CINXE.COM
Search results for: inlet fogging
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: inlet fogging</title> <meta name="description" content="Search results for: inlet fogging"> <meta name="keywords" content="inlet fogging"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="inlet fogging" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="inlet fogging"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 408</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: inlet fogging</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">408</span> Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Osarobo%20Omorogieva%20Ighodaro">Osarobo Omorogieva Ighodaro</a>, <a href="https://publications.waset.org/abstracts/search?q=Josephus%20Otejere"> Josephus Otejere</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inlet%20fogging" title="inlet fogging">inlet fogging</a>, <a href="https://publications.waset.org/abstracts/search?q=off%20design" title=" off design"> off design</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20cycle" title=" combined cycle"> combined cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a> </p> <a href="https://publications.waset.org/abstracts/186927/off-design-modelling-of-650mw-combined-cycle-gas-turbine-power-plant-integrated-with-a-retrofitted-inlet-fogging-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186927.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">407</span> The Design and Construction of the PV-Wind Autonomous System for Greenhouse Plantations in Central Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Napat%20Watjanatepin">Napat Watjanatepin</a>, <a href="https://publications.waset.org/abstracts/search?q=Wikorn%20Wong-Satiean"> Wikorn Wong-Satiean</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this research is to design and construct the PV-Wind hybrid autonomous system for the greenhouse plantation, and analyze the technical performance of the PV-Wind energy system. This design depends on the water consumption in the greenhouse by using 24 of the fogging mist each with the capability of 24 liter/min. The operating time is 4 times per day, each round for 15 min. The fogging system is being driven by water pump with AC motor rating 0.5 hp. The load energy consumed is around 1.125 kWh/d. The designing results of the PV-Wind hybrid energy system is that sufficient energy could be generated by this system. The results of this study can be applied as a technical data reference for other areas in the central part of Thailand. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV-Wind%20hybrid%20autonomous%20system" title="PV-Wind hybrid autonomous system">PV-Wind hybrid autonomous system</a>, <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20plantation" title=" greenhouse plantation"> greenhouse plantation</a>, <a href="https://publications.waset.org/abstracts/search?q=fogging%20system" title=" fogging system"> fogging system</a>, <a href="https://publications.waset.org/abstracts/search?q=central%20part%20of%20Thailand" title=" central part of Thailand"> central part of Thailand</a> </p> <a href="https://publications.waset.org/abstracts/10478/the-design-and-construction-of-the-pv-wind-autonomous-system-for-greenhouse-plantations-in-central-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">406</span> One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hongfang%20Ma">Hongfang Ma</a>, <a href="https://publications.waset.org/abstracts/search?q=Mingchuan%20Zhou"> Mingchuan Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Haitao%20Zhang"> Haitao Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Weiyong%20Ying"> Weiyong Ying</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reactor" title="reactor">reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=steam%20reforming" title=" steam reforming"> steam reforming</a> </p> <a href="https://publications.waset.org/abstracts/86646/one-dimensional-reactor-modeling-for-methanol-steam-reforming-to-hydrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86646.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">405</span> Comprehensive Studies on the Aerodynamic Characteristics of Subsonic Scarf Inlets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jegannath">M. Jegannath</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Akshaya"> V. Akshaya</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Arunkumar"> B. Arunkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Lakshmi%20Soundharya"> G. Lakshmi Soundharya</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Thenmozhi"> V. Thenmozhi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Varun"> S. Varun</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20R.%20S.%20Kumar"> V. R. S. Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For scarf inlet design, the primary variable of interest is the circumferential extent over which the extended lower lip is formed. In this paper, an attempt has been made to optimize the aerodynamic shape of a subsonic scarf inlet with aerodynamically shaped center-body with a particular value of the circumferential extent. The parametric analytical studies have been carried out using a Spalart-Allmaras turbulence model. From our preliminary studies, we concluded that for a particular value of circumferential extent, there will be an exact shape of the center-body with certain geometric orientation for the existence of an aerodynamically efficient scarf inlet for modern aircraft engines. This numerical study is a pointer towards for the design optimization of scarf inlets for modern aircraft engines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics%20of%20scarf%20inlets" title="aerodynamics of scarf inlets">aerodynamics of scarf inlets</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20design" title=" inlet design"> inlet design</a>, <a href="https://publications.waset.org/abstracts/search?q=modern%20aircraft%20inlets" title=" modern aircraft inlets"> modern aircraft inlets</a>, <a href="https://publications.waset.org/abstracts/search?q=subsonic%20scarf%20inlet" title=" subsonic scarf inlet"> subsonic scarf inlet</a> </p> <a href="https://publications.waset.org/abstracts/77913/comprehensive-studies-on-the-aerodynamic-characteristics-of-subsonic-scarf-inlets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77913.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">404</span> Computational Analysis of Variation in Thrust of Oblique Detonation Ramjet Engine With Adaptive Inlet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aditya">Aditya</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganapati%20Joshi"> Ganapati Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinod%20Kumar"> Vinod Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> IN THE MODERN-WARFARE ERA, THE PRIME REQUIREMENT IS A HIGH SPEED AND MACH NUMBER. WHEN THE MISSILES STRIKE IN THE HYPERSONIC REGIME THE OPPONENT CAN DETECT IT WITH THE ANTI-DEFENSE SYSTEM BUT CAN NOT STOP IT FROM CAUSING DAMAGE. SO, TO ACHIEVE THE SPEEDS OF THIS LEVEL THERE ARE TWO ENGINES THAT ARE AVAILABLE WHICH CAN WORK IN THIS REGION ARE RAMJET AND SCRAMJET. THE PROBLEM WITH RAMJET STARTS TO OCCUR WHEN MACH NUMBER EXCEEDS 4 AS THE STATIC PRESSURE AT THE INLET BECOMES EQUAL TO THE EXIT PRESSURE. SO, SCRAMJET ENGINE DEALS WITH THIS PROBLEM AS IT NEARLY HAS THE SAME WORKING BUT HERE THE FLOW IS NOT MUCH SLOWED DOWN AS COMPARED TO RAMJET IN THE DIFFUSER BUT IT SUFFERS FROM THE PROBLEMS SUCH AS INLET BUZZ, THERMAL CHOCKING, MIXING OF FUEL AND OXIDIZER, THERMAL HEATING, AND MANY MORE. HERE THE NEW ENGINE IS DEVELOPED ON THE SAME PRINCIPLE AS THE SCRAMJET ENGINE BUT BURNING HAPPENS DUE TO DETONATION INSTEAD OF DEFLAGRATION. THE PROBLEM WITH THE ENGINE STARTS WHEN THE MACH NUMBER BECOMES VARIABLE AND THE INLET GEOMETRY IS FIXED AND THIS LEADS TO INLET SPILLAGE WHICH WILL AFFECT THE THRUST ADVERSELY. SO, HERE ADAPTIVE INLET IS MADE OF SHAPE MEMORY ALLOYS WHICH WILL ENHANCE THE INLET MASS FLOW RATE AS WELL AS THRUST. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=detonation" title="detonation">detonation</a>, <a href="https://publications.waset.org/abstracts/search?q=ramjet%20engine" title=" ramjet engine"> ramjet engine</a>, <a href="https://publications.waset.org/abstracts/search?q=shape%20memory%20alloy" title=" shape memory alloy"> shape memory alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=ignition%20delay" title=" ignition delay"> ignition delay</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-boundary%20layer%20interaction" title=" shock-boundary layer interaction"> shock-boundary layer interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=eddy%20dissipation" title=" eddy dissipation"> eddy dissipation</a>, <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20nozzle" title=" asymmetric nozzle"> asymmetric nozzle</a> </p> <a href="https://publications.waset.org/abstracts/149070/computational-analysis-of-variation-in-thrust-of-oblique-detonation-ramjet-engine-with-adaptive-inlet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">403</span> Biosecurity Control Systems in Two Phases for Poultry Farms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Pe%C3%B1a%20Aguilar%20Juan">M. Peña Aguilar Juan</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Nava%20Galv%C3%A1n%20Claudia"> E. Nava Galván Claudia</a>, <a href="https://publications.waset.org/abstracts/search?q=Pastrana%20Palma%20Alberto"> Pastrana Palma Alberto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work was developed and implemented a thermal fogging disinfection system to counteract pathogens from poultry feces in agribusiness farms, to reduce mortality rates and increase biosafety in them. The control system consists of two phases for the conditioning of the farm during the sanitary break. In the first phase, viral and bacterial inactivation was performed by treating the stool dry cleaning, along with the development of a specialized product that foster the generation of temperatures above 55 °C in less than 24 hr, for virus inactivation. In the second phase, a process for disinfection by fogging was implemented, along with the development of a specialized disinfectant that guarantee no risk for the operators’ health or birds. As a result of this process, it was possible to minimize the level of mortality of chickens on farms from 12% to 5.49%, representing a reduction of 6.51% in the death rate, through the formula applied to the treatment of poultry litter based on oxidising agents used as antiseptics, hydrogen peroxide solutions, glacial acetic acid and EDTA in order to act on bacteria, viruses, micro bacteria and spores. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=innovation" title="innovation">innovation</a>, <a href="https://publications.waset.org/abstracts/search?q=triple%20helix" title=" triple helix"> triple helix</a>, <a href="https://publications.waset.org/abstracts/search?q=poultry%20farms" title=" poultry farms"> poultry farms</a>, <a href="https://publications.waset.org/abstracts/search?q=biosecurity" title=" biosecurity"> biosecurity</a> </p> <a href="https://publications.waset.org/abstracts/53145/biosecurity-control-systems-in-two-phases-for-poultry-farms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">284</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">402</span> The Effect of Inlet Baffle Position in Improving the Efficiency of Oil and Water Gravity Separator Tanks </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haitham%20A.%20Hussein">Haitham A. Hussein</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozi%20Abdullah"> Rozi Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Issa%20Saket"> Issa Saket</a>, <a href="https://publications.waset.org/abstracts/search?q=Md.%20Azlin"> Md. Azlin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The gravitational effect has been extensively applied to separate oil from water in water and wastewater treatment systems. The maximum oil globules removal efficiency is improved by obtaining the best flow uniformity in separator tanks. This study used 2D computational fluid dynamics (CFD) to investigate the effect of different inlet baffle positions inside the separator tank. Laboratory experiment has been conducted, and the measured velocity fields which were by Nortek Acoustic Doppler Velocimeter (ADV) are used to verify the CFD model. Computational investigation results indicated that the construction of an inlet baffle in a suitable location provides the minimum recirculation zone volume, creates the best flow uniformity, and dissipates kinetic energy in the oil and water separator tank. Useful formulas were predicted to design the oil and water separator tanks geometry based on an experimental model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%2Fwater%20separator%20tanks" title="oil/water separator tanks">oil/water separator tanks</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20baffles" title=" inlet baffles"> inlet baffles</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=VOF" title=" VOF"> VOF</a> </p> <a href="https://publications.waset.org/abstracts/52725/the-effect-of-inlet-baffle-position-in-improving-the-efficiency-of-oil-and-water-gravity-separator-tanks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">401</span> Numerical Investigation of Cavitation on Different Venturi Shapes by Computational Fluid Dynamics </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Yayla">Sedat Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Oruc"> Mehmet Oruc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shakhwan%20Yaseen"> Shakhwan Yaseen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cavitation phenomena might rigorously impair machine parts such as pumps, propellers and impellers or devices as the pressure in the fluid declines under the liquid's saturation pressure. To evaluate the influence of cavitation, in this research two-dimensional computational fluid dynamics (CFD) venturi models with variety of inlet pressure values, throat lengths and vapor fluid contents were applied. In this research three different vapor contents (0%, 5% 10%), four inlet pressures (2, 4, 6, 8 and 10 atm) and two venturi models were employed at different throat lengths ( 5, 10, 15 and 20 mm) for discovering the impact of each parameter on the cavitation number. It is uncovered that there is a positive correlation between pressure inlet and vapor fluid content and cavitation number. Furthermore, it is unveiled that velocity remains almost constant at the inlet pressures of 6, 8,10atm, nevertheless increasing the length of throat results in the substantial escalation in the velocity of the throat at inlet pressures of 2 and 4 atm. Furthermore, velocity and cavitation number were negatively correlated. The results of the cavitation number varied between 0.092 and 0.495 depending upon the velocity values of the throat. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cavitation%20number" title="cavitation number">cavitation number</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics" title=" computational fluid dynamics"> computational fluid dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=mixture%20of%20fluid" title=" mixture of fluid"> mixture of fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20of%20throat" title=" velocity of throat"> velocity of throat</a> </p> <a href="https://publications.waset.org/abstracts/74888/numerical-investigation-of-cavitation-on-different-venturi-shapes-by-computational-fluid-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">400</span> CFD Simulation of the Inlet Pressure Effects on the Cooling Capacity Enhancement for Vortex Tube with Couple Vortex Chambers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20Pourmahmoud">Nader Pourmahmoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Hassanzadeh"> Amir Hassanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article investigates the effects of inlet pressure in a newly introduced vortex tube which has been equipped with an additional vortex chamber. A 3-D compressible turbulent flow computation has been carried out toward analysis of complex flow field in this apparatus. Numerical results of flows are derived by utilizing the standard k-ε turbulence model for analyzing high rotating complex flow field. The present research has focused on cooling effect and given a characteristics curve for minimum cool temperature. In addition, the effect of inlet pressure for both chambers has been studied in details. To be presented numerical results show that the effect of inlet pressure in second chamber has more important role in improving the performance of the vortex tube than first one. By increasing the pressure in the second chamber, cold outlet temperature reaches a higher decrease. When both chambers are fed with high pressure fluid, best operation condition of vortex tube occurs. However, it is not possible to feed both chambers with high pressure due to the conditions of working environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title="energy separation">energy separation</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20pressure" title=" inlet pressure"> inlet pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20chamber" title=" vortex chamber"> vortex chamber</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a> </p> <a href="https://publications.waset.org/abstracts/18358/cfd-simulation-of-the-inlet-pressure-effects-on-the-cooling-capacity-enhancement-for-vortex-tube-with-couple-vortex-chambers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">399</span> Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Abo%20Elazm">Mohamed M. Abo Elazm</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20I.%20Shehata"> Ali I. Shehata</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20M.%20Khairat%20Dawood"> Mohamed M. Khairat Dawood</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20effect" title=" swirling effect"> swirling effect</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=inclination%20angle" title=" inclination angle"> inclination angle</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric%20tube%20heat%20exchange" title=" concentric tube heat exchange"> concentric tube heat exchange</a> </p> <a href="https://publications.waset.org/abstracts/71387/experimental-and-numerical-investigation-of-fluid-flow-inside-concentric-heat-exchanger-using-different-inlet-geometry-configurations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">398</span> Numerical Study for Improving Performance of Air Cooled Proton Exchange Membrane Fuel Cell on the Cathode Channel </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hassan%20Gundu">Mohamed Hassan Gundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaeseung%20Lee"> Jaeseung Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faizan%20Chinannai"> Muhammad Faizan Chinannai</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyunchul%20Ju"> Hyunchul Ju</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the effects of bipolar plate design to control the temperature of the cell and ensure effective water management under an excessive amount of air flow and low humidification conditions in the proton exchange membrane fuel cell (PEMFC). The PEMFC model developed and applied to consider a three type of bipolar plate that is defined by ratio of inlet channel width to outlet channel width. Simulation results show that the design which has narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width) make the relative humidity and water concentration increase in the channel and the catalyst layer. Therefore, this study clearly demonstrates that the dehydration phenomenon can be decreased by using design of bipolar plate with narrow gas inlet channel and wide gas outlet channel width (wide coolant inlet channel and narrow coolant outlet channel width). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEMFC" title="PEMFC">PEMFC</a>, <a href="https://publications.waset.org/abstracts/search?q=air-cooling" title=" air-cooling"> air-cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20humidity" title=" relative humidity"> relative humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20management" title=" water management"> water management</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20concentration" title=" water concentration"> water concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20concentration" title=" oxygen concentration"> oxygen concentration</a> </p> <a href="https://publications.waset.org/abstracts/105402/numerical-study-for-improving-performance-of-air-cooled-proton-exchange-membrane-fuel-cell-on-the-cathode-channel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">294</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">397</span> Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kumar">Ravi Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhosh%20Kumar%20Dubba"> Santhosh Kumar Dubba </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diabatic" title="diabatic">diabatic</a>, <a href="https://publications.waset.org/abstracts/search?q=capillary%20tube" title=" capillary tube"> capillary tube</a>, <a href="https://publications.waset.org/abstracts/search?q=concentric" title=" concentric"> concentric</a>, <a href="https://publications.waset.org/abstracts/search?q=R-600a" title=" R-600a"> R-600a</a> </p> <a href="https://publications.waset.org/abstracts/81743/diabatic-flow-of-sub-cooled-r-600a-inside-a-capillary-tube-concentric-configuration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81743.