CINXE.COM

Search results for: hydraulic flume experiments

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hydraulic flume experiments</title> <meta name="description" content="Search results for: hydraulic flume experiments"> <meta name="keywords" content="hydraulic flume experiments"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hydraulic flume experiments" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hydraulic flume experiments"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3892</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hydraulic flume experiments</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3892</span> Experimental Study of Local Scour Depth around Cylindrical Bridge Pier</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20T.%20Shukri">Mohammed T. Shukri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at nonuniform cylindrical bridge pier, by experimental work conducted in hydraulic laboratories of Gaziantep University Civil Engineering Department on a flume having dimensions of 8.3 m length, 0.8 m width and 0.9 m depth. The experiments will be carried on 20 cm depth of sediment layer having d<sub>50</sub>=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=scour" title="scour">scour</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20scour" title=" local scour"> local scour</a>, <a href="https://publications.waset.org/abstracts/search?q=bridge%20piers" title=" bridge piers"> bridge piers</a>, <a href="https://publications.waset.org/abstracts/search?q=scour%20depth" title=" scour depth"> scour depth</a> </p> <a href="https://publications.waset.org/abstracts/63562/experimental-study-of-local-scour-depth-around-cylindrical-bridge-pier" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3891</span> Shallow Water Lidar System in Measuring Erosion Rate of Coarse-Grained Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20S.%20Ellithy">Ghada S. Ellithy</a>, <a href="https://publications.waset.org/abstracts/search?q=John.%20W.%20Murphy"> John. W. Murphy</a>, <a href="https://publications.waset.org/abstracts/search?q=Maureen%20K.%20Corcoran"> Maureen K. Corcoran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Erosion rate of soils during a levee or dam overtopping event is a major component in risk assessment evaluation of breach time and downstream consequences. The mechanism and evolution of dam or levee breach caused by overtopping erosion is a complicated process and difficult to measure during overflow due to accessibility and quickly changing conditions. In this paper, the results of a flume erosion tests are presented and discussed. The tests are conducted on a coarse-grained material with a median grain size D50 of 5 mm in a 1-m (3-ft) wide flume under varying flow rates. Each test is performed by compacting the soil mix r to its near optimum moisture and dry density as determined from standard Proctor test in a box embedded in the flume floor. The box measures 0.45 m wide x 1.2 m long x 0.25 m deep. The material is tested several times at varying hydraulic loading to determine the erosion rate after equal time intervals. The water depth, velocity are measured at each hydraulic loading, and the acting bed shear is calculated. A shallow water lidar (SWL) system was utilized to record the progress of soil erodibility and water depth along the scanned profiles of the tested box. SWL is a non-contact system that transmits laser pulses from above the water and records the time-delay between top and bottom reflections. Results from the SWL scans are compared with before and after manual measurements to determine the erosion rate of the soil mix and other erosion parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse-grained%20materials" title="coarse-grained materials">coarse-grained materials</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion%20rate" title=" erosion rate"> erosion rate</a>, <a href="https://publications.waset.org/abstracts/search?q=LIDAR%20system" title=" LIDAR system"> LIDAR system</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion" title=" soil erosion"> soil erosion</a> </p> <a href="https://publications.waset.org/abstracts/102485/shallow-water-lidar-system-in-measuring-erosion-rate-of-coarse-grained-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102485.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3890</span> Analytical Formulae for the Approach Velocity Head Coefficient</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Abdulrahman">Abdulrahman Abdulrahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=broad%20crested%20weir" title="broad crested weir">broad crested weir</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20control%20meter" title=" combined control meter"> combined control meter</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20structures" title=" control structures"> control structures</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20flow" title=" critical flow"> critical flow</a>, <a href="https://publications.waset.org/abstracts/search?q=discharge%20measurement" title=" discharge measurement"> discharge measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20control" title=" flow control"> flow control</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20engineering" title=" hydraulic engineering"> hydraulic engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20structures" title=" hydraulic structures"> hydraulic structures</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20channel%20flow" title=" open channel flow"> open channel flow</a> </p> <a href="https://publications.waset.org/abstracts/71803/analytical-formulae-for-the-approach-velocity-head-coefficient" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3889</span> The Effect of the Side-Weir Crest Height to Scour in Clay-Sand Mixed Sediments </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Saracoglu%20Varol">F. A. Saracoglu Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Agacc%C4%B1oglu"> H. Agaccıoglu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental studies to investigate the depth of the scour conducted at a side-weir intersection located at the 1800 curved flume which located Hydraulic Laboratory of Yıldız Technical University, Istanbul, Turkey. Side weirs were located at the middle of the straight part of the main channel. Three different lengths (25, 40 and 50 cm) and three different weir crest height (7, 10 and 12 cm) of the side weir placed on the side weir station. There is no scour when the material is only kaolin. Therefore, the cohesive bed was prepared by properly mixing clay material (kaolin) with 31% sand in all experiments. Following 24h consolidation time, in order to observe the effect of flow intensity on the scour depth, experiments were carried out for five different upstream Froude numbers in the range of 0.33-0.81. As a result of this study the relation between scour depth and upstream flow intensity as a function of time have been established. The longitudinal velocities decreased along the side weir; towards the downstream due to overflow over the side-weirs. At the beginning, the scour depth increases rapidly with time and then asymptotically approached constant values in all experiments for all side weir dimensions as in non-cohesive sediment. Thus, the scour depth reached equilibrium conditions. Time to equilibrium depends on the approach flow intensity and the dimensions of side weirs. For different heights of the weir crest, dimensionless scour depths increased with increasing upstream Froude number. Equilibrium scour depths which formed 7 cm side-weir crest height were obtained higher than that of the 12 cm side-weir crest height. This means when side-weir crest height increased equilibrium scour depths decreased. Although the upstream side of the scour hole is almost vertical, the downstream side of the hole is inclined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clay-sand%20mixed%20sediments" title="clay-sand mixed sediments">clay-sand mixed sediments</a>, <a href="https://publications.waset.org/abstracts/search?q=scour" title=" scour"> scour</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20weir" title=" side weir"> side weir</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20structures" title=" hydraulic structures"> hydraulic structures</a> </p> <a href="https://publications.waset.org/abstracts/27481/the-effect-of-the-side-weir-crest-height-to-scour-in-clay-sand-mixed-sediments" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27481.