CINXE.COM
A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision | Artificial Intelligence and Applications
<!DOCTYPE html> <html lang="en" xml:lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> <title> A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision | Artificial Intelligence and Applications </title> <link rel="icon" href="https://ojs.bonviewpress.com/public/journals/5/favicon_en_US.png"> <meta name="generator" content="Open Journal Systems 3.4.0.7"> <meta name="gs_meta_revision" content="1.1"/> <meta name="citation_journal_title" content="Artificial Intelligence and Applications"/> <meta name="citation_journal_abbrev" content="AIA"/> <meta name="citation_issn" content="2811-0854"/> <meta name="citation_author" content="Khaled Hallak"/> <meta name="citation_author_institution" content="University of Lorraine, France"/> <meta name="citation_author" content="Adel Abdallah"/> <meta name="citation_author_institution" content="University of Lorraine, France"/> <meta name="citation_title" content="A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision"/> <meta name="citation_language" content="en"/> <meta name="citation_date" content="2024/06/06"/> <meta name="citation_volume" content="2"/> <meta name="citation_issue" content="4"/> <meta name="citation_firstpage" content="315"/> <meta name="citation_lastpage" content="329"/> <meta name="citation_doi" content="10.47852/bonviewAIA42022662"/> <meta name="citation_abstract_html_url" content="https://ojs.bonviewpress.com/index.php/AIA/article/view/2662"/> <meta name="citation_abstract" xml:lang="en" content="Vehicle collision on bridges is an important issue for the transportation infrastructure management. This study explores the significance of bridge monitoring and the benefits of employing machine learning (ML) techniques to detect and classify vehicle-deck collisions on railway bridges. The ultimate goal is to transition from traditional bridge monitoring methods to a real-time monitoring system based on a ML approach, aiming to improve efficiency and accuracy in detecting bridge issues. Multiple supervised ML algorithms are evaluated to identify the most accurate model for collision detection and signal categorization. The selected ML model employs a distributed approach, enhancing its adaptability and integration into a comprehensive monitoring system for diverse bridge structures. The dataset comprises frequency, velocity, and displacement measurements collected over a one-year monitoring period from three distinct railway bridges. Additionally, a controlled experiment was conducted to identify signal patterns associated with collisions of different energy levels. The collected data underwent rigorous processing, including data cleaning, synchronization, pattern identification, and statistical analysis, to extract relevant features. The proposed model achieved an accuracy of 100% in detecting vehicle-deck collisions on railway bridges and demonstrated high accuracy in classifying other types of signals. The model provides bridge managers with a valuable digital decision support tool that aids in evaluating bridge conditions, minimizing maintenance costs, and ensuring train user safety. Furthermore, the developed approach aids in reducing disk storage and saving energy in embedded systems, enhancing its practicality and sustainability in real-world applications. 聽 Received: 22 February 2024 | Revised: 17 April 2024 | Accepted: 30 May 2024 聽 Conflicts of Interest The authors declare that they have no conflicts of interest to this work. Data Availability Statement Data available on request from the corresponding author upon reasonable request. 聽 Author Contribution Statement Khaled Hallak: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review &amp; editing, Visualization. Adel Abdallah: Conceptualization, Methodology, Investigation, Resources, Writing - review &amp; editing, Supervision, Project administration, Funding acquisition."/> <meta name="citation_keywords" xml:lang="en" content="supervised machine learning"/> <meta name="citation_keywords" xml:lang="en" content="distributed machine learning"/> <meta name="citation_keywords" xml:lang="en" content="anomaly detection"/> <meta name="citation_keywords" xml:lang="en" content="structural health monitoring"/> <meta name="citation_keywords" xml:lang="en" content="vehicle-bridge collisions"/> <meta name="citation_keywords" xml:lang="en" content="railway bridges"/> <meta name="citation_keywords" xml:lang="en" content="classification model"/> <meta name="citation_pdf_url" content="https://ojs.bonviewpress.com/index.php/AIA/article/download/2662/1031"/> <link rel="schema.DC" href="http://purl.org/dc/elements/1.1/" /> <meta name="DC.Creator.PersonalName" content="Khaled Hallak"/> <meta name="DC.Creator.PersonalName" content="Adel Abdallah"/> <meta name="DC.Date.created" scheme="ISO8601" content="2024-06-06"/> <meta name="DC.Date.dateSubmitted" scheme="ISO8601" content="2024-02-22"/> <meta name="DC.Date.issued" scheme="ISO8601" content="2024-10-28"/> <meta name="DC.Date.modified" scheme="ISO8601" content="2024-11-25"/> <meta name="DC.Description" xml:lang="en" content="Vehicle collision on bridges is an important issue for the transportation infrastructure management. This study explores the significance of bridge monitoring and the benefits of employing machine learning (ML) techniques to detect and classify vehicle-deck collisions on railway bridges. The ultimate goal is to transition from traditional bridge monitoring methods to