CINXE.COM
The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency-Advances in Computer and Communication-Hill Publishing Group
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency-Advances in Computer and Communication-Hill Publishing Group</title> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta content="The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency-Advances in Computer and Communication-Hill Publishing Group" name="description"> <meta content="Advances in Computer and Communication-Hill Publishing Group" name="keywords"> <link href="/css/hillpub.css" type="text/css" rel="stylesheet"> <script type="text/ecmascript" src="/js/tab.js"></script> <script type="text/javascript" src="/js/jquery1.3.2.js"></script> <script type="text/javascript"> $(document).ready(function () { $('.menutitle').click(function () { if ($(this).siblings('ul').css('display') == 'none') { $(this).parent('li').siblings('li').removeClass('active'); $(this).addClass('active'); $(this).siblings('ul').slideDown(100).children('li'); if ($(this).parents('li').siblings('li').children('ul').css('display') == 'block') { $(this).parents('li').siblings('li').children('ul').parent('li').children('a').removeClass('active'); $(this).parents('li').siblings('li').children('ul').slideUp(100); } } else { $(this).removeClass('active'); $(this).siblings('ul').slideUp(100); $(this).siblings('ul').children('li').children('ul').parent('li').children('a').addClass('active'); $(this).siblings('ul').children('li').children('ul').slideUp(100); $(this).siblings('ul').children('li').children('a').removeClass('active'); } }) }); </script> <script type="text/javascript"> var browser = { versions: function () { var u = navigator.userAgent, app = navigator.appVersion; return { trident: u.indexOf('Trident') > -1, presto: u.indexOf('Presto') > -1, webKit: u.indexOf('AppleWebKit') > -1, gecko: u.indexOf('Gecko') > -1 && u.indexOf('KHTML') == -1, mobile: !!u.match(/AppleWebKit.*Mobile.*/), ios: !!u.match(/\(i[^;]+;( U;)? CPU.+Mac OS X/), android: u.indexOf('Android') > -1 || u.indexOf('Linux') > -1, iPhone: u.indexOf('iPhone') > -1, iPad: u.indexOf('iPad') > -1, webApp: u.indexOf('Safari') == -1, weixin: u.indexOf('MicroMessenger') > -1, qq: u.match(/\sQQ/i) == " qq" }; } (), language: (navigator.browserLanguage || navigator.language).toLowerCase() } var myUrl = window.location.href; var id = 0; if (myUrl.indexOf('cid') > -1) { id = getQueryString("cid"); } if (browser.versions.mobile || browser.versions.ios || browser.versions.android || browser.versions.iPhone || browser.versions.iPad) { window.location = "https://wap.hillpublisher.com/ArticleDetails.aspx?cid=" + 3972; } // var myUrl = window.location.href; // var ishttps = 'www.' == document.location.protocol ? true : false; // if (ishttps) { // window.location = "https://hillpublisher.com/ArticleDetails/" + 3972 // } function getQueryString(name) { var reg = new RegExp("(^|&)" + name + "=([^&]*)(&|$)", "i"); var r = window.location.search.substr(1).match(reg); if (r != null) return unescape(r[2]); return null; } </script> </head> <body> <form name="form1" method="post" action="3972?cid=3972" id="form1"> <div> <input type="hidden" name="__EVENTTARGET" id="__EVENTTARGET" value="" /> <input type="hidden" name="__EVENTARGUMENT" id="__EVENTARGUMENT" value="" /> <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="/wEPDwULLTE5MjU3NzQwMTAPZBYCZg9kFgYCAw8WAh4LXyFJdGVtQ291bnQCBhYMZg9kFgJmDxUCBDQwMjNMUmVzZWFyY2ggb24gYSBMb3ctY29kZSBEYXRhIEFuYWx5c2lzIGFuZCBNb2RlbGluZyBQbGF0Zm9ybSBmb3IgUHVibGljIFNhZmV0eWQCAQ9kFgJmDxUCBDM5NzJdVGhlIFJlc2VhcmNoIG9uIEVuZC10by1lbmQgU3RvY2sgUmVjb21tZW5kYXRpb24gQWxnb3JpdGhtIEJhc2VkIG9uIFRpbWUtZnJlcXVlbmN5IENvbnNpc3RlbmN5ZAICD2QWAmYPFQIEMzk3MVBSZXNlYXJjaCBvbiBIaWdoLXNwZWVkIERpZ2l0YWwgQ2lyY3VpdCBTaWduYWwgVHJhbnNtaXNzaW9uIGFuZCBOb2lzZSBTdXBwcmVzc2lvbmQCAw9kFgJmDxUCBDM5NTQ5SW5kdXN0cnkgNC4wOiBNYW51ZmFjdHVyaW5nIEluZm9ybWF0aWNzLWRyaXZlbiBJbm5vdmF0aW9uZAIED2QWAmYPFQIEMzk1M1JDaGF0R1BUIENsYXNzIEdlbmVyYXRpdmUgQXJ0aWZpY2lhbCBJbnRlbGxpZ2VuY2UgQ3JpbWluYWwgU3ViamVjdCBQcm9ibGVtIFRoaW5raW5nZAIFD2QWAmYPFQIEMzk1MlJSZXNlYXJjaCBvbiBDb21wdXRlciBTZWN1cml0eSBQcm90ZWN0aW9uIE1lY2hhbmlzbSBpbiBNYXJpbmUgQ29tbXVuaWNhdGlvbiBOZXR3b3JrZAIEDxYCHgVzdHlsZQUOZGlzcGxheTpibG9jaztkAgUPFgIfAQUOZGlzcGxheTpibG9jaztkZLXUHdLlVv30dL7eDegO1lFPAQrOw4EEhtKpfatv3nvC" /> </div> <script