CINXE.COM
Search results for: a stationary random acoustic source
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: a stationary random acoustic source</title> <meta name="description" content="Search results for: a stationary random acoustic source"> <meta name="keywords" content="a stationary random acoustic source"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="a stationary random acoustic source" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="a stationary random acoustic source"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7342</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: a stationary random acoustic source</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7342</span> Estimating 3D-Position of a Stationary Random Acoustic Source Using Bispectral Analysis of 4-Point Detected Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katsumi%20Hirata">Katsumi Hirata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To develop the useful acoustic environmental recognition system, the method of estimating 3D-position of a stationary random acoustic source using bispectral analysis of 4-point detected signals is proposed. The method uses information about amplitude attenuation and propagation delay extracted from amplitude ratios and angles of auto- and cross-bispectra of the detected signals. It is expected that using bispectral analysis affects less influence of Gaussian noises than using conventional power spectral one. In this paper, the basic principle of the method is mentioned first, and its validity and features are considered from results of the fundamental experiments assumed ideal circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=4-point%20detection" title="4-point detection">4-point detection</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source" title=" a stationary random acoustic source"> a stationary random acoustic source</a>, <a href="https://publications.waset.org/abstracts/search?q=auto-%20and%20cross-bispectra" title=" auto- and cross-bispectra"> auto- and cross-bispectra</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation%20of%203D-position" title=" estimation of 3D-position"> estimation of 3D-position</a> </p> <a href="https://publications.waset.org/abstracts/7391/estimating-3d-position-of-a-stationary-random-acoustic-source-using-bispectral-analysis-of-4-point-detected-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7341</span> Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Youngsun%20Moon">Youngsun Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Yeong-Ju%20Go"> Yeong-Ju Go</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Soo%20Choi"> Jong-Soo Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aeroacoustics" title="aeroacoustics">aeroacoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20source%20detection" title=" acoustic source detection"> acoustic source detection</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20difference%20of%20arrival" title=" time difference of arrival"> time difference of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival" title=" direction of arrival"> direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=blind%20source%20separation" title=" blind source separation"> blind source separation</a>, <a href="https://publications.waset.org/abstracts/search?q=independent%20component%20analysis" title=" independent component analysis"> independent component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=drone" title=" drone"> drone</a> </p> <a href="https://publications.waset.org/abstracts/94236/study-on-acoustic-source-detection-performance-improvement-of-microphone-array-installed-on-drones-using-blind-source-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7340</span> Acoustic Modeling of a Data Center with a Hot Aisle Containment System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arshad%20Alfoqaha">Arshad Alfoqaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Seth%20Bard"> Seth Bard</a>, <a href="https://publications.waset.org/abstracts/search?q=Dustin%20Demetriou"> Dustin Demetriou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new multi-physics acoustic modeling approach using ANSYS Mechanical FEA and FLUENT CFD methods is developed for modeling servers mounted to racks, such as IBM Z and IBM Power Systems, in data centers. This new approach allows users to determine the thermal and acoustic conditions that people are exposed to within the data center. The sound pressure level (SPL) exposure for a human working inside a hot aisle containment system inside the data center is studied. The SPL is analyzed at the noise source, at the human body, on the rack walls, on the containment walls, and on the ceiling and flooring plenum walls. In the acoustic CFD simulation, it is assumed that a four-inch diameter sphere with monopole acoustic radiation, placed in the middle of each rack, provides a single-source representation of all noise sources within the rack. Ffowcs Williams & Hawkings (FWH) acoustic model is employed. The target frequency is 1000 Hz, and the total simulation time for the transient analysis is 1.4 seconds, with a very small time step of 3e-5 seconds and 10 iterations to ensure convergence and accuracy. A User Defined Function (UDF) is developed to accurately simulate the acoustic noise source, and a Dynamic Mesh is applied to ensure acoustic wave propagation. Initial validation of the acoustic CFD simulation using a closed-form solution for the spherical propagation of an acoustic point source is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20centers" title="data centers">data centers</a>, <a href="https://publications.waset.org/abstracts/search?q=FLUENT" title=" FLUENT"> FLUENT</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustics" title=" acoustics"> acoustics</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20pressure%20level" title=" sound pressure level"> sound pressure level</a>, <a href="https://publications.waset.org/abstracts/search?q=SPL" title=" SPL"> SPL</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20aisle%20containment" title=" hot aisle containment"> hot aisle containment</a>, <a href="https://publications.waset.org/abstracts/search?q=IBM" title=" IBM"> IBM</a> </p> <a href="https://publications.waset.org/abstracts/141377/acoustic-modeling-of-a-data-center-with-a-hot-aisle-containment-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141377.