CINXE.COM
(PDF) On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals | UĞUR DURAN - Academia.edu
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="EUXdNqdcbIT+rNOQTm6yVDL0UFyAzELSRmMMLQ6L19DjjHBGU5enWeCk5M8T4lP1NztGxWtEAnL5vyBFeN3AqQ==" /> <meta name="citation_title" content="On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals" /> <meta name="citation_author" content="UĞUR DURAN" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals" /> <meta name="twitter:title" content="On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals" /> <meta name="twitter:description" content="Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper" /> <meta name="twitter:image" content="https://0.academia-photos.com/15136743/4083938/76059273/s200_u_ur.duran.jpg" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals" /> <meta property="og:title" content="On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper" /> <meta property="article:author" content="https://iste-tr.academia.edu/U%C4%9EURDURAN" /> <meta name="description" content="Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper" /> <title>(PDF) On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals | UĞUR DURAN - Academia.edu</title> <link rel="canonical" href="https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '9387f500ddcbb8d05c67bef28a2fe0334f1aafb8'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1733020590000); window.Aedu.timeDifference = new Date().getTime() - 1733020590000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper is to introduce a generalization of the fermionic p-adic measure based on (ρ, q)-integers and set the corresponding integral to this measure. Consequently, Carlitz-type (ρ, q)-Euler polynomials and numbers are defined in terms of the above mentioned integral. Moreover, some of their identities and properties are established.","author":[{"@context":"https://schema.org","@type":"Person","name":"UĞUR DURAN"}],"contributor":[],"dateCreated":"2022-08-04","dateModified":null,"datePublished":null,"headline":"On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals","inLanguage":"en","keywords":[],"locationCreated":null,"publication":null,"publisher":{"@context":"https://schema.org","@type":"Organization","name":null},"image":null,"thumbnailUrl":null,"url":"https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals","sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":"iste-tr"}]}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "59e3b7ada0d1908d87cda9eefd1909d9041bb554c5be1720a315ab620fc1a18d", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="6XPuWq9ETS5D2c3LQTQPuZP8pfrvaYp01WgQu6i1FGcbukMqW4+G813R+pQcuO4YljOzYwThytRqtDzT3uMDHg==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="WNpBbG+87Z75HHts6ak3bfck3XdGg8u4lPKxlkm2gP+qE+wcm3cmQ+cUTDO0JdbM8uvL7q0LixgrLp3+P+CXhg==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><a class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/login" rel="nofollow">Log In</a><a class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://medium.com/@academia">Blog</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-86832e264efa375cdd3fa5979579c95643bf6a5c1b20c95ec7a98005fcb4b9a4.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 15136743; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F84154884%2FOn_%25CF%2581_q_Euler_numbers_and_polynomials_associated_with_%25CF%2581_q_Volkenborn_integrals%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F84154884%2FOn_%25CF%2581_q_Euler_numbers_and_polynomials_associated_with_%25CF%2581_q_Volkenborn_integrals%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":89275946,"identifier":"Attachment_89275946","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":84154884,"created_at":"2022-08-04T16:26:17.017-07:00","from_world_paper_id":null,"updated_at":"2022-08-04T16:50:20.955-07:00","_data":{"abstract":"Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper is to introduce a generalization of the fermionic p-adic measure based on (ρ, q)-integers and set the corresponding integral to this measure. Consequently, Carlitz-type (ρ, q)-Euler polynomials and numbers are defined in terms of the above mentioned integral. Moreover, some of their identities and properties are established."},"document_type":"draft","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [15136743]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loswp.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":89275946,"attachmentType":"pdf"}"><img alt="First page of “On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/89275946/mini_magick20220804-1-3qwzwd.png?1659655653" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/assets/single_work_splash/adobe.icon-574afd46eb6b03a77a153a647fb47e30546f9215c0ee6a25df597a779717f9ef.