type="text/javascript"> //<![CDATA[ var theForm = document.forms['form1']; if (!theForm) { theForm = document.form1; } function __doPostBack(eventTarget, eventArgument) { if (!theForm.onsubmit || (theForm.onsubmit() != false)) { theForm.__EVENTTARGET.value = eventTarget; theForm.__EVENTARGUMENT.value = eventArgument; theForm.submit(); } } //]]> </script> <div> <input type="hidden" name="__EVENTVALIDATION" id="__EVENTVALIDATION" value="/wEdAANWtqvYAEQsIfWV8kRavbIyIRYTnsGeR3S+QL5KOqHt2QjiAw6kesu0yD5DciVvI1dUKdvDARRbQ9D4hX2Y4QPDMJClh1jzS8j/qpHdU9vYkQ==" /> </div> <div class="main_box"> <div class="nav_box nav_boxny"> <div class="nav"> <div class="logo"> <img src="/images/logo.png" alt="hilllogo"> </div> <a href="https://www.hillpublisher.com/Index">Home</a> <a href="https://www.hillpublisher.com/Journals">Journals</a> <a href="https://www.hillpublisher.com/Books">Books</a> <a href="https://www.hillpublisher.com/ForAuthors">For Authors and Reviewers</a> <a href="https://www.hillpublisher.com/OnlineSubmission">Online Submission</a> <a href="https://www.hillpublisher.com/NewsList">News</a> <a href="https://www.hillpublisher.com/AboutUs">About Us</a> <a href="https://www.hillpublisher.com/ContactUs">Contact Us</a> <div class="spacer"></div> <a class="search" href="/ArtucleSearch">Search</a> </div> <!--end nav--> </div> <!--end nav_box--> <div class="qkheadbox"> <div class="qkhead"> <div class="qkmc_tp"> <div class="qktp"><img src="https://www.hillpublisher.com//UpFile/201909/2019090356514469.jpg" alt="magazinelogo"></div> <div class="qkgk"> <h2><a href="https://www.hillpublisher.com/Journals/ACC/">Advances in Computer and Communication</a></h2> <table class="qkgktab"> <tr> <td style="color: #2267c7;">Downloads: 52610</td> <td style="color: #2267c7;">Total View: 450061</td> </tr> <tr> <td>Frequency: quarterly</td> <td>ISSN Online: 2767-2875</td> <td>CODEN: ACCDC<sub>3</sub></td> </tr> <tr> <td>Email: <a style="color:#2267c7 ; text-decoration:underline" href="mailto:acc@hillpublisher.com">acc@hillpublisher.com</a></td> </tr> </table> </div> <div class="spacer"></div> </div> <!--end qkmc_tp--> </div> <!--end qkhead--> <div class="searchbox"> <div class="searchnr"> <span>Search articles within this journal</span> <input name="MagaHead$keywords" type="text" id="MagaHead_keywords" class="sear_text" placeholder="Keywords" /> <input onclick="__doPostBack('MagaHead$ctl00','')" name="MagaHead$ctl00" type="button" class="sear_bnt" value="Search" /> <a class="submit_art" href="/OnlineSubmission">Submit an article</a> </div> </div> <!--end searchbox--> </div> <!--end qkheadbox--> <div class="qkcont_box"> <div class="qk_left_container left"> <div class="qkmenu"> <h2>Journal Menu</h2> <ul> <li ><a href="/Journals/ACC/">Home</a></li> <li ><a href="/Journals/AimsScope/137">Aims & Scope</a></li> <li ><a href="/Journals/EditorBoard/137">Editorial Board</a></li> <li ><a href="/Journals/AuthorGuidelines/137">Authors' Guidelines</a></li> <li ><a href="/Journals/SpecialIssue/137">Special Issue</a></li> <li ><a href="/Journals/ProcessingFees/137">Processing Fees</a></li> <li ><a href="/Journals/Indexing/137">Indexing</a></li> <li ><a href="/Journals/Copyright/137">Copyright</a></li> </ul> </div> <!