CINXE.COM
Search results for: HOMO
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: HOMO</title> <meta name="description" content="Search results for: HOMO"> <meta name="keywords" content="HOMO"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="HOMO" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="HOMO"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 97</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: HOMO</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Using of Bimolecular Fluorescence Complementation (BiFC) Assays to Study Homo and/ or Heterodimerization of Laminin Receptor 37 LRP/ 67 LR with Galectin-3</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fulwah%20Alqahtani">Fulwah Alqahtani</a>, <a href="https://publications.waset.org/abstracts/search?q=Jafar%20Mahdavi"> Jafar Mahdavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lee%20Weldon"> Lee Weldon</a>, <a href="https://publications.waset.org/abstracts/search?q=Nick%20Holliday"> Nick Holliday</a>, <a href="https://publications.waset.org/abstracts/search?q=Dlawer%20Ala%27Aldeen"> Dlawer Ala'Aldeen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are two isoforms of laminin receptor; monomeric 37 kDa laminin receptor precursor (37 LRP) and mature 67 kDa laminin receptor (67 LR). The relationship between the 67 LR and its precursor 37 LRP is not completely understood, but previous observations have suggested that 37 LRP can undergo homo- and/or hetero- dimerization with Galectin-3 (Gal-3) to form mature 67 LR. Gal-3 is the only member of the chimera-type group of galectins, and has one C-terminal carbohydrate recognition domain (CRD) that is responsible for binding the ß-galactoside moieties of mono- or oligosaccharides on several host and microbial molecules. The aim of this work was to investigate homo- and hetero-dimerization among the 37 LRP and Gal-3 to form mature 67 LR in mammalian cells using bimolecular fluorescence complementation (BiFC). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=37%20LRP" title="37 LRP">37 LRP</a>, <a href="https://publications.waset.org/abstracts/search?q=67%20LR" title=" 67 LR"> 67 LR</a>, <a href="https://publications.waset.org/abstracts/search?q=Gal-3" title=" Gal-3"> Gal-3</a>, <a href="https://publications.waset.org/abstracts/search?q=BiFC" title=" BiFC"> BiFC</a> </p> <a href="https://publications.waset.org/abstracts/15423/using-of-bimolecular-fluorescence-complementation-bifc-assays-to-study-homo-and-or-heterodimerization-of-laminin-receptor-37-lrp-67-lr-with-galectin-3" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> The Importance of Prehistoric Art: Exploring the Homo sapien as a Pioneer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soumaya%20Gharssallah%20Falhi">Soumaya Gharssallah Falhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Houda%20Kohli%20Kallel"> Houda Kohli Kallel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article explores the emergence of prehistoric art within the Homo Sapiens species, highlighting their innovative and pioneering characteristics. It investigates the cultural, artistic, and technological advancements that define this era, aiming to understand the importance of prehistoric art in illuminating the nature of early Homo Sapiens as cultural pioneers. The study employs a qualitative approach, analyzing the connection between prehistoric art and tribal cultures to gain insights into ancient societies. By examining various theories and perspectives on art creation during this period, the research underscores the transformative impact of artistic expression on societal development. Findings reveal that prehistoric art played a significant role in portraying Homo Sapiens as innovative beings, showcasing advancements in cultural, artistic, and technological domains. It emphasizes the enduring legacy of ancient art forms in shaping modern societal norms and values. Through data gathered from archaeological findings, literary sources, and expert opinions, the study contributes to the theoretical understanding of prehistoric art as a reflection of early human societies' mindset and way of life. Overall, this research highlights the pivotal role of prehistoric art in cultural evolution and emphasizes its relevance in contemporary understandings of human creativity and progress. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title="Homo sapiens">Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=prehistoric%20art" title=" prehistoric art"> prehistoric art</a>, <a href="https://publications.waset.org/abstracts/search?q=cave%20art" title=" cave art"> cave art</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20old%20stone%20age%20%28paleolithic%20era%29" title=" the old stone age (paleolithic era)"> the old stone age (paleolithic era)</a> </p> <a href="https://publications.waset.org/abstracts/185381/the-importance-of-prehistoric-art-exploring-the-homo-sapien-as-a-pioneer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">50</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability Hyperpolarizability, and Homo–Lumo Analysis of Monomeric and Dimeric Structures of 2-Chloro-N-(2 Methylphenyl) Benzamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Khelloul">N. Khelloul</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method shows good agreement with experimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 09 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that 2-Chloro-N-(2-methylphenyl) benzamide 2 molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO "> NLO </a> </p> <a href="https://publications.waset.org/abstracts/40183/the-spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-2-chloro-n-2-methylphenyl-benzamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">339</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> DFT Theoretical Investigation for Evaluating Global Scalar Properties and Validating with Quantum Chemical Based COSMO-RS Theory for Dissolution of Bituminous and Anthracite Coal in Ionic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Debanjan%20Dey">Debanjan Dey</a>, <a href="https://publications.waset.org/abstracts/search?q=Tamal%20Banerjee">Tamal Banerjee</a>, <a href="https://publications.waset.org/abstracts/search?q=Kaustubha%20Mohanty">Kaustubha Mohanty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global scalar properties are calculated based on higher occupied molecular orbital (HOMO) and lower unoccupied molecular orbital (LUMO) energy to study the interaction between ionic liquids with Bituminous and Anthracite coal using density function theory (DFT) method. B3LYP/6-31G* calculation predicts HOMO-LUMO energy gap, electronegativity, global hardness, global softness, chemical potential and global softness for individual compounds with their clusters. HOMO-LUMO interaction, electron delocalization, electron donating and accepting is the main source of attraction between individual compounds with their complexes. Cation used in this study: 1-butyl-1-methylpyrrolidinium [BMPYR], 1-methyl -3-propylimmidazolium [MPIM], Tributylmethylammonium [TMA] and Tributylmethylphosphonium [MTBP] with the combination of anion: bis(trifluromethylsulfonyl)imide [Tf2N], methyl carbonate [CH3CO3], dicyanamide [N(CN)2] and methylsulfate [MESO4]. Basically three-tier approach comprising HOMO/LUMO energy, Scalar quantity and infinite dilution activity coefficient (IDAC) by sigma profile generation with COSMO-RS (Conductor like screening model for real solvent) model was chosen for simultaneous interaction. [BMPYR]CH3CO3] (1-butyl-1-methylpyrrolidinium methyl carbonate) and [MPIM][CH3CO3] (1-methyl -3-propylimmidazolium methyl carbonate ) are the best effective ILs on the basis of HOMO-LUMO band gap for Anthracite and Bituminous coal respectively and the corresponding band gap is 0.10137 hartree for Anthracite coal and 0.12485 hartree for Bituminous coal. Further ionic liquids are screened quantitatively with all the scalar parameters and got the same result based on CH-π interaction which is found for HOMO-LUMO gap. To check our findings IDAC were predicted using quantum chemical based COSMO-RS methodology which gave the same trend as observed our scalar quantity calculation. Thereafter a qualitative measurement is doing by sigma profile analysis which gives complementary behavior between IL and coal that means highly miscible with each other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coal-ionic%20liquids%20cluster" title="coal-ionic