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">On (ρ, q)-Euler numbers and polynomials associated with (ρ, q)-Volkenborn integrals</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="15136743" href="https://iste-tr.academia.edu/U%C4%9EURDURAN"><img alt="Profile image of UĞUR DURAN" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/15136743/4083938/76059273/s65_u_ur.duran.jpg" />UĞUR DURAN</a></div><div class="ds-work-card--detail"><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">13 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 84154884; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=84154884"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { const viewCountNumber = Number(viewCount); if (!viewCountNumber) { throw new Error('Failed to parse view count'); } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (viewCountBody) { viewCountBody.textContent = `${commaizedViewCount} views`; } else { throw new Error('Failed to find work views element'); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">Recently, Araci et al. introduced (ρ, q)-analogue of the Haar distribution and by means of the distribution, they constructed (ρ, q)-Volkenborn integral yielding to Carlitz-type (ρ, q)-Bernoulli numbers and polynomials. The aim of the present paper is to introduce a generalization of the fermionic p-adic measure based on (ρ, q)-integers and set the corresponding integral to this measure. Consequently, Carlitz-type (ρ, q)-Euler polynomials and numbers are defined in terms of the above mentioned integral. Moreover, some of their identities and properties are established.</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":89275946,"attachmentType":"pdf","workUrl":"https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":89275946,"attachmentType":"pdf","workUrl":"https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="89275946" data-landing_url="https://www.academia.edu/84154884/On_%CF%81_q_Euler_numbers_and_polynomials_associated_with_%CF%81_q_Volkenborn_integrals" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="90236896" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/90236896/Extended_q_euler_numbers_and_polynomials_associated_with_fermionic_p_adic_q_integral_on_Z_p">Extended q-euler numbers and polynomials associated with fermionic p-adic q-integral on Z p</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47504976" href="https://independent.academia.edu/Se0gHoonRim">Se0g-Hoon Rim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Russian Journal of Mathematical Physics, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Extended q-euler numbers and polynomials associated with fermionic p-adic q-integral on Z p","attachmentId":93854932,"attachmentType":"pdf","work_url":"https://www.academia.edu/90236896/Extended_q_euler_numbers_and_polynomials_associated_with_fermionic_p_adic_q_integral_on_Z_p","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/90236896/Extended_q_euler_numbers_and_polynomials_associated_with_fermionic_p_adic_q_integral_on_Z_p"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="24497742" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497742/Euler_polynomials_associated_with_p_adic_q_Euler_measure">Euler polynomials associated with p-adic q-Euler measure</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Euler polynomials associated with p-adic q-Euler measure","attachmentId":44829936,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497742/Euler_polynomials_associated_with_p_adic_q_Euler_measure","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24497742/Euler_polynomials_associated_with_p_adic_q_Euler_measure"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="65429680" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications">Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Cogent Mathematics</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Analysis of the p-adic q-Volkenborn integrals: An approach to generalized Apostol-type special numbers and polynomials and their applications","attachmentId":77030805,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429680/Analysis_of_the_p_adic_q_Volkenborn_integrals_An_approach_to_generalized_Apostol_type_special_numbers_and_polynomials_and_their_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="24681854" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24681854/New_q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals">New q-Euler numbers and polynomials associated with p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47577249" href="https://independent.academia.edu/LeechaeJang">Leechae Jang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advanced Studies in Contemporary Mathematics, 2007</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper we study q-Euler numbers and polynomials by using p-adic q-fermionic integrals on Z_p. The methods to study q-Euler numbers and polynomials in this paper are new.