--end qkmenu--> <div class="Vol_Iss"> <h2>Volumes & Issues</h2> <h3 class="curiss"><a target="_blank" href="/ArticleList.aspx?select=137&year=2024&issue=4&magid=137">Current Issue</a></h3> <ul class="isslist"> <dl class="leftmenu"> <dd> <div class="menutitle"> <span></span>Volume 5 (2024) </div> <ul class="menuson" style="display:none"> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2024&issue=4&magid=137">Issue 4</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2024&issue=3&magid=137">Issue 3</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2024&issue=2&magid=137">Issue 2</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2024&issue=1&magid=137">Issue 1</a></li> </ul> </dd> </dl> <dl class="leftmenu"> <dd> <div class="menutitle"> <span></span>Volume 4 (2023) </div> <ul class="menuson" style="display:none"> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=6&magid=137">Issue 6</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=5&magid=137">Issue 5</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=4&magid=137">Issue 4</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=3&magid=137">Issue 3</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=2&magid=137">Issue 2</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2023&issue=1&magid=137">Issue 1</a></li> </ul> </dd> </dl> <dl class="leftmenu"> <dd> <div class="menutitle"> <span></span>Volume 3 (2022) </div> <ul class="menuson" style="display:none"> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2022&issue=2&magid=137">Issue 2</a></li> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2022&issue=1&magid=137">Issue 1</a></li> </ul> </dd> </dl> <dl class="leftmenu"> <dd> <div class="menutitle"> <span></span>Volume 2 (2021) </div> <ul class="menuson" style="display:none"> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2021&issue=1&magid=137">Issue 1</a></li> </ul> </dd> </dl> <dl class="leftmenu"> <dd> <div class="menutitle"> <span></span>Volume 1 (2020) </div> <ul class="menuson" style="display:none"> <li><a target="_blank" href="/ArticleList.aspx?select=137&year=2020&issue=1&magid=137">Issue 1</a></li> </ul> </dd> </dl> </ul> </div> <!--end Vol_Iss--> </div> <!--end qk_left_container--> <div class="qk_contnr"> <div class="wzqtxx right"> <div class="wzcz"> <p><a class="down" href="/ArticleDetails.aspx?type=PDF&cid=3972">Download PDF</a></p> <p><a class="htsite" href="#fu">How to cite this paper</a></p> <div class="views"> <p class="title-number">138</p> <p class="title-text">TOTAL VIEWS</p> </div> </div> <!--end wzcz--> <div class="more_art"> <h2>More Articles</h2> <ul> <li><a href="/ArticleDetails/4023" target="_blank">Research on a Low-code Data Analysis and Modeling Platform for Public Safety</a></li> <li><a href="/ArticleDetails/3972" target="_blank">The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency</a></li> <li><a href="/ArticleDetails/3971" target="_blank">Research on High-speed Digital Circuit Signal Transmission and Noise Suppression</a></li> <li><a href="/ArticleDetails/3954" target="_blank">Industry 4.0: Manufacturing Informatics-driven Innovation</a></li> <li><a href="/ArticleDetails/3953" target="_blank">ChatGPT Class Generative Artificial Intelligence Criminal Subject Problem Thinking</a></li> <li><a href="/ArticleDetails/3952" target="_blank">Research on Computer Security Protection Mechanism in Marine Communication Network</a></li> </ul> </div> </div> <!--end wzqtxx--> <div class="wzxqbox"> <div class="type_doi"><i>Article</i> <span>http://dx.doi.org/10.26855/acc.2024.10.008</span></div> <h1 class="art_title">The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency</h1> <div class="art-authors"> <p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; outline: none;"><font color="#000000" face="Poppins"><span style="font-size: 14px;">Yunxiang Gan</span><sup><span style="font-size: 14px;">1</span></sup><span style="font-size: 14px;">, Xiaoyang Chen</span><sup><span style="font-size: 14px;">2,*</span></sup></font></p><p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; outline: none;"><font color="#000000" face="Poppins"><sup><span style="font-size: 14px;">1</span></sup><span style="font-size: 14px;">Moloco, Inc., Redwood City, CA 94063, USA.