(R_{AB})={\frac {e^{2}}{4\pi \epsilon _{0}R_{AB}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}}"></span> </pre> <p>위치에너지에서 값을 바꿔가면서 그래프를 그려보면 아래와 같은 그래프가 나온다. 가장 반발력이 최소가 되는 지점에서 두 원자는 결합하게 되며 이때의 값을 분자 핵간 거리라 한다. 이는 보른-오펜하이머 근사를 통해 두 원자가 결합하여 분자를 만들 때 핵과 핵사이의 거리가 일정하기 때문에 얻을 수 있는 결과이다. </p> <div class="mw-heading mw-heading2"><h2 id="'&quot;`UNIQ--postMath-00000019-QINU`&quot;'의_분자_오비탈(molecular_orbital;_MO)"><span id=".7F.27.22.60UNIQ--postMath-00000019-QINU.60.22.27.7F.EC.9D.98_.EB.B6.84.EC.9E.90_.EC.98.A4.EB.B9.84.ED.83.88.28molecular_orbital.3B_MO.29"></span><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>의 분자 오비탈(molecular orbital; MO)</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=12" title="부분 편집: &#039;&quot;`UNIQ--postMath-00000019-QINU`&quot;&#039;의 분자 오비탈(molecular orbital; MO)"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="분자_궤도가_갖는_에너지"><span id=".EB.B6.84.EC.9E.90_.EA.B6.A4.EB.8F.84.EA.B0.80_.EA.B0.96.EB.8A.94_.EC.97.90.EB.84.88.EC.A7.80"></span>분자 궤도가 갖는 에너지</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=13" title="부분 편집: 분자 궤도가 갖는 에너지"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/%ED%8C%8C%EC%9D%BC:H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png/220px-H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png" decoding="async" width="220" height="171" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/95/H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png/330px-H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/95/H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png/440px-H2%2B_%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84_%EB%8F%84%ED%91%9C.png 2x" data-file-width="1244" data-file-height="968" /></a><figcaption>H<sub>2</sub><sup>+</sup> 분자 궤도 도표</figcaption></figure> <p>분자 오비탈 이론을 통해 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>의 에너지를 구하자. 슈뢰딩거 방정식에서 파동방정식의 해는 다음과 같이 표시될 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4f56daccfeed4635cea3e3e53db57f9ab761e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.676ex; height:2.509ex;" alt="{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}"></span></dd></dl> <p>여기서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>의 대칭성에 의해<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}^{2}=c_{B}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}^{2}=c_{B}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6ccafd1dfc209827829be360ea3d9bd54d5b569a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.057ex; height:3.176ex;" alt="{\displaystyle c_{A}^{2}=c_{B}^{2}}"></span>이다. 계산상의 편의를 위해 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}^{2}=c_{B}^{2}=c_{0}^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}^{2}=c_{B}^{2}=c_{0}^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79b75b33d43cdbdb6f099235b0b5deba98f042c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:13.216ex; height:3.176ex;" alt="{\displaystyle c_{A}^{2}=c_{B}^{2}=c_{0}^{2}}"></span>라고 하자. 또한 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{AB}=\int _{}^{}{\psi _{A}^{*}\psi _{B}}d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{AB}=\int _{}^{}{\psi _{A}^{*}\psi _{B}}d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8828671bd9eb7a28d49191d780134cda7778afda" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:18.205ex; height:5.676ex;" alt="{\displaystyle S_{AB}=\int _{}^{}{\psi _{A}^{*}\psi _{B}}d\tau }"></span>를 중첩 정분이라고 정의하자. </p> <dl><dd>파동함수의 정의에 의해</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int |\Psi _{0}|^{2}\,d\tau =1=c_{0}^{2}(\int |\psi _{A}|^{2}d\tau +\int |\psi _{B}|^{2}d\tau +\int \psi _{A}^{*}\psi _{B}d\tau +\int \psi _{A}\psi _{B}^{*}d\tau )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mn>1</mn> <mo>=</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int |\Psi _{0}|^{2}\,d\tau =1=c_{0}^{2}(\int |\psi _{A}|^{2}d\tau +\int |\psi _{B}|^{2}d\tau +\int \psi _{A}^{*}\psi _{B}d\tau +\int \psi _{A}\psi _{B}^{*}d\tau )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b32500c92fff005fdde564e0b3e7b391c0d9ec7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:72.949ex; height:5.676ex;" alt="{\displaystyle \int |\Psi _{0}|^{2}\,d\tau =1=c_{0}^{2}(\int |\psi _{A}|^{2}d\tau +\int |\psi _{B}|^{2}d\tau +\int \psi _{A}^{*}\psi _{B}d\tau +\int \psi _{A}\psi _{B}^{*}d\tau )}"></span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =c_{0}^{2}(1+1+S_{AB}+S_{AB}^{*}=2c_{0}^{2}(1+S_{AB})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo>=</mo> <mn>2</mn> <msubsup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =c_{0}^{2}(1+1+S_{AB}+S_{AB}^{*}=2c_{0}^{2}(1+S_{AB})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e775d72f61d89f3803abd46716fa4b5b5601851a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:40.81ex; height:3.176ex;" alt="{\displaystyle =c_{0}^{2}(1+1+S_{AB}+S_{AB}^{*}=2c_{0}^{2}(1+S_{AB})}"></span></dd></dl> <p>따라서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{0}=\left[2\left(1+S_{AB}\right)\right]^{-{\dfrac {1}{2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{0}=\left[2\left(1+S_{AB}\right)\right]^{-{\dfrac {1}{2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a10cec45cf4a9d0bc623c748a24a18bb18d4ba70" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.461ex; height:6.009ex;" alt="{\displaystyle c_{0}=\left[2\left(1+S_{AB}\right)\right]^{-{\dfrac {1}{2}}}}"></span> 이 때 슈뢰딩거 방정식에서 좌변을 헤밀토니안, 우변을 에너지의 항으로 놓는다면 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>의 에너지는 다음과 같다. </p><p><br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}(R)=\int \psi _{0}^{*}H\psi _{0}d\tau ={\frac {\int \psi _{A}^{*}H\psi _{A}d\tau +\int \psi _{A}^{*}H\psi _{B}d\tau +\int \psi _{B}^{*}H\psi _{A}d\tau +\int \psi _{B}^{*}H\psi _{B}d\tau }{2(1+S_{AB})}}={\frac {H_{AA}+H_{AB}+H_{BA}+H_{BB}}{2(1+S_{AB)}}}={\frac {H_{AA}+H_{AB}}{1+S_{AB}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>H</mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>H</mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>H</mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>H</mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mi>H</mi> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mi>B</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}(R)=\int \psi _{0}^{*}H\psi _{0}d\tau ={\frac {\int \psi _{A}^{*}H\psi _{A}d\tau +\int \psi _{A}^{*}H\psi _{B}d\tau +\int \psi _{B}^{*}H\psi _{A}d\tau +\int \psi _{B}^{*}H\psi _{B}d\tau }{2(1+S_{AB})}}={\frac {H_{AA}+H_{AB}+H_{BA}+H_{BB}}{2(1+S_{AB)}}}={\frac {H_{AA}+H_{AB}}{1+S_{AB}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/908f07156970318f2be34906cd6d8f87ac119975" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:130.199ex; height:7.009ex;" alt="{\displaystyle E_{0}(R)=\int \psi _{0}^{*}H\psi _{0}d\tau ={\frac {\int \psi _{A}^{*}H\psi _{A}d\tau +\int \psi _{A}^{*}H\psi _{B}d\tau +\int \psi _{B}^{*}H\psi _{A}d\tau +\int \psi _{B}^{*}H\psi _{B}d\tau }{2(1+S_{AB})}}={\frac {H_{AA}+H_{AB}+H_{BA}+H_{BB}}{2(1+S_{AB)}}}={\frac {H_{AA}+H_{AB}}{1+S_{AB}}}}"></span> </p><p>여기서 최종항에 있는 항은 다음과 같이 나타낼 수 있다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{AA}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}})\psi _{A}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{A}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+J}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mi>J</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{AA}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}})\psi _{A}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{A}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+J}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/023b7547153e67cca11d23450278276701b832d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:102.952ex; height:6.176ex;" alt="{\displaystyle H_{AA}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}})\psi _{A}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{A}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+J}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{AB}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}})\psi _{B}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{B}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }=\int \psi _{A}^{*}E_{H}(1s)\psi _{B}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}S_{AB}+K=S_{AB}[E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}]+K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mi>m</mi> </mrow> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mrow> <mo>=</mo> <mo>&#x222B;<!