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7339</span> Acoustic Induced Vibration Response Analysis of Honeycomb Panel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Po-Yuan%20Tung">Po-Yuan Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Jen-Chueh%20Kuo"> Jen-Chueh Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Ray%20Chen"> Chia-Ray Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Hsing%20Li"> Chien-Hsing Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Liang%20Pan"> Kuo-Liang Pan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main-body structure of satellite is mainly constructed by lightweight material, it should be able to withstand certain vibration load during launches. Since various kinds of change possibility in the space, it is an extremely important work to study the random vibration response of satellite structure. This paper based on the reciprocity relationship between sound and structure response and it will try to evaluate the dynamic response of satellite main body under random acoustic load excitation. This paper will study the technical process and verify the feasibility of sonic-borne vibration analysis. One simple plate exposed to the uniform acoustic field is utilized to take some important parameters and to validate the acoustics field model of the reverberation chamber. Then import both structure and acoustic field chamber models into the vibro-acoustic coupling analysis software to predict the structure response. During the modeling process, experiment verification is performed to make sure the quality of numerical models. Finally, the surface vibration level can be calculated through the modal participation factor, and the analysis results are presented in PSD spectrum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vibration" title="vibration">vibration</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic" title=" acoustic"> acoustic</a>, <a href="https://publications.waset.org/abstracts/search?q=modal" title=" modal"> modal</a>, <a href="https://publications.waset.org/abstracts/search?q=honeycomb%20panel" title=" honeycomb panel"> honeycomb panel</a> </p> <a href="https://publications.waset.org/abstracts/31655/acoustic-induced-vibration-response-analysis-of-honeycomb-panel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">555</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7338</span> Effects of Charge Fluctuating Positive Dust on Linear Dust-Acoustic Waves </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjit%20Kumar%20Paul">Sanjit Kumar Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Mamun"> A. A. Mamun</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Amin"> M. R. Amin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Linear propagation of the dust-acoustic wave in a dusty plasma consisting of Boltzmann distributed electrons and ions and mobile charge fluctuating positive dust grains has been investigated by employing the reductive perturbation method. It has been shown that the dust charge fluctuation is a source of dissipation and its responsible for the formation of the dust-acoustic waves in such a dusty plasma. The basic features of such dust-acoustic waves have been identified. It has been proposed to design a new laboratory experiment which will be able to identify the basic features of the dust-acoustic waves predicted in this theoretical investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dust%20acoustic%20waves" title="dust acoustic waves">dust acoustic waves</a>, <a href="https://publications.waset.org/abstracts/search?q=dusty%20plasma" title=" dusty plasma"> dusty plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Boltzmann%20distributed%20electrons" title=" Boltzmann distributed electrons"> Boltzmann distributed electrons</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20fluctuation" title=" charge fluctuation"> charge fluctuation</a> </p> <a href="https://publications.waset.org/abstracts/8380/effects-of-charge-fluctuating-positive-dust-on-linear-dust-acoustic-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7337</span> Improved Acoustic Source Sensing and Localization Based On Robot Locomotion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20Ramu%20Reddy">V. Ramu Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Parijat%20Deshpande"> Parijat Deshpande</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjan%20Dasgupta"> Ranjan Dasgupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents different methodology for an acoustic source sensing and localization in an unknown environment. The developed methodology includes an acoustic based sensing and localization system, a converging target localization based on the recursive direction of arrival (DOA) error minimization, and a regressive obstacle avoidance function. Our method is able to augment the existing proven localization techniques and improve results incrementally by utilizing robot locomotion and is capable of converging to a position estimate with greater accuracy using fewer measurements. The results also evinced the DOA error minimization at each iteration, improvement in time for reaching the destination and the efficiency of this target localization method as gradually converging to the real target position. Initially, the system is tested using Kinect mounted on turntable with DOA markings which serve as a ground truth and then our approach is validated using a FireBird VI (FBVI) mobile robot on which Kinect is used to obtain bearing information. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20source%20localization" title="acoustic source localization">acoustic source localization</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20sensing" title=" acoustic sensing"> acoustic sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=recursive%20direction%20of%20arrival" title=" recursive direction of arrival"> recursive direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=robot%20locomotion" title=" robot locomotion"> robot locomotion</a> </p> <a href="https://publications.waset.org/abstracts/43889/improved-acoustic-source-sensing-and-localization-based-on-robot-locomotion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43889.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">492</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7336</span> Dust Ion Acoustic Shock Waves in Dissipative Superthermal Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Reza%20Pakzad">Hamid Reza Pakzad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma, whose constituents are inertial ions, superthermal electrons, and stationary dust particles, are investigated by employing the reductive perturbation method. The dissipation is taken into account the kinematic viscosity among the plasma constituents. It is shown that the basic features of DIA shock waves are significantly modified by the effects of electron superthermality and ion kinematic viscosity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reductive%20perturbation%20method" title="reductive perturbation method">reductive perturbation method</a>, <a href="https://publications.waset.org/abstracts/search?q=dust%20ion%20acoustic%20shock%20wave" title=" dust ion acoustic shock wave"> dust ion acoustic shock wave</a>, <a href="https://publications.waset.org/abstracts/search?q=superthermal%20electron" title=" superthermal electron"> superthermal electron</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20plasmas" title=" dissipative plasmas"> dissipative plasmas</a> </p> <a href="https://publications.waset.org/abstracts/51026/dust-ion-acoustic-shock-waves-in-dissipative-superthermal-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51026.