</span></font></p><p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; outline: none;"><font color="#000000" face="Poppins"><sup><span style="font-size: 14px;">2</span></sup><span style="font-size: 14px;">The Ohio State University, Columbus, OH 43210, USA.</span></font></p><p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; outline: none;"><strong style="color: rgb(0, 0, 0); font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei" !important; font-size: 16px;"><span style="padding-left: 4px; outline: none; font-family: Poppins; font-size: 14px;">*Corresponding author: </span></strong><font color="#000000" face="Poppins"><span style="font-size: 14px;">Xiaoyang Chen</span></font></p> </div> <div class="art-affiliations"> </div> <div class="art-pubhistory"> Published: November 14,2024 </div> <ul class="wzzhbox1"> <li id="left" class="preAfter" style="display:block;"> <a href="/ArticleDetails/3952"> <span>Previous article in journal</span> </a> </li> <li id="right" class="next" style="display:block;"> <a href="/ArticleDetails/3971"> <span>Next article in journal</span> </a> </li> </ul> <div class="abt"> <h2>Abstract</h2> <p><p>In the financial market, the volatility and complexity of stock prices make accurately predicting stock trends a highly challenging task. Traditional stock prediction methods often rely on either time-domain or frequency-domain information alone, which fails to fully capture the multi-scale dynamic characteristics of stock prices, leading to insufficient prediction accuracy. To address the shortcomings of existing stock recommendation algorithms, this paper proposes an end-to-end stock recommendation algorithm based on time-frequency consistency. Firstly, we introduce a time-frequency consistency analysis method, which can simultaneously extract both time-domain and frequency-domain features of stock prices, thus providing a more comprehensive characterization of stock trend changes. Secondly, by integrating prompt learning strategies, the model is guided by pre-designed prompts to identify the lowest-risk buying points within specific time frames, optimizing the stock recommendation decision-making process. Finally, the end-to-end model training ensures seamless integration and automation throughout the entire prediction process, achieving a complete workflow from data input to stock recommendation. Experimental results demonstrate that this method outperforms traditional approaches in terms of prediction accuracy and risk control, offering more reliable decision support for investors.</p></p> </div> <div class="re" > <h2>References</h2> <p>[1]<span style="white-space:pre"> </span>Zhao C, et al. Progress and prospects of data-driven stock price forecasting research. International Journal of Cognitive Computing in Engineering. 2023 June;4:100-108.</p><p>[2]<span style="white-space:pre"> </span>C. L. Yingda Tang. Examining the Factors of Corporate Frauds in Chinese A-share Listed Enterprises. OAJRC Social Science. 2023;4(3):63-77.</p><p>[3]<span style="white-space:pre"> </span>Sheth, D, & Shah, M. Predicting stock market using machine learning: best and accurate way to know future stock prices. Int J Syst Assur Eng Manag. 2023;14(1):1-18.</p><p>[4]<span style="white-space:pre"> </span>Pashankar SS, Shendage JD, & Pawar J. Machine Learning Techniques for Stock Price Prediction-A Comparative Analysis of Linear Regression, Random Forest, and Support Vector Regression. Journal Of Advanced Zoology. 2024 March;45(S4):118-127.</p><p>[5]<span style="white-space:pre"> </span>Nourbakhsh, Z, & Habibi, N. Combining LSTM and CNN methods and fundamental analysis for stock price trend prediction. Multimed Tools Appl. 2023;82(12):17769-17799.</p><p>[6]<span style="white-space:pre"> </span>Olbrys J, & Mursztyn M. Measuring stock market resiliency with Discrete Fourier Transform for high frequency data. Physica A: Statistical Mechanics and its Applications. 2019;513:248-256.</p><p>[7]<span style="white-space:pre"> </span>Sharma DK, Hota HS, & Rababaah AR. Forecasting US stock price using hybrid of wavelet transforms and adaptive neuro fuzzy inference system. International Journal of System Assurance Engineering and Management. 