CINXE.COM

Search results for: plant barcoding

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: plant barcoding</title> <meta name="description" content="Search results for: plant barcoding"> <meta name="keywords" content="plant barcoding"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="plant barcoding" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="plant barcoding"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3521</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: plant barcoding</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3521</span> Identification and Differentiation of Fagonia Arabica and Fagonia Indica by Using DNA Barcode Region Matk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noshaba%20Dilbar">Noshaba Dilbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Aisha%20Tahir"> Aisha Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Amer%20Jamil"> Amer Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> During the last decade, DNA barcoding proved to be an authentic tool for discovery and identification of plants. In the present study, DNA barcoding of two species, Fagonia arabica and Fagonia indica was done for differentiation by using matK region. matK gene is considered as a universal barcode because of its easy alignment and high discrimination ability. In this study, matK yielded 100% sequencing results. The sequences from both plants were aligned at clustal W and observed that there is no nucleotide variation and polymorphism among both sequences. This was further analysed by BLAST which showed the similar sequences from different plants belonging to same family but didn’t find sequence of both species. Considering this, the resulted sequence was submitted by the name of Fagonia arabica with accession number KM276890. In the end, we analysed the results from BOLD which gave us the final conclusion that both plants are same as their matK sequences are 100% identical. In literature, both Fagonia indica and Fagonia arabica names are used for this plant but there is no clear differentiation has been observed in these plants. Results evaluate that Fagonia indica and Fagonia arabica are the alternative names of same plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagonia%20arabica" title=" Fagonia arabica"> Fagonia arabica</a>, <a href="https://publications.waset.org/abstracts/search?q=Fagonia%20indica" title=" Fagonia indica"> Fagonia indica</a>, <a href="https://publications.waset.org/abstracts/search?q=matK" title=" matK"> matK</a> </p> <a href="https://publications.waset.org/abstracts/122682/identification-and-differentiation-of-fagonia-arabica-and-fagonia-indica-by-using-dna-barcode-region-matk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3520</span> Unlocking the Genetic Code: Exploring the Potential of DNA Barcoding for Biodiversity Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ahmed%20Ahmed%20Odah">Mohammed Ahmed Ahmed Odah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA barcoding is a crucial method for assessing and monitoring species diversity amidst escalating threats to global biodiversity. The author explores DNA barcoding's potential as a robust and reliable tool for biodiversity assessment. It begins with a comprehensive review of existing literature, delving into the theoretical foundations, methodologies and applications of DNA barcoding. The suitability of various DNA regions, like the COI gene, as universal barcodes is extensively investigated. Additionally, the advantages and limitations of different DNA sequencing technologies and bioinformatics tools are evaluated within the context of DNA barcoding. To evaluate the efficacy of DNA barcoding, diverse ecosystems, including terrestrial, freshwater and marine habitats, are sampled. Extracted DNA from collected specimens undergoes amplification and sequencing of the target barcode region. Comparison of the obtained DNA sequences with reference databases allows for the identification and classification of the sampled organisms. Findings demonstrate that DNA barcoding accurately identifies species, even in cases where morphological identification proves challenging. Moreover, it sheds light on cryptic and endangered species, aiding conservation efforts. The author also investigates patterns of genetic diversity and evolutionary relationships among different taxa through the analysis of genetic data. This research contributes to the growing knowledge of DNA barcoding and its applicability for biodiversity assessment. The advantages of this approach, such as speed, accuracy and cost-effectiveness, are highlighted, along with areas for improvement. By unlocking the genetic code, DNA barcoding enhances our understanding of biodiversity, supports conservation initiatives and informs evidence-based decision-making for the sustainable management of ecosystems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity%20assessment" title=" biodiversity assessment"> biodiversity assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20code" title=" genetic code"> genetic code</a>, <a href="https://publications.waset.org/abstracts/search?q=species%20identification" title=" species identification"> species identification</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomic%20%20resolution" title=" taxonomic resolution"> taxonomic resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=next-generation%20sequencing" title=" next-generation sequencing"> next-generation sequencing</a> </p> <a href="https://publications.waset.org/abstracts/190376/unlocking-the-genetic-code-exploring-the-potential-of-dna-barcoding-for-biodiversity-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190376.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">25</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3519</span> Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Pretorius">E. Pretorius</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Viljoen"> A. M. Viljoen</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20van%20der%20Bank"> M. van der Bank</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Buchu" title="Buchu">Buchu</a>, <a href="https://publications.waset.org/abstracts/search?q=substitution" title=" substitution"> substitution</a>, <a href="https://publications.waset.org/abstracts/search?q=barcoding" title=" barcoding"> barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=BRONX%20algorithm" title=" BRONX algorithm"> BRONX algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=matK" title=" matK"> matK</a>, <a href="https://publications.waset.org/abstracts/search?q=ycf1" title=" ycf1"> ycf1</a>, <a href="https://publications.waset.org/abstracts/search?q=UPLC-MS" title=" UPLC-MS"> UPLC-MS</a> </p> <a href="https://publications.waset.org/abstracts/152450/use-of-dna-barcoding-and-uplc-ms-to-authenticate-agathosma-spp-in-south-african-herbal-products" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152450.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3518</span> Identification of Shark Species off The Nigerian Coast Using DNA Barcoding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Fola-Matthews">O. O. Fola-Matthews</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Soyinka"> O. O. Soyinka</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20N.%20Bitalo"> D. N. Bitalo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria is one of the major shark fishing nations in Africa, but its fisheries managers still record catch data in aggregates ‘sharks’ with no species-specific details. This is because most of the shark specimens look identical in morphology, and field identification of some closely related species is tricky. This study uses DNA barcoding as a method to identify shark species from five different landing areas off the Nigerian Coast. 