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">308</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3888</span> Experiments of a Free Surface Flow in a Hydraulic Channel over an Uneven Bottom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouinoun">M. Bouinoun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is concerned with the problem of determining the shape of the free surface flow in a hydraulic channel which has an uneven bottom. For the mathematical formulation of the problem, the fluid of the two-dimensional irrotational steady flow in water is assumed inviscid and incompressible. The solutions of the nonlinear problem are obtained by using the usual conformal mapping theory and Hilbert’s technique. An experimental study, for comparing the obtained results, has been conducted in a hydraulic channel (subcritical regime and supercritical regime). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title="free-surface flow">free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=experiments" title=" experiments"> experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20method" title=" numerical method"> numerical method</a>, <a href="https://publications.waset.org/abstracts/search?q=uneven%20bottom" title=" uneven bottom"> uneven bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20regime" title=" supercritical regime"> supercritical regime</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a> </p> <a href="https://publications.waset.org/abstracts/34224/experiments-of-a-free-surface-flow-in-a-hydraulic-channel-over-an-uneven-bottom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34224.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3887</span> Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shams%20Razi%20Shopnil">Md. Shams Razi Shopnil</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanvir%20Imtiaz"> Tanvir Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabrina%20Mahjabin"> Sabrina Mahjabin</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Sahadat%20Hossain"> Md. Sahadat Hossain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20conductivity" title="hydraulic conductivity">hydraulic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compressive%20strength" title=" unconfined compressive strength"> unconfined compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20plastics" title=" recycled plastics"> recycled plastics</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregates" title=" recycled concrete aggregates"> recycled concrete aggregates</a> </p> <a href="https://publications.waset.org/abstracts/163967/hydraulic-conductivity-prediction-of-cement-stabilized-pavement-base-incorporating-recycled-plastics-and-recycled-aggregates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3886</span> The Thermal Simulation of Hydraulic Cable Drum Trailers 15-Ton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdul-Razzak%20Aboudi%20Al-Issa">Ahmad Abdul-Razzak Aboudi Al-Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal is the main important aspect in any hydraulic system since it is affected on the hydraulic system performance. Therefore must be simulated the hydraulic system -that was designed- in this aspect before constructing it. In this study, an existed expert system was using to simulate the thermal aspect of a designed hydraulic system that will be used in an industrial field. The expert system which is used in this study is (Hydraulic System Calculations), and its symbol (HSC). HSC had been designed and coded in an interactive program userfriendly named (Microsoft Visual Basic 2010). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20power" title="fluid power">fluid power</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20system" title=" hydraulic system"> hydraulic system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20hydrodynamic" title=" thermal and hydrodynamic"> thermal and hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/17006/the-thermal-simulation-of-hydraulic-cable-drum-trailers-15-ton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3885</span> Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahany%20W.%20Sadak">Tahany W. Sadak</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouly"> Fouly</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Anwer"> A. Anwer</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Rizk"> M. Rizk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 &deg;C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 &amp; 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 &deg;C, so energy and time are saved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electro-hydraulic%20servo%20valve" title="electro-hydraulic servo valve">electro-hydraulic servo valve</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20power%20control%20system" title=" fluid power control system"> fluid power control system</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20stiffness" title=" system stiffness"> system stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20and%20dynamic%20performance" title=" static and dynamic performance"> static and dynamic performance</a> </p> <a href="https://publications.waset.org/abstracts/98470/calibrations-and-effect-of-different-operating-conditions-on-the-performance-of-a-fluid-power-control-system-with-servo-solenoid-valve" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3884</span> Coastal Hydraulic Modelling to Ascertain Stability of Rubble Mound Breakwater</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Safari%20Mat%20Desa">Safari Mat Desa</a>, <a href="https://publications.waset.org/abstracts/search?q=Othman%20A.