2024;15(2):591-608.</p><p>[8]<span style="white-space:pre"> </span>Zhang G, & Zhou, T. Finite Element Model Calibration with Surrogate Model-Based Bayesian Updating: A Case Study of Motor FEM Model. Innovations in Applied Engineering and Technology. 2024;3(1):1-13.</p><p>doi: https://doi.org/10.62836/iaet.v3i1.232.</p><p>[9]<span style="white-space:pre"> </span>Z. Wang, Y. Zhao, C. Song, X. Wang, & Y. Li. A new interpretation on structural reliability updating with adaptive batch sampling-based subset simulation. Structural and Multidisciplinary Optimization. 2024;67(1):7.</p><p>[10]<span style="white-space:pre"> </span>X. Chen & H. Zhang. Performance Enhancement of AlGaN-based Deep Ultraviolet Light-emitting Diodes with AlxGa1-xN Linear Descending Layers. Innovations in Applied Engineering and Technology. 2023;1-10.</p><p>[11]<span style="white-space:pre"> </span>Y. Zhu, Y. Zhao, C. Song, & Z. Wang. Evolving reliability assessment of systems using active learning-based surrogate modelling. Physica D: Nonlinear Phenomena. 2024;457:133957.</p><p>[12]<span style="white-space:pre"> </span>Y. Jia & J. Lei. Experimental Study on the Performance of Frictional Drag Reducer with Low Gravity Solids. Innovations in Applied Engineering and Technology. 2024;1-22.</p><p>[13]<span style="white-space:pre"> </span>Yañez C, Kristjanpoller W, & Minutolo MC. Stock market index prediction using transformer neural network models and frequency decomposition. Neural Computing and Applications. 2024;36:1-21.</p><p>[14]<span style="white-space:pre"> </span>Y. Gan & D. Zhu. The Research on Intelligent News Advertisement Recommendation Algorithm Based on Prompt Learning in End-to-End Large Language Model Architecture. Innovations in Applied Engineering and Technology. 2024;1-19.</p><p>[15]<span style="white-space:pre"> </span>Y. Tang. Investigating the Impact of Digital Transformation on Equity Financing: Empirical Evidence from Chinese A-share Listed Enterprises. Journal of Humanities, Arts and Social Science. 2024;8(7):1620-1632.</p><p>doi: https://dx.doi.org/10.26855/jhass.2024.07.014.</p><p>[16]<span style="white-space:pre"> </span>Y. Tang & C. Li. Exploring the Factors of Supply Chain Concentration in Chinese A-Share Listed Enterprises. Journal of Computational Methods in Engineering Applications. 2023;1-17.</p><p>[17]<span style="white-space:pre"> </span>C. Li & Y. Tang. The Factors of Brand Reputation in Chinese Luxury Fashion Brands. Journal of Integrated Social Sciences and Humanities. 2023;1-14.</p><p>[18]<span style="white-space:pre"> </span>P. Ren, Z. Zhao, & Q. Yang. Exploring the Path of Transformation and Development for Study Abroad Consultancy Firms in China. arXiv preprint arXiv. 2024;2404:11034.</p><p>[19]<span style="white-space:pre"> </span>Z. Zhao, P. Ren, & Q. Yang. Student self-management, academic achievement: Exploring the mediating role of self-efficacy and the moderating influence of gender insights from a survey conducted in 3 universities in America. arXiv preprint arXiv. 2024;2404:11029.</p><p>[20]<span style="white-space:pre"> </span>S. Xiong, X. Chen, & H. Zhang. Deep Learning-Based Multifunctional End-to-End Model for Optical Character Classification and Denoising. Journal of Computational Methods in Engineering Applications. 2023;1-13.</p><p>[21]<span style="white-space:pre"> </span>S. Xiong, H. Zhang, M. Wang, & N. Zhou. Distributed Data Parallel Acceleration-Based Generative Adversarial Network for Fin-gerprint Generation. Innovations in Applied Engineering and Technology. 2022;1-12.</p><p>[22]<span style="white-space:pre"> </span>C. Li & Y. Tang. Emotional Value in Experiential Marketing: Driving Factors for Sales Growth–A Quantitative Study from the Eastern Coastal Region. Economics & Management Information. 2024;1-13.