a real-time monitoring system based on a ML approach, aiming to improve efficiency and accuracy in detecting bridge issues. Multiple supervised ML algorithms are evaluated to identify the most accurate model for collision detection and signal categorization. The selected ML model employs a distributed approach, enhancing its adaptability and integration into a comprehensive monitoring system for diverse bridge structures. The dataset comprises frequency, velocity, and displacement measurements collected over a one-year monitoring period from three distinct railway bridges. Additionally, a controlled experiment was conducted to identify signal patterns associated with collisions of different energy levels. The collected data underwent rigorous processing, including data cleaning, synchronization, pattern identification, and statistical analysis, to extract relevant features. The proposed model achieved an accuracy of 100% in detecting vehicle-deck collisions on railway bridges and demonstrated high accuracy in classifying other types of signals. The model provides bridge managers with a valuable digital decision support tool that aids in evaluating bridge conditions, minimizing maintenance costs, and ensuring train user safety. Furthermore, the developed approach aids in reducing disk storage and saving energy in embedded systems, enhancing its practicality and sustainability in real-world applications. 聽 Received: 22 February 2024 | Revised: 17 April 2024 | Accepted: 30 May 2024 聽 Conflicts of Interest The authors declare that they have no conflicts of interest to this work. Data Availability Statement Data available on request from the corresponding author upon reasonable request. 聽 Author Contribution Statement Khaled Hallak: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review &amp; editing, Visualization. Adel Abdallah: Conceptualization, Methodology, Investigation, Resources, Writing - review &amp; editing, Supervision, Project administration, Funding acquisition."/> <meta name="DC.Format" scheme="IMT" content="application/pdf"/> <meta name="DC.Identifier" content="2662"/> <meta name="DC.Identifier.pageNumber" content="315-329"/> <meta name="DC.Identifier.DOI" content="10.47852/bonviewAIA42022662"/> <meta name="DC.Identifier.URI" content="https://ojs.bonviewpress.com/index.php/AIA/article/view/2662"/> <meta name="DC.Language" scheme="ISO639-1" content="en"/> <meta name="DC.Rights" content="Copyright (c) 2024 Authors"/> <meta name="DC.Rights" content="https://creativecommons.org/licenses/by/4.0"/> <meta name="DC.Source" content="Artificial Intelligence and Applications"/> <meta name="DC.Source.ISSN" content="2811-0854"/> <meta name="DC.Source.Issue" content="4"/> <meta name="DC.Source.Volume" content="2"/> <meta name="DC.Source.URI" content="https://ojs.bonviewpress.com/index.php/AIA"/> <meta name="DC.Subject" xml:lang="en" content="supervised machine learning"/> <meta name="DC.Subject" xml:lang="en" content="distributed machine learning"/> <meta name="DC.Subject" xml:lang="en" content="anomaly detection"/> <meta name="DC.Subject" xml:lang="en" content="structural health monitoring"/> <meta name="DC.Subject" xml:lang="en" content="vehicle-bridge collisions"/> <meta name="DC.Subject" xml:lang="en" content="railway bridges"/> <meta name="DC.Subject" xml:lang="en" content="classification model"/> <meta name="DC.Title" content="A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision"/> <meta name="DC.Type" content="Text.Serial.Journal"/> <meta name="DC.Type.articleType" content="Research Article"/> <link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/AIA/$$$call$$$/page/page/css?name=stylesheet" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/index.php/AIA/$$$call$$$/page/page/css?name=font" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/lib/pkp/styles/fontawesome/fontawesome.css?v=3.4.0.7" type="text/css" /><style type="text/css">.pkp_structure_head { background: center / cover no-repeat url("https://ojs.bonviewpress.com/public/journals/5/homepageImage_en_US.jpg");}</style><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/orcidProfile/css/orcidProfile.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/assets/css/paperbuzzviz.css?v=3.4.0.7" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/public/journals/5/styleSheet.css?d=2022-09-03+15%3A23%3A03" type="text/css" /><link rel="stylesheet" href="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/css/citationStyleLanguagePlugin.css?v=3.4.0.7" type="text/css" /> </head> <body class="pkp_page_article pkp_op_view" dir="ltr"> <div class="pkp_structure_page"> <header class="pkp_structure_head" id="headerNavigationContainer" role="banner"> <nav class="cmp_skip_to_content" aria-label="Jump to content links"> <a href="#pkp_content_main">Skip to main content</a> <a href="#siteNav">Skip to main navigation menu</a> <a href="#pkp_content_footer">Skip to site footer</a> </nav> <div class="pkp_head_wrapper"> <div class="pkp_site_name_wrapper"> <button class="pkp_site_nav_toggle"> <span>Open Menu</span> </button> <div class="pkp_site_name"> <a href=" https://ojs.bonviewpress.com/index.php/AIA/index " class="is_text">Artificial Intelligence and Applications</a> </div> </div> <nav class="pkp_site_nav_menu" aria-label="Site Navigation"> <a id="siteNav"></a> <div class="pkp_navigation_primary_row"> <div class="pkp_navigation_primary_wrapper"> <ul id="navigationPrimary" class="pkp_navigation_primary pkp_nav_list"> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/index"> HOME </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about"> ABOUT </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/aimsandscope"> Aims and Scope </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/JM"> Journal Metrics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/indexing"> Indexing & Abstracting </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/privacy"> Privacy Statement </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/contact"> Contact Us </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> BROWSE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/20"> Online First </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/current"> Current Issue </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> All Issues </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/contribute"> CONTRIBUTE </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/submissions"> Author Guidelines </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/oa"> Open Access </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/peerreviewprocess"> Peer Review Process </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/publishingethics"> Publishing Ethics </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/forreviewers"> For Reviewers </a> </li> </ul> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/editorial_board"> EDITORIAL BOARD </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/special_issues"> SPECIAL ISSUES </a> <ul> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/SI_MOVE"> Call for Papers-SI on MOVE </a> </li> <li class=""> <a href="https://ojs.bonviewpress.com/index.php/AIA/submittingproposal"> Submitting a Proposal </a> </li> </ul> </li> </ul> <div class="pkp_navigation_search_wrapper"> <a href="https://ojs.bonviewpress.com/index.php/index/search" class="pkp_search pkp_search_desktop"> <span class="fa fa-search" aria-hidden="true"></span> Search </a> </div> </div> </div> <div class="pkp_navigation_user_wrapper" id="navigationUserWrapper"> <ul id="navigationUser" class="pkp_navigation_user pkp_nav_list"> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/AIA/user/register"> Register </a> </li> <li class="profile"> <a href="https://ojs.bonviewpress.com/index.php/AIA/login"> Login </a> </li> </ul> </div> </nav> </div><!-- .pkp_head_wrapper --> </header><!-- .pkp_structure_head --> <div class="pkp_structure_content has_sidebar"> <div class="pkp_structure_main" role="main"> <a id="pkp_content_main"></a> <div class="page page_article"> <nav class="cmp_breadcrumbs" role="navigation" aria-label="You are here:"> <ol> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/index"> Home </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/archive"> Archives </a> <span class="separator">/</span> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/98"> Vol. 2 No. 4 (2024) </a> <span class="separator">/</span> </li> <li class="current" aria-current="page"> <span aria-current="page"> Research Article </span> </li> </ol> </nav> <article class="obj_article_details"> <h1 class="page_title"> A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision </h1> <div class="row"> <div class="main_entry"> <section class="item authors"> <h2 class="pkp_screen_reader">Authors</h2> <ul class="authors"> <li> <span class="name"> Khaled Hallak </span> <span class="affiliation"> University of Lorraine, France </span> <span class="orcid"> <svg class="orcid_icon" viewBox="0 0 256 256" aria-hidden="true"> <style type="text/css"> .st0{fill:#A6CE39;} .st1{fill:#FFFFFF;} </style> <path class="st0" d="M256,128c0,70.7-57.3,128-128,128C57.3,256,0,198.7,0,128C0,57.3,57.3,0,128,0C198.7,0,256,57.3,256,128z"/> <g> <path class="st1" d="M86.3,186.2H70.9V79.1h15.4v48.4V186.2z"/> <path class="st1" d="M108.9,79.1h41.6c39.6,0,57,28.3,57,53.6c0,27.5-21.5,53.6-56.8,53.6h-41.8V79.1z M124.3,172.4h24.5 c34.9,0,42.9-26.5,42.9-39.7c0-21.5-13.7-39.7-43.7-39.7h-23.7V172.4z"/> <path class="st1" d="M88.7,56.8c0,5.5-4.5,10.1-10.1,10.1c-5.6,0-10.1-4.6-10.1-10.1c0-5.6,4.5-10.1,10.1-10.1 C84.2,46.7,88.7,51.3,88.7,56.8z"/> </g> </svg> <a href="https://orcid.org/0000-0002-4057-1620" target="_blank"> https://orcid.org/0000-0002-4057-1620 </a> </span> </li> <li> <span class="name"> Adel Abdallah </span> <span class="affiliation"> University of Lorraine, France </span> </li> </ul> </section> <section class="item doi"> <h2 class="label"> DOI: </h2> <span class="value"> <a href="https://doi.org/10.47852/bonviewAIA42022662"> https://doi.org/10.47852/bonviewAIA42022662 </a> </span> </section> <section class="item keywords"> <h2 class="label"> Keywords: </h2> <span class="value"> supervised machine learning, distributed machine learning, anomaly detection, structural health monitoring, vehicle-bridge collisions, railway bridges, classification model </span> </section> <section class="item abstract"> <h2 class="label">Abstract</h2> <p>Vehicle collision on bridges is an important issue for the transportation infrastructure management. This study explores the significance of bridge monitoring and the benefits of employing machine learning (ML) techniques to detect and classify vehicle-deck collisions on railway bridges. The ultimate goal is to transition from traditional bridge monitoring methods to a real-time monitoring system based on a ML approach, aiming to improve efficiency and accuracy in detecting bridge issues. Multiple supervised ML algorithms are evaluated to identify the most accurate model for collision detection and signal categorization. The selected ML model employs a