CINXE.COM
Search results for: tanker trucks
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: tanker trucks</title> <meta name="description" content="Search results for: tanker trucks"> <meta name="keywords" content="tanker trucks"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="tanker trucks" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="tanker trucks"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 99</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: tanker trucks</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">99</span> Correlation Test of Psychomotor Vigilance Test Fatigue Scores on Sleep Quality at Home in Oil and Gas Tanker Driver: A Diagnostic Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pandega%20Gama%20Mahardika">Pandega Gama Mahardika</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Rifki%20Al%20Iksan"> Muhammad Rifki Al Iksan</a>, <a href="https://publications.waset.org/abstracts/search?q=Datuk%20Fachrul%20Razy"> Datuk Fachrul Razy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Oil And Gas Tanker Driver is a high-risk jobdesc. drivers drive with sleep circadian rhythm disturbances. Therefore, FAMOUS (Fatigue Management Online Ultimate System) conducted a diagnostic test on the effectiveness and accuracy of the Psychomotor vigilance test (PVT) in the field to capture the fatigue level of Oil And Gas Tanker Driver. Fatigue examination with the PVP method for 3 minutes using the Pertamina FAMOUS system (Fatigue Management Online Ultimate System). The research sample was Oil And Gas Tanker Driver Elnusa petrofin drivers as many as 2205 people. PVT is categorical data that states a driver has a low or high fatigue level. The quality of sleep at home was recorded by filling in a score of 1 = not well, 2 = not well, 3 = well, per person. A total of 1852 (84%) driver had a low fatigue level, while 353 (16%) driver had a high fatigue level. Poor sleep quality was experienced by 68 (79%) driver who had a high fatigue level. Oil And Gas Tanker Driver who slept soundly at home as many as 1804 (87%) had a low fatigue level. The correlation coefficient of sleep quality home and fatigue level is significant because it shows a probability value of 0.00 (p <5%). Fatigue level can be diagnosed through examining sleep quality, using FAMOUS Program for occupational medicine, particularly in the oil and gas sector. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psychomotor%20vigilance%20test" title="psychomotor vigilance test">psychomotor vigilance test</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=sleep" title=" sleep"> sleep</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20and%20gas%20tanker%20driver%20drivers" title=" oil and gas tanker driver drivers"> oil and gas tanker driver drivers</a>, <a href="https://publications.waset.org/abstracts/search?q=pertamina%20FAMOUS" title=" pertamina FAMOUS"> pertamina FAMOUS</a> </p> <a href="https://publications.waset.org/abstracts/170592/correlation-test-of-psychomotor-vigilance-test-fatigue-scores-on-sleep-quality-at-home-in-oil-and-gas-tanker-driver-a-diagnostic-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170592.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">98</span> Safety System Design and Overfill Protection for Loading Asphalt onto Trucks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wendy%20Ampadu">Wendy Ampadu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ray%20Diezmos"> Ray Diezmos</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Malik"> Hassan Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Hyslob"> Jeremy Hyslob </a> </p> <p class="card-text"><strong>Abstract:</strong></p> There are several technologies out there for use as high-level switches as part of a system for shutting down flow to a vessel. Given that the asphalt truck loading poses issues such as poor visibility, coating, condensation, and fumes, a solution that is robust enough to last in these conditions is often needed in industries. Furthermore, the design of the loading arm, rack, and process equipment should allow for the safety of workers. The objective of this report includes the redesign of structures for use at loading facilities and selecting an overflow technology protection from hot bitumen. The report is based on loading facilities at a Canadian bitumen production company. The engineering design approach was used to create multiple redesign concepts for the loading dock system. Research on overfill systems was also completed by surveying the existing market for technologies and securing quotes from over 20 Canadian and United States instrumentation companies. A final loading dock redesign and level transmitter for overfill protection solution were chosen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bitumen" title="bitumen">bitumen</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability%20engineering" title=" reliability engineering"> reliability engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=safety%20system" title=" safety system"> safety system</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20safety%20management" title=" process safety management"> process safety management</a>, <a href="https://publications.waset.org/abstracts/search?q=asphalt" title=" asphalt"> asphalt</a>, <a href="https://publications.waset.org/abstracts/search?q=loading%20docks" title=" loading docks"> loading docks</a>, <a href="https://publications.waset.org/abstracts/search?q=tanker%20trucks" title=" tanker trucks"> tanker trucks</a> </p> <a href="https://publications.waset.org/abstracts/128923/safety-system-design-and-overfill-protection-for-loading-asphalt-onto-trucks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">97</span> Scheduling of Cross-Docking Center: An Auction-Based Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eldho%20Paul">Eldho Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Brijesh%20Paul"> Brijesh Paul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work proposes an auction mechanism based solution methodology for the optimum scheduling of trucks in a cross-docking centre. The cross-docking centre is an important element of lean supply chain. It reduces the amount of storage and transportation costs in the distribution system compared to an ordinary warehouse. Better scheduling of trucks in a cross-docking center is the best way to reduce storage and transportation costs. Auction mechanism is commonly used for allocation of limited resources in different real-life applications. Here, we try to schedule inbound trucks by integrating auction mechanism with the functioning of a cross-docking centre. A mathematical model is developed for the optimal scheduling of inbound trucks based on the auction methodology. The determination of exact solution for problems involving large number of trucks was found to be computationally difficult, and hence a genetic algorithm based heuristic methodology is proposed in this work. A comparative study of exact and heuristic solutions is done using five classes of data sets. It is observed from the study that the auction-based mechanism is capable of providing good solutions to scheduling problem in cross-docking centres. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=auction%20mechanism" title="auction mechanism">auction mechanism</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-docking%20centre" title=" cross-docking centre"> cross-docking centre</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling%20of%20trucks" title=" scheduling of trucks"> scheduling of trucks</a> </p> <a href="https://publications.waset.org/abstracts/62720/scheduling-of-cross-docking-center-an-auction-based-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">96</span> Designing the First Oil Tanker Shipyard Facility in Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Al%20Abdullah">Fatma Al Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahad%20Al%20Ameer"> Shahad Al Ameer</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritaj%20Jaragh"> Ritaj Jaragh</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatimah%20Khajah"> Fatimah Khajah</a>, <a href="https://publications.waset.org/abstracts/search?q=Rawan%20Qambar"> Rawan Qambar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20Nounou"> Amr Nounou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kuwait currently manufactures its tankers in foreign countries. Oil tankers play a role in the supply chain of the oil industry. Therefore, with Kuwait’s sufficient financial resources, the country should secure itself strategically in order to protect its oil industry to sustain economic development. The purpose of this report is designing an oil tankers’ shipyard facility. Basing the shipyard facility in Kuwait will have great economic rewards. The shipbuilding industry directly enhances the industrial chain in terms of new job and business opportunities as well as educational fields. Heavy Engineering Industries & Shipbuilding Co. K.S.C. (HEISCO) was chosen as a host due to benefits that will result from HEISCO’s existing infrastructure and expertise to reduce cost. The Facility Design methodology chosen has been used because it covers all aspects needed for the report. The oil tanker market is witnessing a shift from crude tankers to product tankers. Therefore the Panamax tanker (product tanker) was selected to be manufactured in the facility. The different departments needed in shipyards were identified based on studying different global shipyards. Technologies needed to build ships helped in the process design. It was noticed that ships are engineer to order. The new layout development of the proposed shipyard is currently in progress. A feasibility study will be conducted to ensure the success of the facility after developing the shipyard’s layout. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20tankers" title="oil tankers">oil tankers</a>, <a href="https://publications.waset.org/abstracts/search?q=shipbuilding" title=" shipbuilding"> shipbuilding</a>, <a href="https://publications.waset.org/abstracts/search?q=shipyard" title=" shipyard"> shipyard</a>, <a href="https://publications.waset.org/abstracts/search?q=facility%20design" title=" facility design"> facility design</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait" title=" Kuwait"> Kuwait</a> </p> <a href="https://publications.waset.org/abstracts/9105/designing-the-first-oil-tanker-shipyard-facility-in-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">95</span> Time-Series Analysis of Port State Control Inspections for Tankers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chien-Chung%20Yuan">Chien-Chung Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=Cunqiang%20Cai"> Cunqiang Cai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wu-Hsun%20Chung"> Wu-Hsun Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Te%20Sung"> Shu-Te Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A tanker is a critical vessel used to transport or store liquids or gases in bulk in maritime shipping. However, it is more dangerous than other types of vessels. Port State Control (PSC) inspection is an important measure to ensure maritime safety when such vessels traveling between ports. However, the current inspection system lacks a useful tool to observe the inspections for tankers and to identify non-random instances in PSC inspections. This study collects the inspection records in Taiwan’s ports from 2015 to 2018 and utilizes run charts to map the PSC inspections for tankers in terms of deficiencies. Based on these time-series charts, several patterns of deficiencies are identified. The results demonstrate that run charts are a useful tool to observe how the PSC inspections for tankers are performed. Also, the charts can help port administrations to identify abnormal phenomena for further investigation. Furthermore, with valuable information from the analysis, port administrations can take proactive improvement measures to ensure the safety of tanker shipping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=port%20state%20control" title="port state control">port state control</a>, <a href="https://publications.waset.org/abstracts/search?q=tanker" title=" tanker"> tanker</a>, <a href="https://publications.waset.org/abstracts/search?q=run%20chart" title=" run chart"> run chart</a>, <a href="https://publications.waset.org/abstracts/search?q=deficiency" title=" deficiency"> deficiency</a> </p> <a href="https://publications.waset.org/abstracts/126632/time-series-analysis-of-port-state-control-inspections-for-tankers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126632.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">94</span> Sensor Data Analysis for a Large Mining Major</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sudipto%20Shanker%20Dasgupta">Sudipto Shanker Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the largest mining companies wanted to look at health analytics for their driverless trucks. These trucks were the key to their supply chain logistics. The automated trucks had multi-level sub-assemblies which would send out sensor information. The use case that was worked on was to capture the sensor signal from the truck subcomponents and analyze the health of the trucks from repair and replacement purview. Open source software was used to stream the data into a clustered Hadoop setup in Amazon Web Services cloud and Apache Spark SQL was used to analyze the data. All of this was achieved through a 10 node amazon 32 core, 64 GB RAM setup real-time analytics was achieved on ‘300 million records’. To check the scalability of the system, the cluster was increased to 100 node setup. This talk will highlight how Open Source software was used to achieve the above use case and the insights on the high data throughput on a cloud set up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=streaming%20analytics" title="streaming analytics">streaming analytics</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20science" title=" data science"> data science</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadoop" title=" Hadoop"> Hadoop</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20throughput" title=" high throughput"> high throughput</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor%20data" title=" sensor data"> sensor data</a> </p> <a href="https://publications.waset.org/abstracts/32352/sensor-data-analysis-for-a-large-mining-major" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">93</span> Impact of Vehicle Travel Characteristics on Level of Service: A Comparative Analysis of Rural and Urban Freeways</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anwaar%20Ahmed">Anwaar Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Bilal%20Khurshid"> Muhammad Bilal Khurshid</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Labi"> Samuel Labi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of trucks on the level of service is determined by considering passenger car equivalents (PCE) of trucks. The current version of Highway Capacity Manual (HCM) uses a single PCE value for all tucks combined. However, the composition of truck traffic varies from location to location; therefore a single PCE-value for all trucks may not correctly represent the impact of truck traffic at specific locations. Consequently, present study developed separate PCE values for single-unit and combination trucks to replace the single value provided in the HCM on different freeways. Site specific PCE values, were developed using concept of spatial lagging headways (the distance from the rear bumper of a leading vehicle to the rear bumper of the following vehicle) measured from field traffic data. The study used data from four locations on a single urban freeway and three different rural freeways in Indiana. Three-stage-least-squares (3SLS) regression techniques were used to generate models that predicted lagging headways for passenger cars, single unit trucks (SUT), and combination trucks (CT). The estimated PCE values for single-unit and combination truck for basic urban freeways (level terrain) were: 1.35 and 1.60, respectively. For rural freeways the estimated PCE values for single-unit and combination truck were: 1.30 and 1.45, respectively. As expected, traffic variables such as vehicle flow rates and speed have significant impacts on vehicle headways. Study results revealed that the use of separate PCE values for different truck classes can have significant influence on the LOS estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=level%20of%20service" title="level of service">level of service</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20analysis" title=" capacity analysis"> capacity analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=lagging%20headway" title=" lagging headway"> lagging headway</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a> </p> <a href="https://publications.waset.org/abstracts/10791/impact-of-vehicle-travel-characteristics-on-level-of-service-a-comparative-analysis-of-rural-and-urban-freeways" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10791.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">92</span> Relation Between Traffic Mix and Traffic Accidents in a Mixed Industrial Urban Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Eliane%20Hern%C3%A1ndez-Garc%C3%ADa">Michelle Eliane Hernández-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traffic accidents study usually contemplates the relation between factors such as the type of vehicle, its operation, and the road infrastructure. Traffic accidents can be explained by different factors, which have a greater or lower relevance. Two zones are studied, a mixed industrial zone and the extended zone of it. The first zone has mainly residential (57%), and industrial (23%) land uses. Trucks are mainly on the roads where industries are located. Four sensors give information about traffic and speed on the main roads. The extended zone (which includes the first zone) has mainly residential (47%) and mixed residential (43%) land use, and just 3% of industrial use. The traffic mix is composed mainly of non-trucks. 39 traffic and speed sensors are located on main roads. The traffic mix in a mixed land use zone, could be related to traffic accidents. To understand this relation, it is required to identify the elements of the traffic mix which are linked to traffic accidents. Models that attempt to explain what factors are related to traffic accidents have faced multiple methodological problems for obtaining robust databases. Poisson regression models are used to explain the accidents. The objective of the Poisson analysis is to estimate a vector to provide an estimate of the natural logarithm of the mean number of accidents per period; this estimate is achieved by standard maximum likelihood procedures. For the estimation of the relation between traffic accidents and the traffic mix, the database is integrated of eight variables, with 17,520 observations and six vectors. In the model, the dependent variable is the occurrence or non-occurrence of accidents, and the vectors that seek to explain it, correspond to the vehicle classes: C1, C2, C3, C4, C5, and C6, respectively, standing for car, microbus, and van, bus, unitary trucks (2 to 6 axles), articulated trucks (3 to 6 axles) and bi-articulated trucks (5 to 9 axles); in addition, there is a vector for the average speed of the traffic mix. A Poisson model is applied, using a logarithmic link function and a Poisson family. For the first zone, the Poisson model shows a positive relation among traffic accidents and C6, average speed, C3, C2, and C1 (in a decreasing order). The analysis of the coefficient shows a high relation with bi-articulated truck and bus (C6 and the C3), indicating an important participation of freight trucks. For the expanded zone, the Poisson model shows a positive relation among traffic accidents and speed average, biarticulated truck (C6), and microbus and vans (C2). The coefficients obtained in both Poisson models shows a higher relation among freight trucks and traffic accidents in the first industrial zone than in the expanded zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freight%20transport" title="freight transport">freight transport</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20zone" title=" industrial zone"> industrial zone</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20accidents" title=" traffic accidents"> traffic accidents</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20mix" title=" traffic mix"> traffic mix</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a> </p> <a href="https://publications.waset.org/abstracts/147496/relation-between-traffic-mix-and-traffic-accidents-in-a-mixed-industrial-urban-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147496.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">91</span> Study of Suezmax Shuttle Tanker Energy Efficiency for Operations at the Brazilian Pre-Salt Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20A.%20Schiller">Rodrigo A. Schiller</a>, <a href="https://publications.waset.org/abstracts/search?q=Rubens%20C.%20Da%20Silva"> Rubens C. Da Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kazuo%20Nishimoto"> Kazuo Nishimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20M.%20P.