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New q-Euler numbers and polynomials associated with p-adic q-integrals","attachmentId":45011403,"attachmentType":"pdf","work_url":"https://www.academia.edu/24681854/New_q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24681854/New_q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="78718180" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/78718180/q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals">q -Euler numbers and polynomials associated with p -adic q -integrals</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39129151" href="https://independent.academia.edu/TaekyunKim3">Taekyun Kim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Nonlinear Mathematical Physics, 2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"q -Euler numbers and polynomials associated with p -adic q -integrals","attachmentId":85667511,"attachmentType":"pdf","work_url":"https://www.academia.edu/78718180/q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/78718180/q_Euler_numbers_and_polynomials_associated_with_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="24497730" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497730/An_invariant_p_adic_q_integral_associated_with_q_Euler_numbers_and_polynomials">An invariant p-adic q-integral associated with q-Euler numbers and polynomials</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Http Dx Doi Org 10 2991 Jnmp 2007 14 1 2, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"An invariant p-adic q-integral associated with q-Euler numbers and polynomials","attachmentId":44829990,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497730/An_invariant_p_adic_q_integral_associated_with_q_Euler_numbers_and_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24497730/An_invariant_p_adic_q_integral_associated_with_q_Euler_numbers_and_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="1230871" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/1230871/On_the_families_of_q_Euler_numbers_and_polynomials_and_their_applications">On the families of q-Euler numbers and polynomials and their applications</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="990498" href="https://hku-tr.academia.edu/saraci">Serkan Araci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of the Egyptian Mathematical Society (2014) xxx, xxx–xxx</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, we focus on applications of q-Euler polynomials and obtain some new combinatorial relations by using p-adic q-integral on Zp. Moreover, we derive distribution formula (Multiplication Theorem) for Dirichlet type of q-Euler numbers and polynomials with weight a. Also we apply the method of analytic continuation of q-Euler polynomials which is the main result of this paper.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the families of q-Euler numbers and polynomials and their applications","attachmentId":33758441,"attachmentType":"pdf","work_url":"https://www.academia.edu/1230871/On_the_families_of_q_Euler_numbers_and_polynomials_and_their_applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/1230871/On_the_families_of_q_Euler_numbers_and_polynomials_and_their_applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="65429723" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials">Explicit formulas for p-adic integrals: approach to p-adic distributions and some families of special numbers and polynomials</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2019</p><p class="ds-related-work--abstract ds2-5-body-sm">The main objective of this article is to give and classify new formulas of $p$-adic integrals and blend these formulas with previously well known formulas. Therefore, this article gives briefly the formulas of $p$-adic integrals which were found previously, as well as applying the integral equations to the generating functions and other special functions, giving proofs of the new interesting and novel formulas. The $p$-adic integral formulas provided in this article contain several important well-known families of special numbers and special polynomials such as the Bernoulli numbers and polynomials, the Euler numbers and polynomials, the Stirling numbers, the Lah numbers, the Peters numbers and polynomials, the central factorial numbers, the Daehee numbers and polynomials, the Changhee numbers and polynomials, the Harmonic numbers, the Fubini numbers, combinatorial numbers and sums. In addition, we defined two new sequences containing the Bernoulli numbers and Euler numbers. These t...</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Explicit formulas for p-adic integrals: approach to p-adic distributions and some families of special numbers and polynomials","attachmentId":77030704,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65429723/Explicit_formulas_for_p_adic_integrals_approach_to_p_adic_distributions_and_some_families_of_special_numbers_and_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="24681856" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24681856/q_Genocchi_Numbers_and_Polynomials_Associated_with_Fermionic_p_Adic_Invariant_Integrals_on_Zp">q-Genocchi Numbers and Polynomials Associated with Fermionic p-Adic Invariant Integrals on ℤp</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47577249" href="https://independent.academia.edu/LeechaeJang">Leechae Jang</a><span>, </span><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39129151" href="https://independent.academia.edu/TaekyunKim3">Taekyun Kim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Abstract and Applied Analysis, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"q-Genocchi Numbers