</p><p>[23]<span style="white-space:pre"> </span>Q. Zhang, Y. Zhang, F. Bao, Y. Liu, C. Zhang, & P. Liu. Incorporating stock prices and text for stock movement prediction based on information fusion. Engineering Applications of Artificial Intelligence. 2024;127:107377.</p><p>[24]<span style="white-space:pre"> </span>S. Khan, & H. Alghulaiakh. ARIMA model for accurate time series stocks forecasting. International Journal of Advanced Comput-er Science and Applications. 2020;11(7).</p><p>[25]<span style="white-space:pre"> </span>L. Wang, F. Ma, J. Liu, & L. Yang. Forecasting stock price volatility: New evidence from the GARCH-MIDAS model. International Journal of Forecasting. 2020;36(2):684-694.</p><p>[26]<span style="white-space:pre"> </span>H. N. Bhandari, B. Rimal, N. R. Pokhrel, R. Rimal, K. R. Dahal, & R. K. Khatri. Predicting stock market index using LSTM. Machine Learning with Applications. 2022;9:100320.</p><p>[27]<span style="white-space:pre"> </span>B. Gülmez. Stock price prediction with optimized deep LSTM network with artificial rabbits optimization algorithm. Expert Systems with Applications. 2023;227:120346.</p><p>[28]<span style="white-space:pre"> </span>Y. A. GIWA & S. Studies. Over the counter stocks data acquisition & analysis with time series prediction. International Journal of Social Sciences and Scientific Studies. 2024;4(1):3643-3670.</p><p>[29]<span style="white-space:pre"> </span>D. Song, A. M. C. Baek, & N. Kim. Forecasting stock market indices using padding-based fourier transform denoising and time series deep learning models. IEEE Access. 2021;9:83786-83796.</p><p>[30]<span style="white-space:pre"> </span>S. Verma, S. P. Sahu, & T. P. Sahu. Discrete wavelet transform-based feature engineering for stock market prediction. International Journal of Information Technology. 2023;15(2):1179-1188.</p><p>[31]<span style="white-space:pre"> </span>Y. Luo. Wavelet Neural Network Model with Time-Frequency Analysis for Accurate Share Prices Prediction. In Intelligent Com-puting: Proceedings of the 2021 Computing Conference, Volume 3, 2021: Springer, pp. 286-297.</p><p>[32]<span style="white-space:pre"> </span>D. Cao, et al. Tempo: Prompt-based generative pre-trained transformer for time series forecasting. 2023.</p><p>[33]<span style="white-space:pre"> </span>T. Guo, & E. Hauptmann. Fine-Tuning Large Language Models for Stock Return Prediction Using Newsflow. 2024.</p><p>[34]<span style="white-space:pre"> </span>Y. Xiao, J. Huang, & J. Yang. TFCSRec: Time–frequency consistency based contrastive learning for sequential recommendation. Expert Systems with Applications. 2024;245:123118.</p><p>[35]<span style="white-space:pre"> </span>S. Xie, Q. Pan, X. Wang, X. Luo, & V. Sugumaran. Combining prompt learning with contextual semantics for inductive relation prediction. Expert Systems with Applications. 2024;238:121669.</p><p>[36]<span style="white-space:pre"> </span>Y. Jiao, & J. Jakubowicz. Predicting stock movement direction with machine learning: An extensive study on S&P 500 stocks. In 2017 IEEE International Conference on Big Data (Big Data), 2017: IEEE, pp. 4705-4713.</p><p>[37]<span style="white-space:pre"> </span>S. Feng, C. Xu, Y. Zuo, G. Chen, F. Lin, & J. XiaHou. Relation-aware dynamic attributed graph attention network for stocks rec-ommendation. Pattern Recognition. 2022;121:108119.</p><p>[38]<span style="white-space:pre"> </span>Q. Bui, & R. Ślepaczuk. Applying Hurst Exponent in pair trading strategies on Nasdaq 100 index. Physica A: Statistical Mechanics and its Applications. 2022;592:126784.</p><p>[39]<span style="white-space:pre"> </span>V. Cioli, T. Giacomo, A. Giannozzi, & O. Roggi. Stock Liquidity and Corporate Investment Policy after FTSE 100 Index Addi-tions. International Journal of Business and Management. 2023;17(10):1-20.</p><p>[40]<span style="white-space:pre"> </span>Z. Yang, T. Zhao, S. Wang, & X. Li. MDF-DMC: A stock prediction model combining multi-view stock data features with dynamic market correlation information. Expert Systems with Applications. 