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">204</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">396</span> Numerical Study of Flow Characteristics and Performance of 14-X B Inlet with Blunted Cowl-Lip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergio%20N.%20P.%20Lait%C3%B3n">Sergio N. P. Laitón</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%A3o%20F.%20%20Martos"> João F. Martos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical study has been carried out to investigate the flow characteristics and performance of the 14-X B inlet with blunted cowl-lip. The Brazilian aerospace hypersonic vehicle 14-X B is a technology demonstrator of a hypersonic air-breathing propulsion system, based on supersonic combustion ramjet (scramjet). It is designed for Earth's atmospheric flight at Mach number of 6 and an altitude of 30 km. Currently, it is under development in the aerothermodynamics and hypersonic Professor Henry T. Nagamatsu laboratory at Advanced Studies Institute (IEAv). Numerical simulations were conducted at nominal freestream Mach number and altitude for two cowl-lip blunting radius and several angles of attack close to horizontal flight. The results show that the shock interference behavior on the blunted cowl-lip change with the angle of attack and blunted radius. The type VI or V together with III shock interferences are more likely to occur simultaneously at small negative angles of attack. When the inlet operates in positive angles of attack higher to 1, no shock interference occurs, only the bow shock conditions. The results indicate a high air pressure at beginning of the combustor and higher pressure recovery with 2 mm radius and positives angles of attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blunted%20cowl-lip" title="blunted cowl-lip">blunted cowl-lip</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20inlet" title=" hypersonic inlet"> hypersonic inlet</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20unstart" title=" inlet unstart"> inlet unstart</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20interference" title=" shock interference"> shock interference</a> </p> <a href="https://publications.waset.org/abstracts/59537/numerical-study-of-flow-characteristics-and-performance-of-14-x-b-inlet-with-blunted-cowl-lip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">395</span> Mathematical Analysis of Variation in Inlet Shock Wave Angle on Specific Impulse of Scramjet Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shrikant%20Ghadage">Shrikant Ghadage</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Study of shock waves generated in the Scramjet engine is typically restricted to pressure, temperature, density, entropy and Mach number variation across the shock wave. The present work discusses the impact of inlet shock wave angles on the specific impulse of the Scramjet engine. A mathematical analysis has done for the isentropic hypersonic flow of air flowing through a Scramjet with hydrogen fuel at an altitude of 30 km. Analysis has been done in order to get optimum shock wave angle to achieve maximum impulse. Since external drag has excluded from the analysis, the losses due to friction are not considered for the present analysis. When Mach number of the airflow at the entry of the nozzle reaches unity, then that flow is choked. This condition puts limitations on increasing the inlet shock wave angle. As inlet shock wave angle increases, speed of the flow entering into the nozzle decreases, which results in an increase in the specific impulse of the engine. When the speed of the flow at the entry of the nozzle reduces below sonic speed, then there is no further increase in the specific impulse of the engine. Here the Conclusion is the thrust and specific impulse of a scramjet engine, which increases gradually with an increase in inlet shock wave angle up to the condition when airflow speed reaches sonic velocity at the exit of the combustor. In addition to that, variation in drag force at the inlet of the scramjet and variation in hypersonic flow conditions at every stage of the scramjet also studied in order to understand variation on flow characteristics with respect to flow deflection angle. Essentially, it helps in designing inlet profile for the Scramjet engine to achieve optimum specific impulse. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hypersonic%20flow" title="hypersonic flow">hypersonic flow</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=shock%20waves" title=" shock waves"> shock waves</a>, <a href="https://publications.waset.org/abstracts/search?q=specific%20impulse" title=" specific impulse"> specific impulse</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20analysis" title=" mathematical analysis"> mathematical analysis</a> </p> <a href="https://publications.waset.org/abstracts/104058/mathematical-analysis-of-variation-in-inlet-shock-wave-angle-on-specific-impulse-of-scramjet-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">394</span> A Second Law Assessment of Organic Rankine Cycle Depending on Source Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic Rankine Cycle (ORC) has potential in reducing fossil fuels and relaxing environmental problems. In this work performance analysis of ORC is conducted based on the second law of thermodynamics for recovery of low temperature heat source from 100°C to 140°C using R134a as the working fluid. Effects of system parameters such as turbine inlet pressure or source temperature are theoretically investigated on the exergy destructions (anergies) at various components of the system as well as net work production or exergy efficiency. Results show that the net work or exergy efficiency has a peak with respect to the turbine inlet pressure when the source temperature is low, however, increases monotonically with increasing turbine inlet pressure when the source temperature is high. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Organic%20Rankine%20Cycle%20%28ORC%29" title="Organic Rankine Cycle (ORC)">Organic Rankine Cycle (ORC)</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20temperature%20heat%20source" title=" low temperature heat source"> low temperature heat source</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=source%20temperature" title=" source temperature "> source temperature </a> </p> <a href="https://publications.waset.org/abstracts/8156/a-second-law-assessment-of-organic-rankine-cycle-depending-on-source-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8156.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">393</span> Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Masria">Ali Masria </a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelazim%20Negm">Abdelazim Negm</a>, <a href="https://publications.waset.org/abstracts/search?q=Moheb%20Iskander"> Moheb Iskander</a>, <a href="https://publications.waset.org/abstracts/search?q=Oliver%20C.%20Saavedra"> Oliver C. Saavedra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rosetta%20promontory" title="Rosetta promontory">Rosetta promontory</a>, <a href="https://publications.waset.org/abstracts/search?q=erosion" title=" erosion"> erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20stability" title=" inlet stability"> inlet stability</a> </p> <a href="https://publications.waset.org/abstracts/13779/mathematical-modeling-to-reach-stability-condition-within-rosetta-river-mouth-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13779.