liquids cluster">coal-ionic liquids cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=COSMO-RS" title=" COSMO-RS"> COSMO-RS</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT%20method" title=" DFT method"> DFT method</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO%20interaction" title=" HOMO-LUMO interaction"> HOMO-LUMO interaction</a> </p> <a href="https://publications.waset.org/abstracts/33384/dft-theoretical-investigation-for-evaluating-global-scalar-properties-and-validating-with-quantum-chemical-based-cosmo-rs-theory-for-dissolution-of-bituminous-and-anthracite-coal-in-ionic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Representation of Agamben's Concept of 'Homo Sacer': Interpretative Analysis in Turkish TV Series Based on Turkey's 1980 Military Coup</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oyku%20Yenen">Oyku Yenen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The notion of biopolitics, as studied by such intellectuals as Foucault, Agamben, and Negri, is an important guide for comprehending the current understanding of politics. While Foucault evaluates biopolitics as a survival policy, Giorgio Agamben, German legist, identifies the theory with death. Agamben claims the fact we can all considered to be homo sacer who are abandoned by the law, left in the field of exception, and whose killing does not require punishment. Agamben defines the person who is tried by the public for committing a crime but is not allowed to be sacrificed and whose killing is not considered a crime, as 'homo sacer'. This study analyzes how the concept of 'homo sacer' is made visible in TV series such as Çemberimde Gül Oya (Cagan Irmak, 2005-2005), Hatırla Sevgili (Ummu Burhan, 2006-2008), Bu Kalp Seni Unutur Mu? (Aydin Bulut, 2009-1010) all of which portray the period Turkey's 1980 military coup, within the framework of Agamben's thoughts and notions about biopolitics. When the main plots of these abovementioned TV series, which constitute the universe of this study, are scrutinized closely, they lay out the understanding of politics that has existed throughout history and prevails today. Although there is a large number of TV series on the coup of 1980, these three series are the only main productions that specifically focused on the event itself. Our final analysis will reveal that the concepts of homo sacer, bare life, exception, camp have been embodied in different ways in these three series. In these three series, which all deal with similar subjects using differing perspectives, the dominant understanding of politics is clearly conveyed to the audience. In all three series, the reigning power always decides on the exceptions, those who will live, those who will die, and those who will be ignored by law. Such characters as Mehmet, Sinan, Yıldız, Deniz, Defne, all of which we come across in these series, are on trial as a criminals of thought and are subjected to various forms of torture while isolated in an area where they are virtually deprived of law. Their citizenship rights are revoked. All of them are left alone with their bare lives (zoe). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bare%20life" title="bare life">bare life</a>, <a href="https://publications.waset.org/abstracts/search?q=biopolitics" title=" biopolitics"> biopolitics</a>, <a href="https://publications.waset.org/abstracts/search?q=homo%20sacer" title=" homo sacer"> homo sacer</a>, <a href="https://publications.waset.org/abstracts/search?q=sovereign%20power" title=" sovereign power"> sovereign power</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20exception" title=" state of exception"> state of exception</a> </p> <a href="https://publications.waset.org/abstracts/124600/representation-of-agambens-concept-of-homo-sacer-interpretative-analysis-in-turkish-tv-series-based-on-turkeys-1980-military-coup" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124600.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Religion: The Human Entropy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kayum%20Zarzis%20Alam">Abul Kayum Zarzis Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Death is not a terminal; it is just a junction. From Agamas to Vedas, from Buddhism to Judaism, all the major scriptures and religions of the world always do converge to this hypothesis of death. Death is the ultimate catastrophe of life and it is the genesis of every religion on this Earth. Several hundred thousand years ago, the Homo Sapiens in Paleolithic age introduced the notion of religion on this Earth in its most primitive form just to escape from death and natural catastrophes through their belief in supernatural things which created the sense of superstition among the Homo Sapiens which has only increased over time. This sense of superstition and belief in supernatural things are building blocks of religion. Religion is like entropy, a degree of disorder. Entropy for an irreversible system like our own Universe always increases. Same is happening to our human civilization where the disorder had been increasing over time. The degree of this disorder of human civilization is religion divides and conquers over the human civilization of Earth. Religion is the human entropy which had been governing and will govern us. Just like entropy, religion is also an essential intrinsic property of the system which makes the system evolved. We have to optimize this ambivalence of the human entropy to make our civilization an inclusive and sustainable one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=death" title="death">death</a>, <a href="https://publications.waset.org/abstracts/search?q=earth" title=" earth"> earth</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=religion%20and%20human%20entropy" title=" religion and human entropy"> religion and human entropy</a> </p> <a href="https://publications.waset.org/abstracts/88127/religion-the-human-entropy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Understanding the Impact of Li- bis(trifluoromethanesulfonyl)imide Doping on Spiro-OMeTAD Properties and Perovskite Solar Cell Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20C.%20Eze">Martin C. Eze</a>, <a href="https://publications.waset.org/abstracts/search?q=Gao%20Min"> Gao Min</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lithium bis(trifluoromethanesulfonyl)imide (Li-TFSI) dopant is beneficial in improving the properties of 2,2′,7,7′-Tetrakis (N, N-di-p-methoxyphenylamino)-9,9′-spiro-bifluorene (Spiro-OMETAD) transport layer used in perovskite solar cells (PSCs). Properties such as electrical conductivity, band energy mismatch, and refractive index of Spiro-OMETAD layers are believed to play key roles in PSCs performance but only the dependence of electrical conductivity on Li-TFSI doping has been extensively studied. In this work, the effect of Li-TFSI doping level on highest occupied molecular orbital (HOMO) energy, electrical conductivity, and refractive index of Spiro-OMETAD film and PSC performance was demonstrated. The Spiro-OMETAD films were spin-coated at 4000 rpm for 30 seconds from solutions containing 73.4 mM of Spiro-OMeTAD, 23.6 mM of 4-tert-butylpyridine, 7.6 mM of tris(2-(1H-pyrazol-1-yl)-4-tert-butylpyridine) cobalt(III) tri[bis(trifluoromethane) sulfonimide] (FK209) dopant and Li-TFSI dopant varying from 37 to 62 mM in 1 ml of chlorobenzene. From ultraviolet photoelectron spectroscopy (UPS), ellipsometry, and 4-probe studies, the results show that films deposition from Spiro-OMETAD solution doped with 40 mM of Li-TFSI shows the highest electrical conductivity of 6.35×10-6 S/cm, the refractive index of 1.87 at 632.32 nm, HOMO energy of -5.22 eV and the lowest HOMO energy mismatch of 0.21 eV compared to HOMO energy of perovskite layer. The PSCs fabricated show the best power conversion efficiency, open-circuit voltage, and fill factor of 17.10 %, 1.1 V, and 70.12%, respectively, for devices based on Spiro-OMETAD solution doped with 40 mM of Li-TFSI. This study demonstrates that the optimum Spiro-OMETAD/ Li-TFSI doping ratio of 1.84 is the optimum doping level for Spiro-OMETAD layer preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title="electrical conductivity">electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=homo%20energy%20mismatch" title=" homo energy mismatch"> homo energy mismatch</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20bis%28trifluoromethanesulfonyl%29imide" title=" lithium