2024;238:122134.</p><p>[41]<span style="white-space:pre"> </span>Y. Liu, S. Huang, X. Tian, F. Zhang, F. Zhao, & C. Zhang. A stock series prediction model based on variational mode decomposition and dual-channel attention network. Expert Systems with Applications. 2024;238:121708.</p><p>[42]<span style="white-space:pre"> </span>M. Lu, & X. Xu. TRNN: An efficient time-series recurrent neural network for stock price prediction. Information Sciences. 2024;657:119951.</p><p>[43]<span style="white-space:pre"> </span>K. Chaudhari, & A. Thakkar. Data fusion with factored quantization for stock trend prediction using neural networks. Information Processing & Management. 2023;60(3):103293.</p><p>[44]<span style="white-space:pre"> </span>N. Wijerathne, et al. Deep Learning Based Personalized Stock Recommender System. In International Conference on Neural Information Processing, 2023: Springer, pp. 362-374.</p><p>[45]<span style="white-space:pre"> </span>A. Mahmoodi, L. Hashemi, M. Jasemi, S. Mehraban, & J. Laliberté, R. C. Millar. A developed stock price forecasting model using support vector machine combined with metaheuristic algorithms. OPSEARCH. 2023;60(1):59-86.</p> </div> <div class="ftex" id="fu"> <h2>How to cite this paper</h2> <p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; font-size: 16px; outline: none; font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei"; color: rgb(0, 0, 0); font-weight: bold;"><span style="outline: none; font-family: Poppins; font-size: 14px;">The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency</span></p><p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; font-family: Arial, Helvetica, sans-serif, 微软雅黑; font-size: 16px; outline: none; color: rgb(0, 0, 0);"><b style="font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei";"><span style="outline: none; font-family: Poppins; font-size: 14px;">How to cite this paper: </span></b><span style="font-family: Poppins; outline: none; font-size: 14px;">Yunxiang Gan, Xiaoyang Chen. (2024) The Research on End-to-end Stock Recommendation Algorithm Based on Time-frequency Consistency. </span><i style="font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei";"><span style="outline: none; font-family: Poppins; font-size: 14px;">Advances in Computer and Communication</span></i><span style="outline: none; font-size: 14px;"><span style="outline: none; font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei" !important; font-size: 14px;">, </span><span style="outline: none; font-size: 14px;"><font face="Poppins"><b>5</b></font></span></span><span style="font-family: Poppins; outline: none; font-size: 14px;"><span style="outline: none; font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei" !important;"><span style="font-size: 14px;">(</span><b><span style="font-size: 14px;">4</span></b></span></span><span style="font-family: Poppins; outline: none; font-size: 14px;">), 243-259.</span></p><p style="padding-bottom: 15px; margin-bottom: 0px; line-height: 22px; font-size: 16px; outline: none; font-family: Arial, sans-serif, "Hiragino Sans GB", "Microsoft YaHei", "WenQuanYi Micro Hei"; color: rgb(0, 0, 0);"><span style="outline: none; font-family: Poppins; font-size: 14px;">DOI: https://dx.doi.org/10.26855/acc.2024.10.008</span></p> </div> </div> <!--end wzxqbox--> </div> <!--end qk_contnr--> </div> <!--end qkcont_box--> <div class="footer"> <div class="foot_nav"><a href="/Index" title="Home">Home</a> | <a href="/Journals" title="Journals">Journals</a> | <a href="/Books" title="Books">Books</a> | <a href="/ForAuthors" title="For Authors and Reviewers">For Authors and Reviewers</a> | <a href="/OnlineSubmission" title="Online Submission">Online Submission</a> | <a href="ContactUs" title="Contact Us">Contact Us</a> | <a href="/AboutUs" title="About Us">About Us</a></div> <p>Copyright © 2023 Hill Publishing Group Inc. All Rights Reserved.</p> </div> <!--end footer--> </div> <!--end main_box--></form> </body> </html>