distributed approach, enhancing its adaptability and integration into a comprehensive monitoring system for diverse bridge structures. The dataset comprises frequency, velocity, and displacement measurements collected over a one-year monitoring period from three distinct railway bridges. Additionally, a controlled experiment was conducted to identify signal patterns associated with collisions of different energy levels. The collected data underwent rigorous processing, including data cleaning, synchronization, pattern identification, and statistical analysis, to extract relevant features. The proposed model achieved an accuracy of 100% in detecting vehicle-deck collisions on railway bridges and demonstrated high accuracy in classifying other types of signals. The model provides bridge managers with a valuable digital decision support tool that aids in evaluating bridge conditions, minimizing maintenance costs, and ensuring train user safety. Furthermore, the developed approach aids in reducing disk storage and saving energy in embedded systems, enhancing its practicality and sustainability in real-world applications.</p> <p>聽</p> <p><strong>Received:</strong> 22 February 2024 <strong>| Revised:</strong> 17 April 2024<strong> | Accepted:</strong> 30 May 2024</p> <p>聽</p> <p><strong>Conflicts of Interest</strong></p> <p>The authors declare that they have no conflicts of interest to this work.</p> <p><br><strong>Data Availability Statement</strong></p> <p>Data available on request from the corresponding author upon reasonable request.</p> <p>聽</p> <p><strong>Author Contribution Statement</strong></p> <p><strong>Khaled Hallak:</strong> Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing - original draft, Writing - review & editing, Visualization. <strong>Adel Abdallah</strong><strong>: </strong>Conceptualization, Methodology, Investigation, Resources, Writing - review & editing, Supervision, Project administration, Funding acquisition.</p> </section> <br /><div class="separator"></div><div class="item abstract" id="trendmd-suggestions"></div><script defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"website_id":"89268", "element":"#trendmd-suggestions"}'></script><div class="item downloads_chart"> <h3 class="label"> Metrics </h3> <div id="paperbuzz"><div id="loading">Metrics Loading ...</div></div> <script type="text/javascript"> window.onload = function () { var options = { paperbuzzStatsJson: JSON.parse('{\"altmetrics_sources\":[{\"events\":null,\"events_count\":210,\"events_count_by_day\":[],\"events_count_by_month\":[{\"count\":\"10\",\"date\":\"2024-07\"},{\"count\":\"24\",\"date\":\"2024-08\"},{\"count\":\"69\",\"date\":\"2024-09\"},{\"count\":\"31\",\"date\":\"2024-10\"},{\"count\":\"76\",\"date\":\"2024-11\"}],\"events_count_by_year\":[{\"count\":\"210\",\"date\":\"2024\"}],\"source\":{\"display_name\":\"File downloads\"},\"source_id\":\"fileDownloads\"}],\"crossref_event_data_url\":\"https:\\/\\/api.eventdata.crossref.org\\/v1\\/events?rows=1000&filter=from-collected-date:1990-01-01,until-collected-date:2099-01-01,obj-id:10.47852\\/bonviewaia42022662\",\"doi\":\"10.47852\\/bonviewaia42022662\",\"metadata\":{\"DOI\":\"10.47852\\/bonviewaia42022662\",\"ISSN\":[\"2811-0854\"],\"URL\":\"http:\\/\\/dx.doi.org\\/10.47852\\/bonviewaia42022662\",\"abstract\":\"<jats:p>Vehicle collisions on bridges is an important issue for the transportation infrastructure management. This study explores the significance of bridge monitoring and the benefits of employing machine learning (ML) techniques to detect and classify vehicle-deck collisions on railway bridges. The ultimate goal is to transition from traditional bridge monitoring methods to a real-time monitoring system based on a machine learning approach, aiming to improve efficiency and accuracy in detecting bridge issues. Multiple supervised ML algorithms are evaluated to identify the most accurate model for collision detection and signal categorization. The selected ML model employs a distributed approach, enhancing its adaptability and integration into a comprehensive monitoring system for diverse bridge structures. The dataset comprises frequency, velocity, and displacement measurements collected over a one-year monitoring period from three distinct railway bridges. Additionally, a controlled experiment was conducted to identify signal patterns associated with collisions of different energy levels. The collected data underwent rigorous processing, including data cleaning, synchronization, pattern identification, and statistical analysis, to extract relevant features. The proposed model achieved an accuracy of 100% in detecting vehicle-deck collisions on railway bridges and demonstrated high accuracy in classifying other types of signals. The model provides bridge managers with a valuable digital decision support tool that aids in evaluating bridge conditions, minimizing maintenance costs, and ensuring train user safety. Furthermore, the developed approach aids in reducing disk storage and saving energy in embedded systems, enhancing its practicality and sustainability in real-world applications.