bis(trifluoromethanesulfonyl)imide"> lithium bis(trifluoromethanesulfonyl)imide</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20conversion%20efficiency" title=" power conversion efficiency"> power conversion efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=refractive%20index" title=" refractive index"> refractive index</a> </p> <a href="https://publications.waset.org/abstracts/127174/understanding-the-impact-of-li-bistrifluoromethanesulfonylimide-doping-on-spiro-ometad-properties-and-perovskite-solar-cell-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Molecular Electrostatic Potential in Z-3N(2-Ethoxyphenyl), 2-N'(2-Ethoxyphenyl) Imino Thiazolidin-4-one Molecule by Ab Initio and DFT Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Boulakoud">Manel Boulakoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Chouaih"> Abdelkader Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=Fodil%20Hamzaoui"> Fodil Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work we are interested in the determination of the Molecular electrostatic potential (MEP) in Z-3N(2-Ethoxyphenyl), 2-N’(2-Ethoxyphenyl) imino thiazolidin-4-one molecule by ab initio and Density Functional Theory (DFT) in the ground state. The MEP is related to the electronic density and is a very useful descriptor in understanding sites for electrophilic attack and nucleophilic reactions as well as hydrogen bonding interactions. First, geometry optimization was carried out using Hartree–Fock (HF) and DFT methods with 6-311G(d,p) basis set. In order to get more information on the molecule, its stability has been analyzed by natural bond orbital (NBO) analysis. Mulliken population analyses have been calculated. Finally, the molecular electrostatic potential (MEP) and HOMO-LUMO energy levels have been performed. The calculated HOMO and LUMO energies show also the charge transfer within the molecule. The energy gap obtained is about 4 eV which explain the stability of the studied compound. The obtained molecular electrostatic potential from the two methods confirms the nature of the electron charge transfer at the molecular shell and locate the electropositive part and the electronegative part in molecular scale of the title compound. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ab%20initio" title=" ab initio"> ab initio</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compounds" title=" organic compounds"> organic compounds</a> </p> <a href="https://publications.waset.org/abstracts/43840/molecular-electrostatic-potential-in-z-3n2-ethoxyphenyl-2-n2-ethoxyphenyl-imino-thiazolidin-4-one-molecule-by-ab-initio-and-dft-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">535</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> An Acyclic Zincgermylene: Rapid H₂ Activation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Juckel">Martin Juckel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Probably no other field of inorganic chemistry has undergone such a rapid development in the past two decades than the low oxidation state chemistry of main group elements. This rapid development has only been possible by the development of new bulky ligands. In case of our research group, super-bulky monodentate amido ligands and β-diketiminate ligands have been used to a great success. We first synthesized the unprecedented magnesium(I) dimer [ᴹᵉˢNacnacMg]₂ (ᴹᵉˢNacnac = [(ᴹᵉˢNCMe)₂CH]-; Mes = mesityl, which has since been used both as reducing agent and also for the synthesis of new metal-magnesium bonds. In case of the zinc bromide precursor [L*ZnBr] (L*=(N(Ar*)(SiPri₃); (Ar* = C₆H₂{C(H)Ph₂}₂Me-2,6,4, the reduction with [ᴹᵉˢNacnacMg]₂ led to such a metal-magnesium bond. This [L*ZnMg(ᴹᵉˢNacnac)] compound can be seen as an ‘inorganic Grignard reagent’, which can be used to transfer the metal fragment onto other functional groups or other metal centers; just like the conventional Grignard reagent. By simple addition of (TBoN)GeCl (TBoN = N(SiMe₃){B(DipNCH)₂) to the aforesaid compound, we were able to transfer the amido-zinc fragment to the Ge center of the germylene starting material and to synthesize the first example of a germanium(II)-zinc bond: [:Ge(TBoN)(ZnL*)]. While these reactions typically led to complex product mixture, [:Ge(TBoN)(ZnL*)] could be isolated as dark blue crystals in a good yield. This new compound shows interesting reactivity towards small molecules, especially dihydrogen gas. This is of special interest as dihydrogen is one of the more difficult small molecules to activate, due to its strong (BDE = 108 kcal/mol) and non-polar bond. In this context, the interaction between H₂ σ-bond with the tetrelylene p-Orbital (LUMO), with concomitant donation of the tetrelylene lone pair (HOMO) into the H₂ σ* orbital are responsible for the activation of dihydrogen gas. Accordingly, the narrower the HOMO-LUMO gap of tertelylene, the more reactivity towards H₂ it typically is. The aim of a narrow HOMO-LUMO gap was reached by transferring electropositive substituents respectively metal substituents with relatively low Pauling electronegativity (zinc: 1.65) onto the Ge center (here: the zinc-amido fragment). In consideration of the unprecedented reactivity of [:Ge(TBoN)(ZnL*)], a computational examination of its frontier orbital energies was undertaken. The energy separation between the HOMO, which has significant Ge lone pair character, and the LUMO, which has predominantly Ge p-orbital character, is narrow (40.8 kcal/mol; cf.∆S-T= 24.8 kcal/mol), and comparable to the HOMO-LUMO gaps calculated for other literature known complexes). The calculated very narrow HOMO-LUMO gap for the [:Ge(TBoN)(ZnL*)] complex is consistent with its high reactivity, and is remarkable considering that it incorporates a π-basic amide ligand, which are known to raise the LUMO of germylenes considerably. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=activation%20of%20dihydrogen%20gas" title="activation of dihydrogen gas">activation of dihydrogen gas</a>, <a href="https://publications.waset.org/abstracts/search?q=narrow%20HOMO-LUMO%20gap" title=" narrow HOMO-LUMO gap"> narrow HOMO-LUMO gap</a>, <a href="https://publications.waset.org/abstracts/search?q=first%20germanium%28II%29-zinc%20bond" title=" first germanium(II)-zinc bond"> first germanium(II)-zinc bond</a>, <a href="https://publications.waset.org/abstracts/search?q=inorganic%20Grignard%20reagent" title=" inorganic Grignard reagent"> inorganic Grignard reagent</a> </p> <a href="https://publications.waset.org/abstracts/82747/an-acyclic-zincgermylene-rapid-h2-activation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Thermodynamic Study of Homo-Pairs in Molten Cd-Me, (Me=Ga,in) Binary Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yisau%20Adelaja%20Odusote">Yisau Adelaja Odusote</a>, <a href="https://publications.waset.org/abstracts/search?q=Olakanmi%20Felix%20Akinto"> Olakanmi Felix Akinto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The associative tendency between like atoms in molten Cd-Ga and Cd-In alloy systems has been studied by using the Quasi-Chemical Approximation Model (QCAM). The concentration dependence of the microscopic functions (the concentration-concentration fluctuations in the long-wavelength limits, Scc(0), the chemical short-range order (CSRO) parameter α1 as well as the chemical diffusion) and the mixing properties as the free energy of mixing, GM, enthalpy of mixing and entropy of mixing of the two molten alloys have been determined. Thermodynamic properties of both systems deviate positively from Raoult's law, while the systems are characterized by positive interaction energy. The role of atomic size ratio on the alloying properties was discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=homo-pairs" title="homo-pairs">homo-pairs</a>, <a href="https://publications.waset.org/abstracts/search?q=interchange%20energy" title=" interchange energy"> interchange energy</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy" title=" enthalpy"> enthalpy</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy" title=" entropy"> entropy</a>, <a href="https://publications.waset.org/abstracts/search?q=Cd-Ga" title=" Cd-Ga"> Cd-Ga</a>, <a href="https://publications.waset.org/abstracts/search?q=Cd-In" title=" Cd-In"> Cd-In</a> </p> <a href="https://publications.waset.org/abstracts/27883/thermodynamic-study-of-homo-pairs-in-molten-cd-me-megain-binary-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27883.