CINXE.COM
Search results for: ternary electrolyte system
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: ternary electrolyte system</title> <meta name="description" content="Search results for: ternary electrolyte system"> <meta name="keywords" content="ternary electrolyte system"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="ternary electrolyte system" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="ternary electrolyte system"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17909</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: ternary electrolyte system</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17909</span> Studies on the Applicability of Artificial Neural Network (ANN) in Prediction of Thermodynamic Behavior of Sodium Chloride Aqueous System Containing a Non-Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dariush%20Jafari">Dariush Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Mostafa%20Nowee"> S. Mostafa Nowee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study a ternary system containing sodium chloride as solute, water as primary solvent and ethanol as the antisolvent was considered to investigate the application of artificial neural network (ANN) in prediction of sodium solubility in the mixture of water as the solvent and ethanol as the antisolvent. The system was previously studied using by Extended UNIQUAC model by the authors of this study. The comparison between the results of the two models shows an excellent agreement between them (R2=0.99), and also approves the capability of ANN to predict the thermodynamic behavior of ternary electrolyte systems which are difficult to model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermodynamic%20modeling" title="thermodynamic modeling">thermodynamic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=ANN" title=" ANN"> ANN</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility" title=" solubility"> solubility</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system" title=" ternary electrolyte system"> ternary electrolyte system</a> </p> <a href="https://publications.waset.org/abstracts/18933/studies-on-the-applicability-of-artificial-neural-network-ann-in-prediction-of-thermodynamic-behavior-of-sodium-chloride-aqueous-system-containing-a-non-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17908</span> Development of Solid Electrolytes Based on Networked Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boor%20Singh%20Lalia">Boor Singh Lalia</a>, <a href="https://publications.waset.org/abstracts/search?q=Yarjan%20Abdul%20Samad"> Yarjan Abdul Samad</a>, <a href="https://publications.waset.org/abstracts/search?q=Raed%20Hashaikeh"> Raed Hashaikeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20polymer%20electrolyte" title="solid polymer electrolyte">solid polymer electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20conductivity" title=" ionic conductivity"> ionic conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20batteries" title=" lithium ion batteries"> lithium ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20voltammetry" title=" cyclic voltammetry"> cyclic voltammetry</a> </p> <a href="https://publications.waset.org/abstracts/22354/development-of-solid-electrolytes-based-on-networked-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17907</span> Teaching the Binary System via Beautiful Facts from the Real Life</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salem%20Ben%20Said">Salem Ben Said</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent times the decimal number system to which we are accustomed has received serious competition from the binary number system. In this note, an approach is suggested to teaching and learning the binary number system using examples from the real world. More precisely, we will demonstrate the utility of the binary system in describing the optimal strategy to win the Chinese Nim game, and in telegraphy by decoding the hidden message on Perseverance’s Mars parachute written in the language of binary system. Finally, we will answer the question, “why do modern computers prefer the ternary number system instead of the binary system?”. All materials are provided in a format that is conductive to classroom presentation and discussion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=binary%20number%20system" title="binary number system">binary number system</a>, <a href="https://publications.waset.org/abstracts/search?q=Nim%20game" title=" Nim game"> Nim game</a>, <a href="https://publications.waset.org/abstracts/search?q=telegraphy" title=" telegraphy"> telegraphy</a>, <a href="https://publications.waset.org/abstracts/search?q=computers%20prefer%20the%20ternary%20system" title=" computers prefer the ternary system"> computers prefer the ternary system</a> </p> <a href="https://publications.waset.org/abstracts/143278/teaching-the-binary-system-via-beautiful-facts-from-the-real-life" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">186</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17906</span> Curve Designing Using an Approximating 4-Point C^2 Ternary Non-Stationary Subdivision Scheme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younis">Muhammad Younis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A ternary 4-point approximating non-stationary subdivision scheme has been introduced that generates the family of $C^2$ limiting