-- ∫ --></mo> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo>+</mo> <mi>K</mi> <mo>=</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">[</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <mo stretchy="false">]</mo> <mo>+</mo> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{AB}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}})\psi _{B}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{B}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }=\int \psi _{A}^{*}E_{H}(1s)\psi _{B}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}S_{AB}+K=S_{AB}[E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}]+K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bed573a30a76e269abd2ac6ca7df4957873d7c4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:149.55ex; height:6.176ex;" alt="{\displaystyle H_{AB}=\int {\psi _{A}^{*}({\frac {p^{2}}{2m}}-{\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}})\psi _{B}}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}\int {\psi _{A}^{*}}\psi _{B}d\tau -\int {{\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }=\int \psi _{A}^{*}E_{H}(1s)\psi _{B}d\tau +{\frac {e^{2}}{4\pi \epsilon _{0}R}}S_{AB}+K=S_{AB}[E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}]+K}"></span></dd></dl> <p>또한 이 식에서 J와 K는 다음과 같다. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle J=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>J</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle J=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f6933f5fac41168cd5052292fdab0a67a1dd7fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.577ex; height:6.176ex;" alt="{\displaystyle J=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{B}}}\psi _{A}^{*}\psi _{A}d\tau }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msub> <mi>r</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <msubsup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2217;<!-- ∗ --></mo> </mrow> </msubsup> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a365b514f75d342ae71e9125155cae763a68cb8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:26.171ex; height:6.176ex;" alt="{\displaystyle K=-\int {\frac {e^{2}}{4\pi \epsilon _{0}r_{A}}}\psi _{A}^{*}\psi _{B}d\tau }"></span></dd></dl> <p>바닥 상태의 오비탈은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi _{0}={\frac {\psi _{A}(1s)+\psi _{B}(1s)}{c_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi _{0}={\frac {\psi _{A}(1s)+\psi _{B}(1s)}{c_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1b9bc5854733937e6d918d6bac6ce4cfb0f9763" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.733ex; height:6.009ex;" alt="{\displaystyle \Psi _{0}={\frac {\psi _{A}(1s)+\psi _{B}(1s)}{c_{0}}}}"></span> 들뜬 상태의 오비탈은 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi _{1}={\frac {\psi _{A}(1s)-\psi _{B}(1s)}{c_{0}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi _{1}={\frac {\psi _{A}(1s)-\psi _{B}(1s)}{c_{0}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b3f1e6d9c7d53ede88a52219524ad5bf8c3e2c8f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:23.733ex; height:6.009ex;" alt="{\displaystyle \Psi _{1}={\frac {\psi _{A}(1s)-\psi _{B}(1s)}{c_{0}}}}"></span>로 나타낼 수 있다. 이에 따른 바닥 상태의 에너지 값은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{0}(R)={\dfrac {E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+J+S_{AB}\left[E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}\right]+K}{1+S_{AB}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>+</mo> <mi>J</mi> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mrow> <mo>[</mo> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mstyle> </mrow> </mrow> <mo>]</mo> </mrow> <mo>+</mo> <mi>K</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{0}(R)={\dfrac {E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+J+S_{AB}\left[E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}\right]+K}{1+S_{AB}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67f56ea641f8231eddedddfffb83b8c8ab934e07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:65.172ex; height:9.509ex;" alt="{\displaystyle E_{0}(R)={\dfrac {E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+J+S_{AB}\left[E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}\right]+K}{1+S_{AB}}}}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle =E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+{\dfrac {J+K}{1+s_{AB}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mi>s</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mfrac> <mrow> <mi>J</mi> <mo>+</mo> <mi>K</mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle =E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+{\dfrac {J+K}{1+s_{AB}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34e286149f8a04a2fd95c3c97672fbc687bf1eb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.864ex; height:6.176ex;" alt="{\displaystyle =E_{H}\left(1s\right)+{\dfrac {e^{2}}{4\pi \varepsilon _{0}R}}+{\dfrac {J+K}{1+s_{AB}}}}"></span></dd></dl> <p>들뜬 상태의 에너지 값은 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{1}(R)={\frac {H_{AA}-H_{AB}}{1-S_{AB}}}=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+{\frac {J-K}{1-S_{AB}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>R</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>H</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mi>s</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mi>R</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>J</mi> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{1}(R)={\frac {H_{AA}-H_{AB}}{1-S_{AB}}}=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+{\frac {J-K}{1-S_{AB}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4301c2cf59fbbb6a9a8779652e85b53fe47ecf08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:54.707ex; height:6.176ex;" alt="{\displaystyle E_{1}(R)={\frac {H_{AA}-H_{AB}}{1-S_{AB}}}=E_{H}(1s)+{\frac {e^{2}}{4\pi \epsilon _{0}R}}+{\frac {J-K}{1-S_{AB}}}}"></span></dd></dl> <p>이와 같은 방식으로 다양한 상태의 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fae809526c4d40a716f80764cb14e6c89c50c41" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.614ex; height:3.176ex;" alt="{\displaystyle H_{2}^{+}}"></span>의 에너지를 구할 수 있다. </p> <div class="mw-heading mw-heading3"><h3 id="분자_궤도의_파동_함수"><span id=".EB.B6.84.EC.9E.90_.EA.B6.A4.EB.8F.84.EC.9D.98_.ED.8C.8C.EB.8F.99_.ED.95.A8.EC.88.98"></span>분자 궤도의 파동 함수</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=14" title="부분 편집: 분자 궤도의 파동 함수"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d4f56daccfeed4635cea3e3e53db57f9ab761e5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:18.676ex; height:2.509ex;" alt="{\displaystyle \Psi =c_{A}\psi _{A}+c_{B}\psi _{B}}"></span>에서 정확한 파동 함수를 구하기 위해 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f55859845e7ce060a13ac8861e3b2ec62e2ed2c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.472ex; height:2.009ex;" alt="{\displaystyle c_{A}}"></span>와 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/12c340af0b4dc345ca933b38ed5aebccb4a672e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.486ex; height:2.009ex;" alt="{\displaystyle c_{B}}"></span>를 구하면 다음과 같다.<br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{pmatrix}\alpha -E&amp;\beta -ES\\\beta -ES&amp;\alpha -E\end{pmatrix}}{n \choose k}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mtd> <mtd> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mi>S</mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mi>S</mi> </mtd> <mtd> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{pmatrix}\alpha -E&amp;\beta -ES\\\beta -ES&amp;\alpha -E\end{pmatrix}}{n \choose k}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b58563dfc5affb500597b61c9388ae1b3e415329" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:30.467ex; height:6.176ex;" alt="{\displaystyle {\begin{pmatrix}\alpha -E&amp;\beta -ES\\\beta -ES&amp;\alpha -E\end{pmatrix}}{n \choose k}=0}"></span><br /></dd></dl> <p>위 행렬식을 통해 아래와 같이 나타낼 수 있다.<br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}\left(\alpha -E\right)+c_{B}\left(\beta -ES\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mi>S</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}\left(\alpha -E\right)+c_{B}\left(\beta -ES\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/658b916453d34483cbda2d835c992712a045d131" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.003ex; height:2.843ex;" alt="{\displaystyle c_{A}\left(\alpha -E\right)+c_{B}\left(\beta -ES\right)=0}"></span><br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}\left(\beta -ES\right)+c_{B}\left(\alpha -E\right)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>&#x03B2;<!