and Polynomials Associated with Fermionic p-Adic Invariant Integrals on ℤp","attachmentId":45011421,"attachmentType":"pdf","work_url":"https://www.academia.edu/24681856/q_Genocchi_Numbers_and_Polynomials_Associated_with_Fermionic_p_Adic_Invariant_Integrals_on_Zp","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/24681856/q_Genocchi_Numbers_and_Polynomials_Associated_with_Fermionic_p_Adic_Invariant_Integrals_on_Zp"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="61038332" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers">On p-adic Gamma Function Related to q-Daehee Polynomials and Numbers</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="72285823" href="https://independent.academia.edu/A%C3%87IKG%C3%96ZM">Mehmet AÇIKGÖZ</a></div><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, we investigate p-adic q-integral (q-Volkenborn integral) on ℤ_{p} of p-adic gamma function via their Mahler expansions. We also derived two q-Volkenborn integrals of p-adic gamma function in terms of q-Daehee polynomials and numbers and q-Daehee polynomials and numbers of the second kind. Moreover, we discover q-Volkenborn integral of the derivative of p-adic gamma function. We acquire the relationship between the p-adic gamma function and Stirling numbers of the first kind. We finally develop a novel and interesting representation for the p-adic Euler constant by means of the q-Daehee polynomials and numbers.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On p-adic Gamma Function Related to q-Daehee Polynomials and Numbers","attachmentId":74219511,"attachmentType":"pdf","work_url":"https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/61038332/On_p_adic_Gamma_Function_Related_to_q_Daehee_Polynomials_and_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":89275946,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":89275946,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_89275946" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="59587873" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals">New families of special numbers and polynomials arising from applications of p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146411090" href="https://independent.academia.edu/YardimciAhmet">Ahmet Yardimci</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New families of special numbers and polynomials arising from applications of p-adic q-integrals","attachmentId":73434419,"attachmentType":"pdf","work_url":"https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/59587873/New_families_of_special_numbers_and_polynomials_arising_from_applications_of_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="78718235" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/78718235/On_p_adic_analogue_of_q_Bernstein_polynomials_and_related_integrals">On p-adic analogue of q-Bernstein polynomials and related integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39129151" href="https://independent.academia.edu/TaekyunKim3">Taekyun Kim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On p-adic analogue of q-Bernstein polynomials and related integrals","attachmentId":85667314,"attachmentType":"pdf","work_url":"https://www.academia.edu/78718235/On_p_adic_analogue_of_q_Bernstein_polynomials_and_related_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/78718235/On_p_adic_analogue_of_q_Bernstein_polynomials_and_related_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="91121878" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/91121878/On_i_q_Bernoulli_and_Euler_numbers">On (i,q) Bernoulli and Euler numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26694576" href="https://independent.academia.edu/SeogHoonRim">Seog-Hoon Rim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics Letters, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On (i,q) Bernoulli and Euler numbers","attachmentId":94498691,"attachmentType":"pdf","work_url":"https://www.academia.edu/91121878/On_i_q_Bernoulli_and_Euler_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/91121878/On_i_q_Bernoulli_and_Euler_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="57638748" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/57638748/On_the_modified_q_Euler_polynomials_with_weight">On the modified q-Euler polynomials with weight</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31954770" href="https://independent.academia.edu/SungSooPyo">Sung-Soo Pyo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations, 2013</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the modified q-Euler polynomials with weight","attachmentId":72442062,"attachmentType":"pdf","work_url":"https://www.academia.edu/57638748/On_the_modified_q_Euler_polynomials_with_weight","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/57638748/On_the_modified_q_Euler_polynomials_with_weight"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="56454848" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/56454848/A_note_on_the_p_adic_gamma_function_and_q_Changhee_polynomials">A note on the p-adic gamma function and q-Changhee polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="112175718" href="https://mersin.academia.edu/HamzaMenken">Hamza Menken</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematics and Computer Science</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A note on the p-adic gamma function and q-Changhee polynomials","attachmentId":71833871,"attachmentType":"pdf","work_url":"https://www.academia.edu/56454848/A_note_on_the_p_adic_gamma_function_and_q_Changhee_polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/56454848/A_note_on_the_p_adic_gamma_function_and_q_Changhee_polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="104955695" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/104955695/A_new_extension_of_q_Euler_numbers_and_polynomials_related_to_their_interpolation_functions">A new extension of q-Euler numbers and polynomials related to their interpolation functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="244843823" href="https://independent.academia.edu/HACER%C3%96ZDEN">HACER ÖZDEN</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics Letters, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A new extension of q-Euler numbers and polynomials related to their interpolation functions","attachmentId":104543944,"attachmentType":"pdf","work_url":"https://www.academia.edu/104955695/A_new_extension_of_q_Euler_numbers_and_polynomials_related_to_their_interpolation_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/104955695/A_new_extension_of_q_Euler_numbers_and_polynomials_related_to_their_interpolation_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="24681855" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24681855/On_the_Distribution_of_the_q_Euler_Polynomials_and_the_q_Genocchi_Polynomials_of_Higher_Order">On the Distribution of the q-Euler Polynomials and the q-Genocchi Polynomials of Higher Order</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47577249" href="https://independent.academia.edu/LeechaeJang">Leechae Jang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">J Inequal Appl, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Distribution of the q-Euler Polynomials and the q-Genocchi Polynomials of Higher Order","attachmentId":45011432,"attachmentType":"pdf","work_url":"https://www.academia.edu/24681855/On_the_Distribution_of_the_q_Euler_Polynomials_and_the_q_Genocchi_Polynomials_of_Higher_Order","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24681855/On_the_Distribution_of_the_q_Euler_Polynomials_and_the_q_Genocchi_Polynomials_of_Higher_Order"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="84154875" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84154875/On_applications_for_Mahler_expansion_associated_with_p_adic_q_integrals">On applications for Mahler expansion associated with p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15136743" href="https://iste-tr.academia.edu/U%C4%9EURDURAN">UĞUR DURAN</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On applications for Mahler expansion associated with p-adic q-integrals","attachmentId":89275933,"attachmentType":"pdf","work_url":"https://www.academia.edu/84154875/On_applications_for_Mahler_expansion_associated_with_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84154875/On_applications_for_Mahler_expansion_associated_with_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="84154879" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/84154879/ON_MAHLER_EXPANSION_OF_p_ADIC_GAMMA_FUNCTION_AFFILIATED_WITH_THE_q_BOOLE_POLYNOMIALS">ON MAHLER EXPANSION OF p-ADIC GAMMA FUNCTION AFFILIATED WITH THE q-BOOLE POLYNOMIALS</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="15136743" href="https://iste-tr.academia.edu/U%C4%9EURDURAN">UĞUR DURAN</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"ON MAHLER EXPANSION OF p-ADIC GAMMA FUNCTION AFFILIATED WITH THE q-BOOLE POLYNOMIALS","attachmentId":89275926,"attachmentType":"pdf","work_url":"https://www.academia.edu/84154879/ON_MAHLER_EXPANSION_OF_p_ADIC_GAMMA_FUNCTION_AFFILIATED_WITH_THE_q_BOOLE_POLYNOMIALS","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/84154879/ON_MAHLER_EXPANSION_OF_p_ADIC_GAMMA_FUNCTION_AFFILIATED_WITH_THE_q_BOOLE_POLYNOMIALS"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="65429718" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers">Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Formulas for p-adic q-integrals including falling-rising factorials, combinatorial sums and special numbers","attachmentId":77030708,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429718/Formulas_for_p_adic_q_integrals_including_falling_rising_factorials_combinatorial_sums_and_special_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="105025521" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/105025521/Extended_Fermionic_p_Adic_q_Integrals_On_Zp_In_Connection_With_Applications_Of_Umbral_Calculus">Extended Fermionic p-Adic q-Integrals On Zp In Connection With Applications Of Umbral Calculus</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="1105507" href="https://gantep.academia.edu/mehmetacikgoz">Mehmet Acikgoz</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Extended