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> An Ab Initio Molecular Orbital Theory and Density Functional Theory Study of Fluorous 1,3-Dion Compounds </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Ghammamy">S. Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mirzaabdollahiha"> M. Mirzaabdollahiha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Quantum mechanical calculations of energies, geometries, and vibrational wavenumbers of fluorous 1,3-dion compounds are carried out using density functional theory (DFT/B3LYP) method with LANL2DZ basis sets. The calculated HOMO and LUMO energies show that charge transfer occurs in the molecules. The thermodynamic functions of fluorous 1,3-dion compounds have been performed at B3LYP/LANL2DZ basis sets. The theoretical spectrograms for F NMR spectra of fluorous 1,3-dion compounds have also been constructed. The F NMR nuclear shieldings of fluoride ligands in fluorous 1,3-dion compounds have been studied quantum chemical. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20function%20theory" title="density function theory">density function theory</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20bond%20orbital" title=" natural bond orbital"> natural bond orbital</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LOMO" title=" LOMO"> LOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorous" title=" fluorous"> fluorous</a> </p> <a href="https://publications.waset.org/abstracts/5829/an-ab-initio-molecular-orbital-theory-and-density-functional-theory-study-of-fluorous-13-dion-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5829.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> The Evolution of Man through Cranial and Dental Remains: A Literature Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishana%20Bilimoria">Rishana Bilimoria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Darwin’s insightful anthropological theory on the evolution drove mankind’s understanding of our existence in the natural world. Scientists consider analysis of dental and craniofacial remains to be pivotal in uncovering facts about our evolutionary journey. The resilient mineral content of enamel and dentine allow cranial and dental remains to be preserved for millions of years, making it an excellent resource not only in anthropology but other fields of research including forensic dentistry. This literature review aims to chronologically approach each ancestral species, reviewing Australopithecus, Paranthropus, Homo Habilis, Homo Rudolfensis, Homo Erectus, Homo Neanderthalis, and finally Homo Sapiens. Studies included in the review assess the features of cranio-dental remains that are of evolutionary importance, such as microstructure, microwear, morphology, and jaw biomechanics. The article discusses the plethora of analysis techniques employed to study dental remains including carbon dating, dental topography, confocal imaging, DPI scanning and light microscopy, in addition to microwear study and analysis of features such as coronal and root morphology, mandibular corpus shape, craniofacial anatomy and microstructure. Furthermore, results from these studies provide insight into the diet, lifestyle and consequently, ecological surroundings of each species. We can correlate dental fossil evidence with wider theories on pivotal global events, to help us contextualize each species in space and time. Examples include dietary adaptation during the period of global cooling converting the landscape of Africa from forest to grassland. Global migration ‘out of Africa’ can be demonstrated by enamel thickness variation, cranial vault variation over time demonstrates accommodation to larger brain sizes, and dental wear patterns can place the commencement of lithic technology in history. Conclusions from this literature review show that dental evidence plays a major role in painting a phenotypic and all rounded picture of species of the Homo genus, in particular, analysis of coronal morphology through carbon dating and dental wear analysis. With regards to analysis technique, whilst studies require larger sample sizes, this could be unrealistic since there are limitations in ability to retrieve fossil data. We cannot deny the reliability of carbon dating; however, there is certainly scope for the use of more recent techniques, and further evidence of their success is required. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cranio-facial" title="cranio-facial">cranio-facial</a>, <a href="https://publications.waset.org/abstracts/search?q=dental%20remains" title=" dental remains"> dental remains</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=hominids" title=" hominids"> hominids</a> </p> <a href="https://publications.waset.org/abstracts/83300/the-evolution-of-man-through-cranial-and-dental-remains-a-literature-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enciso-Benavides">Javier Enciso-Benavides</a>, <a href="https://publications.waset.org/abstracts/search?q=Fredy%20Fabian"> Fredy Fabian</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Castaneda"> Carlos Castaneda</a>, <a href="https://publications.waset.org/abstracts/search?q=Luis%20Alfaro"> Luis Alfaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Alex%20Choque"> Alex Choque</a>, <a href="https://publications.waset.org/abstracts/search?q=Aparicio%20Aguilar"> Aparicio Aguilar</a>, <a href="https://publications.waset.org/abstracts/search?q=Javier%20Enciso"> Javier Enciso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triple-negative%20breast%20cancer" title="triple-negative breast cancer">triple-negative breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=MALDI%20TOF%2FTOF%20MS" title=" MALDI TOF/TOF MS"> MALDI TOF/TOF MS</a>, <a href="https://publications.waset.org/abstracts/search?q=serum%20proteins" title=" serum proteins"> serum proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20stem%20cells" title=" cancer stem cells"> cancer stem cells</a> </p> <a href="https://publications.waset.org/abstracts/138001/cancer-stem-cell-associated-serum-proteins-obtained-by-maldi-toftof-mass-spectrometry-in-women-with-triple-negative-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">215</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Understanding Embryology in Promoting Peace Leadership: A Document Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasudev%20Das">Vasudev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The specific problem is that many leaders of the 21st century do not understand that the extermination of embryos wreaks havoc on peace leadership. The purpose of the document review is to understand embryology in facilitating peace leadership. Extermination of human embryos generates a requital wave of violence which later falls on human society in the form of disturbances, considering that violence breeds further violence as a consequentiality. The study results reveal that a deep understanding of embryology facilitates peace leadership, given that minimizing embryo extermination enhances non-violence in the global village. Neo-Newtonians subscribe to the idea that every action has an equal and opposite reaction. The US Federal Government recognizes the embryo or fetus as a member of Homo sapiens. The social change implications of this study are that understanding human embryology promotes peace leadership, considering that the consequentiality of embryo extermination can serve as a deterrent for violence on embryos. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=consequentiality" title="consequentiality">consequentiality</a>, <a href="https://publications.waset.org/abstracts/search?q=Homo%20sapiens" title=" Homo sapiens"> Homo sapiens</a>, <a href="https://publications.waset.org/abstracts/search?q=neo-Newtonians" title=" neo-Newtonians"> neo-Newtonians</a>, <a href="https://publications.waset.org/abstracts/search?q=violence" title=" violence"> violence</a> </p> <a href="https://publications.waset.org/abstracts/137887/understanding-embryology-in-promoting-peace-leadership-a-document-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137887.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Synthesis, Characterization, and Evaluation of New Series of Oil Sorbers Based on Maleate Esters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nora%20A.