%20Sampaio"> Claudio M. P. Sampaio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to reduce fossil fuels consumption due to the current scenario of trying to restrain global warming effects and reduce air pollution is dictating a series of transformations in shipping. This study introduces, at first, the changes of the regulatory framework concerning gas emissions control and fuel consumption efficiency on merchant ships. Secondly, the main operational procedures with high potential reduction of fuel consumption are discussed, with focus on existing vessels, using ship speed reduction procedure. This procedure shows the positive impacts on both operating costs reduction and also on energy efficiency increase if correctly applied. Finally, a numerical analysis of the fuel consumption variation with the speed was carried out for a Suezmax class oil tanker, which has been adapted to oil offloading operations for FPSOs in Brazilian offshore oil production systems. In this analysis, the discussions about the variations of vessel energy efficiency from small speed rate reductions and the possible applications of this improvement, taking into account the typical operating profile of the vessel in such a way to have significant economic impacts on the operation. This analysis also evaluated the application of two different numerical methods: one based only on regression equations produced by existing data, semi-empirical method, and another using a CFD simulations for estimating the hull shape parameters that are most relevant for determining fuel consumption, analyzing inaccuracies and impact on the final results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=offloading%20operations" title=" offloading operations"> offloading operations</a>, <a href="https://publications.waset.org/abstracts/search?q=speed%20reduction" title=" speed reduction"> speed reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=Suezmax%20oil%20tanker" title=" Suezmax oil tanker"> Suezmax oil tanker</a> </p> <a href="https://publications.waset.org/abstracts/67414/study-of-suezmax-shuttle-tanker-energy-efficiency-for-operations-at-the-brazilian-pre-salt-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">90</span> Influence of Mooring Conditions on Side-By-Side Offloading System Safety Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liu%20Shengnan">Liu Shengnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun%20Liping"> Sun Liping</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhu%20Jianxun"> Zhu Jianxun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on three dimensional potential flow theory, hydrodynamic response analysis is carried on the multi floating bodies system composed of FPSO moored with yoke and shuttle tanker. It considered hydrodynamic interaction between FPSO and shuttle tanker, interaction between the hull and yoke mooring systems, hawsers, fenders, and then focuses on hawsers of the side-by-side offloading system. The influence of hawsers parameters on system safety is studied in respects of hawser stiffness, length and arrangement. Through analysis in different environment conditions and two typical loading conditions, it can be found that a better safety performance can be achieved through these three ways including enlarging the number of hawsers as well as the stiffness of hawsers, changing the length and arrangement of hawsers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=yoke%20mooring" title="yoke mooring">yoke mooring</a>, <a href="https://publications.waset.org/abstracts/search?q=side-by-side%20offloading" title=" side-by-side offloading"> side-by-side offloading</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20floating%20body" title=" multi floating body"> multi floating body</a>, <a href="https://publications.waset.org/abstracts/search?q=hawser" title=" hawser"> hawser</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/8155/influence-of-mooring-conditions-on-side-by-side-offloading-system-safety-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">430</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">89</span> Fatigue Truck Modification Factor for Design Truck (CL-625)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Najari">Mohamad Najari</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilbert%20Grondin"> Gilbert Grondin</a>, <a href="https://publications.waset.org/abstracts/search?q=Marwan%20El-Rich"> Marwan El-Rich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Design trucks in standard codes are selected based on the amount of damage they cause on structures-specifically bridges- and roads to represent the real traffic loads. Some limited numbers of trucks are run on a bridge one at a time and the damage on the bridge is recorded for each truck. One design track is also run on the same bridge “n” times -“n” is the number of trucks used previously- to calculate the damage of the design truck on the same bridge. To make these damages equal a reduction factor is needed for that specific design truck in the codes. As the limited number of trucks cannot be the exact representative of real traffic through the life of the structure, these reduction factors are not accurately calculated and they should be modified accordingly. Started on July 2004, the vehicle load data were collected in six weigh in motion (WIM) sites owned by Alberta Transportation for eight consecutive years. This database includes more than 200 million trucks. Having these data gives the opportunity to compare the effect of any standard fatigue trucks weigh and the real traffic load on the fatigue life of the bridges which leads to a modification for the fatigue truck factor in the code. To calculate the damage for each truck, the truck is run on the bridge, moment history of the detail under study is recorded, stress range cycles are counted, and then damage is calculated using available S-N curves. A 2000 lines FORTRAN code has been developed to perform the analysis and calculate the damages of the trucks in the database for all eight fatigue categories according to Canadian Institute of Steel Construction (CSA S-16). Stress cycles are counted using rain flow counting method. The modification factors for design truck (CL-625) are calculated for two different bridge configurations and ten span lengths varying from 1 m to 200 m. The two considered bridge configurations are single-span bridge and four span bridge. This was found to be sufficient and representative for a simply supported span, positive moment in end spans of bridges with two or more spans, positive moment in interior spans of three or more spans, and the negative moment at an interior support of multi-span bridges. The moment history of the mid span is recorded for single-span bridge and, exterior positive moment, interior positive moment, and support negative moment are recorded for four span bridge. The influence lines are expressed by a polynomial expression obtained from a regression analysis of the influence lines obtained from SAP2000. It is found that for design truck (CL-625) fatigue truck factor is varying from 0.35 to 0.55 depending on span lengths and bridge configuration. The detail results will be presented in the upcoming papers. This code can be used for any design trucks available in standard codes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge" title="bridge">bridge</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue%20design%20truck" title=" fatigue design truck"> fatigue design truck</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20flow%20analysis" title=" rain flow analysis"> rain flow analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=FORTRAN" title=" FORTRAN"> FORTRAN</a> </p> <a href="https://publications.waset.org/abstracts/20890/fatigue-truck-modification-factor-for-design-truck-cl-625" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">521</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">88</span> Design of a Human-in-the-Loop Aircraft Taxiing Optimisation System Using Autonomous Tow Trucks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Zaninotto">Stefano Zaninotto</a>, <a href="https://publications.waset.org/abstracts/search?q=Geoffrey%20Farrugia"> Geoffrey Farrugia</a>, <a href="https://publications.waset.org/abstracts/search?q=Johan%20Debattista"> Johan Debattista</a>, <a href="https://publications.waset.org/abstracts/search?q=Jason%20Gauci"> Jason Gauci</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The need to reduce fuel and noise during taxi operations in the airports with a scenario of constantly increasing air traffic has resulted in an effort by the aerospace industry to move towards electric taxiing. In fact, this is one of the problems that is currently being addressed by SESAR JU and two main solutions are being proposed. With the first solution, electric motors are installed in the main (or nose) landing gear of the aircraft. With the second solution, manned or unmanned electric tow trucks are used to tow aircraft from the gate to the runway (or vice-versa). The presence of the tow trucks results in an increase in vehicle traffic inside the airport. Therefore, it is important to design the system in a way that the workload of Air Traffic Control (ATC) is not increased and the system assists ATC in managing all ground operations. The aim of this work is to develop an electric taxiing system, based on the use of autonomous tow trucks, which optimizes aircraft ground operations while keeping ATC in the loop. This system will consist of two components: an optimization tool and a Graphical User Interface (GUI). The optimization tool will be responsible for determining the optimal path for arriving and departing aircraft; allocating a tow truck to each taxiing aircraft; detecting conflicts between aircraft and/or tow trucks; and proposing solutions to resolve any conflicts. There are two main optimization strategies proposed in the literature. With centralized optimization, a central authority coordinates and makes the decision for all ground movements, in order to find a global optimum. With the second strategy, called decentralized optimization or multi-agent system, the decision authority is distributed among several agents. These agents could be the aircraft, the tow trucks, and taxiway or runway intersections. This approach finds local optima; however, it scales better with the number of ground movements and is more robust to external disturbances (such as taxi delays or unscheduled events). The strategy proposed in this work is a hybrid system combining aspects of these two approaches. The GUI will provide information on the movement and status of each aircraft and tow truck, and alert ATC about any impending conflicts. It will also enable ATC to give taxi clearances and to modify the routes proposed by the system. The complete system will be tested via computer simulation of various taxi scenarios at multiple airports, including Malta International Airport, a major international airport, and a fictitious airport. These tests will involve actual Air Traffic Controllers in order to evaluate the GUI and assess the impact of the system on ATC workload and situation awareness. It is expected that the proposed system will increase the efficiency of taxi operations while reducing their environmental impact. Furthermore, it is envisaged that the system will facilitate various controller tasks and improve ATC situation awareness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=air%20traffic%20control" title="air traffic control">air traffic control</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20taxiing" title=" electric taxiing"> electric taxiing</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20tow%20trucks" title=" autonomous tow trucks"> autonomous tow trucks</a>, <a href="https://publications.waset.org/abstracts/search?q=graphical%20user%20interface" title=" graphical user interface"> graphical user interface</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20operations" title=" ground operations"> ground operations</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-agent" title=" multi-agent"> multi-agent</a>, <a href="https://publications.waset.org/abstracts/search?q=route%20optimization" title=" route optimization"> route optimization</a> </p> <a href="https://publications.waset.org/abstracts/98056/design-of-a-human-in-the-loop-aircraft-taxiing-optimisation-system-using-autonomous-tow-trucks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">87</span> Health Exposure Assessment of Sulfur Loading Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayman%20M.