100 dorsal fins were sampled in order to provide a Chondrichthyan sequence that would be matched to reference specimens in a DNA barcode database <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BOLD" title="BOLD">BOLD</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title=" DNA barcoding"> DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=nigeria" title=" nigeria"> nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=sharks" title=" sharks"> sharks</a> </p> <a href="https://publications.waset.org/abstracts/143574/identification-of-shark-species-off-the-nigerian-coast-using-dna-barcoding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3517</span> Application of a Synthetic DNA Reference Material for Optimisation of DNA Extraction and Purification for Molecular Identification of Medicinal Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mina%20Kalantarzadeh">Mina Kalantarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Claire%20Lockie-Williams"> Claire Lockie-Williams</a>, <a href="https://publications.waset.org/abstracts/search?q=Caroline%20Howard"> Caroline Howard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA barcoding is increasingly used for identification of medicinal plants worldwide. In the last decade, a large number of DNA barcodes have been generated, and their application in species identification explored. The success of DNA barcoding process relies on the accuracy of the results from polymerase chain reaction (PCR) amplification step which could be negatively affected due to a presence of inhibitors or degraded DNA in herbal samples. An established DNA reference material can be used to support molecular characterisation protocols and prove system suitability, for fast and accurate identification of plant species. The present study describes the use of a novel reference material, the trnH-psbA British Pharmacopoeia Nucleic Acid Reference Material (trnH-psbA BPNARM), which was produced to aid in the identification of Ocimum tenuiflorum L., a widely used herb. During DNA barcoding of O. tenuiflorum, PCR amplifications of isolated DNA produced inconsistent results, suggesting an issue with either the method or DNA quality of the tested samples. The trnH-psbA BPNARM was produced and tested to check for the issues caused during PCR amplification. It was added to the plant material as control DNA before extraction and was co-extracted and amplified by PCR. PCR analyses revealed that the amplification was not as successful as expected which suggested that the amplification is affected by presence of inhibitors co-extracted from plant materials. Various potential issues were assessed during DNA extraction and optimisations were made accordingly. A DNA barcoding protocol for O. tenuiflorum was published in the British Pharmacopoeia 2016, which included the reference sequence. The trnH-psbA BPNARM accelerated degradation test which investigates the stability of the reference material over time demonstrated that it has been stable when stored at 56 °C for a year. Using this protocol and trnH-psbA reference material provides a fast and accurate method for identification of O. tenuiflorum. The optimisations of the DNA extraction using the trnH-psbA BPNARM provided a signposting method which can assist in overcoming common problems encountered when using molecular methods with medicinal plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20extraction" title=" DNA extraction"> DNA extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleic%20acid%20reference%20material" title=" nucleic acid reference material"> nucleic acid reference material</a>, <a href="https://publications.waset.org/abstracts/search?q=trnH-psbA" title=" trnH-psbA"> trnH-psbA</a> </p> <a href="https://publications.waset.org/abstracts/75409/application-of-a-synthetic-dna-reference-material-for-optimisation-of-dna-extraction-and-purification-for-molecular-identification-of-medicinal-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3516</span> DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hayal%20Akyildirim%20Be%C4%9Fen">Hayal Akyildirim Beğen</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%96zg%C3%BCr%20Emi%CC%87na%C4%9Fao%C4%9Flu"> Özgür Emi̇nağaoğlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=campanula" title="campanula">campanula</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title=" DNA barcoding"> DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic" title=" endemic"> endemic</a>, <a href="https://publications.waset.org/abstracts/search?q=t%C3%BCrkiye" title=" türkiye"> türkiye</a>, <a href="https://publications.waset.org/abstracts/search?q=artvin" title=" artvin"> artvin</a> </p> <a href="https://publications.waset.org/abstracts/171316/dna-barcoding-of-tree-endemic-campanula-species-from-artvin-turkiye" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/171316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3515</span> DNA Barcoding Application in Study of Icthyo- Biodiversity in Rivers of Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asma%20Karim">Asma Karim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fish taxonomy plays a fundamental role in the study of biodiversity. However, traditional methods of fish taxonomy rely on morphological features, which can lead to confusion due to great similarities between closely related species. To overcome this limitation, modern taxonomy employs DNA barcoding as a species identification method. This involves using a short standardized mitochondrial DNA region as a barcode, specifically a 658 base pair fragment near the 5′ ends of the mitochondrial cytochrome c oxidase subunit 1 (CO1) gene, to exploit the diversity in this region for identification of species. To test the effectiveness and reliability of DNA barcoding, 25 fish specimens from nine different fish species found in various rivers of Pakistan were identified morphologically using a dichotomous key at the start of the study. Comprising nine freshwater fish species, including Mystus cavasius, Mystus bleekeri, Osteobrama cotio, Labeo rohita, Labeo culbasu, Labeo gonius, Cyprinus carpio, Catla catla and Cirrhinus mrigala from different rivers of Pakistan were used in the present study. DNA was extracted from one of the pectoral fins and a partial sequence of CO1 gene was amplified using the conventional PCR method. Analysis of the barcodes confirmed that genetically identified fishes were the same as those identified morphologically at the beginning of the study. The sequences were also analyzed for biodiversity and phylogenetic studies. Based on the results of the study, it can be concluded that DNA barcoding is an effective and reliable method for studying biodiversity and conducting phylogenetic analysis of different fish species in Pakistan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title="DNA barcoding">DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=fresh%20water%20fishes" title=" fresh water fishes"> fresh water fishes</a>, <a href="https://publications.waset.org/abstracts/search?q=taxonomy" title=" taxonomy"> taxonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=Pakistan" title=" Pakistan"> Pakistan</a> </p> <a href="https://publications.waset.org/abstracts/167772/dna-barcoding-application-in-study-of-icthyo-biodiversity-in-rivers-of-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3514</span> The Advantages of Using DNA-Barcoding for Determining the Fraud in Seafood</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elif%20Tugce%20Aksun%20Tumerkan">Elif Tugce Aksun Tumerkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Although seafood is an important part of human diet and categorized highly traded food industry internationally, it is remain overlooked generally in the global food security aspect. Food product authentication is the main interest in the aim of both avoids commercial fraud and to consider the risks that might be harmful to human health safety. In recent years, with increasing consumer demand for regarding food content and it's transparency, there are some instrumental analyses emerging for determining food fraud depend on some analytical methodologies such as proteomic and metabolomics. While, fish and seafood consumed as fresh previously, within advanced technology, processed or packaged seafood consumption have increased. After processing or packaging seafood, morphological identification is impossible when some of the external features have been removed. The main fish and seafood quality-related issues are the authentications of seafood contents such as mislabelling products which may be contaminated and replacement partly or completely, by lower quality or cheaper ones. For all mentioned reasons, truthful consistent and easily applicable