-- β --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mi>S</mi> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}\left(\beta -ES\right)+c_{B}\left(\alpha -E\right)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbe50207b52e454e40067c719f3efc4d0060250f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.003ex; height:2.843ex;" alt="{\displaystyle c_{A}\left(\beta -ES\right)+c_{B}\left(\alpha -E\right)=0}"></span><br /></dd></dl> <p>위 두 식을 연립하여 E를 표현하면 다음과 같다.<br /> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{+}={\frac {\alpha +\beta }{1+S}},E_{-}={\frac {\alpha -\beta }{1-S}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>+</mo> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>S</mi> </mrow> </mfrac> </mrow> <mo>,</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03B1;<!-- α --></mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03B2;<!-- β --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{+}={\frac {\alpha +\beta }{1+S}},E_{-}={\frac {\alpha -\beta }{1-S}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d275b9c5e7f0a6a764dd62016c49ad1b6040c0aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:26.675ex; height:5.676ex;" alt="{\displaystyle E_{+}={\frac {\alpha +\beta }{1+S}},E_{-}={\frac {\alpha -\beta }{1-S}}}"></span><br /></dd></dl> <p>따라서 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b7675a3af5d4388ff01062658a09c737050c9b32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.226ex; height:2.509ex;" alt="{\displaystyle E_{+}}"></span>인 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}=c_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}=c_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9741c4dacbeb2e7418cc12dc0b6f301ad7582dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.057ex; height:2.009ex;" alt="{\displaystyle c_{A}=c_{B}}"></span>이며, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83337410bf7db63c0ffa4536ebf5845fa34edd32" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.226ex; height:2.509ex;" alt="{\displaystyle E_{-}}"></span>인 경우 <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c_{A}=-c_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </msub> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c_{A}=-c_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/84c0e44c1d6dff39c4d2998d6a344429809c2967" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.865ex; height:2.343ex;" alt="{\displaystyle c_{A}=-c_{B}}"></span>가 된다. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int \psi ^{2}d\tau =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x222B;<!-- ∫ --></mo> <msup> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>d</mi> <mi>&#x03C4;<!-- τ --></mi> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int \psi ^{2}d\tau =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b6d1abd1482667eab165e613d89c39fbf32a0c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:11.827ex; height:5.676ex;" alt="{\displaystyle \int \psi ^{2}d\tau =1}"></span> 이므로 </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c\approx {\frac {1}{\sqrt {2}}},(S\approx 0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>,</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2248;<!-- ≈ --></mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c\approx {\frac {1}{\sqrt {2}}},(S\approx 0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/32461e99c327275311ac2c5dda5eab8a8d6afed9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:16.643ex; height:6.176ex;" alt="{\displaystyle c\approx {\frac {1}{\sqrt {2}}},(S\approx 0)}"></span><br /></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi _{+}={\frac {1}{\sqrt {2}}}(\phi _{AA}+\phi _{AB}),\psi _{-}={\frac {1}{\sqrt {2}}}(\phi _{AA}-\phi _{AB})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>A</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03D5;<!