Fermionic p-Adic q-Integrals On Zp In Connection With Applications Of Umbral Calculus","attachmentId":104594160,"attachmentType":"pdf","work_url":"https://www.academia.edu/105025521/Extended_Fermionic_p_Adic_q_Integrals_On_Zp_In_Connection_With_Applications_Of_Umbral_Calculus","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/105025521/Extended_Fermionic_p_Adic_q_Integrals_On_Zp_In_Connection_With_Applications_Of_Umbral_Calculus"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="94429225" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/94429225/ON_THE_VOLKENBORN_INTEGRAL_OF_THE_q_EXTENSION_OF_THE_p_ADIC_GAMMA_FUNCTION">ON THE VOLKENBORN INTEGRAL OF THE q-EXTENSION OF THE p-ADIC GAMMA FUNCTION</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="112175718" href="https://mersin.academia.edu/HamzaMenken">Hamza Menken</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"ON THE VOLKENBORN INTEGRAL OF THE q-EXTENSION OF THE p-ADIC GAMMA FUNCTION","attachmentId":96888192,"attachmentType":"pdf","work_url":"https://www.academia.edu/94429225/ON_THE_VOLKENBORN_INTEGRAL_OF_THE_q_EXTENSION_OF_THE_p_ADIC_GAMMA_FUNCTION","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/94429225/ON_THE_VOLKENBORN_INTEGRAL_OF_THE_q_EXTENSION_OF_THE_p_ADIC_GAMMA_FUNCTION"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="63033815" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/63033815/Carlitz_s_q_Bernoulli_and_q_Euler_numbers_and_polynomials_and_a_class_of_generalized_q_Hurwitz_zeta_functions">Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47363903" href="https://independent.academia.edu/ChoiJunesang">Junesang Choi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics and Computation, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions","attachmentId":75596681,"attachmentType":"pdf","work_url":"https://www.academia.edu/63033815/Carlitz_s_q_Bernoulli_and_q_Euler_numbers_and_polynomials_and_a_class_of_generalized_q_Hurwitz_zeta_functions","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/63033815/Carlitz_s_q_Bernoulli_and_q_Euler_numbers_and_polynomials_and_a_class_of_generalized_q_Hurwitz_zeta_functions"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="24681835" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24681835/Note_on_q_Extensions_of_Euler_Numbers_and_Polynomials_of_Higher_Order">Note on q-Extensions of Euler Numbers and Polynomials of Higher Order</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47577249" href="https://independent.academia.edu/LeechaeJang">Leechae Jang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Inequalities and Applications, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Note on q-Extensions of Euler Numbers and Polynomials of Higher Order","attachmentId":45011435,"attachmentType":"pdf","work_url":"https://www.academia.edu/24681835/Note_on_q_Extensions_of_Euler_Numbers_and_Polynomials_of_Higher_Order","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24681835/Note_on_q_Extensions_of_Euler_Numbers_and_Polynomials_of_Higher_Order"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="51060442" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060442/_q_Bernoulli_Numbers_and_Polynomials_Associated_with_Multiple_q_Zeta_Functions_and_Basic_L_series">$ q $-Bernoulli Numbers and Polynomials Associated with Multiple $ q $-Zeta Functions and Basic $ L $-series</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Arxiv preprint math/0502019, 2005</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"$ q $-Bernoulli Numbers and Polynomials Associated with Multiple $ q $-Zeta Functions and Basic $ L $-series","attachmentId":68920556,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060442/_q_Bernoulli_Numbers_and_Polynomials_Associated_with_Multiple_q_Zeta_Functions_and_Basic_L_series","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51060442/_q_Bernoulli_Numbers_and_Polynomials_Associated_with_Multiple_q_Zeta_Functions_and_Basic_L_series"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="74646361" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/74646361/A_note_on_p_adic_q_Euler_measure">A note on p-adic q-Euler measure</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="153530400" href="https://independent.academia.edu/HacerOzden">Hacer Ozden</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2007</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A note on p-adic q-Euler measure","attachmentId":83538138,"attachmentType":"pdf","work_url":"https://www.academia.edu/74646361/A_note_on_p_adic_q_Euler_measure","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/74646361/A_note_on_p_adic_q_Euler_measure"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="65429740" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator">Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2021</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Interpolation Functions for New Classes Special Numbers and Polynomials via Applications of p-adic Integrals and Derivative