%20Arfaj">Ayman M. Arfaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Lauro%20M.%20Llamas"> Jose Lauro M. Llamas</a>, <a href="https://publications.waset.org/abstracts/search?q=Saleh%20Y%20Qahtani">Saleh Y Qahtani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sulfur Loading Operation (SLO) is an operation that poses risk of exposure to toxic gases such as Hydrogen Sulfid and Sulfur Dioxide during molten sulfur loading operation. In this operation molten sulfur is loaded into a truck tanker in a liquid state and the temperature of the tanker must maintain liquid sulfur within a 43-degree range — between 266 degrees and 309 degrees Fahrenheit in order for safe loading and unloading to occur. Accordingly, in this study, the e potential risk of occupational exposure to the airborne toxic gases was assessed at three sulfur loading facilities. The concentrations of toxic airborne substances such as Hydrogen Sulfide (H2S) and Sulfur Dioxide (SO2), were monitored during operations at the different locations within the sulfur loading operation facilities. In addition to extensive real-time monitoring, over one hundred and fifty samples were collected and analysed at internationally accredited laboratories. The concentrations of H2S, and SO2 were all found to be well below their respective occupational exposure limits. Very low levels of H2S account for the odours observed intermittingly during mixing and application operations but do not pose a considerable health risk and hence these levels are considered a nuisance. These results were comparable to those reported internationally. Aside from observing the usual general safe work practices such as wearing safety glasses, there are no specific occupational health related concerns at the examined sulfur loading facilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfur%20loading%20operation" title=" sulfur loading operation"> sulfur loading operation</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20study" title=" health risk study"> health risk study</a>, <a href="https://publications.waset.org/abstracts/search?q=molten%20sulfur" title=" molten sulfur"> molten sulfur</a>, <a href="https://publications.waset.org/abstracts/search?q=toxic%20airborne%20substances" title=" toxic airborne substances"> toxic airborne substances</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20contaminants%20monitoring" title=" air contaminants monitoring"> air contaminants monitoring</a> </p> <a href="https://publications.waset.org/abstracts/163487/health-exposure-assessment-of-sulfur-loading-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">86</span> Material Use and Life Cycle GHG Emissions of Different Electrification Options for Long-Haul Trucks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nafisa%20Mahbub">Nafisa Mahbub</a>, <a href="https://publications.waset.org/abstracts/search?q=Hajo%20Ribberink"> Hajo Ribberink</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrification of long-haul trucks has been in discussion as a potential strategy to decarbonization. These trucks will require large batteries because of their weight and long daily driving distances. Around 245 million battery electric vehicles are predicted to be on the road by the year 2035. This huge increase in the number of electric vehicles (EVs) will require intensive mining operations for metals and other materials to manufacture millions of batteries for the EVs. These operations will add significant environmental burdens and there is a significant risk that the mining sector will not be able to meet the demand for battery materials, leading to higher prices. Since the battery is the most expensive component in the EVs, technologies that can enable electrification with smaller batteries sizes have substantial potential to reduce the material usage and associated environmental and cost burdens. One of these technologies is an ‘electrified road’ (eroad), where vehicles receive power while they are driving, for instance through an overhead catenary (OC) wire (like trolleybuses and electric trains), through wireless (inductive) chargers embedded in the road, or by connecting to an electrified rail in or on the road surface. This study assessed the total material use and associated life cycle GHG emissions of two types of eroads (overhead catenary and in-road wireless charging) for long-haul trucks in Canada and compared them to electrification using stationary plug-in fast charging. As different electrification technologies require different amounts of materials for charging infrastructure and for the truck batteries, the study included the contributions of both for the total material use. The study developed a bottom-up approach model comparing the three different charging scenarios – plug in fast chargers, overhead catenary and in-road wireless charging. The investigated materials for charging technology and batteries were copper (Cu), steel (Fe), aluminium (Al), and lithium (Li). For the plug-in fast charging technology, different charging scenarios ranging from overnight charging (350 kW) to megawatt (MW) charging (2 MW) were investigated. A 500 km of highway (1 lane of in-road charging per direction) was considered to estimate the material use for the overhead catenary and inductive charging technologies. The study considered trucks needing an 800 kWh battery under the plug-in charger scenario but only a 200 kWh battery for the OC and inductive charging scenarios. Results showed that overall the inductive charging scenario has the lowest material use followed by OC and plug-in charger scenarios respectively. The materials use for the OC and plug-in charger scenarios were 50-70% higher than for the inductive charging scenarios for the overall system including the charging infrastructure and battery. The life cycle GHG emissions from the construction and installation of the charging technology material were also investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=charging%20technology" title="charging technology">charging technology</a>, <a href="https://publications.waset.org/abstracts/search?q=eroad" title=" eroad"> eroad</a>, <a href="https://publications.waset.org/abstracts/search?q=GHG%20emissions" title=" GHG emissions"> GHG emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20use" title=" material use"> material use</a>, <a href="https://publications.waset.org/abstracts/search?q=overhead%20catenary" title=" overhead catenary"> overhead catenary</a>, <a href="https://publications.waset.org/abstracts/search?q=plug%20in%20charger" title=" plug in charger"> plug in charger</a> </p> <a href="https://publications.waset.org/abstracts/184498/material-use-and-life-cycle-ghg-emissions-of-different-electrification-options-for-long-haul-trucks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">85</span> A Novel Integration of Berth Allocation, Quay Cranes and Trucks Scheduling Problems in Container Terminals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Moharami%20Gargari">M. Moharami Gargari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Javdani%20Zamani"> S. Javdani Zamani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Mohammadnejad"> A. Mohammadnejad</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Abuali"> S. Abuali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As maritime container transport is developing fast, the need arises for efficient operations at container terminals. One of the most important determinants of container handling efficiency is the productivity of quay cranes and internal transportation vehicles, which are responsible transporting of containers for unloading and loading operations for container vessels. For this reason, this paper presents an integrated mathematical model formulation for discrete berths with quay cranes and internal transportations vehicles. The problems have received increasing attention in the literature and the present paper deals with the integration of these interrelated problems. A new mixed integer linear formulation is developed for the Berth Allocation Problem (BAP), Quay Crane Assignment and Scheduling Problem (QCASP) and Internal Transportation Scheduling (ITS), which accounts for cranes and trucks positioning conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20berths" title="discrete berths">discrete berths</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20terminal" title=" container terminal"> container terminal</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20scheduling" title=" truck scheduling"> truck scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20vessel%20arrival" title=" dynamic vessel arrival "> dynamic vessel arrival </a> </p> <a href="https://publications.waset.org/abstracts/30174/a-novel-integration-of-berth-allocation-quay-cranes-and-trucks-scheduling-problems-in-container-terminals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">84</span> Highly Automated Trucks In Intermodal Logistics: Findings From a Field Test in Railport and Container Depot Operations in Germany</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dustin%20Sch%C3%B6der">Dustin Schöder</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The potential benefits of the utilization of