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7335</span> The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kyle%20Saltmarsh">Kyle Saltmarsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plates" title="plates">plates</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20features" title=" acoustic features"> acoustic features</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/76911/the-condition-testing-of-damaged-plates-using-acoustic-features-and-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7334</span> Asymptotic Spectral Theory for Nonlinear Random Fields</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kimouche">Karima Kimouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we consider the asymptotic problems in spectral analysis of stationary causal random fields. We impose conditions only involving (conditional) moments, which are easily verifiable for a variety of nonlinear random fields. Limiting distributions of periodograms and smoothed periodogram spectral density estimates are obtained and applications to the spectral domain bootstrap are given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spatial%20nonlinear%20processes" title="spatial nonlinear processes">spatial nonlinear processes</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20estimators" title=" spectral estimators"> spectral estimators</a>, <a href="https://publications.waset.org/abstracts/search?q=GMC%20condition" title=" GMC condition"> GMC condition</a>, <a href="https://publications.waset.org/abstracts/search?q=bootstrap%20method" title=" bootstrap method"> bootstrap method</a> </p> <a href="https://publications.waset.org/abstracts/12479/asymptotic-spectral-theory-for-nonlinear-random-fields" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12479.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7333</span> Classification of Traffic Complex Acoustic Space</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bin%20Wang">Bin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jian%20Kang"> Jian Kang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soundscape" title="soundscape">soundscape</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20complex" title=" traffic complex"> traffic complex</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20analysis" title=" cluster analysis"> cluster analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a> </p> <a href="https://publications.waset.org/abstracts/57017/classification-of-traffic-complex-acoustic-space" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">251</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7332</span> Sound Source Localisation and Augmented Reality for On-Site Inspection of Prefabricated Building Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jacques%20Cuenca">Jacques Cuenca</a>, <a href="https://publications.waset.org/abstracts/search?q=Claudio%20Colangeli"> Claudio Colangeli</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Mroz"> Agnieszka Mroz</a>, <a href="https://publications.waset.org/abstracts/search?q=Karl%20Janssens"> Karl Janssens</a>, <a href="https://publications.waset.org/abstracts/search?q=Gunther%20Riexinger"> Gunther Riexinger</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonio%20D%27Antuono"> Antonio D'Antuono</a>, <a href="https://publications.waset.org/abstracts/search?q=Giuseppe%20Pandarese"> Giuseppe Pandarese</a>, <a href="https://publications.waset.org/abstracts/search?q=Milena%20Martarelli"> Milena Martarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=Gian%20Marco%20Revel"> Gian Marco Revel</a>, <a href="https://publications.waset.org/abstracts/search?q=Carlos%20Barcena%20Martin"> Carlos Barcena Martin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents an on-site acoustic inspection methodology for quality and performance evaluation of building components. The work focuses on global and detailed sound source localisation, by successively performing acoustic beamforming and sound intensity measurements. A portable experimental setup is developed, consisting of an omnidirectional broadband acoustic source and a microphone array and sound intensity probe. Three main acoustic indicators are of interest, namely the sound pressure distribution on the surface of components such as walls, windows and junctions, the three-dimensional sound intensity field in the vicinity of junctions, and the sound transmission loss of partitions. The measurement data is post-processed and converted into a three-dimensional numerical model of the acoustic indicators with the help of the simultaneously acquired geolocation information. The three-dimensional acoustic indicators are then integrated into an augmented reality platform superimposing them onto a real-time visualisation of the spatial environment. The methodology thus enables a measurement-supported inspection process of buildings and the correction of errors during construction and refurbishment. Two experimental validation cases are shown. The first consists of a laboratory measurement on a full-scale mockup of a room, featuring a prefabricated panel. The latter is installed with controlled defects such as lack of insulation and joint sealing material. It is demonstrated that the combined acoustic and augmented reality tool is capable of identifying acoustic leakages from the building defects and assist in correcting them. The second validation case is performed on a prefabricated room at a near-completion stage in the factory. With the help of the measurements and visualisation tools, the homogeneity of the partition installation is evaluated and leakages from junctions and doors are identified. Furthermore, the integration of acoustic indicators together with thermal and geometrical indicators via the augmented reality platform is shown. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20inspection" title="acoustic inspection">acoustic inspection</a>, <a href="https://publications.waset.org/abstracts/search?q=prefabricated%20building%20components" title=" prefabricated building components"> prefabricated building components</a>, <a href="https://publications.waset.org/abstracts/search?q=augmented%20reality" title=" augmented reality"> augmented reality</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20source%20localization" title=" sound source localization"> sound source localization</a> </p> <a href="https://publications.waset.org/abstracts/80668/sound-source-localisation-and-augmented-reality-for-on-site-inspection-of-prefabricated-building-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7331</span> Non-Stationary Stochastic Optimization of an Oscillating Water Column</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mar%C3%ADa%20L.%20Jal%C3%B3n">María L. Jalón</a>, <a href="https://publications.waset.org/abstracts/search?q=Feargal%20Brennan"> Feargal Brennan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-stationary%20stochastic%20optimization" title="non-stationary stochastic optimization">non-stationary stochastic optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=oscillating%20water" title=" oscillating water"> oscillating water</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20variability" title=" temporal variability"> temporal variability</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20energy" title=" wave energy"> wave energy</a> </p> <a href="https://publications.waset.org/abstracts/75300/non-stationary-stochastic-optimization-of-an-oscillating-water-column" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75300.