Operator","attachmentId":77030718,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429740/Interpolation_Functions_for_New_Classes_Special_Numbers_and_Polynomials_via_Applications_of_p_adic_Integrals_and_Derivative_Operator"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="105537927" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/105537927/A_Study_on_the_Adic_Integral_Representation_on_Associated_with_the_Weighted_Bernstein_and_Bernoulli_Polynomials">A Study on the -Adic -Integral Representation on Associated with the Weighted -Bernstein and -Bernoulli Polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="241879659" href="https://independent.academia.edu/BayadAbdelmejid">Abdelmejid Bayad</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Inequalities and Applications, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A Study on the -Adic -Integral Representation on Associated with the Weighted -Bernstein and -Bernoulli Polynomials","attachmentId":104964778,"attachmentType":"pdf","work_url":"https://www.academia.edu/105537927/A_Study_on_the_Adic_Integral_Representation_on_Associated_with_the_Weighted_Bernstein_and_Bernoulli_Polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/105537927/A_Study_on_the_Adic_Integral_Representation_on_Associated_with_the_Weighted_Bernstein_and_Bernoulli_Polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="24497686" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/24497686/Remarks_on_Sum_of_Products_of_h_q_Twisted_Euler_Polynomials_and_Numbers">Remarks on Sum of Products of (h,q)-Twisted Euler Polynomials and Numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="47214595" href="https://uludag.academia.edu/IsmailCangul">Ismail Cangul</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Inequalities and Applications, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Remarks on Sum of Products of (h,q)-Twisted Euler Polynomials and Numbers","attachmentId":44829960,"attachmentType":"pdf","work_url":"https://www.academia.edu/24497686/Remarks_on_Sum_of_Products_of_h_q_Twisted_Euler_Polynomials_and_Numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/24497686/Remarks_on_Sum_of_Products_of_h_q_Twisted_Euler_Polynomials_and_Numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="53591649" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_">Some identities of special numbers and polynomials arising from p-adic integrals on Z p $\mathbb{Z}_{p}$</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="31954770" href="https://independent.academia.edu/SungSooPyo">Sung-Soo Pyo</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Some identities of special numbers and polynomials arising from p-adic integrals on Z p $\\mathbb{Z}_{p}$","attachmentId":70366047,"attachmentType":"pdf","work_url":"https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/53591649/Some_identities_of_special_numbers_and_polynomials_arising_from_p_adic_integrals_on_Z_p_mathbb_Z_p_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="51060438" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/51060438/On_Bernoulli_and_Euler_numbers">On Bernoulli and Euler numbers</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied Mathematics Letters, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Bernoulli and Euler numbers","attachmentId":68920555,"attachmentType":"pdf","work_url":"https://www.academia.edu/51060438/On_Bernoulli_and_Euler_numbers","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/51060438/On_Bernoulli_and_Euler_numbers"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="91121866" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/91121866/New_Approach_to_q_Euler_Numbers_and_Polynomials">New Approach to q-Euler Numbers and Polynomials</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="26694576" href="https://independent.academia.edu/SeogHoonRim">Seog-Hoon Rim</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Difference Equations, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"New Approach to q-Euler Numbers and Polynomials","attachmentId":94498685,"attachmentType":"pdf","work_url":"https://www.academia.edu/91121866/New_Approach_to_q_Euler_Numbers_and_Polynomials","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/91121866/New_Approach_to_q_Euler_Numbers_and_Polynomials"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="22" data-entity-id="65429688" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals">Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="146832572" href="https://independent.academia.edu/YilmazSimsek2">Yilmaz Simsek</a></div><p class="ds-related-work--metadata ds2-5-body-xs">TURKISH JOURNAL OF MATHEMATICS</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Construction of some new families of Apostol-type numbers and polynomials via Dirichlet character and p-adic q-integrals","attachmentId":77030802,"attachmentType":"pdf","work_url":"https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/65429688/Construction_of_some_new_families_of_Apostol_type_numbers_and_polynomials_via_Dirichlet_character_and_p_adic_q_integrals"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a rel="nofollow" href="https://medium.com/academia">Blog</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>