highly automated and autonomous trucks in logistics operations are the subject of interest to the entire logistics industry. The benefits of the use of these new technologies were scientifically investigated and implemented in roadmaps. So far, reliable data and experiences from real life use cases are still limited. A German research consortium of both academics and industry developed a highly automated (SAE level 4) vehicle for yard operations at railports and container depots. After development and testing, a several month field test at the DUSS Terminal in Ulm-Dornstadt (Germany) and the nearby DB Intermodal Services Container Depot in Ulm-Dornstadt was conducted. The truck was piloted in a shuttle service between both sites. In a holistic automation approach, the vehicle was integrated into a digital communication platform so that the truck could move autonomously without a driver and his manual interactions with a wide variety of stakeholders. The main goal is to investigate the effects of highly automated trucks in the key processes of container loading, unloading and container relocation on holistic railport yard operation. The field test data were used to investigate changes in process efficiency of key processes of railport and container yard operations. Moreover, effects on the capacity utilization and potentials for smothering peak workloads were analyzed. The results state that process efficiency in the piloted use case was significantly higher. The reason for that could be found in the digitalized data exchange and automated dispatch. However, the field test has shown that the effect is greatly varying depending on the ratio of highly automated and manual trucks in the yard as well as on the congestion level in the loading area. Furthermore, the data confirmed that under the right conditions, the capacity utilization of highly automated trucks could be increased. In regard to the potential for smothering peak workloads, no significant findings could be made based on the limited requirements and regulations of railway operation in Germany. In addition, an empirical survey among railport managers, operational supervisors, innovation managers and strategists (n=15) within the logistics industry in Germany was conducted. The goal was to identify key characteristics of future railports and terminals as well as requirements that railports will have to meet in the future. Furthermore, the railport processes where automation and autonomization make the greatest impact, as well as hurdles and challenges in the introduction of new technologies, have been surveyed. Hence, further potential use cases of highly automated and autonomous applications could be identified, and expectations have been mapped. As a result, a highly detailed and practice-based roadmap towards a ‘terminal 4.0’ was developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=highly%20automated%20driving" title="highly automated driving">highly automated driving</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20driving" title=" autonomous driving"> autonomous driving</a>, <a href="https://publications.waset.org/abstracts/search?q=SAE%20level%204" title=" SAE level 4"> SAE level 4</a>, <a href="https://publications.waset.org/abstracts/search?q=railport%20operations" title=" railport operations"> railport operations</a>, <a href="https://publications.waset.org/abstracts/search?q=container%20depot" title=" container depot"> container depot</a>, <a href="https://publications.waset.org/abstracts/search?q=intermodal%20logistics" title=" intermodal logistics"> intermodal logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=potentials%20of%20autonomization" title=" potentials of autonomization"> potentials of autonomization</a> </p> <a href="https://publications.waset.org/abstracts/165311/highly-automated-trucks-in-intermodal-logistics-findings-from-a-field-test-in-railport-and-container-depot-operations-in-germany" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165311.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">83</span> Evaluation of Bucket Utility Truck In-Use Driving Performance and Electrified Power Take-Off Operation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robert%20Prohaska">Robert Prohaska</a>, <a href="https://publications.waset.org/abstracts/search?q=Arnaud%20Konan"> Arnaud Konan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kenneth%20Kelly"> Kenneth Kelly</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Ragatz"> Adam Ragatz</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Duran"> Adam Duran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In an effort to evaluate the in-use performance of electrified Power Take-off (PTO) usage on bucket utility trucks operating under real-world conditions, data from 20 medium- and heavy-duty vehicles operating in California, USA were collected, compiled, and analyzed by the National Renewable Energy Laboratory's (NREL) Fleet Test and Evaluation team. In this paper, duty-cycle statistical analyses of class 5, medium-duty quick response trucks and class 8, heavy-duty material handler trucks are performed to examine and characterize vehicle dynamics trends and relationships based on collected in-use field data. With more than 100,000 kilometers of driving data collected over 880+ operating days, researchers have developed a robust methodology for identifying PTO operation from in-field vehicle data. Researchers apply this unique methodology to evaluate the performance and utilization of the conventional and electric PTO systems. Researchers also created custom representative drive-cycles for each vehicle configuration and performed modeling and simulation activities to evaluate the potential fuel and emissions savings for hybridization of the tractive driveline on these vehicles. The results of these analyses statistically and objectively define the vehicle dynamic and kinematic requirements for each vehicle configuration as well as show the potential for further system optimization through driveline hybridization. Results are presented in both graphical and tabular formats illustrating a number of key relationships between parameters observed within the data set that relates specifically to medium- and heavy-duty utility vehicles operating under real-world conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drive%20cycle" title="drive cycle">drive cycle</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy-duty%20%28HD%29" title=" heavy-duty (HD)"> heavy-duty (HD)</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=medium-duty%20%28MD%29" title=" medium-duty (MD)"> medium-duty (MD)</a>, <a href="https://publications.waset.org/abstracts/search?q=PTO" title=" PTO"> PTO</a>, <a href="https://publications.waset.org/abstracts/search?q=utility" title=" utility"> utility</a> </p> <a href="https://publications.waset.org/abstracts/55410/evaluation-of-bucket-utility-truck-in-use-driving-performance-and-electrified-power-take-off-operation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55410.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">82</span> Truck Scheduling Problem in a Cross-Dock Centre with Fixed Due Dates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20S.%20Sajadieha">Mohsen S. Sajadieha</a>, <a href="https://publications.waset.org/abstracts/search?q=Danyar%20Molavia"> Danyar Molavia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a truck scheduling problem is investigated at a two-touch cross-docking center with due dates for outbound trucks as a hard constraint. The objective is to minimize the total cost comprising penalty and delivery cost of delayed shipments. The sequence of unloading shipments is considered and is assumed that shipments are sent to shipping dock doors immediately after unloading and a First-In-First-Out (FIFO) policy is considered for loading the shipments. A mixed integer programming model is developed for the proposed model. Two meta-heuristic algorithms including genetic algorithm (GA) and variable neighborhood search (VNS) are developed to solve the problem in medium and large sized scales. The numerical results show that increase in due dates for outbound trucks has a crucial impact on the reduction of penalty costs of delayed shipments. In addition, by increase the due dates, the improvement in the objective function arises on average in comparison with the situation that the cross-dock is multi-touch and shipments are sent to shipping dock doors only after unloading the whole inbound truck. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-docking" title="cross-docking">cross-docking</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20scheduling" title=" truck scheduling"> truck scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20due%20date" title=" fixed due date"> fixed due date</a>, <a href="https://publications.waset.org/abstracts/search?q=door%20assignment" title=" door assignment"> door assignment</a> </p> <a href="https://publications.waset.org/abstracts/32252/truck-scheduling-problem-in-a-cross-dock-centre-with-fixed-due-dates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">81</span> Imported Oil Logistics to Central and Southern Europe Refineries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Klepikov">Vladimir Klepikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Countries of Central and Southern Europe have a typical feature: oil consumption in the region exceeds own commodity production capacity by far. So crude oil import prevails in the region’s crude oil consumption structure. Transportation using marine and pipeline transport is a common method of the imported oil delivery in the region. For certain refineries, in addition to possible transportation by oil pipelines from seaports, oil is delivered from Russian oil fields. With the view to these specific features and geographic location of the region’s refineries, three ways of imported oil delivery can be singled out: oil delivery by tankers to the port and subsequent transportation by pipeline transport of the port and the refinery; oil delivery by tanker fleet to the port and subsequent transportation by oil trunk pipeline transport; oil delivery from the fields by oil trunk pipelines to refineries. Oil is also delivered by road, internal water, and rail transport. However, the volumes transported this way are negligible in comparison to the three above transportation means. Multimodal oil transportation to refineries using the pipeline and marine transport is one of the biggest cargo flows worldwide. However, in scientific publications this problem is considered mainly for certain modes of transport. Therefore, this study is topical. To elaborate an efficient transportation policy of crude oil supply to Central and Southern Europe, in this paper the geographic concentration of oil refineries was determined and the capacities of the region’s refineries were assessed. The quantitative analysis method is used as a tool. The port infrastructure and the oil trunk pipeline system capacity were assessed in terms of delivery of raw materials to the refineries. The main groups of oil consuming countries were determined. The trends of crude oil production in the region were reviewed. The changes in production capacities and volumes at refineries in the last decade were shown. Based on the revealed refining trends, the scope of possible crude oil supplies to the refineries of the region under review was forecast. The existing transport infrastructure is able to handle the increased oil flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=European%20region" title="European region">European region</a>, <a href="https://publications.waset.org/abstracts/search?q=infrastructure" title=" infrastructure"> infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=oil%20terminal%20capacity" title=" oil terminal capacity"> oil terminal capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=pipeline%20capacity" title=" pipeline capacity"> pipeline capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=refinery%20capacity" title=" refinery capacity"> refinery capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=tanker%20draft" title=" tanker draft"> tanker draft</a> </p> <a href="https://publications.waset.org/abstracts/80871/imported-oil-logistics-to-central-and-southern-europe-refineries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80871.