%20Hamad">Nora A. Hamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Atta"> Ayman M. Atta</a>, <a href="https://publications.waset.org/abstracts/search?q=Adel%20A.%20H.%20Abdel-Rahman"> Adel A. H. Abdel-Rahman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two malice anhydride esters were prepared using long chain aliphatic alcohols (C8H17OH and C12H25OH, 1:1 mole ratio). Three series of crosslinked homo and copolymers of maleate esters with octadecyl acrylate and acrylic acid were prepared respectively through suspension copolymerization. The monomers were mixed with 0.02 Wt% of BP initiator, PVA 1% (170 ml for each 100g of monomers) and different weight ratios of DVB crosslinked (1% and 4%) in cyclohexane. The prepared crosslinked homo and copolymers were characterized by SEM, TGA and FTIR spectroscopic analyses. The prepared polymers were coated onto poly (ethylene terephethalate) nonwoven fiber (NWPET). The effect of copolymerization feed composition, crosslinker wt% and reaction media or solvent on swelling properties of crosslinked polymers were studied through the oil absorption tests in toluene and 10% of diluted crude oil with toluene. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acrylic%20acid" title="acrylic acid">acrylic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslinked%20copolymers" title=" crosslinked copolymers"> crosslinked copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=maleate%20ester" title=" maleate ester"> maleate ester</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%28ethylene%20terephethalate%29%20nonwoven%20fiber%20%28NWPET%29" title=" poly(ethylene terephethalate) nonwoven fiber (NWPET)"> poly(ethylene terephethalate) nonwoven fiber (NWPET)</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20absorbency" title=" oil absorbency"> oil absorbency</a>, <a href="https://publications.waset.org/abstracts/search?q=octadecyl%20acrylat" title=" octadecyl acrylat"> octadecyl acrylat</a> </p> <a href="https://publications.waset.org/abstracts/56846/synthesis-characterization-and-evaluation-of-new-series-of-oil-sorbers-based-on-maleate-esters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56846.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> DFT Study of Half Sandwich of Vanadium (IV) Cyclopentadienyl Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20El-Tohami%20Ashoor">Salem El-Tohami Ashoor </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel new vanadium (IV) complexes incorporating the chelating diamido cyclopentadienyl {ArN(CH2)3NAr)}2-((ηn-Cp)Cp)} (Ar = 2,6-Pri2C6H3)(Cp = C5H5 and n = 1,2,3,4 and 5) have been studied with calculation of the properties of species involved in various of cyclopentadienyl reaction. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP (Becke) (Lee–Yang–Parr) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [V(ArN(CH2)3NAr)2Cl(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of vanadium cyclopentadienyl. In the meantime the complex [V(ArN(CH2)3NAr)2Cl(η1-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) which is showed a low thermal stability in case of the just one carbon of cyclopentadienyl can be insertion with vanadium metal centre. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vanadium%20%28IV%29%20cyclopentadienyl%20complexes" title="vanadium (IV) cyclopentadienyl complexes">vanadium (IV) cyclopentadienyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MO" title=" MO"> MO</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a> </p> <a href="https://publications.waset.org/abstracts/11048/dft-study-of-half-sandwich-of-vanadium-iv-cyclopentadienyl-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Didaoui">A. Didaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G (d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G (d,p) method show good agreement with xperimental X-ray data. The polarizability and first order hyperpolarizabilty of the title molecule were calculated and interpreted. the intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%2003" title=" Gaussian 03"> Gaussian 03</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%282-Methylphenyl%29-2-nitrobenzenesulfonamide" title=" N-(2-Methylphenyl)-2-nitrobenzenesulfonamide"> N-(2-Methylphenyl)-2-nitrobenzenesulfonamide</a> </p> <a href="https://publications.waset.org/abstracts/19477/spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-n-2-methylphenyl-2-nitrobenzenesulfonamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19477.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferid%20Hammami">Ferid Hammami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pyruvic%20acid" title="pyruvic acid">pyruvic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=PA-water%20complex" title=" PA-water complex"> PA-water complex</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20bonding" title=" hydrogen bonding"> hydrogen bonding</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=AIM" title=" AIM"> AIM</a>, <a href="https://publications.waset.org/abstracts/search?q=MEP" title=" MEP"> MEP</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a> </p> <a href="https://publications.waset.org/abstracts/139309/topological-analysis-of-hydrogen-bonds-in-pyruvic-acid-water-mixtures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> The Spectroscopic, Molecular Structure and Electrostatic Potential, Polarizability, Hyperpolarizability, and HOMO–LUMO Analysis of Monomeric and Dimeric Structures of N-(2-Methylphenyl)-2-Nitrobenzenesulfonamide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Didaoui">A. Didaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Benhalima"> N. Benhalima</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Elkeurti"> M. Elkeurti</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chouaih"> A. Chouaih</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hamzaoui"> F. Hamzaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monomer and dimer structures of the title molecule have been obtained from density functional theory (DFT) B3LYP method with 6-31G(d,p) as basis set calculations. The optimized geometrical parameters obtained by B3LYP/6-31G(d,p) method show good agreement with experimental X-ray data. The polarizability and first order hyperpolarizability of the title molecule were calculated and interpreted. The intermolecular N–H•••O hydrogen bonds are discussed in dimer structure of the molecule. The vibrational wave numbers and their assignments were examined theoretically using the Gaussian 03 set of quantum chemistry codes. The predicted frontier molecular orbital energies at B3LYP/6-31G(d,p) method set show that charge transfer occurs within the molecule. The frontier molecular orbital calculations clearly show the inverse relationship of HOMO–LUMO gap with the total static hyperpolarizability. The results also show that N-(2-Methylphenyl)-2-nitrobenzenesulfonamide molecule may have nonlinear optical (NLO) comportment with non-zero values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaussian%2003" title=" Gaussian 03"> Gaussian 03</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=N-%282-Methylphenyl%29-2-nitrobenzenesulfonamide" title=" N-(2-Methylphenyl)-2-nitrobenzenesulfonamide"> N-(2-Methylphenyl)-2-nitrobenzenesulfonamide</a>, <a href="https://publications.waset.org/abstracts/search?q=polarizability" title=" polarizability"> polarizability</a> </p> <a href="https://publications.waset.org/abstracts/18951/the-spectroscopic-molecular-structure-and-electrostatic-potential-polarizability-hyperpolarizability-and-homo-lumo-analysis-of-monomeric-and-dimeric-structures-of-n-2-methylphenyl-2-nitrobenzenesulfonamide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leila%20Ayat">Leila Ayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Afak%20Meftah"> Afak Meftah </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amorphous%20silicon%20p-i-n%20junctions" title="amorphous silicon p-i-n junctions">amorphous silicon p-i-n junctions</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/21840/sensitivity-studies-for-a-pin-homojunction-a-sih-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Molecular and Electronic Structure of Chromium (III) Cyclopentadienyl Complexes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20El-Tohami%20Ashoor">Salem El-Tohami Ashoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Here we show that the reduction of [Cr(ArN(CH2)3NAr)2Cl2] (1) where (Ar = 2,6-Pri2C6H3) and in presence of