%20Karim"> Othman A. Karim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Kamarulhuda%20Samion"> Mohd Kamarulhuda Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiful%20Bahri%20Hamzah"> Saiful Bahri Hamzah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rubble mound breakwater was one of the most popular designs in Malaysia, constructed at the river mouth to dissipate the incoming wave energy from the seaward. Geometrically characteristics in trapezoid, crest width, and bottom width will determine the hypotonus stability, whilst structural height was designed for wave overtopping consideration. Physical hydraulic modelling in two-dimensional facilities was instigated in the flume to test the stability as well as the overtopping rate complied with the method of similarity, namely kinematic, dynamic, and geometric. Scaling effects of wave characteristics were carried out in order to acquire significant interaction of wave height, wave period, and water depth. Results showed two-dimensional physical modelling has proven reliable capability to ascertain breakwater stability significantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breakwater" title="breakwater">breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20characteristic" title=" geometrical characteristic"> geometrical characteristic</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20overtopping" title=" wave overtopping"> wave overtopping</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20hydraulic%20modelling" title=" physical hydraulic modelling"> physical hydraulic modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=method%20of%20similarity" title=" method of similarity"> method of similarity</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20characteristic" title=" wave characteristic"> wave characteristic</a> </p> <a href="https://publications.waset.org/abstracts/167225/coastal-hydraulic-modelling-to-ascertain-stability-of-rubble-mound-breakwater" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3883</span> Effect of Submerged Water Jet&#039;s Cross Section Shapes on Mixing Length</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Solimani%20Babarsad">Mohsen Solimani Babarsad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Rastgoo"> Mohammad Rastgoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Payam%20Taheri"> Payam Taheri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the important applications of hydraulic jets is used for discharge industrial, agricultural and urban wastewater into the rivers or other ambient water to reduce negative effects of pollutant water. Submerged jets due to turbulent condition can mix large amount of dense pollutant water with ambient flow. This study is conducted to investigate the distribution and length of the mixing zone in hydraulic jet's flow field with change in cross section shapes of nozzle. Toward this end, three shapes of cross section (square, circle and rectangular) and three saline densities current with different concentration are considered in a flume with 600 cm as long, 100 cm as high and 150 cm in width. Various discharges were used to evaluate mixing length for a wide range of densimetric Froude numbers, Frd, from 100 to 550 that is defined at the nozzle. Consequently, the circular nozzle, in comparison with other sections, has a densimetric Froude number 11% higher than square nozzle and 26% higher than rectangular nozzle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20jet" title="hydraulic jet">hydraulic jet</a>, <a href="https://publications.waset.org/abstracts/search?q=mixing%20zone" title=" mixing zone"> mixing zone</a>, <a href="https://publications.waset.org/abstracts/search?q=densimetric%20Froude%20number" title=" densimetric Froude number"> densimetric Froude number</a>, <a href="https://publications.waset.org/abstracts/search?q=nozzle" title=" nozzle "> nozzle </a> </p> <a href="https://publications.waset.org/abstracts/9237/effect-of-submerged-water-jets-cross-section-shapes-on-mixing-length" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3882</span> Design an Expert System to Assess the Hydraulic System in Thermal and Hydrodynamic Aspect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Abdul-Razzak%20Aboudi%20Al-Issa">Ahmad Abdul-Razzak Aboudi Al-Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal and Hydrodynamic are basic aspects in any hydraulic system and therefore, they must be assessed with regard to this aspect before constructing the system. This assessment needs a good expertise in this aspect to obtain an efficient hydraulic system. Therefore, this study aims to build an expert system called Hydraulic System Calculations (HSC) to ensure a smooth operation for the hydraulic system. The expert system (HSC) had been designed and coded in an user-friendly interactive program called Microsoft Visual Basic 2010. The suggested code provides the designer with a number of choices to resolve the problem of hydraulic oil overheating which may arise during the continuous operation of the hydraulic unit. As a result, the HSC can minimize the human errors, effort, time and cost of hydraulic machine design. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluid%20power" title="fluid power">fluid power</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20system" title=" hydraulic system"> hydraulic system</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20and%20hydrodynamic" title=" thermal and hydrodynamic"> thermal and hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20system" title=" expert system"> expert system</a> </p> <a href="https://publications.waset.org/abstracts/4076/design-an-expert-system-to-assess-the-hydraulic-system-in-thermal-and-hydrodynamic-aspect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3881</span> The Effect of Surface Wave on the Performance Characteristic of a Wave-Tidal Integral Turbine Hybrid Generation System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Norshazmira%20Mat%20Azmi">Norshazmira Mat Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayidal%20El%20Fatimah%20Masnan"> Sayidal El Fatimah Masnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shatirah%20Akib"> Shatirah Akib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More than 70% of the Earth is covered by oceans, which are considered to possess boundless renewable energy, such as tidal energy, tidal current energy, wave energy, thermal energy, and chemical energy. The hybrid system help in improving the economic and environmental sustainability of renewable energy systems to fulfill the energy demand. The concept of hybridizing renewable energy is to meet the desired system requirements, with the lowest value of the energy cost. This paper propose a hybrid power generation system suitable for remote area application and highlight the impact of surface waves on turbine design and performance, and the importance of understanding the site-specific wave conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=marine%20current%20energy" title="marine current energy">marine current energy</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20turbines" title=" tidal turbines"> tidal turbines</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20turbine" title=" wave turbine"> wave turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=renewable%20energy" title=" renewable energy"> renewable energy</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20waves" title=" surface waves"> surface waves</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments" title=" hydraulic flume experiments"> hydraulic flume experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=instantaneous%20wave%20phase" title=" instantaneous wave phase"> instantaneous wave phase</a> </p> <a href="https://publications.waset.org/abstracts/30722/the-effect-of-surface-wave-on-the-performance-characteristic-of-a-wave-tidal-integral-turbine-hybrid-generation-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30722.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3880</span> On the Free-Surface Generated by the Flow over an Obstacle in a Hydraulic Channel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef">M. Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Bouzelha-Hammoum"> K. Bouzelha-Hammoum</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Guendouzen-Dabouz"> T. Guendouzen-Dabouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Younsi"> A. Younsi</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to report the different experimental studies, conducted in the laboratory, dealing with the flow in the presence of an obstacle lying in a rectangular hydraulic channel. Both subcritical and supercritical regimes are considered. Generally, when considering the theoretical problem of the free-surface flow, in a fluid domain of finite depth, due to the presence of an obstacle, we suppose that the water is an inviscid fluid, which means that there is no sheared velocity profile, but constant upstream. In a hydraulic channel, it is impossible to satisfy this condition. Indeed, water is a viscous fluid and its velocity is null at the bottom. The two configurations are presented, i.e. a flow over an obstacle and a towed obstacle in a resting fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiments" title="experiments">experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=subcritical%20regime" title=" subcritical regime"> subcritical regime</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20flow" title=" supercritical flow"> supercritical flow</a> </p> <a href="https://publications.waset.org/abstracts/75299/on-the-free-surface-generated-by-the-flow-over-an-obstacle-in-a-hydraulic-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75299.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3879</span> A Study on the Life Prediction Performance Degradation Analysis of the Hydraulic Breaker</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jong%20Won">Jong Won</a>, <a href="https://publications.waset.org/abstracts/search?q=Park"> Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hyun"> Sung Hyun</a>, <a href="https://publications.waset.org/abstracts/search?q=Kim"> Kim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetic energy to pass subjected to shock and chisel reciprocating piston hydraulic power supplied by the excavator using for the purpose of crushing the rock, and roads, buildings, etc., hydraulic breakers blow. Impact frequency, efficiency measurement of the impact energy, hydraulic breakers, to demonstrate the ability of hydraulic breaker manufacturers and users to a very important item. And difficult in order to confirm the initial performance degradation in the life of the hydraulic breaker has been thought to be a problem.In this study, we measure the efficiency of hydraulic breaker, Impact energy and Impact frequency, the degradation analysis of research to predict the life. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impact%20energy" title="impact energy">impact energy</a>, <a href="https://publications.waset.org/abstracts/search?q=impact%20%20frequency" title=" impact frequency"> impact frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20breaker" title=" hydraulic breaker"> hydraulic breaker</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20prediction" title=" life prediction"> life prediction</a> </p> <a href="https://publications.waset.org/abstracts/14055/a-study-on-the-life-prediction-performance-degradation-analysis-of-the-hydraulic-breaker" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14055.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3878</span> Contribution to Experiments of a Free Surface Supercritical Flow over an Uneven Bottom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Bougamouza">M. Bougamouza</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Zitoun"> T. Zitoun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study is to examine, through experimentation in the laboratory, the supercritical flow in the presence of an obstacle in a rectangular channel. The supercritical regime in the whole hydraulic channel is achieved by adding a convergent. We will observe the influence of the obstacle shape and dimension on the characteristics of the supercritical flow, mainly the free-surface elevation and the velocity profile. The velocity measurements have been conducted with the one dimension laser anemometry technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=experiments" title="experiments">experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=free-surface%20flow" title=" free-surface flow"> free-surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20channel" title=" hydraulic channel"> hydraulic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=uneven%20bottom" title=" uneven bottom"> uneven bottom</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20anemometry" title=" laser anemometry"> laser anemometry</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20regime" title=" supercritical regime"> supercritical regime</a> </p> <a href="https://publications.waset.org/abstracts/42024/contribution-to-experiments-of-a-free-surface-supercritical-flow-over-an-uneven-bottom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3877</span> Power Generation from Sewage by a Micro-Hydraulic Turbine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomomi%20Uchiyama">Tomomi Uchiyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoko%20Okayama"> Tomoko Okayama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yukio%20Ide"> Yukio Ide</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the development of a micro-hydraulic turbine for power generation installed in sewer pipes. The runner has a circular hollow around the central (rotating) axis so that solid materials included in water can be easily flow through the runner without blocking the turbine. The laboratory experiments are also conducted. The hollow is very effective to make polyester fibers pass through the turbine. The guide vane is useful to heighten the turbine performance. But it is easily blocked by the fibers, making the turbine lose the function. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=micro-hydraulic%20turbine" title="micro-hydraulic turbine">micro-hydraulic turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a>, <a href="https://publications.waset.org/abstracts/search?q=sewage" title=" sewage"> sewage</a>, <a href="https://publications.waset.org/abstracts/search?q=sewer%20pipe" title=" sewer pipe"> sewer pipe</a> </p> <a href="https://publications.waset.org/abstracts/24854/power-generation-from-sewage-by-a-micro-hydraulic-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3876</span> Hydrodynamic Characterisation of a Hydraulic Flume with Sheared Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Rowe">Daniel Rowe</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20R.%20Vogel"> Christopher R. Vogel</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20H.%20J.