curves. The theory of asymptotic equivalence is being used to analyze the convergence and smoothness of the scheme. The comparison of the proposed scheme has been demonstrated using different examples with the existing 4-point ternary approximating schemes, which shows that the limit curves of the proposed scheme behave more pleasantly and can generate conic sections as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ternary" title="ternary">ternary</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stationary" title=" non-stationary"> non-stationary</a>, <a href="https://publications.waset.org/abstracts/search?q=approximation%20subdivision%20scheme" title=" approximation subdivision scheme"> approximation subdivision scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=convergence%20and%20smoothness" title=" convergence and smoothness"> convergence and smoothness</a> </p> <a href="https://publications.waset.org/abstracts/24448/curve-designing-using-an-approximating-4-point-c2-ternary-non-stationary-subdivision-scheme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">477</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17905</span> Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulrazzak%20Akroot">Abdulrazzak Akroot</a>, <a href="https://publications.waset.org/abstracts/search?q=Lutfu%20Namli"> Lutfu Namli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20oxide%20fuel%20cell" title="solid oxide fuel cell">solid oxide fuel cell</a>, <a href="https://publications.waset.org/abstracts/search?q=anode-supported%20model" title=" anode-supported model"> anode-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolyte-supported%20model" title=" electrolyte-supported model"> electrolyte-supported model</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20analysis" title=" energy analysis"> energy analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=exergy%20analysis" title=" exergy analysis"> exergy analysis</a> </p> <a href="https://publications.waset.org/abstracts/104800/energy-and-exergy-analysis-of-anode-supported-and-electrolyte-supported-solid-oxide-fuel-cells-gas-turbine-power-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17904</span> Experimental Evaluation of Succinct Ternary Tree</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitriy%20Kuptsov">Dmitriy Kuptsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithms" title="algorithms">algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20structures" title="data structures">data structures</a>, <a href="https://publications.waset.org/abstracts/search?q=succinct%20ternary%20tree" title="succinct ternary tree">succinct ternary tree</a>, <a href="https://publications.waset.org/abstracts/search?q=per-%20formance%20evaluation" title="per- formance evaluation">per- formance evaluation</a> </p> <a href="https://publications.waset.org/abstracts/144336/experimental-evaluation-of-succinct-ternary-tree" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144336.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17903</span> Effects of Particle Size Distribution of Binders on the Performance of Slag-Limestone Ternary Cement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuomin%20Zou">Zhuomin Zou</a>, <a href="https://publications.waset.org/abstracts/search?q=Thijs%20Van%20Landeghem"> Thijs Van Landeghem</a>, <a href="https://publications.waset.org/abstracts/search?q=Elke%20Gruyaert"> Elke Gruyaert</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using supplementary cementitious materials, such as blast-furnace slag and limestone, to replace cement clinker is a promising method to reduce the carbon emissions from cement production. To efficiently use slag and limestone, it is necessary to carefully select the particle size distribution (PSD) of the binders. This study investigated the effects of the PSD of binders on the performance of slag-limestone ternary cement. The Portland cement (PC) was prepared by grinding 95% clinker + 5% gypsum. Based on the PSD parameters of the binders, three types of ternary cements with a similar overall PSD were designed, i.e., NO.1 fine slag, medium PC, and coarse limestone; NO.2 fine limestone, medium PC, and coarse slag; NO.3. fine PC, medium slag, and coarse limestone. The binder contents in the ternary cements were (a) 50 % PC, 40 % slag, and 10 % limestone (called high cement group) or (b) 35 % PC, 55 % slag, and 10 % limestone (called low cement group). The pure PC and binary cement with 50% slag and 50% PC prepared with the same binders as the ternary cement were considered as reference cements. All these cements were used to investigate the mortar performance in terms of workability, strength at 2, 7, 28, and 90 days, carbonation resistance, and non-steady state chloride migration resistance at 28 and 56 days. Results show that blending medium PC with fine slag could exhibit comparable performance to blending fine PC with medium/coarse slag in binary cement. For the three ternary cements in the high cement group, ternary cement with fine limestone (NO.2) shows the lowest strength, carbonation, and chloride migration performance. Ternary cements with fine slag (NO.1) and with fine PC (NO.3) show the highest flexural strength at early and late ages, respectively. In addition, compared with ternary cement with fine PC (NO.3), ternary cement with fine slag (NO.1) has a similar carbonation resistance and a better chloride migration resistance. For the low cement group, three ternary cements have a similar flexural and compressive strength before 7 days. After 28 days, ternary cement with fine limestone (NO.2) shows the highest flexural strength while fine PC (NO.3) has the highest compressive strength. In addition, ternary cement with fine slag (NO.1) shows a better chloride migration resistance but a lower carbonation resistance compared with the other two ternary cements. Moreover, the durability performance of ternary cement with fine PC (NO.3) is better than that of fine limestone (NO.2). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=limestone" title="limestone">limestone</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20size%20distribution" title=" particle size distribution"> particle size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=slag" title=" slag"> slag</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20cement" title=" ternary cement"> ternary cement</a> </p> <a href="https://publications.waset.org/abstracts/152245/effects-of-particle-size-distribution-of-binders-on-the-performance-of-slag-limestone-ternary-cement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152245.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17902</span> Unveiling the Potential of PANI@MnO2@rGO Ternary Nanocomposite in Energy Storage and Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Umar">Ahmad Umar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheikh%20Akbar"> Sheikh Akbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20A.%20Ibrahim"> Ahmed A. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20A.%20Alhamami"> Mohsen A. Alhamami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of advanced materials for energy storage and gas sensing applications has gained significant attention in recent years. In this study, we synthesized and characterized PANI@MnO2@rGO ternary nanocomposites (NCs) to explore their potential in supercapacitors and gas sensing devices. The ternary NCs were synthesized through a multi-step process involving the hydrothermal synthesis of MnO2 nanoparticles, preparation of PANI@rGO composites and the assembly to the ternary PANI@MnO2@rGO ternary NCs. The structural, morphological, and compositional characteristics of the materials were thoroughly analyzed using techniques such as XRD, FESEM, TEM, FTIR, and Raman spectroscopy. In the realm of gas sensing, the ternary NCs exhibited excellent performance as NH3 gas sensors. The optimized operating temperature of 100 °C yielded a peak response of 15.56 towards 50 ppm NH3. The nanocomposites demonstrated fast response and recovery times of 6 s and 10 s, respectively, and displayed remarkable selectivity for NH3 gas over other tested gases. For supercapacitor applications, the electrochemical performance of the ternary NCs was evaluated using cyclic voltammetry and galvanostatic charge-discharge techniques. The composites exhibited pseudocapacitive behavior, with the capacitance reaching up to 185 F/g at 1 A/g and excellent capacitance retention of approximately 88.54% over 4000 charge-discharge cycles. The unique combination of rGO, PANI, and MnO2 nanoparticles in these ternary NCs offer synergistic advantages, showcasing their potential to address challenges in energy storage and gas sensing technologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paniI%40mnO2%40rGO%20ternary%20NCs" title="paniI@mnO2@rGO ternary NCs">paniI@mnO2@rGO ternary NCs</a>, <a href="https://publications.waset.org/abstracts/search?q=synergistic%20effects" title=" synergistic effects"> synergistic effects</a>, <a href="https://publications.waset.org/abstracts/search?q=supercapacitors" title=" supercapacitors"> supercapacitors</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a> </p> <a href="https://publications.waset.org/abstracts/174907/unveiling-the-potential-of-pani-at-mno2-at-rgo-ternary-nanocomposite-in-energy-storage-and-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/174907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17901</span> Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Seckin%20Cardakli">Ismail Seckin Cardakli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Engin%20Kocadagistan"> Mustafa Engin Kocadagistan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ersin%20Arslan"> Ersin Arslan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20energy%20ball%20milling" title="high energy ball milling">high energy ball milling</a>, <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title=" hexagonal boron nitride"> hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanically%20induced%20self-sustaining%20reaction" title=" mechanically induced self-sustaining reaction"> mechanically induced self-sustaining reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=melamine" title=" melamine"> melamine</a> </p> <a href="https://publications.waset.org/abstracts/106406/mechanochemical-behaviour-of-aluminium-boron-oxide-melamine-ternary-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17900</span> Design of Ternary Coatings System to Minimize the Residual Solvent in Polymeric Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jyoti%20Sharma">Jyoti Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Raj%20Kumar%20Arya"> Raj Kumar Arya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coatings of homogeneous ternary solution of Poly(styrene)(PS)-Poly(ethyleneglycol)-6000(PEG) Chlorobenzene (CLB) of two different concentrations (5.05%-4.98%-89.97% and 10.05%-5.12%-84.82%) were studied and dried under quiescent conditions. Residual solvent percentage and coatings thickness were calculated by gravimetric weight loss data. Residual solvent remained lower in case of the single thick layer as compared to layer-by-layer assembly technique. The Results suggests the effectiveness of the single thick layer for minimizing the residual solvent. A single thick layer had an initial coating thickness of 1098 µm and the final thickness of 106 µm which is lower as compared to the dried coatings of nearly the same final thickness by layer-by-layer assembly technique. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=films" title="films">films</a>, <a href="https://publications.waset.org/abstracts/search?q=layer-by-layer%20assembly" title=" layer-by-layer assembly"> layer-by-layer assembly</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20coatings" title=" polymeric coatings"> polymeric coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20system" title=" ternary system"> ternary system</a> </p> <a href="https://publications.waset.org/abstracts/84630/design-of-ternary-coatings-system-to-minimize-the-residual-solvent-in-polymeric-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17899</span> Partially Fluorinated Electrolyte for High-Voltage Cathode for Lithium-Ion Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Brhane%20Berhe">Gebregziabher Brhane Berhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Nien%20Su"> Wei-Nien Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Joe%20Hwang"> Bing Joe Hwang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new lithium-ion battery is configured by coupling sulfurized carbon anode and high voltage LiNi₀.₅Mn₁.₅O₄ (LNMO) cathode. The anode is derived from sulfurized polyacrylonitrile (S-C(PAN)). Severe capacity fading usually becomes unavoidable due to the oxidative decomposition of solvents, primarily when a conventional carbonate electrolyte with 1 M lithium hexafluorophosphate (LiPF6) is employed. Fluoroethylene carbonate (FEC), ethyl methyl carbonate (EMC), and 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (TTE) are formulated as the best electrolyte (3:2:5 in vol. ratio) for this new high-voltage lithium-ion battery to mitigate this capacity fading and improve the adaptability of the S-C(PAN) and LNMO. The discharge capacity of a full cell made with 1 M lithium hexafluorophosphate (LiPF6) in FEC/EMC/TTE (3:2:5) electrolyte reaches 688 mAh g⁻¹ at a rate of 2 C, while 19 mAh g⁻¹ for the control electrolyte. X-ray photoelectron spectroscopy (XPS) results confirm that the fluorinated electrolyte effectively stabilizes both surfaces of S-C(PAN) and LNMO in the full cell. Compared to the control electrolyte, the developed electrolyte enhances the cyclic stability and rate capability of both half cells (Li//S-C(PAN and Li//LiNi₀.₅Mn₁.₅O₄) and S-C(PAN)//LiNi₀.₅Mn₁.₅O₄ full cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fluorinated%20electrolyte" title="fluorinated electrolyte">fluorinated electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20voltage" title=" high voltage"> high voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20battery" title=" lithium-ion battery"> lithium-ion battery</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a> </p> <a href="https://publications.waset.org/abstracts/193157/partially-fluorinated-electrolyte-for-high-voltage-cathode-for-lithium-ion-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17898</span> Preparation of Li Ion Conductive Ceramics via Liquid Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kotobuki">M. Kotobuki</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Koishi"> M. Koishi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=co-precipitation%20method" title="co-precipitation method">co-precipitation method</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a>, <a href="https://publications.waset.org/abstracts/search?q=NASICON-type%20electrolyte" title=" NASICON-type electrolyte"> NASICON-type electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20electrolyte" title=" solid electrolyte"> solid electrolyte</a> </p> <a href="https://publications.waset.org/abstracts/13119/preparation-of-li-ion-conductive-ceramics-via-liquid-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17897</span> Partially Fluorinated Electrolyte for Lithium-Ion Batteries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gebregziabher%20Brhane%20Berhe">Gebregziabher Brhane Berhe</a>, <a href="https://publications.waset.org/abstracts/search?q=Bing%20Joe%20Hwange"> Bing Joe Hwange</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Nien%20Su"> Wei-Nien Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20voltage" title="high voltage">high voltage</a>, <a href="https://publications.waset.org/abstracts/search?q=LNMO" title=" LNMO"> LNMO</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorinated%20electrolyte" title=" fluorinated electrolyte"> fluorinated electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium-ion%20batteries" title=" lithium-ion batteries"> lithium-ion batteries</a> </p> <a href="https://publications.waset.org/abstracts/181128/partially-fluorinated-electrolyte-for-lithium-ion-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17896</span> Efficiency