<\\/jats:p>\",\"author\":[{\"affiliation\":[],\"family\":\"Hallak\",\"given\":\"Khaled\",\"sequence\":\"first\"},{\"affiliation\":[],\"family\":\"Abdallah\",\"given\":\"Adel\",\"sequence\":\"additional\"}],\"container-title\":\"Artificial Intelligence and Applications\",\"container-title-short\":\"AIA\",\"content-domain\":{\"crossmark-restriction\":false,\"domain\":[]},\"created\":{\"date-parts\":[[2024,6,24]],\"date-time\":\"2024-06-24T09:09:27Z\",\"timestamp\":1719220167000},\"crossref_url\":\"https:\\/\\/api.crossref.org\\/works\\/10.47852\\/bonviewaia42022662\\/transform\\/application\\/vnd.citationstyles.csl+json\",\"deposited\":{\"date-parts\":[[2024,6,24]],\"date-time\":\"2024-06-24T09:09:28Z\",\"timestamp\":1719220168000},\"indexed\":{\"date-parts\":[[2024,6,25]],\"date-time\":\"2024-06-25T00:27:57Z\",\"timestamp\":1719275277179},\"is-referenced-by-count\":0,\"issued\":{\"date-parts\":[[2024,6,5]]},\"member\":\"27601\",\"original-title\":[],\"prefix\":\"10.47852\",\"published\":{\"date-parts\":[[2024,6,5]]},\"published-online\":{\"date-parts\":[[2024,6,5]]},\"publisher\":\"BON VIEW PUBLISHING PTE\",\"reference-count\":0,\"references-count\":0,\"relation\":[],\"resource\":{\"primary\":{\"URL\":\"https:\\/\\/ojs.bonviewpress.com\\/index.php\\/AIA\\/article\\/view\\/2662\"}},\"score\":1,\"short-title\":[],\"source\":\"Crossref\",\"subject\":[],\"subtitle\":[],\"title\":\"A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision\",\"type\":\"journal-article\"},\"open_access\":{\"best_oa_location\":{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2024-09-19\",\"pmh_id\":\"oai:HAL:hal-04690727v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-29T08:13:35.302686\",\"url\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"version\":\"publishedVersion\"},\"data_standard\":2,\"doi\":\"10.47852\\/bonviewaia42022662\",\"doi_url\":\"https:\\/\\/doi.org\\/10.47852\\/bonviewaia42022662\",\"first_oa_location\":{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":false,\"license\":\"other-oa\",\"oa_date\":\"2024-09-10\",\"pmh_id\":\"oai:HAL:hal-04691146v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-29T08:18:40.202413\",\"url\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"version\":\"publishedVersion\"},\"genre\":\"journal-article\",\"has_repository_copy\":true,\"is_oa\":true,\"is_paratext\":false,\"journal_is_in_doaj\":false,\"journal_is_oa\":false,\"journal_issn_l\":\"2811-0854\",\"journal_issns\":\"2811-0854\",\"journal_name\":\"Artificial Intelligence and Applications\",\"oa_locations\":[{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":true,\"license\":\"cc-by\",\"oa_date\":\"2024-09-19\",\"pmh_id\":\"oai:HAL:hal-04690727v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-29T08:13:35.302686\",\"url\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/file\\/AIA42022662_R1.pdf\",\"version\":\"publishedVersion\"},{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":false,\"license\":\"other-oa\",\"oa_date\":\"2024-09-10\",\"pmh_id\":\"oai:HAL:hal-04691146v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-29T08:18:40.202413\",\"url\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04691146\\/file\\/AIA42022662_R1.pdf\",\"version\":\"publishedVersion\"},{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":false,\"license\":\"cc-by\",\"oa_date\":\"2024-09-19\",\"pmh_id\":\"oai:HAL:hal-04690727v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-29T08:21:38.974481\",\"url\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/document\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/document\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04690727v1\\/document\",\"version\":\"publishedVersion\"},{\"endpoint_id\":\"nwcvfyy2kdtgvr4rcnfh\",\"evidence\":\"oa repository (via OAI-PMH doi match)\",\"host_type\":\"repository\",\"is_best\":false,\"license\":\"other-oa\",\"oa_date\":\"2024-09-10\",\"pmh_id\":\"oai:HAL:hal-04691146v1\",\"repository_institution\":\"Le Centre pour la Communication Scientifique Directe - HAL - TYPE ART\",\"updated\":\"2024-09-14T02:40:29.502018\",\"url\":\"https:\\/\\/hal.science\\/hal-04691146\\/document\",\"url_for_landing_page\":\"https:\\/\\/hal.science\\/hal-04691146\",\"url_for_pdf\":\"https:\\/\\/hal.science\\/hal-04691146\\/document\",\"version\":\"publishedVersion\"}],\"oa_locations_embargoed\":[],\"oa_status\":\"green\",\"oadoi_url\":\"https:\\/\\/api.oadoi.org\\/v2\\/10.47852\\/bonviewaia42022662\",\"published_date\":\"2024-06-06\",\"publisher\":\"BON VIEW PUBLISHING PTE\",\"title\":\"A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision\",\"updated\":\"2024-06-25T01:55:07.190269\",\"year\":2024,\"z_authors\":[{\"ORCID\":\"http:\\/\\/orcid.org\\/0000-0002-4057-1620\",\"authenticated-orcid\":false,\"family\":\"Hallak\",\"given\":\"Khaled\",\"sequence\":\"first\"},{\"family\":\"Abdallah\",\"given\":\"Adel\",\"sequence\":\"additional\"}]}}'), minItemsToShowGraph: { minEventsForYearly: 10, minEventsForMonthly: 10, minEventsForDaily: 6, minYearsForYearly: 3, minMonthsForMonthly: 2, minDaysForDaily: 1 //first 30 days only }, graphheight: 150, graphwidth: 300, showTitle: false, showMini: false, published_date: [2024, 6, 6], } var paperbuzzviz = undefined; paperbuzzviz = new PaperbuzzViz(options); paperbuzzviz.initViz(); } </script> </div> </div><!