NaCp (2) (Cp= C5H5 = cyclopentadien), with a center coordination η5 interaction between Cp as co-ligand and chromium metal center, this was optimization by using density functional theory (DFT) and then was comparing with experimental data, also other possibility of Cp interacted with ion metal were tested like η1 ,η2 ,η3 and η4 under optimization system. These were carried out under investigation of density functional theory (DFT) calculation, and comparing together. Other methods, explicitly including electron correlation, are necessary for more accurate calculations; MB3LYP ( Becke)( Lee–Yang–Parr ) level of theory often being used to obtain more exact results. These complexes were estimated of electronic energy for molecular system, because it accounts for all electron correlation interactions. The optimised of [Cr(ArN(CH2)3NAr)2(η5-Cp)] (Ar = 2,6-Pri2C6H3 and Cp= C5H5) was found to be thermally more stable than others of chromium cyclopentadienyl. By using Dewar-Chatt-Duncanson model, as a basis of the molecular orbital (MO) analysis and showed the highest occupied molecular orbital (HOMO) and lowest occupied molecular orbital LUMO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chromium%28III%29%20cyclopentadienyl%20complexes" title="Chromium(III) cyclopentadienyl complexes">Chromium(III) cyclopentadienyl complexes</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=MO" title=" MO"> MO</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO" title=" HOMO"> HOMO</a>, <a href="https://publications.waset.org/abstracts/search?q=LUMO" title=" LUMO"> LUMO</a> </p> <a href="https://publications.waset.org/abstracts/14546/molecular-and-electronic-structure-of-chromium-iii-cyclopentadienyl-complexes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> Elaboration of Polymethylene Blue on Conducting Glassy Substrate and Study of Its Optical, Electrical and Photoelectrochemical Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Djamila">Abdi Djamila</a>, <a href="https://publications.waset.org/abstracts/search?q=Haffar%20Hichem"> Haffar Hichem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The poly methylene bleu (PMB) has been successfully electro deposited on fluorine doped tin oxide (FTO) conducting glass as substrate. Its optical, electrical and photoelectrochemical characterizations have been carried out in order to show the performances of such polymer. The deposited film shows a good electric conductivity which is well confirmed by the low gap value determinated optically by UV–vis spectroscopy. Like all polymers the PMB presents an absorption difference in the visible range function of the polarization potential, it is expressed by the strong conjugation at oxidized state but is weakened with leucoform formation at reduced state. The electrochemical analysis of the films permit to show the cyclic voltamperogram with the anodic oxidation and cathodic reduction states of the polymer and to locate the corresponding energy levels HOMO and LUMO of this later. The electrochemical impedance spectroscopy permit to see the conductive character of such film and to calculate important parameters as Rtc and CPE. The study of the photoelectro activity of our polymer shows that under exposure to intermittent light source this later exhibit important photocurrents which enables it to be used in photo organic ells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymethylene%20blue" title="polymethylene blue">polymethylene blue</a>, <a href="https://publications.waset.org/abstracts/search?q=electropolymerization" title=" electropolymerization"> electropolymerization</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=photocurrents" title=" photocurrents"> photocurrents</a> </p> <a href="https://publications.waset.org/abstracts/24820/elaboration-of-polymethylene-blue-on-conducting-glassy-substrate-and-study-of-its-optical-electrical-and-photoelectrochemical-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> The Phylogenetic Investigation of Candidate Genes Related to Type II Diabetes in Man and Other Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijoni%20Banerjee">Srijoni Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequences of some of the candidate genes (e.g., CPE, CDKAL1, GCKR, HSD11B1, IGF2BP2, IRS1, LPIN1, PKLR, TNF, PPARG) implicated in some of the complex disease, e.g. Type II diabetes in man has been compared with other species to investigate phylogenetic affinity. Based on mRNA sequence of these genes of 7 to 8 species, using bioinformatics tools Mega 5, Bioedit, Clustal W, distance matrix was obtained. Phylogenetic trees were obtained by NJ and UPGMA clustering methods. The results of the phylogenetic analyses show that of the species compared: Xenopus l., Danio r., Macaca m., Homo sapiens s., Rattus n., Mus m. and Gallus g., Bos taurus, both NJ and UPGMA clustering show close affinity between clustering of Homo sapiens s. (Man) with Rattus n. (Rat), Mus m. species for the candidate genes, except in case of Lipin1 gene. The results support the functional similarity of these genes in physiological and biochemical process involving man and mouse/rat. Therefore, in understanding the complex etiology and treatment of the complex disease mouse/rate model is the best laboratory choice for experimentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phylogeny" title="phylogeny">phylogeny</a>, <a href="https://publications.waset.org/abstracts/search?q=candidate%20gene%20of%20type-2%20diabetes" title=" candidate gene of type-2 diabetes"> candidate gene of type-2 diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=CPE" title=" CPE"> CPE</a>, <a href="https://publications.waset.org/abstracts/search?q=CDKAL1" title=" CDKAL1"> CDKAL1</a>, <a href="https://publications.waset.org/abstracts/search?q=GCKR" title=" GCKR"> GCKR</a>, <a href="https://publications.waset.org/abstracts/search?q=HSD11B1" title=" HSD11B1"> HSD11B1</a>, <a href="https://publications.waset.org/abstracts/search?q=IGF2BP2" title=" IGF2BP2"> IGF2BP2</a>, <a href="https://publications.waset.org/abstracts/search?q=IRS1" title=" IRS1"> IRS1</a>, <a href="https://publications.waset.org/abstracts/search?q=LPIN1" title=" LPIN1"> LPIN1</a>, <a href="https://publications.waset.org/abstracts/search?q=PKLR" title=" PKLR"> PKLR</a>, <a href="https://publications.waset.org/abstracts/search?q=TNF" title=" TNF"> TNF</a>, <a href="https://publications.waset.org/abstracts/search?q=PPARG" title=" PPARG"> PPARG</a> </p> <a href="https://publications.waset.org/abstracts/5222/the-phylogenetic-investigation-of-candidate-genes-related-to-type-ii-diabetes-in-man-and-other-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Life-Narratives and Human Rights: Reflections about the Women's Rights and State of Exception</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luana%20Mathias%20Souto">Luana Mathias Souto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The situation about women’s rights it’s a sensitive issue when it’s talking about human rights. More difficult its find a way to protect these rights. Aware of this problem, this article aims to analyze the women’s rights in the Brazilian context, mainly, the reproductive rights. So, to achieve this purpose, this paper through the combination of Law, philosophy, and Literature tries to rethinking why women can’t have a voice when the decisions about their rights are taken. Methodologically, it was used as an interdisciplinary bibliographical revision between Law, philosophy, and Literature. From Literature it brings the contributions from the life-narratives as an instrument to promote human rights. Besides the life-narratives theory, it’s also used the novel The Handmaid’s tale from Margaret Atwood, which became a symbol to reflect about reproductive rights. From philosophy, it’s adopted the concepts of Homo sacer and state of exception developed by the philosopher Giorgio Agamben. The contributions of these different researches fields made possible to conclude that women are Homo sacer because governments ignore their voices and opinions when they talk about abortion. The control of the human body, mainly, women bodies it’s more important than preserving some fundamental rights and because of this, it’s so difficult to preserve and promote the human rights. Based on these conclusions, it is understood that when the state is incapable or does not want to guarantee the adequate protection of human rights, it is up to society through its various means to find ways to protect them, and this is the main proposal sought by this article. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dystopian%20fiction" title="dystopian fiction">dystopian fiction</a>, <a href="https://publications.waset.org/abstracts/search?q=human%20rights" title=" human rights"> human rights</a>, <a href="https://publications.waset.org/abstracts/search?q=life-narratives" title=" life-narratives"> life-narratives</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20of%20exception" title=" state of exception"> state of exception</a> </p> <a href="https://publications.waset.org/abstracts/97975/life-narratives-and-human-rights-reflections-about-the-womens-rights-and-state-of-exception" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">208</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Electronic Structure Calculation of AsSiTeB/SiAsBTe Nanostructures Using Density Functional Theory</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ankit%20Kargeti">Ankit Kargeti</a>, <a href="https://publications.waset.org/abstracts/search?q=Ravikant%20Shrivastav"> Ravikant Shrivastav</a>, <a href="https://publications.waset.org/abstracts/search?q=Tabish%20Rasheed"> Tabish Rasheed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The electronic structure calculation for the nanoclusters of AsSiTeB/SiAsBTe quaternary semiconductor alloy belonging to the III-V Group elements was performed. Motivation for this research work was to look for accurate electronic and geometric data of small nanoclusters of AsSiTeB/SiAsBTe in the gaseous form. The two clusters, one in the linear form and the other in the bent form, were studied under the framework of Density Functional Theory (DFT) using the B3LYP functional and LANL2DZ basis set with the software packaged Gaussian 16. We have discussed the Optimized Energy, Frontier Orbital Energy Gap in terms of HOMO-LUMO, Dipole Moment, Ionization Potential, Electron Affinity, Binding Energy, Embedding Energy, Density of States (DoS) spectrum for both structures. The important findings of the predicted nanostructures are that these structures have wide band gap energy, where linear structure has band gap energy (Eg) value is 2.375 eV and bent structure (Eg) value is 2.778 eV. Therefore, these structures can be utilized as wide band gap semiconductors. These structures have high electron affinity value of 4.259 eV for the linear structure and electron affinity value of 3.387 eV for the bent structure form. It shows that electron acceptor capability is high for both forms. The widely known application of these compounds is in the light emitting diodes due to their wide band gap nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title="density functional theory">density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20functional%20theory" title=" density functional theory"> density functional theory</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructures" title=" nanostructures"> nanostructures</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=density%20of%20states" title=" density of states "> density of states </a> </p> <a href="https://publications.waset.org/abstracts/121158/electronic-structure-calculation-of-assitebsiasbte-nanostructures-using-density-functional-theory" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Fuzzy Data, Random Drift, and a Theoretical Model for the Sequential Emergence of Religious Capacity in Genus Homo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Margaret%20Boone%20Rappaport">Margaret Boone Rappaport</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20J.%20Corbally"> Christopher J. Corbally</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ancient ape ancestral population from which living great ape and human species evolved had demographic features affecting their evolution. The population was large, had great genetic variability, and natural selection was effective at honing adaptations. The emerging populations of chimpanzees and humans were affected more by founder effects and genetic drift because they were smaller. Natural selection did not disappear, but it was not as strong. Consequences of the 'population crash' and the human effective population size are introduced briefly. The history of the ancient apes is written in the genomes of living humans and great apes. The expansion of the brain began before the human line emerged. Coalescence times for some genes are very old – up to several million years, long before Homo sapiens. The mismatch between gene trees and species trees highlights the anthropoid speciation processes, and gives the human genome history a fuzzy, probabilistic quality. However, it suggests traits that might form a foundation for capacities emerging later. A theoretical model is presented in which the genomes of early ape populations provide the substructure for the emergence of religious capacity later on the human line. The model does not search for religion, but its foundations. It suggests a course by which an evolutionary line that began with prosimians eventually produced a human species with biologically based religious capacity. The model of the sequential emergence of religious capacity relies on cognitive science, neuroscience, paleoneurology, primate field studies, cognitive archaeology, genomics, and population genetics. And, it emphasizes five trait types: (1) Documented, positive selection of sensory capabilities on the human line may have favored survival, but also eventually enriched human religious experience. (2) The bonobo model suggests a possible down-regulation of aggression and increase in tolerance while feeding, as well as paedomorphism – but, in a human species that remains cognitively sharp (unlike the bonobo). The two species emerged from the same ancient ape population, so it is logical to search for shared traits. (3) An up-regulation of emotional sensitivity and compassion seems to have occurred on the human line. This finds support in modern genetic studies. (4) The authors’ published model of morality's emergence in Homo erectus encompasses a cognitively based, decision-making capacity that was hypothetically overtaken, in part, by religious capacity. Together, they produced a strong, variable, biocultural capability to support human sociability. (5) The full flowering of human religious capacity came with the parietal expansion and smaller face (klinorhynchy) found only in Homo sapiens. Details from paleoneurology suggest the stage was set for human theologies. Larger parietal lobes allowed humans to imagine inner spaces, processes, and beings, and, with the frontal lobe, led to the first theologies composed of structured and integrated theories of the relationships between humans and the supernatural. The model leads to the evolution of a small population of African hominins that was ready to emerge with religious capacity when the species Homo sapiens evolved two hundred thousand years ago. By 50-60,000 years ago, when human ancestors left Africa, they were fully enabled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20drift" title="genetic drift">genetic drift</a>, <a href="https://publications.waset.org/abstracts/search?q=genomics" title=" genomics"> genomics</a>, <a href="https://publications.waset.org/abstracts/search?q=parietal%20expansion" title=" parietal expansion"> parietal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=religious%20capacity" title=" religious capacity"> religious capacity</a> </p> <a href="https://publications.waset.org/abstracts/66934/fuzzy-data-random-drift-and-a-theoretical-model-for-the-sequential-emergence-of-religious-capacity-in-genus-homo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">341</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Halogenated Methoxy- and Methyl-benzoic Acids: Joint Experimental and DFT Study For Molecular Structure, Vibrational Analysis, and Other Molecular Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boda%20Sreenivas">Boda Sreenivas</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyathakula%20Ravindranath"> Lyathakula Ravindranath</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanugula%20Srishailam"> Kanugula Srishailam</a>, <a href="https://publications.waset.org/abstracts/search?q=Byru%20Venkatram%20Reddy"> Byru Venkatram Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Extensive research into the optimized