Improvement of Ternary Nanofluid Within a Solar Photovoltaic Unit Combined with Thermoelectric Considering Environmental Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Sheikholeslami">Mohsen Sheikholeslami</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Khalili"> Zahra Khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Ladan%20Momayez"> Ladan Momayez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Impacts of environmental parameters and dust deposition on the efficiency of solar panel have been scrutinized in this article. To gain thermal output, trapezoidal cooling channel has been attached in the bottom of the panel incorporating ternary nanofluid. To produce working fluid, water has been mixed with Fe₃O₄-TiO₂-GO nanoparticles. Also, the arrangement of fins has been considered to grow the cooling rate of the silicon layer. The existence of a thermoelectric layer above the cooling channel leads to higher electrical output. Efficacy of ambient temperature (Ta), speed of wind (V𝓌ᵢₙ𝒹) and inlet temperature (Tᵢₙ) and velocity (Vin) of ternary nanofluid on performance of PVT has been assessed. As Tin increases, electrical efficiency declines about 3.63%. Increase of ambient temperature makes thermal performance enhance about 33.46%. The PVT efficiency decreases about 13.14% and 16.6% with augment of wind speed and dust deposition. CO₂ mitigation has been reduced about 15.49% in presence of dust while it increases about 17.38% with growth of ambient temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20system" title="photovoltaic system">photovoltaic system</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20mitigation" title=" CO₂ mitigation"> CO₂ mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20nanofluid" title=" ternary nanofluid"> ternary nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20generator" title=" thermoelectric generator"> thermoelectric generator</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20parameters" title=" environmental parameters"> environmental parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=trapezoidal%20cooling%20channel" title=" trapezoidal cooling channel"> trapezoidal cooling channel</a> </p> <a href="https://publications.waset.org/abstracts/172255/efficiency-improvement-of-ternary-nanofluid-within-a-solar-photovoltaic-unit-combined-with-thermoelectric-considering-environmental-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172255.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17895</span> Solid-State Sodium Conductor for Solid-State Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yumei%20Wang">Yumei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoyu%20Xu"> Xiaoyu Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Lu"> Li Lu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid-state battery adopts solid-state electrolyte such as oxide- and composite-based solid electrolytes. With the adaption of nonflammable or less flammable solid electrolytes, the safety of solid-state batteries can be largely increased. NASICON (Na₃Zr₂Si₂PO₁₂, NZSP) is one of the sodium ion conductors that possess relatively high ionic conductivity, wide electrochemical stable range and good chemical stability. Therefore, it has received increased attention. We report the development of high-density NZSP through liquid phase sintering and its organic-inorganic composite electrolyte. Through reactive liquid phase sintering, the grain boundary conductivity can be largely enhanced while using an organic-inorganic composite electrolyte, interfacial wetting and impedance can be largely reduced hence being possible to fabricate scalable solid-state batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid-state%20electrolyte" title="solid-state electrolyte">solid-state electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20electrolyte" title=" composite electrolyte"> composite electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20performance" title=" electrochemical performance"> electrochemical performance</a>, <a href="https://publications.waset.org/abstracts/search?q=conductivity" title=" conductivity"> conductivity</a> </p> <a href="https://publications.waset.org/abstracts/169003/solid-state-sodium-conductor-for-solid-state-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17894</span> Effect of Rice Husk Ash and Metakaolin on the Compressive Strengths of Ternary Cement Mortars</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olubajo%20Olumide%20Olu">Olubajo Olumide Olu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper studies the effect of Metakaolin (MK) and Rice husk ash (RHA) on the compressive strength of ternary cement mortar at replacement level up to 30%. The compressive strength test of the blended cement mortars were conducted using Tonic Technic compression and machine. Nineteen ternary cement mortars were prepared comprising of ordinary Portland cement (OPC), Rice husk ash (RHA) and Metakaolin (MK) at different proportion. Ternary mortar prisms in which Portland cement was replaced by up to 30% were tested at various age; 2, 7, 28 and 60 days. Result showed that the compressive strength of the cement mortars increased as the curing days were lengthened for both OPC and the blended cement samples. The ternary cement’s compressive strengths showed significant improvement compared with the control especially beyond 28 days. This can be attributed to