%20Willden"> Richard H. J. Willden</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The University of Oxford’s recirculating water flume is a combined wave and current test tank with a 1 m depth, 1.1 m width, and 10 m long working section, and is capable of flow speeds up to 1 ms−1 . This study documents the hydrodynamic characteristics of the facility in preparation for experimental testing of horizontal axis tidal stream turbine models. The turbine to be tested has a rotor diameter of 0.6 m and is a modified version of one of two model-scale turbines tested in previous experimental campaigns. An Acoustic Doppler Velocimeter (ADV) was used to measure the flow at high temporal resolution at various locations throughout the flume, enabling the spatial uniformity and turbulence flow parameters to be investigated. The mean velocity profiles exhibited high levels of spatial uniformity at the design speed of the flume, 0.6 ms−1 , with variations in the three-dimensional velocity components on the order of ±1% at the 95% confidence level, along with a modest streamwise acceleration through the measurement domain, a target 5 m working section of the flume. A high degree of uniformity was also apparent for the turbulence intensity, with values ranging between 1-2% across the intended swept area of the turbine rotor. The integral scales of turbulence exhibited a far higher degree of variation throughout the water column, particularly in the streamwise and vertical scales. This behaviour is believed to be due to the high signal noise content leading to decorrelation in the sampling records. To achieve more realistic levels of vertical velocity shear in the flume, a simple procedure to practically generate target vertical shear profiles in open-channel flows is described. Here, the authors arranged a series of non-uniformly spaced parallel bars placed across the width of the flume and normal to the onset flow. By adjusting the resistance grading across the height of the working section, the downstream profiles could be modified accordingly, characterised by changes in the velocity profile power law exponent, 1/n. Considering the significant temporal variation in a tidal channel, the choice of the exponent denominator, n = 6 and n = 9, effectively provides an achievable range around the much-cited value of n = 7 observed at many tidal sites. The resulting flow profiles, which we intend to use in future turbine tests, have been characterised in detail. The results indicate non-uniform vertical shear across the survey area and reveal substantial corner flows, arising from the differential shear between the target vertical and cross-stream shear profiles throughout the measurement domain. In vertically sheared flow, the rotor-equivalent turbulence intensity ranges between 3.0-3.8% throughout the measurement domain for both bar arrangements, while the streamwise integral length scale grows from a characteristic dimension on the order of the bar width, similar to the flow downstream of a turbulence-generating grid. The experimental tests are well-defined and repeatable and serve as a reference for other researchers who wish to undertake similar investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20doppler%20Velocimeter" title="acoustic doppler Velocimeter">acoustic doppler Velocimeter</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20hydrodynamics" title=" experimental hydrodynamics"> experimental hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=open-channel%20flow" title=" open-channel flow"> open-channel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20profiles" title=" shear profiles"> shear profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=tidal%20stream%20turbines" title=" tidal stream turbines"> tidal stream turbines</a> </p> <a href="https://publications.waset.org/abstracts/178015/hydrodynamic-characterisation-of-a-hydraulic-flume-with-sheared-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3875</span> Optimization for the Hydraulic Clamping System of an Internal Circulation Two-Platen Injection Molding Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jian%20Wang">Jian Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lu%20Yang"> Lu Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiong%20Peng"> Jiong Peng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Internal circulation two-platen clamping system for injection molding machine (IMM) has many potential advantages on energy-saving. In order to estimate its properties, experiments in this paper were carried out. Displacement and pressure of the components were measured. In comparison, the model of hydraulic clamping system was established by using AMESim. The related parameters as well as the energy consumption could be calculated. According to the analysis, the hydraulic system was optimized in order to reduce the energy consumption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AMESim" title="AMESim">AMESim</a>, <a href="https://publications.waset.org/abstracts/search?q=energy-saving" title=" energy-saving"> energy-saving</a>, <a href="https://publications.waset.org/abstracts/search?q=injection%20molding%20machine" title=" injection molding machine"> injection molding machine</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20circulation" title=" internal circulation"> internal circulation</a> </p> <a href="https://publications.waset.org/abstracts/35095/optimization-for-the-hydraulic-clamping-system-of-an-internal-circulation-two-platen-injection-molding-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35095.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3874</span> Prediction of Unsaturated Permeability Functions for Clayey Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Louati">F. Louati</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Trabelsi"> H. Trabelsi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Jamei"> M. Jamei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Desiccation cracks following drainage-humidification cycles. With water loss, mainly due to evaporation, suction in the soil increases, producing volumetric shrinkage and tensile stress. When the tensile stress reaches tensile strength, the soil cracks. Desiccation cracks networks can directly control soil hydraulic properties. The aim of this study was for quantifying the hydraulic properties for examples the water retention curve, the saturated hydraulic conductivity, the unsaturated hydraulic conductivity function, the shrinkage dynamics in Tibar soil- clay soil in the Northern of Tunisia. Then a numerical simulation of unsaturated hydraulic properties for a crack network has been attempted. The finite elements code ‘CODE_BRIGHT’ can be used to follow the hydraulic distribution in cracked porous media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desiccation" title="desiccation">desiccation</a>, <a href="https://publications.waset.org/abstracts/search?q=cracks" title=" cracks"> cracks</a>, <a href="https://publications.waset.org/abstracts/search?q=permeability" title=" permeability"> permeability</a>, <a href="https://publications.waset.org/abstracts/search?q=unsaturated%20hydraulic%20flow" title=" unsaturated hydraulic flow"> unsaturated hydraulic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/44245/prediction-of-unsaturated-permeability-functions-for-clayey-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3873</span> Training of Sensors for Early Warning System of Rainfall Induced Landslides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Naresh">M. Naresh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Chaturvedi"> Pratik Chaturvedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Srishti%20Yadav"> Srishti Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Varun%20Dutt"> Varun Dutt</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20Uday"> K. V. Uday</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in the Earth’s climate are likely to increase natural hazards such as drought, floods, earthquakes, landslides, etc. The present study focusing on