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">80</span> Managing Truck Drivers’ Fatigue: A Critical Review of the Literature and Recommended Remedies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Aliakbari">Mozhgan Aliakbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Moridpour"> Sara Moridpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, much attention has been given to truck drivers’ fatigue management. Long working hours negatively influence truck drivers’ physiology, health, and safety. However, there is little empirical research in the heavy vehicle transport sector in Australia to identify the influence of working hours’ management on drivers’ fatigue and consequently, on the risk of crashes and injuries. There is no national legislation regulating the number of hours or kilometres travelled by truck drivers. Consequently, it is almost impossible to define a standard number of hours or kilometres for truck drivers in a safety management system. This paper reviews the existing studies concerning safe system interventions such as tachographs in relation to fatigue caused by long working hours. This paper also reviews the literature to identify the influence of frequency of rest breaks on the reduction of work-related road transport accidents involving trucks. A framework is presented to manage truck drivers’ fatigue, which may result in the reduction of injuries and fatalities involving heavy vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatigue" title="fatigue">fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20management" title=" time management"> time management</a>, <a href="https://publications.waset.org/abstracts/search?q=trucks" title=" trucks"> trucks</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20safety" title=" traffic safety"> traffic safety</a> </p> <a href="https://publications.waset.org/abstracts/50854/managing-truck-drivers-fatigue-a-critical-review-of-the-literature-and-recommended-remedies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50854.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">79</span> Evaluation of Hand Arm Vibrations of Low Profile Dump Truck Operators in an Underground Metal Mine According to Job Component Analysis of a Work Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sridhar%20S">Sridhar S</a>, <a href="https://publications.waset.org/abstracts/search?q=Govinda%20Raj%20Mandela"> Govinda Raj Mandela</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20Mangalpady"> Aruna Mangalpady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present day scenario, Indian underground mines are moving towards full scale mechanisation for improvement of production and productivity levels. These mines are employing a wide variety of earth moving machines for the transportation of ore and overburden (waste). Low Profile Dump Trucks (LPDTs) have proven more advantageous towards improvement of production levels in underground mines through quick transportation. During the operation of LPDT, different kinds of vibrations are generated which can affect the health condition of the operator. Keeping this in view, the present research work focuses on measurement and evaluation of Hand Arm Vibrations (HAVs) from the steering system of LPDTs. The study also aims to evaluate the HAVs of different job components of a work cycle in operating LPDTs. The HAVs were measured and evaluated according to ISO 5349-2: 2001 standards, and the daily vibration exposures A(8) were calculated. The evaluated A(8) results show that LPDTs of 60 and 50 tons capacity have vibration levels more than that of the Exposure Action Value (EAV) of 2.5 m/s2 in every job component of the work cycle. Further, the results show that the vibration levels were more during empty haulage especially during descending journey when compared to other job components in all LPDTs considered for the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20profile%20dump%20trucks" title="low profile dump trucks">low profile dump trucks</a>, <a href="https://publications.waset.org/abstracts/search?q=hand%20arm%20vibrations" title=" hand arm vibrations"> hand arm vibrations</a>, <a href="https://publications.waset.org/abstracts/search?q=exposure%20action%20value" title=" exposure action value"> exposure action value</a>, <a href="https://publications.waset.org/abstracts/search?q=underground%20mines" title=" underground mines"> underground mines</a> </p> <a href="https://publications.waset.org/abstracts/120502/evaluation-of-hand-arm-vibrations-of-low-profile-dump-truck-operators-in-an-underground-metal-mine-according-to-job-component-analysis-of-a-work-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">78</span> Impact of Traffic Restrictions due to Covid19, on Emissions from Freight Transport in Mexico City</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oscar%20Nieto-Garz%C3%B3n">Oscar Nieto-Garzón</a>, <a href="https://publications.waset.org/abstracts/search?q=Ang%C3%A9lica%20Lozano"> Angélica Lozano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In urban areas, on-road freight transportation creates several social and environmental externalities. Then, it is crucial that freight transport considers not only economic aspects, like retailer distribution cost reduction and service improvement, but also environmental effects such as global CO2 and local emissions (e.g. Particulate Matter, NOX, CO) and noise. Inadequate infrastructure development, high rate of urbanization, the increase of motorization, and the lack of transportation planning are characteristics that urban areas from developing countries share. The Metropolitan Area of Mexico City (MAMC), the Metropolitan Area of São Paulo (MASP), and Bogota are three of the largest urban areas in Latin America where air pollution is often a problem associated with emissions from mobile sources. The effect of the lockdown due to COVID-19 was analyzedfor these urban areas, comparing the same period (January to August) of years 2016 – 2019 with 2020. A strong reduction in the concentration of primary criteria pollutants emitted by road traffic were observed at the beginning of 2020 and after the lockdown measures.Daily mean concentration of NOx decreased 40% in the MAMC, 34% in the MASP, and 62% in Bogota. Daily mean ozone levels increased after the lockdown measures in the three urban areas, 25% in MAMC, 30% in the MASP and 60% in Bogota. These changes in emission patterns from mobile sources drastically changed the ambient atmospheric concentrations of CO and NOX. The CO/NOX ratioat the morning hours is often used as an indicator of mobile sources emissions. In 2020, traffic from cars and light vehicles was significantly reduced due to the first lockdown, but buses and trucks had not restrictions. In theory, it implies a decrease in CO and NOX from cars or light vehicles, maintaining the levels of NOX by trucks(or lower levels due to the congestion reduction). At rush hours, traffic was reduced between 50% and 75%, so trucks could get higher speeds, which would reduce their emissions. By means an emission model, it was found that an increase in the average speed (75%) would reduce the emissions (CO, NOX, and PM) from diesel trucks by up to 30%. It was expected that the value of CO/NOXratio could change due to thelockdownrestrictions. However, although there was asignificant reduction of traffic, CO/NOX kept its trend, decreasing to 8-9 in 2020. Hence, traffic restrictions had no impact on the CO/NOX ratio, although they did reduce vehicle emissions of CO and NOX. Therefore, these emissions may not adequately represent the change in the vehicle emission patterns, or this ratio may not be a good indicator of emissions generated by vehicles. From the comparison of the theoretical data and those observed during the lockdown, results that the real NOX reduction was lower than the theoretical reduction. The reasons could be that there are other sources of NOX emissions, so there would be an over-representation of NOX emissions generated by diesel vehicles, or there is an underestimation of CO emissions. Further analysis needs to consider this ratioto evaluate the emission inventories and then to extend these results forthe determination of emission control policies to non-mobile sources. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COVID-19" title="COVID-19">COVID-19</a>, <a href="https://publications.waset.org/abstracts/search?q=emissions" title=" emissions"> emissions</a>, <a href="https://publications.waset.org/abstracts/search?q=freight%20transport" title=" freight transport"> freight transport</a>, <a href="https://publications.waset.org/abstracts/search?q=latin%20American%20metropolis" title=" latin American metropolis"> latin American metropolis</a> </p> <a href="https://publications.waset.org/abstracts/147483/impact-of-traffic-restrictions-due-to-covid19-on-emissions-from-freight-transport-in-mexico-city" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">77</span> Benchmarking of Petroleum Tanker Discharge Operations at a Nigerian Coastal Terminal and Jetty Facilitates Optimization of the Ship–Shore Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bassey%20O.