-- ϕ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi _{+}={\frac {1}{\sqrt {2}}}(\phi _{AA}+\phi _{AB}),\psi _{-}={\frac {1}{\sqrt {2}}}(\phi _{AA}-\phi _{AB})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60f3d7d3142155f6684cffe4cd9d4e8f5502122b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:46.808ex; height:6.176ex;" alt="{\displaystyle \psi _{+}={\frac {1}{\sqrt {2}}}(\phi _{AA}+\phi _{AB}),\psi _{-}={\frac {1}{\sqrt {2}}}(\phi _{AA}-\phi _{AB})}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="같이_보기"><span id=".EA.B0.99.EC.9D.B4_.EB.B3.B4.EA.B8.B0"></span>같이 보기</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=15" title="부분 편집: 같이 보기"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r36480479">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box metadata side-box-right plainlinks"><style data-mw-deduplicate="TemplateStyles:r36480595">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist"><b><a href="/wiki/%EC%9C%84%ED%82%A4%EB%AF%B8%EB%94%94%EC%96%B4_%EA%B3%B5%EC%9A%A9" title="위키미디어 공용">위키미디어 공용</a></b>에 관련된<br />미디어 분류가 있습니다.<div style="padding-left:1em;"><b><a class="external text" href="https://commons.wikimedia.org/wiki/Category:%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84?uselang=ko">분자 궤도</a></b></div></div></div> </div> <ul><li><a href="/wiki/%EB%B6%84%EC%9E%90%EA%B6%A4%EB%8F%84%ED%95%A8%EC%88%98_%EC%9D%B4%EB%A1%A0" title="분자궤도함수 이론">분자궤도함수 이론</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="출처"><span id=".EC.B6.9C.EC.B2.98"></span>출처</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;action=edit&amp;section=16" title="부분 편집: 출처"><span>편집</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><a href="#cite_ref-1">↑</a></span> <span class="reference-text"><cite class="citation journal">Mulliken, Robert S. (July 1932). &#8220;Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations&#8221;. &#12298;<a href="/wiki/Physical_Review" class="mw-redirect" title="Physical Review">Physical Review</a>&#12299; <b>41</b> (1): 49–71. <a href="/wiki/%EB%B9%84%EB%B8%8C%EC%BD%94%EB%93%9C" title="비브코드">Bibcode</a>:<a rel="nofollow" class="external text" href="http://adsabs.harvard.edu/abs/1932PhRv...41...49M">1932PhRv...41...49M</a>. <a href="/wiki/%EB%94%94%EC%A7%80%ED%84%B8_%EA%B0%9D%EC%B2%B4_%EC%8B%9D%EB%B3%84%EC%9E%90" title="디지털 객체 식별자">doi</a>:<a rel="nofollow" class="external text" href="https://dx.doi.org/10.1103%2FPhysRev.41.49">10.1103/PhysRev.41.49</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review&amp;rft.atitle=Electronic+Structures+of+Polyatomic+Molecules+and+Valence.+II.+General+Considerations&amp;rft.volume=41&amp;rft.issue=1&amp;rft.pages=49-71&amp;rft.date=1932-07&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRev.41.49&amp;rft_id=info%3Abibcode%2F1932PhRv...41...49M&amp;rft.aulast=Mulliken&amp;rft.aufirst=Robert+S.&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><a href="#cite_ref-2">↑</a></span> <span class="reference-text"><cite class="citation book">1930-2007., Cotton, F. Albert (Frank Albert), (1990). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/19975337">&#12298;Chemical applications of group theory&#12299;</a> 3판. New York: Wiley. 102쪽. <a href="/wiki/%EA%B5%AD%EC%A0%9C_%ED%91%9C%EC%A4%80_%EB%8F%84%EC%84%9C_%EB%B2%88%ED%98%B8" class="mw-redirect" title="국제 표준 도서 번호">ISBN</a>&#160;<a href="/wiki/%ED%8A%B9%EC%88%98:%EC%B1%85%EC%B0%BE%EA%B8%B0/0471510947" title="특수:책찾기/0471510947"><bdi>0471510947</bdi></a>. <a href="/wiki/%EC%98%A8%EB%9D%BC%EC%9D%B8_%EC%BB%B4%ED%93%A8%ED%84%B0_%EB%8F%84%EC%84%9C%EA%B4%80_%EC%84%BC%ED%84%B0" title="온라인 컴퓨터 도서관 센터">OCLC</a>&#160;<a rel="nofollow" class="external text" href="//www.worldcat.org/oclc/19975337">19975337</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chemical+applications+of+group+theory&amp;rft.place=New+York&amp;rft.pages=102&amp;rft.edition=3rd&amp;rft.pub=Wiley&amp;rft.date=1990&amp;rft_id=info%3Aoclcnum%2F19975337&amp;rft.isbn=0471510947&amp;rft.aulast=1930-2007.&amp;rft.aufirst=Cotton%2C+F.