the slow pozzolanic reaction resulting from the formation of additional CSH from the interaction of the residual CH content and the silica available in the Metakaolin and Rice husk ash, thus providing significant strength gain at later age. Results indicated that the addition of metakaolin with rice husk ash kept constant was found to lead to an increment in the compressive strength. This can either be attributed to the high silica/alumina contribution to the matrix or the C/S ratio in the cement matrix. Whereas, increment in the rice husk ash content while metakaolin was held constant led to an increment in the compressive strength, which could be attributed to the reactivity of the rice husk ash followed by decrement owing to the presence of unburnt carbon in the RHA matrix. The best compressive strength results were obtained at 10% cement replacement (5% RHA, 5% MK); 15% cement replacement (10% MK and 5% RHA); 20% cement replacement (15% MK and 5% RHA); 25% cement replacement (20% MK and 5% RHA); 30% cement replacement (10%/20% MK and 20%/10% RHA). With the optimal combination of either 15% and 20% MK with 5% RHA giving the best compressive strength of 40.5MPa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metakaolin" title="metakaolin">metakaolin</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk%20ash" title=" rice husk ash"> rice husk ash</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20mortar" title=" ternary mortar"> ternary mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=curing%20days" title=" curing days"> curing days</a> </p> <a href="https://publications.waset.org/abstracts/28975/effect-of-rice-husk-ash-and-metakaolin-on-the-compressive-strengths-of-ternary-cement-mortars" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28975.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">349</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17893</span> Physico‑chemical Behavior and Microstructural Manipulation of Nanocomposites Containing Hydroxyapatite, Alumina, and Graphene Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Reim%20A.%20Almotiri">Reim A. Almotiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Manal%20M.%20Alkhamisi"> Manal M. Alkhamisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ternary nanocomposites based on hydroxyapatite (HAP) and alumina (Al2O3) were embedded through graphene oxide (GO) nanosheets to be investigated for medical applications. The composition of the preparations has been confirmed by X-ray photoelectron spectroscopy, energy-dispersive X-ray analysis, and Fourier-Transform infrared spectroscopy. Scanning and transmission electron microscopy have shown the typical morphologies of the components of the nanocomposites with hydroxyapatite nanorods reaching an average diameter of 22.26±2 nm and an average length of 69.56±19.25 nm in the ternary nanocomposites. The ternary nanocomposite has a microhardness of 5.8±0.1 GPa and a higher average roughness of 6.5 nm compared to pure HAP preparation with an average roughness of 2.7 nm. All preparations have shown an acceptable cytotoxicity profile with a percent osteoblasts cell viability of 98.6±1.3% after culturing with the ternary nanocomposite. The TNC has also shown the highest antibacterial activity compared to preparations of each of its constituents and their nanocomposites, with a zone of inhibition’s diameter of 14.1±0.8 mm and 13.6±0.6 mm against Staphylococcus aureus and Escherichia coli, respectively, compared to no zone of inhibition for the pure hydroxyapatite preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydroxypatite" title="hydroxypatite">hydroxypatite</a>, <a href="https://publications.waset.org/abstracts/search?q=cytotoxicity" title=" cytotoxicity"> cytotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20analysis" title=" X-ray analysis"> X-ray analysis</a> </p> <a href="https://publications.waset.org/abstracts/161605/physicochemical-behavior-and-microstructural-manipulation-of-nanocomposites-containing-hydroxyapatite-alumina-and-graphene-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17892</span> Ternary Organic Blend for Semitransparent Solar Cells with Enhanced Short Circuit Current Density</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Makha">Mohammed Makha</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakob%20Heier"> Jakob Heier</a>, <a href="https://publications.waset.org/abstracts/search?q=Frank%20N%C3%BCesch"> Frank Nüesch</a>, <a href="https://publications.waset.org/abstracts/search?q=Roland%20Hany"> Roland Hany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic solar cells (OSCs) have made rapid progress and currently achieve power conversion efficiencies (PCE) of over 10%. OSCs have several merits over other direct light-to-electricity generating cells and can be processed at low cost from solution on flexible substrates over large areas. Moreover, combining organic semiconductors with transparent and conductive electrodes allows for the fabrication of semitransparent OSCs (SM-OSCs). For SM-OSCs the challenge is to achieve a high average visible transmission (AVT) while maintaining a high short circuit current (Jsc). Typically, Jsc of SM-OSCs is smaller than when using an opaque metal top electrode. This is because the non-absorbed light during the first transit through the active layer and the transparent electrode is forward-transmitted out of the device. Recently, OSCs