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7330</span> Acoustic Room Impulse Response Computation with Image Sources and Frequency Dependent Boundary Reflection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pratik%20Gandhi">Pratik Gandhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kavitha%20Chandra"> Kavitha Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20Thompson"> Charles Thompson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A computational model of the acoustic room impulse response between transmitters and receivers located in an enclosed cavity under the influence of frequency-dependent reflection coefficients of the walls is presented. The characteristic features of the impulse responses that differentiate these results from frequency-independent reflecting surfaces are discussed. The image-source model is derived from the first principle solution to Green's function of the acoustic wave equation. The post-processing of the computed impulse response with a band-pass filter to better represents the response of a loud-speaker is demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20room%20impulse%20response" title="acoustic room impulse response">acoustic room impulse response</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20dependent%20reflection%20coefficients" title=" frequency dependent reflection coefficients"> frequency dependent reflection coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%27s%20function" title=" Green's function"> Green's function</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20model" title=" image model"> image model</a> </p> <a href="https://publications.waset.org/abstracts/152987/acoustic-room-impulse-response-computation-with-image-sources-and-frequency-dependent-boundary-reflection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152987.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7329</span> Using Probabilistic Neural Network (PNN) for Extracting Acoustic Microwaves (Bulk Acoustic Waves) in Piezoelectric Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafdaoui%20Hichem">Hafdaoui Hichem</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehadjebia%20Cherifa"> Mehadjebia Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=Benatia%20Djamel"> Benatia Djamel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a new method for Bulk detection of an acoustic microwave signal during the propagation of acoustic microwaves in a piezoelectric substrate (Lithium Niobate LiNbO3). We have used the classification by probabilistic neural network (PNN) as a means of numerical analysis in which we classify all the values of the real part and the imaginary part of the coefficient attenuation with the acoustic velocity in order to build a model from which we note the Bulk waves easily. These singularities inform us of presence of Bulk waves in piezoelectric materials. By which we obtain accurate values for each of the coefficient attenuation and acoustic velocity for Bulk waves. This study will be very interesting in modeling and realization of acoustic microwaves devices (ultrasound) based on the propagation of acoustic microwaves. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=piezoelectric%20material" title="piezoelectric material">piezoelectric material</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20neural%20network%20%28PNN%29" title=" probabilistic neural network (PNN)"> probabilistic neural network (PNN)</a>, <a href="https://publications.waset.org/abstracts/search?q=classification" title=" classification"> classification</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20microwaves" title=" acoustic microwaves"> acoustic microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=bulk%20waves" title=" bulk waves"> bulk waves</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20attenuation%20coefficient" title=" the attenuation coefficient"> the attenuation coefficient</a> </p> <a href="https://publications.waset.org/abstracts/43264/using-probabilistic-neural-network-pnn-for-extracting-acoustic-microwaves-bulk-acoustic-waves-in-piezoelectric-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7328</span> Distributed Acoustic Sensing Signal Model under Static Fiber Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Punithavathy">G. Punithavathy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research proposes a statistical model for the distributed acoustic sensor interrogation units that broadcast a laser pulse into the fiber optics, where interactions within the fiber determine the localized acoustic energy that causes light reflections known as backscatter. The backscattered signal's amplitude and phase can be calculated using explicit equations. The created model makes amplitude signal spectrum and autocorrelation predictions that are confirmed by experimental findings. Phase signal characteristics that are useful for researching optical time domain reflectometry (OTDR) system sensing applications are provided and examined, showing good agreement with the experiment. The experiment was successfully done with the use of Python coding. In this research, we can analyze the entire distributed acoustic sensing (DAS) component parts separately. This model assumes that the fiber is in a static condition, meaning that there is no external force or vibration applied to the cable, that means no external acoustic disturbances present. The backscattered signal consists of a random noise component, which is caused by the intrinsic imperfections of the fiber, and a coherent component, which is due to the laser pulse interacting with the fiber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=distributed%20acoustic%20sensing" title="distributed acoustic sensing">distributed acoustic sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber%20devices" title=" optical fiber devices"> optical fiber devices</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20time%20domain%20reflectometry" title=" optical time domain reflectometry"> optical time domain reflectometry</a>, <a href="https://publications.waset.org/abstracts/search?q=Rayleigh%20scattering" title=" Rayleigh scattering"> Rayleigh scattering</a> </p> <a href="https://publications.waset.org/abstracts/170787/distributed-acoustic-sensing-signal-model-under-static-fiber-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170787.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7327</span> Noise Source Identification on Urban Construction Sites Using Signal Time Delay Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balgaisha%20G.%20Mukanova">Balgaisha G. Mukanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelbek%20B.%20Utepov"> Yelbek B. Utepov</a>, <a href="https://publications.waset.org/abstracts/search?q=Aida%20G.%20Nazarova"> Aida G. Nazarova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alisher%20Z.%20Imanov"> Alisher Z. Imanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of identifying local noise sources on a construction site using a sensor system is considered. Mathematical modeling of detected signals on sensors was carried out, considering signal decay and signal delay time between the source and detector. Recordings of noises produced by construction tools were used as a dependence of noise on time. Synthetic sensor data was constructed based on these data, and a model of the propagation of acoustic waves from a point source in the three-dimensional space was applied. All sensors and sources are assumed to be located in the same plane. A source localization method is checked based on the signal time delay between two adjacent detectors and plotting the direction of the source. Based on the two direct lines' crossline, the noise source's position is determined. Cases of one dominant source and the case of two sources in the presence of several other sources of lower intensity are considered. The number of detectors varies from three to eight detectors. The intensity of the noise field in the assessed area is plotted. The signal of a two-second duration is considered. The source is located for subsequent parts of the signal with a duration above 0.04 sec; the final result is obtained by computing the average value. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20model" title="acoustic model">acoustic model</a>, <a href="https://publications.waset.org/abstracts/search?q=direction%20of%20arrival" title=" direction of arrival"> direction of arrival</a>, <a href="https://publications.waset.org/abstracts/search?q=inverse%20source%20problem" title=" inverse source problem"> inverse source problem</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20localization" title=" sound localization"> sound localization</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20noises" title=" urban noises"> urban noises</a> </p> <a href="https://publications.waset.org/abstracts/181894/noise-source-identification-on-urban-construction-sites-using-signal-time-delay-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7326</span> A Time-Varying and Non-Stationary Convolution Spectral Mixture Kernel for Gaussian Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Chen">Kai Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuguang%20Cui"> Shuguang Cui</a>, <a href="https://publications.waset.org/abstracts/search?q=Feng%20Yin"> Feng Yin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Gaussian process (GP) with spectral mixture (SM) kernel demonstrates flexible non-parametric Bayesian learning ability in modeling unknown function. In this work a novel time-varying and non-stationary convolution spectral mixture (TN-CSM) kernel with a significant enhancing of interpretability by using process convolution is introduced. A way decomposing the SM component into an auto-convolution of base SM component and parameterizing it to be input dependent is outlined. Smoothly, performing a convolution between two base SM component yields a novel structure of non-stationary SM component with much better generalized expression and interpretation. The TN-CSM perfectly allows compatibility with the stationary SM kernel in terms of kernel form and spectral base ignored and confused by previous non-stationary kernels. On synthetic and real-world datatsets, experiments show the time-varying characteristics of hyper-parameters in TN-CSM and compare the learning performance of TN-CSM with popular and representative non-stationary GP. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gaussian%20process" title="Gaussian process">Gaussian process</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20mixture" title=" spectral mixture"> spectral mixture</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stationary" title=" non-stationary"> non-stationary</a>, <a href="https://publications.waset.org/abstracts/search?q=convolution" title=" convolution"> convolution</a> </p> <a href="https://publications.waset.org/abstracts/131675/a-time-varying-and-non-stationary-convolution-spectral-mixture-kernel-for-gaussian-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7325</span> Spherical Nonlinear Wave Propagation in Relativistic Quantum Plasma</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Abdikian">Alireza Abdikian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> By assuming a quantum relativistic degenerate electron-positron (e-p) plasma media, the nonlinear acoustic solitary propagation in the presence of the stationary ions for neutralizing the plasma background of bounded cylindrical geometry was investigated. By using the standard reductive perturbation technique with cooperation the quantum hydrodynamics model for the e-p fluid, the spherical Kadomtsev-Petviashvili equation was derived for small but finite amplitude waves and was given the solitary wave solution for the parameters relevant for dense astrophysical objects such as white dwarf stars. By using a suitable coordinate transformation and using improved F-expansion technique, the SKP equation can be solved analytically. The numerical results reveal that the relativistic effects lead to propagate the electrostatic bell shape structures and by increasing the relativistic effects, the amplitude and the width of the e-p acoustic solitary wave will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electron-positron%20plasma" title="Electron-positron plasma">Electron-positron plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=Acoustic%20solitary%20wave" title=" Acoustic solitary wave"> Acoustic solitary wave</a>, <a href="https://publications.waset.org/abstracts/search?q=Relativistic%20plasmas" title=" Relativistic plasmas"> Relativistic plasmas</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20spherical%20Kadomtsev-Petviashvili%20equation" title=" the spherical Kadomtsev-Petviashvili equation"> the spherical Kadomtsev-Petviashvili equation</a> </p> <a href="https://publications.waset.org/abstracts/125010/spherical-nonlinear-wave-propagation-in-relativistic-quantum-plasma" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125010.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7324</span> Modeling of Thermo Acoustic Emission Memory Effect in Rocks of Varying Textures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Vinnikov">Vladimir Vinnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied with a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title="crack growth">crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20heating%20and%20cooling" title=" cyclic heating and cooling"> cyclic heating and cooling</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20texture" title=" rock texture"> rock texture</a>, <a href="https://publications.waset.org/abstracts/search?q=thermo%20acoustic%20emission%20memory%20effect" title=" thermo acoustic emission memory effect"> thermo acoustic emission memory effect</a> </p> <a href="https://publications.waset.org/abstracts/61462/modeling-of-thermo-acoustic-emission-memory-effect-in-rocks-of-varying-textures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61462.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7323</span> Numerical Study on Vortex-Driven Pressure Oscillation and Roll Torque Characteristics in a SRM with Two Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Seok%20Hong">Ji-Seok Hong</a>, <a href="https://publications.waset.org/abstracts/search?q=Hee-Jang%20Moon"> Hee-Jang Moon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gye%20Sung"> Hong-Gye Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The details of flow structures and the coupling mechanism between vortex shedding and acoustic excitation in a solid rocket motor with two inhibitors have been investigated using 3D Large Eddy Simulation (LES) and Proper Orthogonal Decomposition (POD) analysis. The oscillation frequencies and vortex shedding periods from two inhibitors compare reasonably well with the experimental data and numerical result. A total of four different locations of the rear inhibitor has been numerically tested to characterize the coupling relation of vortex shedding frequency and acoustic mode. The major source of triggering pressure oscillation in the combustor is the resonance with the acoustic longitudinal half mode. It was observed that the counter-rotating vortices in the nozzle flow produce roll torque. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title="large eddy simulation">large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20orthogonal%20decomposition" title=" proper orthogonal decomposition"> proper orthogonal decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=SRM%20instability" title=" SRM instability"> SRM instability</a>, <a href="https://publications.waset.org/abstracts/search?q=flow-acoustic%20coupling" title=" flow-acoustic coupling"> flow-acoustic coupling</a> </p> <a href="https://publications.waset.org/abstracts/1480/numerical-study-on-vortex-driven-pressure-oscillation-and-roll-torque-characteristics-in-a-srm-with-two-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7322</span> Experimental Approach for Determining Hemi-Anechoic Characteristics of Engineering Acoustical Test Chambers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santiago%20Montoya-Ospina">Santiago Montoya-Ospina</a>, <a href="https://publications.waset.org/abstracts/search?q=Ra%C3%BAl%20E.%20Jim%C3%A9nez-Mej%C3%ADa"> Raúl E. Jiménez-Mejía</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosa%20Elvira%20Correa%20Guti%C3%A9rrez"> Rosa Elvira Correa Gutiérrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An experimental methodology is proposed for determining hemi-anechoic characteristics of an engineering acoustic room built at the facilities of Universidad Nacional de Colombia to evaluate the free-field conditions inside the chamber. Experimental results were compared with theoretical ones in both, the source and the sound propagation inside the chamber. Acoustic source was modeled by using monopole radiation pattern from punctual sources and the image method was considered for dealing with the reflective plane of the room, that means, the floor without insulation. Finite-difference time-domain (FDTD) method was implemented to calculate the sound pressure value at every spatial point of the chamber. Comparison between theoretical and experimental data yields to minimum error, giving satisfactory results for the hemi-anechoic characterization of the chamber. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20impedance" title="acoustic impedance">acoustic impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=finite-difference%20time-domain" title=" finite-difference time-domain"> finite-difference time-domain</a>, <a href="https://publications.waset.org/abstracts/search?q=hemi-anechoic%20characterization" title=" hemi-anechoic characterization"> hemi-anechoic characterization</a> </p> <a href="https://publications.waset.org/abstracts/86159/experimental-approach-for-determining-hemi-anechoic-characteristics-of-engineering-acoustical-test-chambers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86159.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7321</span> Multi-Sender MAC Protocol Based on Temporal Reuse in Underwater Acoustic Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dongwon%20Lee">Dongwon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunmyeng%20Kim"> Sunmyeng Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Underwater acoustic networks (UANs) have become a very active research area in recent years. Compared with wireless networks, UANs are characterized by the limited bandwidth, long propagation delay and high channel dynamic in acoustic modems, which pose challenges to the design of medium access control (MAC) protocol. The characteristics severely affect network performance. In this paper, we study a MS-MAC (Multi-Sender MAC) protocol in order to improve network performance. The proposed protocol exploits temporal reuse by learning the propagation delays to neighboring nodes. A source node locally calculates the transmission schedules of its neighboring nodes and itself based on the propagation delays to avoid collisions. Performance evaluation is conducted using simulation, and confirms that the proposed protocol significantly outperforms the previous protocol in terms of throughput. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20channel" title="acoustic channel">acoustic channel</a>, <a href="https://publications.waset.org/abstracts/search?q=MAC" title=" MAC"> MAC</a>, <a href="https://publications.waset.org/abstracts/search?q=temporal%20reuse" title=" temporal reuse"> temporal reuse</a>, <a href="https://publications.waset.org/abstracts/search?q=UAN" title=" UAN"> UAN</a> </p> <a href="https://publications.waset.org/abstracts/43015/multi-sender-mac-protocol-based-on-temporal-reuse-in-underwater-acoustic-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43015.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7320</span> Modeling of Thermally Induced Acoustic Emission Memory Effects in Heterogeneous Rocks with Consideration for Fracture Develo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20A.%20Vinnikov">Vladimir A. Vinnikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper proposes a model of an inhomogeneous rock mass with initially random distribution of microcracks on mineral grain boundaries. It describes the behavior of cracks in a medium under the effect of thermal field, the medium heated instantaneously to a predetermined temperature. Crack growth occurs according to the concept of fracture mechanics provided that the stress intensity factor K exceeds the critical value of Kc. The modeling of thermally induced acoustic emission memory effects is based on the assumption that every event of crack nucleation or crack growth caused by heating is accompanied by a single acoustic emission event. Parameters of the thermally induced acoustic emission memory effect produced by cyclic heating and cooling (with the temperature amplitude increasing from cycle to cycle) were calculated for several rock texture types (massive, banded, and disseminated). The study substantiates the adaptation of the proposed model to humidity interference with the thermally induced acoustic emission memory effect. The influence of humidity on the thermally induced acoustic emission memory effect in quasi-homogeneous and banded rocks is estimated. It is shown that such modeling allows the structure and texture of rocks to be taken into account and the influence of interference factors on the distinctness of the thermally induced acoustic emission memory effect to be estimated. The numerical modeling can be used to obtain information about the thermal impacts on rocks in the past and determine the degree of rock disturbance by means of non-destructive testing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degree%20of%20rock%20disturbance" title="degree of rock disturbance">degree of rock disturbance</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20testing" title=" non-destructive testing"> non-destructive testing</a>, <a href="https://publications.waset.org/abstracts/search?q=thermally%20induced%20acoustic%20emission%20memory%20effects" title=" thermally induced acoustic emission memory effects"> thermally induced acoustic emission memory effects</a>, <a href="https://publications.waset.org/abstracts/search?q=structure%20and%20texture%20of%20rocks" title=" structure and texture of rocks"> structure and texture of rocks</a> </p> <a href="https://publications.waset.org/abstracts/56478/modeling-of-thermally-induced-acoustic-emission-memory-effects-in-heterogeneous-rocks-with-consideration-for-fracture-develo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7319</span> Design and Implementation of Pseudorandom Number Generator