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">587</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">392</span> Comparative Exergy Analysis of Ammonia-Water Rankine Cycles and Kalina Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyoung%20Hoon%20Kim">Kyoung Hoon Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a comparative exergy analysis of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the exergetical performance of the systems. Results show that maximum exergy efficiency can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better exergy efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonia-water" title="ammonia-water">ammonia-water</a>, <a href="https://publications.waset.org/abstracts/search?q=Rankine%20cycle" title=" Rankine cycle"> Rankine cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=Kalina%20cycle" title=" Kalina cycle"> Kalina cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy" title=" exergy"> exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20destruction" title=" exergy destruction"> exergy destruction</a>, <a href="https://publications.waset.org/abstracts/search?q=low-temperature%20heat%20source" title=" low-temperature heat source"> low-temperature heat source</a> </p> <a href="https://publications.waset.org/abstracts/97344/comparative-exergy-analysis-of-ammonia-water-rankine-cycles-and-kalina-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">391</span> A Counter-flow Vortex Tube With Energy Separation: An Experimental Study and CFD Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li%CC%87zan%20Mahmood%20Khorsheed%20Zangana">Li̇zan Mahmood Khorsheed Zangana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Experimental and numerical investigations have been carried out to study the mechanism of separation energy and flow phenomena in the counter-flow vortex tube. This manuscript presents a complete comparison between the experimental investigation and CFD analysis. The experimental model tested under different inlet pressures. Three-dimensional numerical modelling using the k-ε model. The results show any increase in both cold mass fraction and inlet pressure caused to increase ΔTc, and the maximum ΔTc value occurs at P = 6 bar. The coefficient of performance (COP) of two important factors in the vortex tube have been evaluated, which ranged from 0.25 to 0.74. The maximum axial velocity is 93, where it occurs at the tube axis close the inlet exit (Z/L=0.2). The results showed a good agreement for experimental and numerical analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=counter%20flow" title="counter flow">counter flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex%20tube" title=" vortex tube"> vortex tube</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20analysis" title=" computational fluid dynamics analysis"> computational fluid dynamics analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20separation" title=" energy separation"> energy separation</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20study" title=" experimental study"> experimental study</a> </p> <a href="https://publications.waset.org/abstracts/169576/a-counter-flow-vortex-tube-with-energy-separation-an-experimental-study-and-cfd-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169576.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">390</span> Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20muffler" title="catalytic muffler">catalytic muffler</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20inlet%20cone" title=" perforated inlet cone"> perforated inlet cone</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20pipe" title=" perforated pipe"> perforated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/8517/investigation-of-the-flow-characteristics-in-a-catalytic-muffler-with-perforated-inlet-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">389</span> Assessment of Power Formation in Gas Turbine Power Plants Using Different Inlet Air Cooling Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20V.%20Nayak">Nikhil V. Nayak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the influence of air cooling intake on the gas turbine performance is presented. A comparison among different cooling systems, i.e., evaporative and cooling coil, is performed. A computer simulation model for the employed systems is developed in order to evaluate the performance of the studied gas turbine unit, at Marka Power Station, Amman, Bangalore. The performance characteristics are examined for a set of actual operational parameters including ambient temperature, relative humidity, turbine inlet temperature, pressure ratio, etc. The obtained results showed that the evaporative cooling system is capable of boosting the power and enhancing the efficiency of the studied gas turbine unit in a way much cheaper than cooling coil system due to its high power consumption required to run the vapor-compression refrigeration unit. Nevertheless, it provides full control on the temperature inlet conditions regardless of the relative humidity ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20augmentation" title="power augmentation">power augmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20control" title=" temperature control"> temperature control</a>, <a href="https://publications.waset.org/abstracts/search?q=evaporative%20cooling" title=" evaporative cooling"> evaporative cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20coil" title=" cooling coil"> cooling coil</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine "> gas turbine </a> </p> <a href="https://publications.waset.org/abstracts/14670/assessment-of-power-formation-in-gas-turbine-power-plants-using-different-inlet-air-cooling-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14670.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">388</span> Parametric Study on Water-Cooling Plates to Improve Cooling Performance on 18650 Li-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raksit%20Nanthatanti">Raksit Nanthatanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Jarruwat%20Charoensuk"> Jarruwat Charoensuk</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hirai"> S. Hirai</a>, <a href="https://publications.waset.org/abstracts/search?q=Manop%20Masomtop"> Manop Masomtop</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of channel geometry and operating circumstances on a liquid cooling plate for Lithium-ion Battery modules has been investigated Inlet temperature, water velocity, and channel count were the main factors. According to the passage, enhancing the number of cooling channels[2,3,4,6channelperbases] will affect water flow distribution caused by varying the velocity inlet inside the cooling block[0.5,1.0,1.5,2.0 m/sec] and intake temperatures[25,30,35,40oC], The findings indicate that the battery’s temperature drops as the number of channels increases. The maximum battery's operating temperature [45 oC] rises, but ∆t is needed to be less than 5 oC [v≤1m/sec]. Maximum temperature and local temperature difference of the battery change significantly with the change of the velocity inlet in the cooling channel and its thermal conductivity. The results of the simulation will help to increase cooling efficiency on the cooling system for Li-ion Battery based on a Mini channel in a liquid-cooling configuration <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cooling%20efficiency" title="cooling efficiency">cooling efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20count" title=" channel count"> channel count</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=operating" title=" operating"> operating</a> </p> <a href="https://publications.waset.org/abstracts/165565/parametric-study-on-water-cooling-plates-to-improve-cooling-performance-on-18650-li-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">101</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">387</span> Preliminary Design of an Aerodynamic Protection for the Scramjet Engine Inlet of the Brazilian Technological Demonstrator Scramjet 14-X S</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20J.