analytical methods are needed for assurance the correct labelling and verifying of seafood products. DNA-barcoding methods become popular robust that used in taxonomic research for endangered or cryptic species in recent years; they are used for determining food traceability also. In this review, when comparing the other proteomic and metabolic analysis, DNA-based methods are allowing a chance to identification all type of food even as raw, spiced and processed products. This privilege caused by DNA is a comparatively stable molecule than protein and other molecules. Furthermore showing variations in sequence based on different species and founding in all organisms, make DNA-based analysis more preferable. This review was performed to clarify the main advantages of using DNA-barcoding for determining seafood fraud among other techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA-barcoding" title="DNA-barcoding">DNA-barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20analysis" title=" genetic analysis"> genetic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20fraud" title=" food fraud"> food fraud</a>, <a href="https://publications.waset.org/abstracts/search?q=mislabelling" title=" mislabelling"> mislabelling</a>, <a href="https://publications.waset.org/abstracts/search?q=packaged%20seafood" title=" packaged seafood"> packaged seafood</a> </p> <a href="https://publications.waset.org/abstracts/95287/the-advantages-of-using-dna-barcoding-for-determining-the-fraud-in-seafood" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95287.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3513</span> Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burcu%20Inal">Burcu Inal</a>, <a href="https://publications.waset.org/abstracts/search?q=Irfan%20Kandemir"> Irfan Kandemir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacterial%20endosymbionts" title="bacterial endosymbionts">bacterial endosymbionts</a>, <a href="https://publications.waset.org/abstracts/search?q=barcoding" title=" barcoding"> barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=black%20cherry%20aphid" title=" black cherry aphid"> black cherry aphid</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleotide%20diversity" title=" nucleotide diversity"> nucleotide diversity</a> </p> <a href="https://publications.waset.org/abstracts/96291/nucleotide-diversity-and-bacterial-endosymbionts-of-the-black-cherry-aphid-myzus-cerasi-fabricus-1775-hemiptera-aphididae-from-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3512</span> DNA Based Identification of Insect Vectors for Zoonotic Diseases From District Faisalabad, Pakistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zain%20Ul%20Abdin">Zain Ul Abdin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mirza%20Aizaz%20Asim"> Mirza Aizaz Asim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rao%20Sohail%20Ahmad%20Khan"> Rao Sohail Ahmad Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Luqman%20Amrao"> Luqman Amrao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fiaz%20Hussain"> Fiaz Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasooba%20Hira"> Hasooba Hira</a>, <a href="https://publications.waset.org/abstracts/search?q=Saqi%20Kosar%20Abbas"> Saqi Kosar Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The success of Integrated vector management programmes mainly depends on the correct identification of insect vector species involved in vector borne diseases. Based on molecular data the most important insect species involved as vectors for Zoonotic diseases in Pakistan were identified. The precise and accurate identification of such type of organism is only possible through molecular based techniques like “DNA barcoding”. Morphological species identification in insects at any life stage, is very challenging, therefore, DNA barcoding was used as a tool for rapid and accurate species identification in a wide variety of taxa across the globe and parallel studies revealed that DNA barcoding data can be effectively used in resolving taxonomic ambiguities, detection of cryptic diversity, invasion biology, description of new species etc. A comprehensive survey was carried out for the collection of insects (both adult and immature stages) in district Faisalabad, Pakistan and their DNA was extracted and mitochondrial cytochrome oxidase subunit I (COI-59) barcode sequences was used for molecular identification of immature and adult life stage.This preliminary research work opens new frontiers for developing sustainable insect vectors management programmes for saving lives of mankind from fatal diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zoonotic%20diseases" title="zoonotic diseases">zoonotic diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=cytochrome%20oxidase" title=" cytochrome oxidase"> cytochrome oxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=and%20insect%20vectors" title=" and insect vectors"> and insect vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=CO1" title=" CO1"> CO1</a> </p> <a href="https://publications.waset.org/abstracts/153916/dna-based-identification-of-insect-vectors-for-zoonotic-diseases-from-district-faisalabad-pakistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3511</span> DNA Barcoding for Identification of Dengue Vectors from Assam and Arunachal Pradesh: North-Eastern States in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Monika%20Soni">Monika Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=Shovonlal%20Bhowmick"> Shovonlal Bhowmick</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Bhattacharya"> Chandra Bhattacharya</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitendra%20Sharma"> Jitendra Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Prafulla%20Dutta"> Prafulla Dutta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagadish%20Mahanta"> Jagadish Mahanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aedes aegypti and Aedes albopictus are considered as two major vectors to transmit dengue virus. In North-east India, two states viz. Assam and Arunachal Pradesh are known to be high endemic zone for dengue and Chikungunya viral infection. The taxonomical classification of medically important vectors are important for mapping of actual evolutionary trends and epidemiological studies. However, misidentification of mosquito species in field-collected mosquito specimens could have a negative impact which may affect vector-borne disease control policy. DNA barcoding is a prominent method to record available species, differentiate from new addition and change of population structure. In this study, a combined approach of a morphological and molecular technique of DNA barcoding was adopted to explore sequence variation in mitochondrial cytochrome c oxidase subunit I (COI) gene within dengue vectors. The study has revealed the map distribution of the dengue vector from two states i.e. Assam and Arunachal Pradesh, India. Approximate five hundred mosquito specimens were collected from different parts of two states, and their morphological features were compared with the taxonomic keys. The analysis of detailed taxonomic study revealed identification of two species Aedes aegypti and Aedes albopictus. The species aegypti comprised of 66.6% of the specimen and represented as dominant dengue vector species. The sequences obtained through standard DNA barcoding protocol were compared with public databases, viz. GenBank and BOLD. The sequences of all Aedes albopictus have shown 100% similarity whereas sequence of Aedes aegypti has shown 99.77 - 100% similarity of COI gene with that of different geographically located same species based on BOLD database search. From dengue prevalent different geographical regions fifty-nine sequences were retrieved from NCBI and BOLD databases of the same and related taxa to determine the evolutionary distance model based on the phylogenetic analysis. Neighbor-Joining (NJ) and Maximum Likelihood (ML) phylogenetic tree was constructed in MEGA6.06 software with 1000 bootstrap replicates using Kimura-2-Parameter model. Data were analyzed for sequence divergence and found that intraspecific divergence ranged from 0.0 to 2.0% and interspecific divergence ranged from 11.0 to 12.0%. The transitional and transversional substitutions were tested individually. The sequences were deposited in NCBI: GenBank database. This observation claimed the first DNA barcoding analysis of Aedes mosquitoes from North-eastern states in India and also confirmed the range expansion of two important mosquito species. Overall, this study insight into the molecular ecology of the dengue vectors from North-eastern India which will enhance the understanding to improve the existing entomological surveillance and vector incrimination program. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COI" title="COI">COI</a>, <a href="https://publications.waset.org/abstracts/search?q=dengue%20vectors" title=" dengue vectors"> dengue vectors</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title=" DNA barcoding"> DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20identification" title=" molecular identification"> molecular identification</a>, <a href="https://publications.waset.org/abstracts/search?q=North-east%20India" title=" North-east India"> North-east India</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetics" title=" phylogenetics"> phylogenetics</a> </p> <a href="https://publications.waset.org/abstracts/57513/dna-barcoding-for-identification-of-dengue-vectors-from-assam-and-arunachal-pradesh-north-eastern-states-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3510</span> Valorizing Traditional Greek Wheat Varieties: Use of DNA Barcoding for Species Identification and Biochemical Analysis of Their Nutritional Value</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Niki%20Mougiou">Niki Mougiou</a>, <a href="https://publications.waset.org/abstracts/search?q=Spyros%20Didos"> Spyros Didos</a>, <a href="https://publications.waset.org/abstracts/search?q=Ioanna%20Bouzouka"> Ioanna Bouzouka</a>, <a href="https://publications.waset.org/abstracts/search?q=Athina%20Theodorakopoulou"> Athina Theodorakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=Michael%20Kornaros"> Michael Kornaros</a>, <a href="https://publications.waset.org/abstracts/search?q=Anagnostis%20Argiriou"> Anagnostis Argiriou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Grains from traditional old Greek cereal varieties were evaluated and compared to commercial cultivars, like Simeto and Mexicali 81, in an effort to valorize local products and assess the nutritional benefits of ancient grains. The samples studied in this research included common wheat, durum wheat, emmer (Triticum dicoccum) and einkorn (Triticum monococcum), as well as barley, oats and rye grains. The Internal Transcribed Spacer 2 (ITS2) nuclear region was amplified and sequenced as a barcode for species identification, allowing the verification of the label of each product. After that, the total content of bound and free polyphenols and flavonoids, as well as the antioxidant activity of bound and free compounds, was measured by classic colorimetric assays using Folin- Ciocalteu, AlCl₃ and DPPH‧ (2,2-diphenyl-1-picrylhydrazyl) reagents, respectively. Moreover, the level of variation of fatty acids was determined in all samples by gas chromatography. The results showed that local old landraces of emmer and einkorn had the highest polyphenol content, 2.4 and 3.3 times higher than the average value of 5 durum wheat samples, respectively. Regarding the total flavonoid content, einkorn had 2.6-fold and emmer 2-fold higher values than common wheat. The antioxidant activity of free or bound compounds was at the same level, at about 20-30% higher in both einkorn and emmer compared to common wheat. Five main fatty acids were detected in all samples, in order of decreasing amounts: linoleic (C18:2) > palmitic (C16:0) ≈ , oleic (C18:1) > eicosenoic (C20:1, cis-11) > stearic (C18:0). Emmer and einkorn showed a higher diversity of fatty acids and a higher content of mono-unsaturated fatty acids compared to common wheat. The results of this study demonstrate the high nutritional value of old local landraces that have been put aside by more productive, yet with lower qualitative characteristics, commercial cultivars, underlining the importance of maintaining sustainable agricultural practices to ensure their continued cultivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochemical%20analysis" title="biochemical analysis">biochemical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20value" title=" nutritional value"> nutritional value</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20barcoding" title=" plant barcoding"> plant barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat" title=" wheat"> wheat</a> </p> <a href="https://publications.waset.org/abstracts/165737/valorizing-traditional-greek-wheat-varieties-use-of-dna-barcoding-for-species-identification-and-biochemical-analysis-of-their-nutritional-value" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3509</span> Iterative Design Process for Development and Virtual Commissioning of Plant Control Software</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thorsten%20Prante">Thorsten Prante</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Sch%C3%B6ch"> Robert Schöch</a>, <a href="https://publications.waset.org/abstracts/search?q=Ruth%20Fleisch"> Ruth Fleisch</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaheh%20Khachatouri"> Vaheh Khachatouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Walch"> Alexander Walch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of industrial plant control software is a complex and often very expensive task. One of the core problems is that a lot of the implementation and adaptation work can only be done after the plant hardware has been installed. In this paper, we present our approach to virtually developing and validating plant-level control software of production plants. This way, plant control software can be virtually commissioned before actual ramp-up of a plant, reducing actual commissioning costs and time. Technically, this is achieved by linking the actual plant-wide process control software (often called plant server) and an elaborate virtual plant model together to form an emulation system. Method-wise, we are suggesting a four-step iterative process with well-defined increments and time frame. Our work is based on practical experiences from planning to commissioning and start-up of several cut-to-size plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iterative%20system%20design" title="iterative system design">iterative system design</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20plant%20engineering" title=" virtual plant engineering"> virtual plant engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20control%20software" title=" plant control software"> plant control software</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20and%20emulation" title=" simulation and emulation"> simulation and emulation</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20commissioning" title=" virtual commissioning"> virtual commissioning</a> </p> <a href="https://publications.waset.org/abstracts/14534/iterative-design-process-for-development-and-virtual-commissioning-of-plant-control-software" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3508</span> Chemical Analyses of Aspillia kotschyi (Sch. bipex, hochst) Oliv Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdu%20Umar%20Adamu">Abdu Umar Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Maimuna%20Ibrahim"> Maimuna Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this present work, a locally used medicinal plant, namely: Aspillia kotschyi belonging to the Compositae family, was extracted using methanolic and petroleum ether 60-80OC. The extracts were subjected to microwave plasma Atomic Emission Spectroscopy (MPES) to determine the following metals Se, Ag, Fe, Cu, Ni, As, Co, Mn, and Al. From the result, Ag, Cu, Ni, and Co are of very negligible concentrations in the plant extract. However, Seleniun is found to be 0.530 (mg/kg) in the plant methanolic extract. Iron, on the other hand, was found to be 3.712 (mg/kg) in the plant extract. Arsenic was found to be 0.506 and 1.301 (mg/kg) in both methanolic and petroleum spirit extracts of the plant material. The concentration of aluminium was found to be of the range of 3.050mg/kg in the plant. Functional group analysis of the plant extracts was also carried out using Fourier transform infrared (FTIR) spectroscopy which showed the presence of some functional groups. The results of this study suggest some merit in the popular use of the plant in herbal medicine. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspillia%20kotschyi" title="Aspillia kotschyi">Aspillia kotschyi</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIR" title=" FTIR"> FTIR</a>, <a href="https://publications.waset.org/abstracts/search?q=MPES" title=" MPES"> MPES</a> </p> <a href="https://publications.waset.org/abstracts/155497/chemical-analyses-of-aspillia-kotschyi-sch-bipex-hochst-oliv-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3507</span> Untangling the Greek Seafood Market: Authentication of Crustacean Products Using DNA-Barcoding Methodologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Giagkazoglou">Z. Giagkazoglou</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Loukovitis"> D. Loukovitis</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Gubili"> C. Gubili</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Imsiridou"> A. Imsiridou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the increase in human population, demand for seafood has increased. Despite the strict labeling regulations that exist for most marketed species in the European Union, seafood substitution remains a persistent global issue. Food fraud occurs when food products are traded in a false or misleading way. Mislabeling occurs when one species is substituted and traded under the name of another, and it can be intentional or unintentional. Crustaceans are one of the most regularly consumed seafood in Greece. Shrimps, prawns, lobsters, crayfish, and crabs are considered a delicacy and can be encountered in a variety of market presentations (fresh, frozen, pre-cooked, peeled, etc.). With most of the external traits removed, products as such are susceptible to species substitution. DNA barcoding has proven to be the most accurate method for the detection of fraudulent seafood products. To our best knowledge, the DNA barcoding methodology is used for the first time in Greece, in order to investigate the labeling practices for crustacean products available in the market. A total of 100 tissue samples were collected from various retailers and markets across four Greek cities. In an effort to cover the highest range of products possible, different market presentations were targeted (fresh, frozen and cooked). Genomic DNA was extracted using the DNeasy Blood & Tissue Kit, according to the manufacturer's instructions. The mitochondrial gene selected as the target region of the analysis was the cytochrome c oxidase subunit I (COI). PCR products were purified and sequenced using an ABI 3500 Genetic Analyzer. Sequences were manually checked and edited using BioEdit software and compared against the ones available in GenBank and BOLD databases. Statistical analyses were conducted in R and PAST software. For most samples, COI amplification was successful, and species-level identification was possible. The preliminary results estimate moderate mislabeling rates (25%) in the identified samples. Mislabeling was most commonly detected in fresh products, with 50% of the samples in this category labeled incorrectly. Overall, the mislabeling rates detected by our study probably relate to some degree of unintentional misidentification, and lack of knowledge surrounding the legal designations by both retailers and consumers. For some species of crustaceans (i.e. Squila mantis) the mislabeling appears to be also affected by the local labeling practices. Across Greece, S. mantis is sold in the market under two common names, but only one is recognized by the country's legislation, and therefore any mislabeling is probably not profit-motivated. However, the substitution of the speckled shrimp (Metapenaus monoceros) for the distinct, giant river prawn (Macrobranchium rosenbergii), is a clear example of deliberate fraudulent substitution, aiming for profit. To our best knowledge, no scientific study investigating substitution and mislabeling rates in crustaceans has been conducted in Greece. For a better understanding of Greece's seafood market, similar DNA barcoding studies in other regions with increased touristic importance (e.g., the Greek islands) should be conducted. Regardless, the expansion of the list of species-specific designations for crustaceans in the country is advised. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=COI%20gene" title="COI gene">COI gene</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20fraud" title=" food fraud"> food fraud</a>, <a href="https://publications.waset.org/abstracts/search?q=labelling%20control" title=" labelling control"> labelling control</a>, <a href="https://publications.waset.org/abstracts/search?q=molecular%20identification" title=" molecular identification"> molecular identification</a> </p> <a href="https://publications.waset.org/abstracts/181134/untangling-the-greek-seafood-market-authentication-of-crustacean-products-using-dna-barcoding-methodologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3506</span> Plant Disease Detection Using Image Processing and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanskar">Sanskar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Pal"> Abhinav Pal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aryush%20Gupta"> Aryush Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushil%20Kumar%20Mishra"> Sushil Kumar Mishra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the critical and tedious assignments in agricultural practices is the detection of diseases on vegetation. Agricultural production is very important in today’s economy because plant diseases are common, and early detection of plant diseases is important in agriculture. Automatic detection of such early diseases is useful because it reduces control efforts in large productive farms. Using digital image processing and machine learning algorithms, this paper presents a method for plant disease detection. Detection of the disease occurs on different leaves of the plant. The proposed system for plant disease detection is simple and computationally efficient, requiring less time than learning-based approaches. The accuracy of various plant and foliar diseases is calculated and presented in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plant%20diseases" title="plant diseases">plant diseases</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a> </p> <a href="https://publications.waset.org/abstracts/194420/plant-disease-detection-using-image-processing-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3505</span> Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khomkrit%20Mongkhuntod">Khomkrit Mongkhuntod</a>, <a href="https://publications.waset.org/abstracts/search?q=Chatchawal%20Chaichana"> Chatchawal Chaichana</a>, <a href="https://publications.waset.org/abstracts/search?q=Atipoang%20Nuntaphan"> Atipoang Nuntaphan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=feed%20water%20heater" title="feed water heater">feed water heater</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant%20efficiency" title=" power plant efficiency"> power plant efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20heat%20rate" title=" plant heat rate"> plant heat rate</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency%20analysis" title=" thermal efficiency analysis"> thermal efficiency analysis</a> </p> <a href="https://publications.waset.org/abstracts/65534/thermal-efficiency-analysis-and-optimal-of-feed-water-heater-for-mae-moh-thermal-power-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3504</span> Simulation Modeling and Analysis of In-Plant Logistics at a Cement Manufacturing Plant in India </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kamble">Sachin Kamble</a>, <a href="https://publications.waset.org/abstracts/search?q=Shradha%20Gawankar"> Shradha Gawankar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the findings of successful implementation of Business Process Reengineering (BPR) of cement dispatch activities in a cement manufacturing plant located in India. Simulation model was developed for the purpose of identifying and analyzing the areas for improvement. The company was facing a