%20Bassey">Bassey O. Bassey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benchmarking has progressively become entrenched as a requisite activity for process improvement and enhancing service delivery at petroleum jetties and terminals, most especially during tanker discharge operations at the ship – shore interface, as avoidable delays result in extra operating costs, non-productive time, high demurrage payments and ultimate product scarcity. The jetty and terminal in focus had been operational for 3 and 8 years respectively, with proper operational and logistic records maintained to evaluate their progress over time in order to plan and implement modifications and review of procedures for greater technical and economic efficiency. Regular and emergency staff meetings were held on a team, departmental and company-wide basis to progressively address major challenges that were encountered during each operation. The process and outcome of the resultant collectively planned changes carried out within the past two years forms the basis of this paper, which mirrors the initiatives effected to enhance operational and maintenance excellence at the affected facilities. Operational modifications included a second cargo receipt line designated for gasoline, product loss control at jetty and shore ends, enhanced product recovery and quality control, and revival of terminal–jetty backloading operations. Logistic improvements were the incorporation of an internal logistics firm and shipping agency, fast tracking of discharge procedures for tankers, optimization of tank vessel selection process, and third party product receipt and throughput. Maintenance excellence was achieved through construction of two new lay barges and refurbishment of the existing one; revamping of existing booster pump and purchasing of a modern one as reserve capacity; extension of Phase 1 of the jetty to accommodate two vessels and construction of Phase 2 for two more vessels; regular inspection, draining, drying and replacement of cargo hoses; corrosion management program for all process facilities; and an improved, properly planned and documented maintenance culture. Safety, environmental and security compliance were enhanced by installing state-of-the-art fire fighting facilities and equipment, seawater intake line construction as backup for borehole at the terminal, remediation of the shoreline and marine structures, modern spill containment equipment, improved housekeeping and accident prevention practices, and installation of hi-technology security enhancements, among others. The end result has been observed over the past two years to include improved tanker turnaround time, higher turnover on product sales, consistent product availability, greater indigenous human capacity utilisation by way of direct hires and contracts, as well as customer loyalty. The lessons learnt from this exercise would, therefore, serve as a model to be adapted by other operators of similar facilities, contractors, academics and consultants in a bid to deliver greater sustainability and profitability of operations at the ship – shore interface to this strategic industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benchmarking" title="benchmarking">benchmarking</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20jetty" title=" petroleum jetty"> petroleum jetty</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20terminal" title=" petroleum terminal"> petroleum terminal</a> </p> <a href="https://publications.waset.org/abstracts/66129/benchmarking-of-petroleum-tanker-discharge-operations-at-a-nigerian-coastal-terminal-and-jetty-facilitates-optimization-of-the-ship-shore-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">76</span> The Exploitation of the MOSES Project Outcomes on Supply Chain Optimisation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reza%20Karimpour">Reza Karimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ports play a decisive role in the EU's external and internal trade, as about 74% of imports and exports and 37% of exchanges go through ports. Although ports, especially Deep Sea Shipping (DSS) ports, are integral nodes within multimodal logistic flows, Short Sea Shipping (SSS) and inland waterways are not so well integrated. The automated vessels and supply chain optimisations for sustainable shortsea shipping (MOSES) project aims to enhance the short sea shipping component of the European supply chain by addressing the vulnerabilities and strains related to the operation of large containerships. The MOSES concept can be shortly described as a large containership (mother-vessel) approaching a DSS port (or a large container terminal). Upon her arrival, a combined intelligent mega-system consisting of the MOSES Autonomous tugboat swarm for manoeuvring and the MOSES adapted AutoMoor system. Then, container handling processes are ready to start moving containers to their destination via hinterland connections (trucks and/or rail) or to be shipped to destinations near small ports (on the mainland or island). For the first case, containers are stored in a dedicated port area (Storage area), waiting to be moved via trucks and/or rail. For the second case, containers are stacked by existing port equipment near-dedicated berths of the DSS port. They then are loaded on the MOSES Innovative Feeder Vessel, equipped with the MOSES Robotic Container-Handling System that provides (semi-) autonomous (un) feeding of the feeder. The Robotic Container-Handling System is remotely monitored through a Shore Control Centre. When the MOSES innovative Feeder vessel approaches the small port, where her docking is achieved without tugboats, she automatically unloads the containers using the Robotic Container-Handling System on the quay or directly on trucks. As a result, ports with minimal or no available infrastructure may be effectively integrated with the container supply chain. Then, the MOSES innovative feeder vessel continues her voyage to the next small port, or she returns to the DSS port. MOSES exploitation activity mainly aims to exploit research outcomes beyond the project, facilitate utilisation of the pilot results by others, and continue the pilot service after the project ends. By the mid-lifetime of the project, the exploitation plan introduces the reader to the MOSES project and its key exploitable results. It provides a plan for delivering the MOSES innovations to the market as part of the overall exploitation plan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automated%20vessels" title="automated vessels">automated vessels</a>, <a href="https://publications.waset.org/abstracts/search?q=exploitation" title=" exploitation"> exploitation</a>, <a href="https://publications.waset.org/abstracts/search?q=shortsea%20shipping" title=" shortsea shipping"> shortsea shipping</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a> </p> <a href="https://publications.waset.org/abstracts/151033/the-exploitation-of-the-moses-project-outcomes-on-supply-chain-optimisation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">75</span> Pattern the Location and Area of Earth-Dumping Stations from Vehicle GPS Data in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Yuan%20Chen">Chun-Yuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Chang%20Li"> Ming-Chang Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiu-Hui%20Wen"> Xiu-Hui Wen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Ching%20Tu"> Yi-Ching Tu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study explores GPS (Global Positioning System) applied to trace construction vehicles such as trucks or cranes, help to pattern the earth-dumping stations of traffic construction in Taiwan. Traffic construction in this research is defined as the engineering of high-speed railways, expressways, and which that distance more than kilometers. Audit the location and check the compliance with regulations of earth-dumping stations is one of important tasks in Taiwan EPA. Basically, the earth-dumping station was known as one source of particulate matter from air pollution during construction process. Due to GPS data can be analyzed quickly and be used conveniently, this study tried to find out dumping stations by modeling vehicles tracks from GPS data during work cycle of construction. The GPS data updated from 13 vehicles related to an expressway construction in central Taiwan. The GPS footprints were retrieved to Keyhole Markup Language (KML) files so that can pattern the tracks of trucks by computer applications, the data was collected about eight months- from Feb. to Oct. in 2017. The results of GPS footprints identified dumping station and outlined the areas of earthwork had been passed to the Taiwan EPA for on-site inspection. Taiwan EPA had issued advice comments to the agency which was in charge of the construction to prevent the air pollution. According to the result of this study compared to the commonly methods in inspecting environment by manual collection, the GPS with KML patterning and modeling method can consumes less time. On the other hand, through monitoring the GPS data from construction vehicles could be useful for administration to development and implementation of strategies in environmental management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=automatic%20management" title="automatic management">automatic management</a>, <a href="https://publications.waset.org/abstracts/search?q=earth-dumping%20station" title=" earth-dumping station"> earth-dumping station</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20management" title=" environmental management"> environmental management</a>, <a href="https://publications.waset.org/abstracts/search?q=Global%20Positioning%20System%20%28GPS%29" title=" Global Positioning System (GPS)"> Global Positioning System (GPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=particulate%20matter" title=" particulate matter"> particulate matter</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20construction" title=" traffic construction"> traffic construction</a> </p> <a href="https://publications.waset.org/abstracts/93582/pattern-the-location-and-area-of-earth-dumping-stations-from-vehicle-gps-data-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">74</span> Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Faizan%20Rehman%20Qureshi">Muhammad Faizan Rehman Qureshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Al-Kaisy"> Ahmed Al-Kaisy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traffic%20loads" title="traffic loads">traffic loads</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20vehicles" title=" heavy vehicles"> heavy vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=truck%20traffic" title=" truck traffic"> truck traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=adjustment%20factors" title=" adjustment