%20Costa">Gustavo J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Felipe%20J.%20Costa"> Felipe J. Costa</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20L.%20%20Coelho"> Bruno L. Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronaldo%20L.%20Cardoso"> Ronaldo L. Cardoso</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafael%20O.%20Santos"> Rafael O. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Israel%20S.%20R%C3%AAgo"> Israel S. Rêgo</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20A.%20S.%20Minucci"> Marco A. S. Minucci</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20C.%20%20Oliveira"> Antonio C. Oliveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulo%20G.%20P.%20Toro"> Paulo G. P. Toro</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Prof. Henry T. Nagamatsu Aerothermodynamics and Hipersonics Laboratory, of the Institute for Advanced Studies (IEAv) conducts research and development (R&D) of the Technological Demonstrator scramjet 14-X S, aiming atmospheric flight at 30 km altitude with the speed correspondent to Mach number 7, using scramjet technology providing hypersonic propulsion system based on supersonic combustion. Hypersonic aerospace vehicles with air-breathing supersonic propulsion system face extremal environments for super/hypersonic flights in terms of thermal and aerodynamic loads. Thus, it is necessary to use aerodynamic protection at the scramjet engine inlet to face the thermal and aerodynamic loads without compromising the efficiency of scramjet engine, taking into account: i) inlet design (boundary layer, oblique shockwave and reflected oblique shockwave); ii) wall temperature of the cowl and of the compression ramp; iii) supersonic flow into the combustion chamber. The aerodynamic protection of the scramjet engine inlet will act to prevent the engine unstart and match the predictions made by theoretical-analytical, numerical analysis and experimental research, during the atmospheric flight of the Technological Demonstrator scramjet 14-X S. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=14-X" title="14-X">14-X</a>, <a href="https://publications.waset.org/abstracts/search?q=hypersonic" title=" hypersonic"> hypersonic</a>, <a href="https://publications.waset.org/abstracts/search?q=scramjet" title=" scramjet"> scramjet</a>, <a href="https://publications.waset.org/abstracts/search?q=supersonic%20combustion" title=" supersonic combustion"> supersonic combustion</a> </p> <a href="https://publications.waset.org/abstracts/59517/preliminary-design-of-an-aerodynamic-protection-for-the-scramjet-engine-inlet-of-the-brazilian-technological-demonstrator-scramjet-14-x-s" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">386</span> Investigation the Effect of Velocity Inlet and Carrying Fluid on the Flow inside Coronary Artery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Nezamirad">Mohammadreza Nezamirad</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasim%20Sabetpour"> Nasim Sabetpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Azadeh%20Yazdi"> Azadeh Yazdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Amirmasoud%20Hamedi"> Amirmasoud Hamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study OpenFOAM 4.4.2 was used to investigate flow inside the coronary artery of the heart. This step is the first step of our future project, which is to include conjugate heat transfer of the heart with three main coronary arteries. Three different velocities were used as inlet boundary conditions to see the effect of velocity increase on velocity, pressure, and wall shear of the coronary artery. Also, three different fluids, namely the University of Wisconsin solution, gelatin, and blood was used to investigate the effect of different fluids on flow inside the coronary artery. A code based on Reynolds Stress Navier Stokes (RANS) equations was written and implemented with the real boundary condition that was calculated based on MRI images. In order to improve the accuracy of the current numerical scheme, hex dominant mesh is utilized. When the inlet velocity increases to 0.5 m/s, velocity, wall shear stress, and pressure increase at the narrower parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=OpenFOAM" title=" OpenFOAM"> OpenFOAM</a>, <a href="https://publications.waset.org/abstracts/search?q=heart" title=" heart"> heart</a> </p> <a href="https://publications.waset.org/abstracts/138108/investigation-the-effect-of-velocity-inlet-and-carrying-fluid-on-the-flow-inside-coronary-artery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138108.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">385</span> Effects of Inlet Filtration Pressure Loss on Single and Two-Spool Gas Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enyia%20James%20Diwa">Enyia James Diwa</a>, <a href="https://publications.waset.org/abstracts/search?q=Dodeye%20Ina%20Igbong"> Dodeye Ina Igbong</a>, <a href="https://publications.waset.org/abstracts/search?q=Archibong%20Archibong%20Eso"> Archibong Archibong Eso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gas turbine operators have been faced with the dramatic financial setback resulting from compressor fouling. In a highly deregulated power industry where there is stiffness in the market competition, has made it imperative to improvise means of reducing maintenance cost in other to yield maximum profit. Compressor fouling results from the deposition of contaminants in the presence of oil and moisture on the compressor blade or annulus surfaces, which leads to a loss in flow capacity and compressor efficiency. These combined effects reduce power output, increase heat rate and cause creep life reduction. This paper also contains a model of two gas turbine engines via Cranfield University software known as TURBOMATCH, which is simulation software for detecting engine fouling rate. The model engines are of different configurations and capacities, and are operating in two different modes of constant output power and turbine inlet temperature for a two and three stage filter system. The idea is to investigate the more economically viable filtration systems by gas turbine users based on performance only. It has been demonstrated in the results that the two spool engine is a little more beneficial compared to the single spool. This is as a result of a higher pressure ratio of the two spools as well as the deceleration of the high-pressure compressor and high-pressure turbine speed in a constant TET. Meanwhile, the inlet filtration system was properly designed and balanced with a well-timed and economical compressor washing regime/scheme to control compressor fouling. The different technologies of inlet air filtration and compressor washing are considered and an attempt at optimization with respect to the cost of a combination of both control measures are made. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inlet%20filtration" title="inlet filtration">inlet filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20loss" title=" pressure loss"> pressure loss</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20spool" title=" single spool"> single spool</a>, <a href="https://publications.waset.org/abstracts/search?q=two%20spool" title=" two spool "> two spool </a> </p> <a href="https://publications.waset.org/abstracts/44384/effects-of-inlet-filtration-pressure-loss-on-single-and-two-spool-gas-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">384</span> CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pakawhat%20Khumkhreung">Pakawhat Khumkhreung</a>, <a href="https://publications.waset.org/abstracts/search?q=Yottana%20Khunatorn"> Yottana Khunatorn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m<sup>2</sup> cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x10<sup>6</sup> (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=airfoil" title="airfoil">airfoil</a>, <a href="https://publications.waset.org/abstracts/search?q=average%20pitot%20tube" title=" average pitot tube"> average pitot tube</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20air" title=" combustion air"> combustion air</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=rectangular%20duct" title=" rectangular duct"> rectangular duct</a> </p> <a href="https://publications.waset.org/abstracts/73573/cfd-modeling-of-air-stream-pressure-drop-inside-combustion-air-duct-of-coal-fired-power-plant-with-and-without-airfoil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73573.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">383</span> Experimental, Computational Fluid Dynamics and Theoretical Study of Cyclone Performance Based on Inlet Velocity and Particle Loading Rate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakura%20Ganegama%20Bogodage">Sakura Ganegama Bogodage</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Yee%20Tat%20Leung"> Andrew Yee Tat Leung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes experimental, Computational Fluid Dynamics (CFD) and theoretical analysis of a cyclone performance, operated 1.0 g/m3 solid loading rate, at two different inlet velocities (5 m/s and 10 m/s). Comparing experimental results with theoretical and CFD simulation results, it is pronounced that the influence of solid in processing flow is significant than expected. Experimental studies based on gas- solid flows of cyclone separators are complicated as they required advanced sensitive measuring techniques, especially flow characteristics. Thus, CFD modelling and theoretical analysis are economical in analyzing cyclone separator performance but detailed clarifications of the application of these in cyclone separator performance evaluation is not yet discussed. The present study shows the limitations of influencing parameters of CFD and theoretical considerations, comparing experimental results and flow characteristics from CFD modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone%20performance" title="cyclone performance">cyclone performance</a>, <a href="https://publications.waset.org/abstracts/search?q=inlet%20velocity" title=" inlet velocity"> inlet velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20loading%20rate" title=" solid loading rate"> solid loading rate</a> </p> <a href="https://publications.waset.org/abstracts/81511/experimental-computational-fluid-dynamics-and-theoretical-study-of-cyclone-performance-based-on-inlet-velocity-and-particle-loading-rate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81511.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">382</span> Plackett-Burman Design for Microencapsulation of Blueberry Bioactive Compounds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Feyza%20Tatar">Feyza Tatar</a>, <a href="https://publications.waset.org/abstracts/search?q=Alime%20Cengiz"> Alime Cengiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Dilara%20Sandik%C3%A7i"> Dilara Sandikçi</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammed%20Dervisoglu"> Muhammed Dervisoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Talip%20Kahyaoglu"> Talip Kahyaoglu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Blueberries are known for their bioactive properties such as high anthocyanin contents, antioxidant activities and potential health benefits. However, anthocyanins are sensitive to environmental conditions during processes. The objective of this study was to evaluate the effects of spray drying conditions on the blueberry microcapsules by Plackett-Burman experimental design. Inlet air temperature (120 and 180°C), feed pump rate (20% and 40%), DE of maltodextrin (6 and 15 DE), coating concentration (10% and 30%) and source of blueberry (Duke and Darrow) were independent variables, tested at high (+1) and low (-1) levels. Encapsulation efficiency (based on total phenol) of blueberry microcapsules was the dependent variable. In addition, anthocyanin content, antioxidant activity, water solubility, water activity and bulk density were measured for blueberry powders. The antioxidant activity of blueberry powders ranged from 72 to 265 mmol Trolox/g and anthocyanin content was changed from 528 to 5500 mg GAE/100g. Encapsulation efficiency was significantly affected (p<0.05) by inlet air temperature and coating concentration. Encapsulation efficiency increased with increasing inlet air temperature and decreasing coating concentration. The highest encapsulation efficiency could be produced by spray drying at 180°C inlet air temperature, 40% pump rate, 6 DE of maltodextrin, 13% maltodextrin concentration and source of duke blueberry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blueberry" title="blueberry">blueberry</a>, <a href="https://publications.waset.org/abstracts/search?q=microencapsulation" title=" microencapsulation"> microencapsulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Plackett-Burman%20design" title=" Plackett-Burman design"> Plackett-Burman design</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a> </p> <a href="https://publications.waset.org/abstracts/12808/plackett-burman-design-for-microencapsulation-of-blueberry-bioactive-compounds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">381</span> Flow Analysis for Different Pelton Turbine Bucket by Applying Computation Fluid Dynamic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sedat%20Yayla">Sedat Yayla</a>, <a href="https://publications.waset.org/abstracts/search?q=Azhin%20Abdullah"> Azhin Abdullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of constructing hydroelectric power plants, the Pelton turbine, which is characterized by its simple manufacturing and construction, is performed in high head and low water flow. Parameters of the turbine have to be comprised in the designing process for obtaining hydraulic turbine with the highest efficiency during different operating conditions. The present investigation applied three-dimensional computational fluid dynamics (CFD). In addition, the bucket of Pelton turbine models with different splitter angle and inlet velocity values were examined for determining the force and visualizing the flow pattern on the bucket. The study utilized two diverse bucket models at various inlet velocities (20, 25, 30,35and 40m/s) and four different splitter angles (55, 75,90and 115 degree) for finding out the impacts of every single parameter on the effective force on the bucket. The acquired outcomes revealed that there is a linear relationship between force and inlet velocity on the bucket. Furthermore, the results also uncovered that the relationship between splitter angle and force on the bucket is linear until 90 degree. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bucket%20design" title="bucket design">bucket design</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20fluid%20dynamics%20%28CFD%29" title=" computational fluid dynamics (CFD)"> computational fluid dynamics (CFD)</a>, <a href="https://publications.waset.org/abstracts/search?q=free%20surface%20flow" title=" free surface flow"> free surface flow</a>, <a href="https://publications.waset.org/abstracts/search?q=two-phase%20flow" title=" two-phase flow"> two-phase flow</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20of%20fluid%20%28VOF%29" title=" volume of fluid (VOF)"> volume of fluid (VOF)</a> </p> <a href="https://publications.waset.org/abstracts/74893/flow-analysis-for-different-pelton-turbine-bucket-by-applying-computation-fluid-dynamic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">380</span> Evaluation of Solid-Gas Separation Efficiency in Natural Gas Cyclones</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20I.%20Mazyan">W. I. Mazyan</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ahmadi"> A. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hoorfar"> M. Hoorfar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives/Scope: This paper proposes a mathematical model for calculating the solid-gas separation efficiency in cyclones. This model provides better agreement with experimental results compared to existing mathematical models. Methods: The separation ratio efficiency, ϵsp, is evaluated by calculating the outlet to inlet count ratio. Similar to mathematical derivations in the literature, the inlet and outlet particle count were evaluated based on Eulerian approach. The model also includes the external forces acting on the particle (i.e., centrifugal and drag forces). In addition, the proposed model evaluates the exact length that the particle travels inside the cyclone for the evaluation of number of turns inside the cyclone. The separation efficiency model derivation using Stoke’s law considers the effect of the inlet tangential velocity on the separation performance. In cyclones, the inlet velocity is a very important factor in determining the performance of the cyclone separation. Therefore, the proposed model provides accurate estimation of actual cyclone separation efficiency. Results/Observations/Conclusion: The separation ratio efficiency, ϵsp, is studied to evaluate the performance of the cyclone for particles ranging from 1 microns to 10 microns. The proposed model is compared with the results in the literature. It is shown that the proposed mathematical model indicates an error of 7% between its efficiency and the efficiency obtained from the experimental results for 1 micron particles. At the same time, the proposed model gives the user the flexibility to analyze the separation efficiency at different inlet velocities. Additive Information: The proposed model determines the separation efficiency accurately and could also be used to optimize the separation efficiency of cyclones at low cost through trial and error testing, through dimensional changes to enhance separation and through increasing the particle centrifugal forces. Ultimately, the proposed model provides a powerful tool to optimize and enhance existing cyclones at low cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclone%20efficiency" title="cyclone efficiency">cyclone efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=solid-gas%20separation" title=" solid-gas separation"> solid-gas separation</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=models%20error%20comparison" title=" models error comparison"> models error comparison</a> </p> <a href="https://publications.waset.org/abstracts/37244/evaluation-of-solid-gas-separation-efficiency-in-natural-gas-cyclones" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">379</span> CFD Analysis of a Two-Sided Windcatcher Inlet/Outlet Ducts’ Height in Ventilation Flow through a Three Dimensional Room</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amirreza%20Niktash">Amirreza Niktash</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20P.%20Huynh"> B. P. Huynh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A windcatcher is a structure fitted on the roof of a building for providing natural ventilation by using wind power; it exhausts the inside stale air to the outside and supplies the outside fresh air into the interior space of the building working by pressure difference between outside and inside of the building and using ventilation principles of passive stacks and wind tower, respectively. In this paper, the effect of different heights of inlet/outlets’ ducts of a two-sided windcatcher on the flow rate, flow velocity and flow pattern through a three-dimensional room fitted with the windcatcher are investigated and analysed by using RANS CFD technique and applying standard K-ε turbulence model via a commercial computational fluid dynamics (CFD) software package. The achieved results show that the inlet/outlet ducts height strongly affects flow rate, flow velocity and flow pattern especially in the living area of the room when the wind velocity is not too low. The results are confirmed by the experimental test for constructed scaled model in the laboratory and it develops the two-sided windcatcher’s performance in ventilation applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD" title="CFD">CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=RANS" title=" RANS"> RANS</a>, <a href="https://publications.waset.org/abstracts/search?q=ventilation" title=" ventilation"> ventilation</a>, <a href="https://publications.waset.org/abstracts/search?q=windcatcher" title=" windcatcher"> windcatcher</a> </p> <a href="https://publications.waset.org/abstracts/18751/cfd-analysis-of-a-two-sided-windcatcher-inletoutlet-ducts-height-in-ventilation-flow-through-a-three-dimensional-room" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18751.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=inlet%20fogging&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>