-- .main_entry --> <div class="entry_details"> <div class="item cover_image"> <div class="sub_item"> <a href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/98"> <img src="https://ojs.bonviewpress.com/public/journals/5/cover_issue_98_en_US.png" alt=""> </a> </div> </div> <div class="item galleys"> <h2 class="pkp_screen_reader"> Downloads </h2> <ul class="value galleys_links"> <li> <a class="obj_galley_link pdf" href="https://ojs.bonviewpress.com/index.php/AIA/article/view/2662/1031"> PDF </a> </li> </ul> </div> <div class="item published"> <section class="sub_item"> <h2 class="label"> Published </h2> <div class="value"> <span>2024-06-06</span> </div> </section> </div> <div class="item issue"> <section class="sub_item"> <h2 class="label"> Issue </h2> <div class="value"> <a class="title" href="https://ojs.bonviewpress.com/index.php/AIA/issue/view/98"> Vol. 2 No. 4 (2024) </a> </div> </section> <section class="sub_item"> <h2 class="label"> Section </h2> <div class="value"> Research Article </div> </section> </div> <div class="item copyright"> <h2 class="label"> License </h2> <p>Copyright (c) 2024 Authors</p> <a rel="license" href="https://creativecommons.org/licenses/by/4.0/"><img alt="Creative Commons License" src="//i.creativecommons.org/l/by/4.0/88x31.png" /></a><p>This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> </div> <div class="item citation"> <section class="sub_item citation_display"> <h2 class="label"> How to Cite </h2> <div class="value"> <div id="citationOutput" role="region" aria-live="polite"> <div class="csl-bib-body"> <div class="csl-entry">Hallak, K., & Abdallah, A. . (2024). A Supervised Machine Learning Monitoring System for Vehicle-Railway Bridge Collision. <i>Artificial Intelligence and Applications</i>, <i>2</i>(4), 315-329. <a href="https://doi.org/10.47852/bonviewAIA42022662">https://doi.org/10.47852/bonviewAIA42022662</a></div> </div> </div> <div class="citation_formats"> <button class="citation_formats_button label" aria-controls="cslCitationFormats" aria-expanded="false" data-csl-dropdown="true"> More Citation Formats </button> <div id="cslCitationFormats" class="citation_formats_list" aria-hidden="true"> <ul class="citation_formats_styles"> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acm-sig-proceedings?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acm-sig-proceedings?submissionId=2662&publicationId=3837&issueId=98&return=json" > ACM </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acs-nano?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/acs-nano?submissionId=2662&publicationId=3837&issueId=98&return=json" > ACS </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/apa?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/apa?submissionId=2662&publicationId=3837&issueId=98&return=json" > APA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/associacao-brasileira-de-normas-tecnicas?submissionId=2662&publicationId=3837&issueId=98&return=json" > ABNT </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/chicago-author-date?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/chicago-author-date?submissionId=2662&publicationId=3837&issueId=98&return=json" > Chicago </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/harvard-cite-them-right?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/harvard-cite-them-right?submissionId=2662&publicationId=3837&issueId=98&return=json" > Harvard </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ieee?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ieee?submissionId=2662&publicationId=3837&issueId=98&return=json" > IEEE </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/modern-language-association?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/modern-language-association?submissionId=2662&publicationId=3837&issueId=98&return=json" > MLA </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/turabian-fullnote-bibliography?submissionId=2662&publicationId=3837&issueId=98&return=json" > Turabian </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/vancouver?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/vancouver?submissionId=2662&publicationId=3837&issueId=98&return=json" > Vancouver </a> </li> <li> <a aria-controls="citationOutput" href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ama?submissionId=2662&publicationId=3837&issueId=98" data-load-citation data-json-href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/get/ama?submissionId=2662&publicationId=3837&issueId=98&return=json" > AMA </a> </li> </ul> <div class="label"> Download Citation </div> <ul class="citation_formats_styles"> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/download/ris?submissionId=2662&publicationId=3837&issueId=98"> <span class="fa fa-download"></span> Endnote/Zotero/Mendeley (RIS) </a> </li> <li> <a href="https://ojs.bonviewpress.com/index.php/AIA/citationstylelanguage/download/bibtex?submissionId=2662&publicationId=3837&issueId=98"> <span class="fa fa-download"></span> BibTeX </a> </li> </ul> </div> </div> </div> </section> </div> <div class="item addthis"> <div class="value"> <!-- AddThis Button BEGIN --> <div class="addthis_toolbox addthis_default_style "> <a class="addthis_button_preferred_1"></a> <a class="addthis_button_preferred_2"></a> <a class="addthis_button_preferred_3"></a> <a class="addthis_button_preferred_4"></a> <a class="addthis_button_compact"></a> <a class="addthis_counter addthis_bubble_style"></a> </div> <script type="text/javascript" src="//s7.addthis.com/js/250/addthis_widget.js#pubid="></script> <!-- AddThis Button END --> </div> </div> </div><!-- .entry_details --> </div><!-- .row --> </article> </div><!-- .page --> </div><!