factors"> adjustment factors</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20data%20collection" title=" traffic data collection"> traffic data collection</a> </p> <a href="https://publications.waset.org/abstracts/192471/heavy-vehicle-traffic-estimation-using-automatic-traffic-recordersweigh-in-motion-data-current-practice-and-proposed-methods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">23</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">73</span> Using Real Truck Tours Feedback for Address Geocoding Correction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalicia%20Bouallouche">Dalicia Bouallouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Baptiste%20Vioix"> Jean-Baptiste Vioix</a>, <a href="https://publications.waset.org/abstracts/search?q=St%C3%A9phane%20Millot"> Stéphane Millot</a>, <a href="https://publications.waset.org/abstracts/search?q=Eric%20Busvelle"> Eric Busvelle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When researchers or logistics software developers deal with vehicle routing optimization, they mainly focus on minimizing the total travelled distance or the total time spent in the tours by the trucks, and maximizing the number of visited customers. They assume that the upstream real data given to carry the optimization of a transporter tours is free from errors, like customers’ real constraints, customers’ addresses and their GPS-coordinates. However, in real transporter situations, upstream data is often of bad quality because of address geocoding errors and the irrelevance of received addresses from the EDI (Electronic Data Interchange). In fact, geocoders are not exempt from errors and could give impertinent GPS-coordinates. Also, even with a good geocoding, an inaccurate address can lead to a bad geocoding. For instance, when the geocoder has trouble with geocoding an address, it returns those of the center of the city. As well, an obvious geocoding issue is that the mappings used by the geocoders are not regularly updated. Thus, new buildings could not exist on maps until the next update. Even so, trying to optimize tours with impertinent customers GPS-coordinates, which are the most important and basic input data to take into account for solving a vehicle routing problem, is not really useful and will lead to a bad and incoherent solution tours because the locations of the customers used for the optimization are very different from their real positions. Our work is supported by a logistics software editor Tedies and a transport company Upsilon. We work with Upsilon's truck routes data to carry our experiments. In fact, these trucks are equipped with TOMTOM GPSs that continuously save their tours data (positions, speeds, tachograph-information, etc.). We, then, retrieve these data to extract the real truck routes to work with. The aim of this work is to use the experience of the driver and the feedback of the real truck tours to validate GPS-coordinates of well geocoded addresses, and bring a correction to the badly geocoded addresses. Thereby, when a vehicle makes its tour, for each visited customer, the vehicle might have trouble with finding this customer’s address at most once. In other words, the vehicle would be wrong at most once for each customer’s address. Our method significantly improves the quality of the geocoding. Hence, we achieve to automatically correct an average of 70% of GPS-coordinates of a tour addresses. The rest of the GPS-coordinates are corrected in a manual way by giving the user indications to help him to correct them. This study shows the importance of taking into account the feedback of the trucks to gradually correct address geocoding errors. Indeed, the accuracy of customer’s address and its GPS-coordinates play a major role in tours optimization. Unfortunately, address writing errors are very frequent. This feedback is naturally and usually taken into account by transporters (by asking drivers, calling customers…), to learn about their tours and bring corrections to the upcoming tours. Hence, we develop a method to do a big part of that automatically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=driver%20experience%20feedback" title="driver experience feedback">driver experience feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=geocoding%20correction" title=" geocoding correction"> geocoding correction</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20truck%20tours" title=" real truck tours"> real truck tours</a> </p> <a href="https://publications.waset.org/abstracts/29071/using-real-truck-tours-feedback-for-address-geocoding-correction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">674</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">72</span> Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sharda%20Kumari">Sharda Kumari</a>, <a href="https://publications.waset.org/abstracts/search?q=Saiman%20Shetty"> Saiman Shetty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20vehicles" title="autonomous vehicles">autonomous vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20relationship%20management" title=" customer relationship management"> customer relationship management</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20experience" title=" customer experience"> customer experience</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20trucking" title=" autonomous trucking"> autonomous trucking</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title=" digital transformation"> digital transformation</a> </p> <a href="https://publications.waset.org/abstracts/164880/revolutionizing-autonomous-trucking-logistics-with-customer-relationship-management-cloud" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">71</span> Enhancing Transit Trade, Facilitation System and Supply Chain Security for Local, Regional and an International Corridor </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moh%E2%80%99d%20A.%20AL-Shboul">Moh’d A. AL-Shboul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently, and due to Arab spring and terrorism around the globe, pushing and driving most governments potentially to harmonize their border measures particularly the regional and an international transit trade within and among Customs Unions. The main purpose of this study is to investigate and provide an insight for monitoring and controlling the trade supply chain within and among different countries by using technological advancement (i.e. an electronic tracking system, etc.); furthermore, facilitate the local and intra-regional trade among countries through reviewing the recent trends and practical implementation of an electronic transit traffic and cargo that related to customs measures by introducing and supporting some case studies of several international and landlocked transit trade countries. The research methodology employed in this study was described as qualitative by conducting few interviews with managers, transit truck drivers, and traders and reviewing the related literature to collect qualitative data from secondary sources such as statistical reports, previous studies, etc. The results in this study show that Jordan and other countries around the globe that used an electronic tracking system for monitoring transit trade has led to a significant reduction in cost, effort and time in physical movement of goods internally and crossing through other countries. Therefore, there is no need to escort transit trucks by customs staff; hence, the rate of escort transit trucks is reduced by more than ninety percent, except the bulky and high duty goods. Electronic transit traffic has been increased; the average transit time journey has been reduced by more than seventy percent and has led to decrease in rates of smuggling up to fifty percent. The researcher recommends considering Jordan as regional and international office for tracking electronically and monitoring the transit trade for many considerations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electronic%20tracking%20system" title="electronic tracking system">electronic tracking system</a>, <a href="https://publications.waset.org/abstracts/search?q=facilitation%20system" title=" facilitation system"> facilitation system</a>, <a href="https://publications.waset.org/abstracts/search?q=regional%20and%20international%20corridor" title=" regional and international corridor"> regional and international corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20security" title=" supply chain security"> supply chain security</a>, <a href="https://publications.waset.org/abstracts/search?q=transit%20trade" title=" transit trade"> transit trade</a> </p> <a href="https://publications.waset.org/abstracts/55683/enhancing-transit-trade-facilitation-system-and-supply-chain-security-for-local-regional-and-an-international-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">70</span> Aerodynamic Analysis of Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20T.%20L.%20C%C3%B6uras%20Ford">E. T. L. Cöuras Ford</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20A.%20C.%20Vale"> V. A. C. Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20U.%20L.%20Mendes"> J. U. L. Mendes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two of the objective principal in the study of the aerodynamics of vehicles are the safety and the acting. Those objectives can be reached through the development of devices modify the drainage of air about of the vehicle and also through alterations in the way of the external surfaces. The front lowest profile of the vehicle, for instance, has great influence on the coefficient of aerodynamic penetration (Cx) and later on great part of the pressure distribution along the surface of the vehicle. The objective of this work was of analyzing the aerodynamic behavior that it happens on some types the trucks of vehicles, based on experimentation in aerodynamic tunnel, seeking to determine the aerodynamic efficiency of each one of them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic" title="aerodynamic">aerodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicles" title=" vehicles"> vehicles</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel" title=" wind tunnel"> wind tunnel</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a>, <a href="https://publications.waset.org/abstracts/search?q=acting" title=" acting"> acting</a> </p> <a href="https://publications.waset.org/abstracts/18365/aerodynamic-analysis-of-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tanker%20trucks&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tanker%20trucks&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tanker%20trucks&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=tanker%20trucks&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>