problem of low throughput rate and subsequent forced stoppages of the plant leading to a high production loss of 15000MT per month. It was found from the study that the present systems and procedures related to the in-plant logistics plant required significant changes. The major recommendations included process improvement at the entry gate, reducing the cycle time at the security gate and installation of an additional weigh bridge. This paper demonstrates how BPR can be implemented for improving the in-plant logistics process. Various recommendations helped the plant to increase its throughput by 14%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-plant%20logistics" title="in-plant logistics">in-plant logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20logistics" title=" cement logistics"> cement logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation%20modelling" title=" simulation modelling"> simulation modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20process%20re-engineering" title=" business process re-engineering"> business process re-engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/45289/simulation-modeling-and-analysis-of-in-plant-logistics-at-a-cement-manufacturing-plant-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">300</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3503</span> A Life Cycle Assessment (LCA) of Aluminum Production Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alaa%20Al%20Hawari">Alaa Al Hawari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Khader"> Mohammad Khader</a>, <a href="https://publications.waset.org/abstracts/search?q=Wael%20El%20Hasan"> Wael El Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Alijla"> Mahmoud Alijla</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Manawi"> Ammar Manawi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaki%20Benamour"> Abdelbaki Benamour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The production of aluminium alloys and ingots -starting from the processing of alumina to aluminium, and the final cast product- was studied using a Life Cycle Assessment (LCA) approach. The studied aluminium supply chain consisted of a carbon plant, a reduction plant, a casting plant, and a power plant. In the LCA model, the environmental loads of the different plants for the production of 1 ton of aluminium metal were investigated. The impact of the aluminium production was assessed in eight impact categories. The results showed that for all of the impact categories the power plant had the highest impact only in the cases of Human Toxicity Potential (HTP) the reduction plant had the highest impact and in the Marine Aquatic Eco-Toxicity Potential (MAETP) the carbon plant had the highest impact. Furthermore, the impact of the carbon plant and the reduction plant combined was almost the same as the impact of the power plant in the case of the Acidification Potential (AP). The carbon plant had a positive impact on the environment when it comes to the Eutrophication Potential (EP) due to the production of clean water in the process. The natural gas based power plant used in the case study had 8.4 times less negative impact on the environment when compared to the heavy fuel based power plant and 10.7 times less negative impact when compared to the hard coal based power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminium%20production" title=" aluminium production"> aluminium production</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20chain" title=" supply chain"> supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20impacts" title=" ecological impacts"> ecological impacts</a> </p> <a href="https://publications.waset.org/abstracts/8005/a-life-cycle-assessment-lca-of-aluminum-production-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3502</span> Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angelos%20Kaminis">Angelos Kaminis</a>, <a href="https://publications.waset.org/abstracts/search?q=Dakotah%20Stirnweis"> Dakotah Stirnweis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=symbiotic" title="symbiotic">symbiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=robotics" title=" robotics"> robotics</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous" title=" autonomous"> autonomous</a>, <a href="https://publications.waset.org/abstracts/search?q=plant-care" title=" plant-care"> plant-care</a>, <a href="https://publications.waset.org/abstracts/search?q=companion" title=" companion"> companion</a> </p> <a href="https://publications.waset.org/abstracts/147471/exploring-the-effectiveness-of-robotic-companions-through-the-use-of-symbiotic-autonomous-plant-care-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147471.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3501</span> Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mads%20H.%20Clausen">Mads H. Clausen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oligosaccharides" title="oligosaccharides">oligosaccharides</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate%20chemistry" title=" carbohydrate chemistry"> carbohydrate chemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20cell%20walls" title=" plant cell walls"> plant cell walls</a>, <a href="https://publications.waset.org/abstracts/search?q=carbohydrate-acting%20enzymes" title=" carbohydrate-acting enzymes"> carbohydrate-acting enzymes</a> </p> <a href="https://publications.waset.org/abstracts/13547/synthesis-and-application-of-oligosaccharides-representing-plant-cell-wall-polysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13547.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3500</span> Diversity of Rhopalocera in Different Vegetation Types of PC Hills, Philippines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sean%20E.%20Gregory%20P.%20Igano">Sean E. Gregory P. Igano</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranz%20Brendan%20D.%20Gabor"> Ranz Brendan D. Gabor</a>, <a href="https://publications.waset.org/abstracts/search?q=Baron%20Arthur%20M.%20Cabalona"> Baron Arthur M. Cabalona</a>, <a href="https://publications.waset.org/abstracts/search?q=Numeriano%20Amer%20E.%20Gutierrez"> Numeriano Amer E. Gutierrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Distribution patterns and abundance of butterflies respond in the long term to variations in habitat quality. Studying butterfly populations would give evidence on how vegetation types influence their diversity. In this research, the Rhopalocera diversity of PC Hills was assessed to provide information on diversity trends in varying vegetation types. PC Hills, located in Palo, Leyte, Philippines, is a relatively undisturbed area having forests and rivers. Despite being situated nearby inhabited villages; the area is observed to have a possible rich butterfly population. To assess the Rhopalocera species richness and diversity, transect sampling technique was applied to monitor and document butterflies. Transects were placed in locations that can be mapped, described and relocated easily. Three transects measuring three hundred meters each with a 5-meter diameter were established based on the different vegetation types present. The three main vegetation types identified were the agroecosystem (transect 1), dipterocarp forest (transect 2), and riparian (transect 3). Sample collections were done only from 9:00 A.M to 3:00 P.M. under warm and bright weather, with no more than moderate winds and when it was not raining. When weather conditions did not permit collection, it was moved to another day. A GPS receiver was used to record the location of the selected sample sites and the coordinates of where each sample was collected. Morphological analysis was done for the first phase of the study to identify the voucher specimen to the lowest taxonomic level possible using books about butterfly identification guides and species lists as references. For the second phase, DNA barcoding will be used to further identify the voucher specimen into the species taxonomic level. After eight (8) sampling sessions, seven hundred forty-two (742) individuals were seen, and twenty-two (22) Rhopalocera genera were identified through morphological identification. Nymphalidae family of genus Ypthima and the Pieridae family of genera Eurema and Leptosia were the most dominant species observed. Twenty (20) of the thirty-one (31) voucher specimen were already identified to their species taxonomic level using DNA Barcoding. Shannon-Weiner index showed that the highest diversity level was observed in the third transect (H’ = 2.947), followed by the second transect (H’ = 2.6317) and the lowest being in the first transect (H’ = 1.767). This indicates that butterflies are likely to inhabit dipterocarp and riparian vegetation types than agroecosystem, which influences their species composition and diversity. Moreover, the appearance of a river in the riparian vegetation supported its diversity value since butterflies have the tendency to fly into areas near rivers. Species identification of other voucher specimen will be done in order to compute the overall species richness in PC Hills. Further butterfly sampling sessions of PC Hills is recommended for a more reliable diversity trend and to discover more butterfly species. Expanding the research by assessing the Rhopalocera diversity in other locations should be considered along with studying factors that affect butterfly species composition other than vegetation types. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distribution%20patterns" title="distribution patterns">distribution patterns</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20barcoding" title=" DNA barcoding"> DNA barcoding</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20analysis" title=" morphological analysis"> morphological analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhopalocera" title=" Rhopalocera"> Rhopalocera</a> </p> <a href="https://publications.waset.org/abstracts/99781/diversity-of-rhopalocera-in-different-vegetation-types-of-pc-hills-philippines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3499</span> Efficient Use of Energy through Incorporation of a Gas Turbine in Methanol Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Azadi">M. Azadi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Tahouni"> N. Tahouni</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Panjeshahi"> M. H. Panjeshahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A techno-economic evaluation for efficient use of energy in a large scale industrial plant of methanol is carried out. This assessment is based on integration of a gas turbine with an existing plant of methanol in which the outlet gas products of exothermic reactor is expanded to power generation. Also, it is decided that methanol production rate is constant through addition of power generation system to the existing methanol plant. Having incorporated a gas turbine with the existing plant, the economic results showed total investment of MUSD 16.9, energy saving of 3.6 MUSD/yr with payback period of approximately 4.7 years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20saving" title="energy saving">energy saving</a>, <a href="https://publications.waset.org/abstracts/search?q=methanol" title=" methanol"> methanol</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20turbine" title=" gas turbine"> gas turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20generation" title=" power generation"> power generation</a> </p> <a href="https://publications.waset.org/abstracts/13263/efficient-use-of-energy-through-incorporation-of-a-gas-turbine-in-methanol-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">469</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3498</span> Shape Optimization of Header Pipes in Power Plants for Enhanced Efficiency and Environmental Sustainability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Cherif%20Megri">Ahmed Cherif Megri</a>, <a href="https://publications.waset.org/abstracts/search?q=HossamEldin%20ElSherif"> HossamEldin ElSherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a power plant, the header pipe plays a pivotal role in optimizing the performance of diverse systems by serving as a central conduit for the collection and distribution of steam within the plant. This paper investigates the significance of header pipes within power plant setups, highlighting their critical influence on reliability, efficiency, and the performance of the power plant as a whole. The concept of shape optimization emerges as a crucial factor in power plant design and operation, with the potential to maximize performance while minimizing the use of materials. Shape optimization not only enhances efficiency but also contributes to reducing the environmental footprint of power plant installations. In this paper, we initially developed a methodology designed for optimizing header shapes with the primary goal of reducing the usage of costly new alloy materials and lowering the overall maintenance operation expenses. Secondly, we conducted a case study based on an authentic header sourced from an operational power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shape%20optimization" title="shape optimization">shape optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=header" title=" header"> header</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=inconel%20alloy" title=" inconel alloy"> inconel alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20optimization" title=" structural optimization"> structural optimization</a> </p> <a href="https://publications.waset.org/abstracts/174024/shape-optimization-of-header-pipes-in-power-plants-for-enhanced-efficiency-and-environmental-sustainability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174024.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3497</span> Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebuwa%20Osagie">Ebuwa Osagie</a>, <a href="https://publications.waset.org/abstracts/search?q=Chet%20Biliyok"> Chet Biliyok</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeung%20Hoi"> Yeung Hoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20gas-fired" title="natural gas-fired">natural gas-fired</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant" title=" power plant"> power plant</a>, <a href="https://publications.waset.org/abstracts/search?q=MEA" title=" MEA"> MEA</a>, <a href="https://publications.waset.org/abstracts/search?q=CO2%20capture" title=" CO2 capture"> CO2 capture</a>, <a href="https://publications.waset.org/abstracts/search?q=modelling" title=" modelling"> modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/36464/modelling-and-simulation-of-natural-gas-fired-power-plant-integrated-to-a-co2-capture-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36464.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3496</span> Effect of Three Sand Types on Potato Vegetative Growth and Yield</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shatha%20A.%20Yousif">Shatha A. Yousif</a>, <a href="https://publications.waset.org/abstracts/search?q=Qasim%20M.%20Zamil"> Qasim M. Zamil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hasan%20Y.%20Al%20Muhi"> Hasan Y. Al Muhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20A.%20Al%20Shammari"> Jamal A. Al Shammari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato (Solanum tuberosum L.) is one of the major vegetable crops that are grown world wide because of its economic importance. This experiment investigated the effect of local sands (River Base, Al-Ekader and Karbala) on number and total weight of mini tubers. Statistical analysis revealed that there were no significant differences among sand cultures in number of stem/plant, chlorophyll index and tubers dry weight. River Base sand had the highest plant height (74.9 cm), leaf number/plant number (39.3), leaf area (84.4 dcm2⁄plant), dry weight/plant (26.31), tubers number/plant (8.5), tubers weight/plant (635.53 gm) and potato tuber yields/trove (28.60 kg), whereas the Karbala sand had lower performance. All the characters had positive and significant correlation with yields except the traits number of stem and tuber dry weight. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=correlation" title="correlation">correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a>, <a href="https://publications.waset.org/abstracts/search?q=sand%20culture" title=" sand culture"> sand culture</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/25112/effect-of-three-sand-types-on-potato-vegetative-growth-and-yield" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">476</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3495</span> Nuclear Power Plant Radioactive Effluent Discharge Management in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Yang">Jie Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Qifu%20Cheng"> Qifu Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yafang%20Liu"> Yafang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhijie%20Gu"> Zhijie Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Controlled emissions of effluent from nuclear power plants are an important means of ensuring environmental safety. In order to fully grasp the actual discharge level of nuclear power plant in China's nuclear power plant in the pressurized water reactor and heavy water reactor, it will use the global average nuclear power plant effluent discharge as a reference to the standard analysis of China's nuclear power plant environmental discharge status. The results show that the average normalized emission of liquid tritium in PWR nuclear power plants in China is slightly higher than the global average value, and the other nuclides emissions are lower than the global average values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radioactive%20effluent" title="radioactive effluent">radioactive effluent</a>, <a href="https://publications.waset.org/abstracts/search?q=HWR" title=" HWR"> HWR</a>, <a href="https://publications.waset.org/abstracts/search?q=PWR" title=" PWR"> PWR</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20power%20plant" title=" nuclear power plant"> nuclear power plant</a> </p> <a href="https://publications.waset.org/abstracts/81396/nuclear-power-plant-radioactive-effluent-discharge-management-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">243</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3494</span> Performance of Derna Steam Power Plant at Varying Super-Heater Operating Conditions Based on Exergy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Idris%20Elfeituri">Idris Elfeituri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the current study, energy and exergy analysis of a 65 MW steam power plant was carried out. This study investigated the effect of variations of overall conductance of the super heater on the performance of an existing steam power plant located in Derna, Libya. The performance of the power plant was estimated by a mathematical modelling which considers the off-design operating conditions of each component. A fully interactive computer program based on the mass, energy and exergy balance equations has been developed. The maximum exergy destruction has been found in the steam generation unit. A 50% reduction in the design value of overall conductance of the super heater has been achieved, which accordingly decreases the amount of the net electrical power that would be generated by at least 13 MW, as well as the overall plant exergy efficiency by at least 6.4%, and at the same time that would cause an increase of the total exergy destruction by at least 14 MW. The achieved results showed that the super heater design and operating conditions play an important role on the thermodynamics performance and the fuel utilization of the power plant. Moreover, these considerations are very useful in the process of the decision that should be taken at the occasions of deciding whether to replace or renovate the super heater of the power plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Exergy" title="Exergy">Exergy</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B%20Steam%20power%20plant%3B%20Off-design." title=" Fouling; Steam power plant; Off-design."> Fouling; Steam power plant; Off-design.</a>, <a href="https://publications.waset.org/abstracts/search?q=Fouling%3B" title=" Fouling;"> Fouling;</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-heater" title=" Super-heater"> Super-heater</a>, <a href="https://publications.waset.org/abstracts/search?q=Steam%20power%20plant" title=" Steam power plant"> Steam power plant</a> </p> <a href="https://publications.waset.org/abstracts/60015/performance-of-derna-steam-power-plant-at-varying-super-heater-operating-conditions-based-on-exergy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3493</span> The Techno-Economic Comparison of Solar Power Generation Methods for Turkish Republic of North Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Dagbasi">Mustafa Dagbasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Olusola%20Bamisile"> Olusola Bamisile</a>, <a href="https://publications.waset.org/abstracts/search?q=Adii%20Chinedum"> Adii Chinedum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this work is to examine and compare the economic and environmental feasibility of 40MW photovoltaic (PV) power plant and 40MW parabolic trough (PT) power plant to be installed in two different cities, namely Nicosia and Famagusta in Turkish Republic of Northern Cyprus (TRNC). The need for using solar power technology around the world is also emphasized. Solar radiation and sunshine data for Nicosia and Famagusta are considered and analyzed to assess the distribution of solar radiation, sunshine duration, and air temperature. Also, these two different technologies with same rated power of 40MW will be compared with the performance of the proposed Solar Power Plant at Bari, Italy. The project viability analysis is performed using System Advisor Model (SAM) through Annual Energy Production and economic parameters for both cities. It is found that for the two cities; Nicosia and Famagusta, the investment is feasible for both 40MW PV power plant and 40MW PT power plant. From the techno-economic analysis of these two different solar power technologies having same rated power and under the same environmental conditions, PT plants produce more energy than PV plant. It is also seen that if a PT plant is installed near an existing steam turbine power plant, the steam from the PT system can be used to run this turbine which makes it more feasible to invest. The high temperatures that are used to produce steam for the turbines in the PT plant system can be supplemented with a secondary plant based on natural gas or other biofuels and can be used as backup. Although the initial investment of PT plant is higher, it has higher economic return and occupies smaller area compared to PV plant of the same capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20power" title="solar power">solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20plant" title=" photovoltaic plant"> photovoltaic plant</a>, <a href="https://publications.waset.org/abstracts/search?q=parabolic%20trough%20plant" title=" parabolic trough plant"> parabolic trough plant</a>, <a href="https://publications.waset.org/abstracts/search?q=techno-economic%20analysis" title=" techno-economic analysis"> techno-economic analysis</a> </p> <a href="https://publications.waset.org/abstracts/47894/the-techno-economic-comparison-of-solar-power-generation-methods-for-turkish-republic-of-north-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3492</span> Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Larbi%20Hammadi">Larbi Hammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20El%20Bari%20Tidjani"> Abdellatif El Bari Tidjani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=El-Karma%20wastewater" title="El-Karma wastewater">El-Karma wastewater</a>, <a href="https://publications.waset.org/abstracts/search?q=TSS%20concentrations" title=" TSS concentrations"> TSS concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%20and%20BOD5" title=" COD and BOD5"> COD and BOD5</a>, <a href="https://publications.waset.org/abstracts/search?q=COD%2FBOD5%20ratio" title=" COD/BOD5 ratio"> COD/BOD5 ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=treatment" title=" treatment"> treatment</a> </p> <a href="https://publications.waset.org/abstracts/87940/analysis-and-treatment-of-sewage-treatment-plant-wastewater-of-el-karma-oran" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87940.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=117">117</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=118">118</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=plant%20barcoding&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10