+Albert+%28Frank+Albert%29%2C&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F19975337&amp;rfr_id=info%3Asid%2Fko.wikipedia.org%3A%EB%B6%84%EC%9E%90+%EA%B6%A4%EB%8F%84" class="Z3988"><span style="display:none;">&#160;</span></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><a href="#cite_ref-3">↑</a></span> <span class="reference-text">옥스토비의 일반화학 제 6판</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><a href="#cite_ref-4">↑</a></span> <span class="reference-text">Huheey, James. Inorganic Chemistry: Principles of Structure and Reactivity</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><a href="#cite_ref-5">↑</a></span> <span class="reference-text">Robert S. Mulliken's Nobel Lecture, Science, 157, no. 3784, 13 - 24, (1967)</span> </li> </ol></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r36480591">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .hlist-pipe dd:after,.mw-parser-output .hlist-pipe li:after{content:" | ";font-weight:normal}.mw-parser-output .hlist-hyphen dd:after,.mw-parser-output .hlist-hyphen li:after{content:" - ";font-weight:normal}.mw-parser-output .hlist-comma dd:after,.mw-parser-output .hlist-comma li:after{content:", ";font-weight:normal}.mw-parser-output .hlist-slash dd:after,.mw-parser-output .hlist-slash li:after{content:" / ";font-weight:normal}</style><style data-mw-deduplicate="TemplateStyles:r36429174">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%A0%84%EA%B1%B0_%ED%86%B5%EC%A0%9C" title="위키백과:전거 통제">전거 통제</a>: 국가 <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q725417#identifiers" title="위키데이터에서 편집하기"><img alt="위키데이터에서 편집하기" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://uli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007541145005171">이스라엘</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85086587">미국</a></span></li> <li><span class="uid"><abbr title="molekulové orbitaly"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph687231&amp;CON_LNG=ENG">체코</a></abbr></span></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐4dnzt Cached time: 20241123010053 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.415 seconds Real time usage: 0.706 seconds Preprocessor visited node count: 1283/1000000 Post‐expand include size: 15495/2097152 bytes Template argument size: 780/2097152 bytes Highest expansion depth: 21/100 Expensive parser function count: 5/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 13830/5000000 bytes Lua time usage: 0.183/10.000 seconds Lua memory usage: 4093900/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 430.952 1 -total 31.62% 136.253 1 틀:위키데이터_속성_추적 23.35% 100.631 1 틀:전거_통제 15.75% 67.890 1 틀:출처_필요 15.18% 65.404 1 틀:저널_인용 11.88% 51.193 1 틀:Ambox 9.95% 42.877 1 틀:위키공용분류 9.19% 39.589 1 틀:Sister 8.63% 37.195 1 틀:사이드_박스 3.67% 15.812 1 틀:If_then_show --> <!-- Saved in parser cache with key kowiki:pcache:idhash:317103-0!canonical and timestamp 20241123010053 and revision id 36951550. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">원본 주소 "<a dir="ltr" href="https://ko.wikipedia.org/w/index.php?title=분자_궤도&amp;oldid=36951550">https://ko.wikipedia.org/w/index.php?title=분자_궤도&amp;oldid=36951550</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/%ED%8A%B9%EC%88%98:%EB%B6%84%EB%A5%98" title="특수:분류">분류</a>: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EB%B6%84%EC%9E%90%EB%AC%BC%EB%A6%AC%ED%95%99" title="분류:분자물리학">분자물리학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%96%91%EC%9E%90%ED%99%94%ED%95%99" title="분류:양자화학">양자화학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9D%B4%EB%A1%A0%ED%99%94%ED%95%99" title="분류:이론화학">이론화학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EA%B3%84%EC%82%B0%ED%99%94%ED%95%99" title="분류:계산화학">계산화학</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%99%94%ED%95%99_%EA%B2%B0%ED%95%A9" title="분류:화학 결합">화학 결합</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">숨은 분류: <ul><li><a href="/wiki/%EB%B6%84%EB%A5%98:%ED%95%B4%EA%B2%B0%EB%90%98%EC%A7%80_%EC%95%8A%EC%9D%80_%EC%86%8D%EC%84%B1%EC%9D%B4_%EC%9E%88%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:해결되지 않은 속성이 있는 문서">해결되지 않은 속성이 있는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P373%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P373을 사용하는 문서">위키데이터 속성 P373을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P244%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P244를 사용하는 문서">위키데이터 속성 P244를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P691%EC%9D%84_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P691을 사용하는 문서">위키데이터 속성 P691을 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P7859%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P7859를 사용하는 문서">위키데이터 속성 P7859를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%9C%84%ED%82%A4%EB%8D%B0%EC%9D%B4%ED%84%B0_%EC%86%8D%EC%84%B1_P8189%EB%A5%BC_%EC%82%AC%EC%9A%A9%ED%95%98%EB%8A%94_%EB%AC%B8%EC%84%9C" title="분류:위키데이터 