to early warning systems (EWS) of landslides, major issues in Himalayan region without prominence to deforestation, encroachments and un-engineered cutting of slopes and reforming for infrastructural purposes. EWS can be depicted by conducting a series of flume tests using micro-electro mechanical systems sensors data after reaching threshold values under controlled laboratory conditions. Based on the threshold value database, an alert will be sent via SMS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=slope-instability" title="slope-instability">slope-instability</a>, <a href="https://publications.waset.org/abstracts/search?q=flume%20test" title=" flume test"> flume test</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20warning%20system" title=" early warning system"> early warning system</a> </p> <a href="https://publications.waset.org/abstracts/81170/training-of-sensors-for-early-warning-system-of-rainfall-induced-landslides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3872</span> Advancements in Hydraulic Fracturing for Unconventional Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salar%20Ahmed%20Ali">Salar Ahmed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydraulic fracturing has revolutionized the extraction of unconventional oil and gas resources, significantly increasing global energy reserves. This paper explores recent advancements in hydraulic fracturing technologies, focusing on the integration of real-time monitoring systems, environmentally friendly fracturing fluids, and nanotechnology applications. Case studies demonstrate how innovative approaches have enhanced resource recovery while minimizing environmental impact and operational costs. Additionally, the paper addresses challenges such as induced seismicity and regulatory constraints, proposing solutions to ensure sustainable development. These advancements promise to make hydraulic fracturing more efficient, sustainable, and adaptable to the evolving energy landscape. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil" title="oil">oil</a>, <a href="https://publications.waset.org/abstracts/search?q=gas" title=" gas"> gas</a>, <a href="https://publications.waset.org/abstracts/search?q=fracture" title=" fracture"> fracture</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic" title=" hydraulic"> hydraulic</a> </p> <a href="https://publications.waset.org/abstracts/194790/advancements-in-hydraulic-fracturing-for-unconventional-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">8</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3871</span> Laboratory Analysis of Stormwater Runoff Hydraulic and Pollutant Removal Performance of Pervious Concrete Based on Seashell By-Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Jacques%20Randrianarimanana">Jean-Jacques Randrianarimanana</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Sebaibi"> Nassim Sebaibi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Boutouil"> Mohamed Boutouil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to solve problems associated with stormwater runoff in urban areas and their effects on natural and artificial water bodies, the integration of new technical solutions to the rainwater drainage becomes even more essential. Permeable pavement systems are one of the most widely used techniques. This paper presents a laboratory analysis of stormwater runoff hydraulic and pollutant removal performance of permeable pavement system using pervious pavements based on seashell products. The laboratory prototype is a square column of 25 cm of side and consists of the surface in pervious concrete, a bedding of 3 cm in height, a geotextile and a subbase layer of 50 cm in height. A series of constant simulated rain events using semi-synthetic runoff which varied in intensity and duration were carried out. The initial vertical saturated hydraulic conductivity of the entire pervious pavement system was 0.25 cm/s (148 L/m<sup>2</sup>/min). The hydraulic functioning was influenced by both the inlet flow rate value and the test duration. The total water losses including evaporation ranged between 9% to 20% for all hydraulic experiments. The temporal and vertical variability of the pollutant removal efficiency (PRE) of the system were studied for total suspended solids (TSS). The results showed that the PRE along the vertical profile was influenced by the size of the suspended solids, and the pervious paver has the highest capacity to trap pollutant than the other porous layers of the permeable pavement system after the geotextile. The TSS removal efficiency was about 80% for the entire system. The <em>first-flush</em> effect of TSS was observed, but it appeared only at the beginning (2 to 6 min) of the experiments. It has been shown that the PPS can capture <em>first-flush</em>. The project in which this study is integrated aims to contribute to both the valorization of shellfish waste and the sustainable management of rainwater. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydraulic" title="hydraulic">hydraulic</a>, <a href="https://publications.waset.org/abstracts/search?q=pervious%20concrete" title=" pervious concrete"> pervious concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=pollutant%20removal%20efficiency" title=" pollutant removal efficiency"> pollutant removal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=seashell%20by-products" title=" seashell by-products"> seashell by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=stormwater%20runoff" title=" stormwater runoff"> stormwater runoff</a> </p> <a href="https://publications.waset.org/abstracts/74712/laboratory-analysis-of-stormwater-runoff-hydraulic-and-pollutant-removal-performance-of-pervious-concrete-based-on-seashell-by-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3870</span> Energy Efficient Alternate Hydraulic System Called TejHydroLift</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tejinder%20Singh">Tejinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a new more efficient Hydraulic System which uses lesser work to produce more output. Conventional Hydraulic System like Hydraulic Lifts and Rams use lots of water to be pumped to produce output. TejHydroLift will do the equal amount of force with lesser input of water. The paper will show that force applied can be increased manifold without requiring to move smaller force by more distance which used to be required in Conventional Hydraulic Lifts. The paper describes one of the configurations of TejHydroLift System called “Slim Antenna TejHydroLift Configuration”. The TejHydroLift uses lesser water and hence demands lesser work to be performed to move the same load. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alternate" title="alternate">alternate</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20system" title=" hydraulic system"> hydraulic system</a>, <a href="https://publications.waset.org/abstracts/search?q=efficient" title=" efficient"> efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=TejHydroLift" title=" TejHydroLift"> TejHydroLift</a> </p> <a href="https://publications.waset.org/abstracts/31551/energy-efficient-alternate-hydraulic-system-called-tejhydrolift" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3869</span> Hydrodynamic Characteristics of Single and Twin Offshore Rubble Mound Breakwaters under Regular and Random Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Alkhalidi">M. Alkhalidi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Neelamani"> S. Neelamani</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Al-Zaqah"> Z. Al-Zaqah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the interaction of single and twin offshore rubble mound breakwaters with regular and random water waves through physical modeling to assess their reflection, transmission and energy dissipation characteristics. Various combinations of wave heights and wave periods were utilized in a series of experiments, along with three different water depths. The single and twin permeable breakwater models were both constructed with one layer of rubbles. Both models had the same total volume; however, the single breakwater was of trapezoidal type while the twin breakwaters were of triangular type. Physical modeling experiments were carried out in the wave flume of the coastal engineering laboratory of Kuwait Institute for Scientific Research (KISR). Measurements of the six wave probes which were fixed in the two-dimensional wave flume were collected and used to determine the generated incident wave heights, as well as the reflected and transmitted wave heights resulting from the wave-breakwater interaction. The possible factors affecting the wave attenuation efficiency of the breakwater models are the relative water depth (d/L), wave steepness (H/L), relative wave height ((h-d)/Hi), relative height of the breakwater (h/d), and relative clear spacing between the twin breakwaters (S/h). The results indicated that the single and double breakwaters show different responds to the change in their relative height as well as the relative wave height which demonstrates that the effect of the relative water depth on wave reflection, transmission, and energy dissipation is highly influenced by the change in the relative breakwater height, the relative wave height and the relative breakwater spacing. In general, within the range of the relative water depth tested in this study, and under both regular and random waves, it is found that the single breakwater allows for lower wave transmission and shows higher energy dissipation effect than both of the tested twin breakwaters, and hence has the best overall performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=random%20waves" title="random waves">random waves</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20waves" title=" regular waves"> regular waves</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20water%20depth" title=" relative water depth"> relative water depth</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20wave%20height" title=" relative wave height"> relative wave height</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20breakwater" title=" single breakwater"> single breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20breakwater" title=" twin breakwater"> twin breakwater</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20steepness" title=" wave steepness"> wave steepness</a> </p> <a href="https://publications.waset.org/abstracts/63850/hydrodynamic-characteristics-of-single-and-twin-offshore-rubble-mound-breakwaters-under-regular-and-random-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63850.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3868</span> Hydraulic Analysis of Irrigation Approach Channel Using HEC-RAS Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muluegziabher%20Semagne%20Mekonnen">Muluegziabher Semagne Mekonnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was intended to show the irrigation water requirements and evaluation of canal hydraulics steady state conditions to improve on scheme performance of the Meki-Ziway irrigation project. The methodology used was the CROPWAT 8.0 model to estimate the irrigation water requirements of five major crops irrigated in the study area. The results showed that for the whole existing and potential irrigation development area of 2000 ha and 2599 ha, crop water requirements were 3,339,200 and 4,339,090.4 m³, respectively. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. Hydraulic simulation models are fundamental tools for understanding the hydraulic flow characteristics of irrigation systems. In this study Hydraulic Analysis of Irrigation Canals Using HEC-RAS Model was conducted in Meki-Ziway Irrigation Scheme. The HEC-RAS model was tested in terms of error estimation and used to determine canal capacity potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HEC-RAS" title="HEC-RAS">HEC-RAS</a>, <a href="https://publications.waset.org/abstracts/search?q=irrigation" title=" irrigation"> irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic.%20canal%20reach" title=" hydraulic. canal reach"> hydraulic. canal reach</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity" title=" capacity"> capacity</a> </p> <a href="https://publications.waset.org/abstracts/183197/hydraulic-analysis-of-irrigation-approach-channel-using-hec-ras-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">60</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3867</span> Hydraulic Studies on Core Components of PFBR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20K.%20Pandey">G. K. Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Ramadasu"> D. Ramadasu</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Banerjee"> I. Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Vinod"> V. Vinod</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Padmakumar"> G. Padmakumar</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Prakash"> V. Prakash</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20K.%20Rajan"> K. K. Rajan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fast%20breeder%20reactor" title="fast breeder reactor">fast breeder reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=cavitation" title=" cavitation"> cavitation</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor%20components" title=" reactor components"> reactor components</a> </p> <a href="https://publications.waset.org/abstracts/2579/hydraulic-studies-on-core-components-of-pfbr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2579.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3866</span> Transport of Inertial Finite-Size Floating Plastic Pollution by Ocean Surface Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ross%20Calvert">Ross Calvert</a>, <a href="https://publications.waset.org/abstracts/search?q=Colin%20Whittaker"> Colin Whittaker</a>, <a href="https://publications.waset.org/abstracts/search?q=Alison%20Raby"> Alison Raby</a>, <a href="https://publications.waset.org/abstracts/search?q=Alistair%20G.%20L.%20Borthwick"> Alistair G. L. Borthwick</a>, <a href="https://publications.waset.org/abstracts/search?q=Ton%20S.