-- pkp_structure_main --> <div class="pkp_structure_sidebar left" role="complementary"> <div class="pkp_block block_custom" id="customblock-journal-information"> <h2 class="title">Journal Information</h2> <div class="content"> <div class="journalcard__metrics border"> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Editor-in-Chief:</strong> Shivakumara Palaiahnakote<span class=" jgG6ef">, </span><span class=" jgG6ef">University of Salford, UK</span></span></div> <div class="journalcard__metrics border"><span class="sc-hwwEjo cdchLr"><strong>Frequency: </strong>Quarterly</span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Submission to First Decision: </strong>26 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Submission to Acceptance:</strong> 86 days</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>Accept to Publish:</strong> 21 days</span></span></div> <div class="journalcard__metrics border"><strong>Acceptance Rate: </strong>17%</div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr"><strong>eISSN:</strong> 2811-0854</span></span></div> <div class="journalcard__metrics border"><span class="sc-kPVwWT hZDpyF"><span class="sc-hwwEjo cdchLr">漏 2024 Bon View Publishing Pte Ltd.</span></span></div> </div> </div> </div> <div class="pkp_block block_make_submission"> <h2 class="pkp_screen_reader"> Make a Submission </h2> <div class="content"> <a class="block_make_submission_link" href="https://ojs.bonviewpress.com/index.php/AIA/about/submissions"> Make a Submission </a> </div> </div> <style type="text/css"> .block_announcements_article:not(:last-child) { padding-bottom: 1.5em; border-bottom: 1px solid; } .block_announcements_article { text-align: left; } .block_announcements #show-all{ font-style: italic; } </style> <div class="pkp_block block_announcements"> <h2 class="title">Announcements</h2> <div class="content"> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/AIA/announcement/view/93"> AIA Has Been Officially Indexed in EBSCO </a> </h3> <time class="block_announcements_article_date" datetime="2024-11-07"> <strong>November 7, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are delighted to share with you that <em>Artificial Intelligence and Applications</em> (eISSN: 2811-0854) has been officially indexed by EBSCO! The full text ingestion is still in progress and will be completed at January, 2025.</p> </div> </article> <article class="block_announcements_article"> <h3 class="block_announcements_article_headline"> <a href="https://ojs.bonviewpress.com/index.php/AIA/announcement/view/87"> AIA Published Volume 2, Issue 4 on October 28, 2024 </a> </h3> <time class="block_announcements_article_date" datetime="2024-10-28"> <strong>October 28, 2024</strong> </time> <div class="block_announcements_article_content"> <p>We are excited to announce that <em><strong>Artificial Intelligence and Applications (AIA)</strong></em> published Volume 2 Issue 4 on October 28, 2024!</p> </div> </article> <a id="show-all" href="https://ojs.bonviewpress.com/index.php/AIA/announcement">Show all announcements ...</a> </div> </div> <div class="pkp_block block_keyword_cloud"> <h2 class="title">Keywords</h2> <div class="content" id='wordcloud'></div> <script> function randomColor() { var cores = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf']; return cores[Math.floor(Math.random()*cores.length)]; } document.addEventListener("DOMContentLoaded", function() { var keywords = [{"text":"text detection","size":1},{"text":"text recognition","size":1},{"text":"text spotting","size":1},{"text":"text classification","size":1},{"text":"scene text","size":1},{"text":"car number plate detection","size":1},{"text":"optical character recognition","size":1},{"text":"supervised machine learning","size":1},{"text":"distributed machine learning","size":1},{"text":"anomaly detection","size":1},{"text":"structural health monitoring","size":1},{"text":"vehicle-bridge collisions","size":1},{"text":"railway bridges","size":1},{"text":"classification model","size":1},{"text":"deep learning","size":1},{"text":"polyp detection","size":1},{"text":"cnn","size":1},{"text":"image classification","size":1},{"text":"colorectal disease","size":1},{"text":"alzheimer's disease","size":1},{"text":"intervention techniques","size":1},{"text":"conventional methods","size":1},{"text":"artificial intelligence","size":1},{"text":"cognitive stimulation","size":1},{"text":"reality orientation","size":1},{"text":"reminiscence therapy","size":1},{"text":"enemy identification","size":1},{"text":" text similarity","size":1},{"text":"sentence transformer models","size":1},{"text":"natural language processing","size":1},{"text":"machine learning","size":1},{"text":"hr demand","size":1},{"text":"business","size":1},{"text":"hr management","size":1},{"text":"m-knn algorithm","size":1},{"text":"origin tool","size":1},{"text":"soliton solutions","size":1},{"text":"modified benjamin-bona-mahony equation","size":1},{"text":"ostrovsky-benjamin-bona-mahony equation","size":1},{"text":"mikhailov-novikov-wang equation","size":1},{"text":"physics informed neural networks","size":1},{"text":"cancer prediction","size":1},{"text":"prostate cancer","size":1},{"text":"unsupervised learning","size":1},{"text":"intelligent system","size":1},{"text":"cybernetics","size":1},{"text":"decision support","size":1},{"text":"baby cry","size":1},{"text":"multiple instance learning","size":1},{"text":"audio classification","size":1}]; var totalWeight = 0; var blockWidth = 300; var blockHeight = 200; var transitionDuration = 200; var length_keywords = keywords.length; var layout = d3.layout.cloud(); layout.size([blockWidth, blockHeight]) .words(keywords) .fontSize(function(d) { return fontSize(+d.size); }) .on('end', draw); var svg = d3.select("#wordcloud").append("svg") .attr("viewBox", "0 0 " + blockWidth + " " + blockHeight) .attr("width", '100%'); function update() { var words = layout.words(); fontSize = d3.scaleLinear().range([16, 34]); if (words.length) { fontSize.domain([+words[words.length - 1].size || 