Using Android Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mochamad%20Beta%20Auditama">Mochamad Beta Auditama</a>, <a href="https://publications.waset.org/abstracts/search?q=Yusuf%20Kurniawan"> Yusuf Kurniawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A smartphone or tablet require a strong randomness to establish secure encrypted communication, encrypt files, etc. Therefore, random number generation is one of the main keys to provide secrecy. Android devices are equipped with hardware-based sensors, such as accelerometer, gyroscope, etc. Each of these sensors provides a stochastic process which has a potential to be used as an extra randomness source, in addition to /dev/random and /dev/urandom pseudorandom number generators. Android sensors can provide randomness automatically. To obtain randomness from Android sensors, each one of Android sensors shall be used to construct an entropy source. After all entropy sources are constructed, output from these entropy sources are combined to provide more entropy. Then, a deterministic process is used to produces a sequence of random bits from the combined output. All of these processes are done in accordance with NIST SP 800-22 and the series of NIST SP 800-90. The operation conditions are done 1) on Android user-space, and 2) the Android device is placed motionless on a desk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Android%20hardware-based%20sensor" title="Android hardware-based sensor">Android hardware-based sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=deterministic%20process" title=" deterministic process"> deterministic process</a>, <a href="https://publications.waset.org/abstracts/search?q=entropy%20source" title=" entropy source"> entropy source</a>, <a href="https://publications.waset.org/abstracts/search?q=random%20number%20generation%2Fgenerators" title=" random number generation/generators"> random number generation/generators</a> </p> <a href="https://publications.waset.org/abstracts/64995/design-and-implementation-of-pseudorandom-number-generator-using-android-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">374</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7318</span> ReS, Resonant String Shell: Development of an Acoustic Shell for Outdoor Chamber Music Concerts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serafino%20Di%20Rosario">Serafino Di Rosario</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ReS is a sustainable hand-built temporary acoustic shell, developed since 2011 and built during the architectural workshop at Villa Pennisi in Musica in Acireale, Sicily, each year since 2012. The design concept aims to provide a portable structure by reducing the on-site construction problems and the skills required by the builders together with maximizing the acoustic performance for the audience and the musicians. The shell is built using only wood, recycled for the most part, and can be built and dismantled by non-specialized workers in just three days. This paper describes the research process, which spans over four years and presents the final results in form of acoustic simulations performed by acoustic modeling software and real world measurements. ReS is developed by the ReS team who has been presented with the Peter Lord Award in 2015 by the Institute of Acoustics in the UK. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20shell" title="acoustic shell">acoustic shell</a>, <a href="https://publications.waset.org/abstracts/search?q=outdoor%20natural%20amplification" title=" outdoor natural amplification"> outdoor natural amplification</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a>, <a href="https://publications.waset.org/abstracts/search?q=room%20acoustics" title=" room acoustics"> room acoustics</a> </p> <a href="https://publications.waset.org/abstracts/67117/res-resonant-string-shell-development-of-an-acoustic-shell-for-outdoor-chamber-music-concerts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7317</span> Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20I.%20Ilgisonis">Victor I. Ilgisonis</a>, <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20V.%20Konovaltseva"> Ludmila V. Konovaltseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20P.%20Lakhin"> Vladimir P. Lakhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ekaterina%20A.%20Sorokina"> Ekaterina A. Sorokina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tokamak" title="tokamak">tokamak</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=geodesic%20acoustic%20mode" title=" geodesic acoustic mode"> geodesic acoustic mode</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenmode" title=" eigenmode"> eigenmode</a> </p> <a href="https://publications.waset.org/abstracts/11335/analytical-solutions-for-geodesic-acoustic-eigenmodes-in-tokamak-plasmas" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11335.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7316</span> Intermittent Effect of Coupled Thermal and Acoustic Sources on Combustion: A Spatial Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pallavi%20Gajjar">Pallavi Gajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20Malhotra"> Vinayak Malhotra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rockets have been known to have played a predominant role in spacecraft propulsion. The quintessential aspect of combustion-related requirements of a rocket engine is the minimization of the surrounding risks/hazards. Over time, it has become imperative to understand the combustion rate variation in presence of external energy source(s). Rocket propulsion represents a special domain of chemical propulsion assisted by high speed flows in presence of acoustics and thermal source(s). Jet noise leads to a significant loss of resources and every year a huge amount of financial aid is spent to prevent it. External heat source(s) induce high possibility of fire risk/hazards which can sufficiently endanger the operation of a space vehicle. Appreciable work had been done with justifiable simplification and emphasis on the linear variation of external energy source(s), which yields good physical insight but does not cater to accurate predictions. Present work experimentally attempts to understand the correlation between inter-energy conversions with the non-linear placement of external energy source(s). The work is motivated by the need to have better fire safety and enhanced combustion. The specific objectives of the work are a) To interpret the related energy transfer for combustion in presence of alternate external energy source(s) viz., thermal and acoustic, b) To fundamentally understand the role of key controlling parameters viz., separation distance, the number of the source(s), selected configurations and their non-linear variation to resemble real-life cases. An experimental setup was prepared using incense sticks as potential fuel and paraffin wax candles as the external energy source(s). The acoustics was generated using frequency generator, and source(s) were placed at selected locations. Non-equidistant parametric experimentation was carried out, and the effects were noted on regression rate changes. The results are expected to be very helpful in offering a new perspective into futuristic rocket designs and safety. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combustion" title="combustion">combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=acoustic%20energy" title=" acoustic energy"> acoustic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20energy%20sources" title=" external energy sources"> external energy sources</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20rate" title=" regression rate"> regression rate</a> </p> <a href="https://publications.waset.org/abstracts/102008/intermittent-effect-of-coupled-thermal-and-acoustic-sources-on-combustion-a-spatial-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7315</span> Test Research on Damage Initiation and Development of a Concrete Beam Using Acoustic Emission Technology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiang%20Wang">Xiang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to validate the efficiency of recognizing the damage initiation and development of a concrete beam using acoustic emission technology, a concrete beam is built and tested in the laboratory. The acoustic emission signals are analyzed based on both parameter and wave information, which is also compared with the beam deflection measured by displacement sensors. The results indicate that using acoustic emission technology can detect damage initiation and development effectively, especially in the early stage of the damage development, which can not be detected by the common monitoring technology. Furthermore, the positioning of the damage based on the acoustic emission signals can be proved to be reasonable. This job can be an important attempt for the future long-time monitoring of the real concrete structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20emission%20technology" title="acoustic emission technology">acoustic emission technology</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20beam" title=" concrete beam"> concrete beam</a>, <a href="https://publications.waset.org/abstracts/search?q=parameter%20analysis" title=" parameter analysis"> parameter analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=wave%20analysis" title=" wave analysis"> wave analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=positioning" title=" positioning"> positioning</a> </p> <a href="https://publications.waset.org/abstracts/108497/test-research-on-damage-initiation-and-development-of-a-concrete-beam-using-acoustic-emission-technology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108497.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7314</span> The Improvement of Environmental Protection through Motor Vehicle Noise Abatement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Jovanovic">Z. Jovanovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Masonicic"> Z. Masonicic</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Dragutinovic"> S. Dragutinovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Sakota"> Z. Sakota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a methodology for noise reduction of motor vehicles in use is presented. The methodology relies on synergic model of noise generation as a function of time. The arbitrary number of motor vehicle noise sources act in concert yielding the generation of the overall noise level of motor vehicle thereafter. The number of noise sources participating in the overall noise level of motor vehicle is subjected to the constraint of the calculation of the acoustic potential of each noise source under consideration. It is the prerequisite condition for the calculation of the acoustic potential of the whole vehicle. The recast form of pertinent set of equations describing the synergic model is laid down and solved by dint of Gauss method. The bunch of results emerged and some of them i.e. those ensuing from model application to MDD FAP Priboj motor vehicle in use are particularly elucidated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=noise%20abatement" title="noise abatement">noise abatement</a>, <a href="https://publications.waset.org/abstracts/search?q=MV%20noise%20sources" title=" MV noise sources"> MV noise sources</a>, <a href="https://publications.waset.org/abstracts/search?q=noise%20source%20identification" title=" noise source identification"> noise source identification</a>, <a href="https://publications.waset.org/abstracts/search?q=muffler" title=" muffler"> muffler</a> </p> <a href="https://publications.waset.org/abstracts/47373/the-improvement-of-environmental-protection-through-motor-vehicle-noise-abatement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">445</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7313</span> Interaction between Breathiness and Nasality: An Acoustic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pamir%20Gogoi">Pamir Gogoi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratree%20Wayland"> Ratree Wayland</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the acoustic measures of breathiness when coarticulated with nasality. The acoustic correlates of breathiness and nasality that has already been well established after years of empirical research. Some of these acoustic parameters - like low frequency peaks and wider bandwidths- are common for both nasal and breathy voice. Therefore, it is likely that these parameters interact when a sound is coarticulated with breathiness and nasality. This leads to the hypothesis that the acoustic parameters, which usually act as robust cues in differentiating between breathy and modal voice, might not be reliable cues for differentiating between breathy and modal voice when breathiness is coarticulated with nasality. The effect of nasality on the perception of breathiness has been explored in earlier studies using synthesized speech. The results showed that perceptually, nasality and breathiness do interact. The current study investigates if a similar pattern is observed in natural speech. The study is conducted on Marathi, an Indo-Aryan language which has a three-way contrast between nasality and breathiness. That is, there is a phonemic distinction between nasals, breathy voice and breathy-nasals. Voice quality parameters like – H1-H2 (Difference between the amplitude of first and second harmonic), H1-A3 (Difference between the amplitude of first harmonic and third formant, CPP (Cepstral Peak Prominence), HNR (Harmonics to Noise ratio) and B1 (Bandwidth of first formant) were extracted. Statistical models like linear mixed effects regression and Random Forest classifiers show that measures that capture the noise component in the signal- like CPP and HNR- can classify breathy voice from modal voice better than spectral measures when breathy voice is coarticulated with nasality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breathiness" title="breathiness">breathiness</a>, <a href="https://publications.waset.org/abstracts/search?q=marathi" title=" marathi"> marathi</a>, <a href="https://publications.waset.org/abstracts/search?q=nasality" title=" nasality"> nasality</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20quality" title=" voice quality"> voice quality</a> </p> <a href="https://publications.waset.org/abstracts/169698/interaction-between-breathiness-and-nasality-an-acoustic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">95</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=244">244</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=245">245</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=a%20stationary%20random%20acoustic%20source&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>