속성 P8189를 사용하는 문서">위키데이터 속성 P8189를 사용하는 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%B6%9C%EC%B2%98%EA%B0%80_%ED%95%84%EC%9A%94%ED%95%9C_%EA%B8%80/2013%EB%85%84_3%EC%9B%94" title="분류:출처가 필요한 글/2013년 3월">출처가 필요한 글/2013년 3월</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%B6%9C%EC%B2%98%EA%B0%80_%ED%95%84%EC%9A%94%ED%95%9C_%EB%AA%A8%EB%93%A0_%EA%B8%80" title="분류:출처가 필요한 모든 글">출처가 필요한 모든 글</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:%EC%A0%84%EC%B2%B4%EC%97%90_%EC%B6%9C%EC%B2%98%EA%B0%80_%ED%95%84%EC%9A%94%ED%95%9C_%EA%B8%80" title="분류:전체에 출처가 필요한 글">전체에 출처가 필요한 글</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:J9U_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:J9U 식별자를 포함한 위키백과 문서">J9U 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:LCCN_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:LCCN 식별자를 포함한 위키백과 문서">LCCN 식별자를 포함한 위키백과 문서</a></li><li><a href="/wiki/%EB%B6%84%EB%A5%98:NKC_%EC%8B%9D%EB%B3%84%EC%9E%90%EB%A5%BC_%ED%8F%AC%ED%95%A8%ED%95%9C_%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC_%EB%AC%B8%EC%84%9C" title="분류:NKC 식별자를 포함한 위키백과 문서">NKC 식별자를 포함한 위키백과 문서</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> 이 문서는 2024년 5월 7일 (화) 13:05에 마지막으로 편집되었습니다.</li> <li id="footer-info-copyright">모든 문서는 <a rel="nofollow" class="external text" href="//creativecommons.org/licenses/by-sa/4.0/deed.ko">크리에이티브 커먼즈 저작자표시-동일조건변경허락 4.0</a>에 따라 사용할 수 있으며, 추가적인 조건이 적용될 수 있습니다. 자세한 내용은 <a class="external text" href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use/ko">이용 약관</a>을 참고하십시오.<br />Wikipedia®는 미국 및 다른 국가에 등록되어 있는 <a rel="nofollow" class="external text" href="https://www.wikimediafoundation.org">Wikimedia Foundation, Inc.</a> 소유의 등록 상표입니다.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">개인정보처리방침</a></li> <li id="footer-places-about"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EC%86%8C%EA%B0%9C">위키백과 소개</a></li> <li id="footer-places-disclaimers"><a href="/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%A9%B4%EC%B1%85_%EC%A1%B0%ED%95%AD">면책 조항</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">행동 강령</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">개발자</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/ko.wikipedia.org">통계</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">쿠키 정책</a></li> <li id="footer-places-mobileview"><a href="//ko.m.wikipedia.org/w/index.php?title=%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">모바일 보기</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rp9p7","wgBackendResponseTime":140,"wgPageParseReport":{"limitreport":{"cputime":"0.415","walltime":"0.706","ppvisitednodes":{"value":1283,"limit":1000000},"postexpandincludesize":{"value":15495,"limit":2097152},"templateargumentsize":{"value":780,"limit":2097152},"expansiondepth":{"value":21,"limit":100},"expensivefunctioncount":{"value":5,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":13830,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 430.952 1 -total"," 31.62% 136.253 1 틀:위키데이터_속성_추적"," 23.35% 100.631 1 틀:전거_통제"," 15.75% 67.890 1 틀:출처_필요"," 15.18% 65.404 1 틀:저널_인용"," 11.88% 51.193 1 틀:Ambox"," 9.95% 42.877 1 틀:위키공용분류"," 9.19% 39.589 1 틀:Sister"," 8.63% 37.195 1 틀:사이드_박스"," 3.67% 15.812 1 틀:If_then_show"]},"scribunto":{"limitreport-timeusage":{"value":"0.183","limit":"10.000"},"limitreport-memusage":{"value":4093900,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-4dnzt","timestamp":"20241123010053","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"\ubd84\uc790 \uada4\ub3c4","url":"https:\/\/ko.wikipedia.org\/wiki\/%EB%B6%84%EC%9E%90_%EA%B6%A4%EB%8F%84","sameAs":"http:\/\/www.wikidata.org\/entity\/Q725417","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q725417","author":{"@type":"Organization","name":"\uc704\ud0a4\ubbf8\ub514\uc5b4 \ud504\ub85c\uc81d\ud2b8 \uae30\uc5ec\uc790"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2009-04-09T11:24:30Z","dateModified":"2024-05-07T04:05:42Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/1\/19\/Dihydrogen-HOMO-phase-3D-balls.svg","headline":"\ubd84\uc790 \ub0b4 \uac01 \uc804\uc790\uc758 \uc0c1\ud0dc\ub97c \ub098\ud0c0\ub0b4\ub294 \ud30c\ub3d9 \ud568\uc218"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10