%20van%20den%20Bremer"> Ton S. van den Bremer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Large concentrations of plastic have polluted the seas in the last half century, with harmful effects on marine wildlife and potentially to human health. Plastic pollution will have lasting effects because it is expected to take hundreds or thousands of years for plastic to decay in the ocean. The question arises how waves transport plastic in the ocean. The predominant motion induced by waves creates ellipsoid orbits. However, these orbits do not close, resulting in a drift. This is defined as Stokes drift. If a particle is infinitesimally small and the same density as water, it will behave exactly as the water does, i.e., as a purely Lagrangian tracer. However, as the particle grows in size or changes density, it will behave differently. The particle will then have its own inertia, the fluid will exert drag on the particle, because there is relative velocity, and it will rise or sink depending on the density and whether it is on the free surface. Previously, plastic pollution has all been considered to be purely Lagrangian. However, the steepness of waves in the ocean is small, normally about α = k₀a = 0.1 (where k₀ is the wavenumber and a is the wave amplitude), this means that the mean drift flows are of the order of ten times smaller than the oscillatory velocities (Stokes drift is proportional to steepness squared, whilst the oscillatory velocities are proportional to the steepness). Thus, the particle motion must have the forces of the full motion, oscillatory and mean flow, as well as a dynamic buoyancy term to account for the free surface, to determine whether inertia is important. To track the motion of a floating inertial particle under wave action requires the fluid velocities, which form the forcing, and the full equations of motion of a particle to be solved. Starting with the equation of motion of a sphere in unsteady flow with viscous drag. Terms can added then be added to the equation of motion to better model floating plastic: a dynamic buoyancy to model a particle floating on the free surface, quadratic drag for larger particles and a slope sliding term. Using perturbation methods to order the equation of motion into sequentially solvable parts allows a parametric equation for the transport of inertial finite-sized floating particles to be derived. This parametric equation can then be validated using numerical simulations of the equation of motion and flume experiments. This paper presents a parametric equation for the transport of inertial floating finite-size particles by ocean waves. The equation shows an increase in Stokes drift for larger, less dense particles. The equation has been validated using numerical solutions of the equation of motion and laboratory flume experiments. The difference in the particle transport equation and a purely Lagrangian tracer is illustrated using worlds maps of the induced transport. This parametric transport equation would allow ocean-scale numerical models to include inertial effects of floating plastic when predicting or tracing the transport of pollutants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perturbation%20methods" title="perturbation methods">perturbation methods</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20pollution%20transport" title=" plastic pollution transport"> plastic pollution transport</a>, <a href="https://publications.waset.org/abstracts/search?q=Stokes%20drift" title=" Stokes drift"> Stokes drift</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20flume%20experiments" title=" wave flume experiments"> wave flume experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wave-induced%20mean%20flow" title=" wave-induced mean flow"> wave-induced mean flow</a> </p> <a href="https://publications.waset.org/abstracts/111423/transport-of-inertial-finite-size-floating-plastic-pollution-by-ocean-surface-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3865</span> Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iddy%20Iddy">Iddy Iddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Qin%20Jiang"> Qin Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Changkuan%20Zhang"> Changkuan Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curtain%20wall%20breakwaters" title="curtain wall breakwaters">curtain wall breakwaters</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=hydraulic%20performance" title=" hydraulic performance"> hydraulic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=improved%20MPS%20method" title=" improved MPS method"> improved MPS method</a> </p> <a href="https://publications.waset.org/abstracts/78888/hydraulic-performance-of-curtain-wall-breakwaters-based-on-improved-moving-particle-semi-implicit-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3864</span> A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolaos%20Reppas">Nikolaos Reppas</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilin%20Gui"> Yilin Gui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20capture%20and%20storage" title="carbon capture and storage">carbon capture and storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Wellbore%20stability" title=" Wellbore stability"> Wellbore stability</a>, <a href="https://publications.waset.org/abstracts/search?q=elastoplastic%20damage%20response%20for%20rock" title=" elastoplastic damage response for rock"> elastoplastic damage response for rock</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20THM%20model" title=" constitutive THM model"> constitutive THM model</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20coupled%20thermo-hydraulic-mechanical%20model" title=" fully coupled thermo-hydraulic-mechanical model"> fully coupled thermo-hydraulic-mechanical model</a> </p> <a href="https://publications.waset.org/abstracts/121272/a-fully-coupled-thermo-hydraulic-mechanical-elastoplastic-damage-constitutive-model-for-porous-fractured-medium-during-co2-injection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121272.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3863</span> Thermal and Acoustic Design of Mobile Hydraulic Vehicle Engine Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homin%20Kim">Homin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyungjo%20Byun"> Hyungjo Byun</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinyoung%20Do"> Jinyoung Do</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongil%20Lee"> Yongil Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunho%20Shin"> Hyunho Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Seungbae%20Lee"> Seungbae Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Engine room of mobile hydraulic vehicle is densely packed with an engine and many hydraulic components mostly generating heat and sound. Though hydraulic oil cooler, ATF cooler, and axle oil cooler etc. are added to vehicle cooling system of mobile vehicle, the overheating may cause downgraded performance and frequent failures. In order to improve thermal and acoustic environment of engine room, the computational approaches by Computational Fluid Dynamics (CFD) and Boundary Element Method (BEM) are used together with necessary modal analysis of belt-driven system. The engine room design layout and process, which satisfies the design objectives of sound power level and temperature levels of radiator water, charged air cooler, transmission and hydraulic oil coolers, is discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustics" title="acoustics">acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=engine%20room%20design" title=" engine room design"> engine room design</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20hydraulics" title=" mobile hydraulics"> mobile hydraulics</a> </p> <a href="https://publications.waset.org/abstracts/61957/thermal-and-acoustic-design-of-mobile-hydraulic-vehicle-engine-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61957.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=129">129</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=130">130</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hydraulic%20flume%20experiments&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10