1, +words[0].size]); } } keywords.forEach(function(item,index){totalWeight += item.size;}); update(); function draw(words, bounds) { var width = layout.size()[0], height = layout.size()[1]; scaling = bounds ? Math.min( width / Math.abs(bounds[1].x - width / 2), width / Math.abs(bounds[0].x - width / 2), height / Math.abs(bounds[1].y - height / 2), height / Math.abs(bounds[0].y - height / 2), ) / 2 : 1; svg .append("g") .attr( "transform", "translate(" + [width >> 1, height >> 1] + ")scale(" + scaling + ")", ) .selectAll("text") .data(words) .enter().append("text") .style("font-size", function(d) { return d.size + "px"; }) .style("font-family", 'serif') .style("fill", randomColor) .style('cursor', 'pointer') .style('opacity', 0.7) .attr('class', 'keyword') .attr("text-anchor", "middle") .attr("transform", function(d) { return "translate(" + [d.x, d.y] + ")rotate(" + d.rotate + ")"; }) .text(function(d) { return d.text; }) .on("click", function(d, i){ window.location = "https://ojs.bonviewpress.com/index.php/index/search?query=QUERY_SLUG".replace(/QUERY_SLUG/, encodeURIComponent(''+d.text+'')); }) .on("mouseover", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return (d.size + 3) + "px"; }) .style('opacity', 1); }) .on("mouseout", function(d, i) { d3.select(this).transition() .duration(transitionDuration) .style('font-size',function(d) { return d.size + "px"; }) .style('opacity', 0.7); }) .on('resize', function() { update() }); } layout.start(); }); </script> </div> <div class="pkp_block block_developed_by"> <div class="content"> <span class="title">Most Read</span> <ul class="most_read"> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/391">Real-Time Human Detection and Counting System Using Deep Learning Computer Vision Techniques</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 2057</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/820">Exploring the Capabilities and Limitations of ChatGPT and Alternative Big Language Models</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1794</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/689">A Critical Historic Overview of Artificial Intelligence: Issues, Challenges, Opportunities, and Threats</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1548</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/939">Let鈥檚 Have a Chat! A Conversation with ChatGPT: Technology, Applications, and Limitations</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1090</div> </li> <li class="most_read_article"> <div class="most_read_article_title"><a href="https://ojs.bonviewpress.com/index.php/AIA/article/view/297">Applications of Artificial Intelligence in Automatic Detection of Epileptic Seizures Using EEG Signals: A Review</a></div> <div class="most_read_article_journal"><span class="fa fa-eye"></span> 1011</div> </li> </ul> </div> </div> </div><!-- pkp_sidebar.left --> </div><!-- pkp_structure_content --> <div class="pkp_structure_footer_wrapper" role="contentinfo"> <a id="pkp_content_footer"></a> <div class="pkp_structure_footer"> <div class="pkp_footer_content"> <p><a href="http://creativecommons.org/licenses/by/4.0/" rel="license"><img style="border-width: 0;" src="https://ojs.bonviewpress.com/public/site/images/admin/88x31.png" alt="Creative Commons License" width="88" height="31" /></a>聽 All site content, except where otherwise noted, is licensed under a <a href="http://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution 4.0 International License</a>.</p> <p>eISSN 2811-0854 | Published by <a href="http://www.bonviewpress.com/">Bon View Publishing Pte Ltd.</a></p> <p><strong>Member of</strong></p> <p><img style="width: 900px; height: 70px;" src="https://bonview.oss-ap-southeast-1.aliyuncs.com/resource/ojs-logo-quanji.png" />聽</p> </div> <div class="pkp_brand_footer"> <a href="https://ojs.bonviewpress.com/index.php/AIA/about/aboutThisPublishingSystem"> <img alt="More information about the publishing system, Platform and Workflow by OJS/PKP." src="https://ojs.bonviewpress.com/templates/images/ojs_brand.png"> </a> </div> </div> </div><!-- pkp_structure_footer_wrapper --> </div><!-- pkp_structure_page --> <script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jquery/jquery.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/lib/pkp/lib/vendor/components/jqueryui/jquery-ui.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/popper/popper.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/util.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/lib/bootstrap/dropdown.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/themes/default/js/main.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/citationStyleLanguage/js/articleCitation.js?v=3.4.0.7" type="text/javascript"></script><script src="https://d3js.org/d3.v4.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/d3-tip/0.9.1/d3-tip.min.js?v=3.4.0.7" type="text/javascript"></script><script src="https://ojs.bonviewpress.com/plugins/generic/paperbuzz/paperbuzzviz/paperbuzzviz.js?v=3.4.0.7" type="text/javascript"></script><script src="https://cdn.jsdelivr.net/gh/holtzy/D3-graph-gallery@master/LIB/d3.layout.cloud.js?v=3.4.0.7" type="text/javascript"></script><script type="text/javascript"> (function (w, d, s, l, i) { w[l] = w[l] || []; var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtag/js?id=' + i + dl; f.parentNode.insertBefore(j, f); function gtag(){dataLayer.push(arguments)}; gtag('js', new Date()); gtag('config', i); }) (window, document, 'script', 'dataLayer', 'UA-284252596-1'); </script> </body> </html>