structure and molecular properties of 3-Flouro-2-methylbenzoicacid(FMB), 3-Chloro-2-methoxybenzoicacid (CMB), and 3-Bromo-2-methylbenzoicacid (BMB) was carried out using FT-IR, FT-Raman and UV-Visible spectra, as well as theoretically using the DFT approach with B3LYPfunctional in conjunction with 6-311++G(d,p) basis set. The optimized structure was determined by evaluating torsional scans about free rotation bonds. Structure parameters, harmonic vibrational frequencies, potential energy distribution(PED), and infrared and Raman intensities were computed. The computational results from the DFT approach, such asFT-IR, FT-Raman, and UV-Visible spectra, were compared with the experimental results and found good agreement. Observed and calculated frequencies agreed with an rms error of 8.42, 6.60, and 6.95 cm-1 for FMB, CMB, and BMB, respectively. Unambiguous vibrational assignments were made for all fundamentals using PED and eigenvectors. The electronic HOMO-LUMO, H-bonding, and strong conjugative interactions across different molecular entities are discussed using experimental and simulated Ultraviolet-Visible spectra. The title molecules' molecular properties such as dipole moment, mean polarizability, and first-order hyperpolarizability, were calculated to study their non-linear optical (NLO) behavior. The chemical reactivity descriptors and mapped electrostatic surface potential (MESP) were also evaluated. Natural bond orbital (NBO) analysis was used to examine the stability of molecules resulting from hyperconjugative interactions and charge delocalization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ftir%2Framan%20spectra" title="ftir/raman spectra">ftir/raman spectra</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=NLO" title=" NLO"> NLO</a>, <a href="https://publications.waset.org/abstracts/search?q=homo-lumo" title=" homo-lumo"> homo-lumo</a>, <a href="https://publications.waset.org/abstracts/search?q=NBO" title=" NBO"> NBO</a>, <a href="https://publications.waset.org/abstracts/search?q=halogenated%20benzoic%20acids" title=" halogenated benzoic acids"> halogenated benzoic acids</a> </p> <a href="https://publications.waset.org/abstracts/162874/halogenated-methoxy-and-methyl-benzoic-acids-joint-experimental-and-dft-study-for-molecular-structure-vibrational-analysis-and-other-molecular-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Phosphorous Acid: An Efficient and Recyclable Liquid Catalyst for the Synthesis of α-Aminophosphonates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hellal%20Abdelkader">Hellal Abdelkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chafaa%20Salah"> Chafaa Salah</a>, <a href="https://publications.waset.org/abstracts/search?q=Touafri%20Lasnouni"> Touafri Lasnouni</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A simple, efficient and general method has been developed for the high diastereoselective synthesis of diethyl α-aminophosphonates in water through “one-pot” three-component reaction of aromatic aldehydes, aminophenols and dialkyl phosphites in the presence of a low catalytic amount (10mol%) of phosphorous acid as highly stable catalyst is described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=HOMO-LUMO" title=" HOMO-LUMO"> HOMO-LUMO</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphonic%20acid" title=" phosphonic acid"> phosphonic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=aminophenols" title=" aminophenols"> aminophenols</a> </p> <a href="https://publications.waset.org/abstracts/69866/phosphorous-acid-an-efficient-and-recyclable-liquid-catalyst-for-the-synthesis-of-a-aminophosphonates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">69</span> Synthesis of Pyrimidine-Based Polymers Consist of 2-{4-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]-Phenyl}-Thiazolo[5,4-B]Pyridine with Deep HOMO Level for Photovoltaics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyehyeon%20Lee">Hyehyeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiwon%20Yu"> Jiwon Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Juwon%20Kim"> Juwon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Raquel%20Kristina%20Leoni%20Tumiar"> Raquel Kristina Leoni Tumiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Taewon%20Kim"> Taewon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Juae%20Kim"> Juae Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongsuk%20Suh"> Hongsuk Suh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Photovoltaics, which have many advantages in cost, easy processing, and light-weight, have attracted attention. We synthesized pyrimidine-based conjugated polymers with 2-{4-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (pPTP) which have an ability of powerful electron withdrawing and introduced into the PSCs. By Stille polymerization, we designed the conjugated polymers, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI. The HOMO energy levels of four polymers (pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH and pPTPTTI) were at -5.61 ~ -5.89 eV, their LUMO (Lowest Unoccupied Molecular Orbital) energy levels were at -3.95 ~ -4.09 eV. The device including pPTPBDT-12 and PC71BM (1:2) indicated a V_oc of 0.67 V, a J_sc of 1.33 mA/cm², and a fill factor (FF) of 0.25, giving a power conversion efficiency (PCE) of 0.23%. The device including pPTPBDT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 2.56 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency of 0.56%. The device including pPTPBDTT-EH and PC71BM (1:2) indicated a V_oc of 0.72 V, a J_sc of 3.61 mA/cm², and a fill factor (FF) of 0.29, giving a power conversion efficiency of 0.74%. The device including pPTPTTI and PC71BM (1:2) indicated a V_oc of 0.83 V, a J_sc of 4.41 mA/cm², and a fill factor (FF) of 0.31, giving a power conversion efficiency of 1.13%. Therefore, pPTPBDT-12, pPTPBDT-EH, pPTPBDTT-EH, and pPTPTTI were synthesized by Stille polymerization. And We find one of the best efficiency for these polymers, called pPTPTTI. Their optical properties were measured and the results show that pyrimidine-based polymers especially like pPTPTTI have a great promise to act as the donor of the active layer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20solar%20cells" title="polymer solar cells">polymer solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrimidine-based%20polymers" title=" pyrimidine-based polymers"> pyrimidine-based polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaics" title=" photovoltaics"> photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=conjugated%20polymer" title=" conjugated polymer"> conjugated polymer</a> </p> <a href="https://publications.waset.org/abstracts/96700/synthesis-of-pyrimidine-based-polymers-consist-of-2-4-46-bis-4-hexyl-thiophen-2-yl-pyrimidin-2-yl-phenyl-thiazolo54-bpyridine-with-deep-homo-level-for-photovoltaics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">68</span> C2N2 Adsorption on the Surface of a BN Nanosheet: A DFT Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maziar%20Noei">Maziar Noei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Calculation showed that when the nanosheet is doped by Si, the adsorption energy is about -85.62 to -87.43kcal/mol and also the amount of HOMO/LUMO energy gap (Eg) will reduce significantly. Boron nitride nanosheet is a suitable adsorbent for cyanogen and can be used in separation processes cyanogen. It seems that nanosheet (BNNS) is a suitable semiconductor after doping. The doped BNNS in the presence of cyanogens (C2N2) an electrical signal is generating directly and, therefore, can potentially be used for cyanogen sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanosheet" title="nanosheet">nanosheet</a>, <a href="https://publications.waset.org/abstracts/search?q=DFT" title=" DFT"> DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanogen" title=" cyanogen"> cyanogen</a>, <a href="https://publications.waset.org/abstracts/search?q=sensors" title=" sensors"> sensors</a> </p> <a href="https://publications.waset.org/abstracts/34135/c2n2-adsorption-on-the-surface-of-a-bn-nanosheet-a-dft-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34135.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HOMO&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HOMO&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HOMO&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=HOMO&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>