using a ternary blend of organic materials have received attention. This strategy was pursued to extend the light harvesting over the visible range. However, it is a general challenge to manipulate the performance of ternary OSCs in a predictable way, because many key factors affect the charge generation and extraction in ternary solar cells. Consequently, the device performance is affected by the compatibility between the blend components and the resulting film morphology, the energy levels and bandgaps, the concentration of the guest material and its location in the active layer. In this work, we report on a solvent-free lamination process for the fabrication of efficient and semitransparent ternary blend OSCs. The ternary blend was composed of PC70BM and the electron donors PBDTTT-C and an NIR cyanine absorbing dye (Cy7T). Using an opaque metal top electrode, a PCE of 6% was achieved for the optimized binary polymer: fullerene blend (AVT = 56%). However, the PCE dropped to ~2% when decreasing (to 30 nm) the active film thickness to increase the AVT value (75%). Therefore we resorted to the ternary blend and measured for non-transparent cells a PCE of 5.5% when using an active polymer: dye: fullerene (0.7: 0.3: 1.5 wt:wt:wt) film of 95 nm thickness (AVT = 65% when omitting the top electrode). In a second step, the optimized ternary blend was used of the fabrication of SM-OSCs. We used a plastic/metal substrate with a light transmission of over 90% as a transparent electrode that was applied via a lamination process. The interfacial layer between the active layer and the top electrode was optimized in order to improve the charge collection and the contact with the laminated top electrode. We demonstrated a PCE of 3% with AVT of 51%. The parameter space for ternary OSCs is large and it is difficult to find the best concentration ratios by trial and error. A rational approach for device optimization is the construction of a ternary blend phase diagram. We discuss our attempts to construct such a phase diagram for the PBDTTT-C: Cy7T: PC70BM system via a combination of using selective Cy7T selective solvents and atomic force microscopy. From the ternary diagram suitable morphologies for efficient light-to-current conversion can be identified. We compare experimental OSC data with these predictions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20photovoltaics" title="organic photovoltaics">organic photovoltaics</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20phase%20diagram" title=" ternary phase diagram"> ternary phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20organic%20solar%20cells" title=" ternary organic solar cells"> ternary organic solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent%20solar%20cell" title=" transparent solar cell"> transparent solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=lamination" title=" lamination"> lamination</a> </p> <a href="https://publications.waset.org/abstracts/67034/ternary-organic-blend-for-semitransparent-solar-cells-with-enhanced-short-circuit-current-density" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17891</span> Study the Effect of Rubbery Phase on Morphology Development of PP/PA6/(EPDM:EPDM-g-MA) Ternary Blends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Afsari">B. Afsari</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hassanpour"> M. Hassanpour</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Shabani"> M. Shabani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to investigate the phase morphology of ternary blends comprising PP, PA6, and a blend of EPDM and EPDM-g-MA in a 70/15/15 ratio. Varying ratios of EPDM to EPDM-g-MA were examined. As the proportion of EPDM-g-MA increased, an interlayer phase formed between the dispersed PA6 domains and the PP matrix. This resulted in the development of a core-shell encapsulation morphology within the blends. The concentration of the EPDM-g-MA component is inversely correlated with the average size of PA6 particles. Additionally, blends containing higher proportions of the EPDM-g-MA rubbery phase exhibited an aggregated structure of the modifier particles. Notably, as the concentration of EPDM-g-MA increased from 0% to 15% in the blend, there was a consistent monotonic reduction in the size of PA6 particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phase%20morphology" title="phase morphology">phase morphology</a>, <a href="https://publications.waset.org/abstracts/search?q=rubbery%20phase" title=" rubbery phase"> rubbery phase</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20functionality" title=" rubber functionality"> rubber functionality</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20blends" title=" ternary blends"> ternary blends</a> </p> <a href="https://publications.waset.org/abstracts/182166/study-the-effect-of-rubbery-phase-on-morphology-development-of-pppa6epdmepdm-g-ma-ternary-blends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182166.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17890</span> Ternary Content Addressable Memory Cell with a Leakage Reduction Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gagnesh%20Kumar">Gagnesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nitin%20Gupta"> Nitin Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ternary Content Addressable Memory cells are mainly popular in network routers for packet forwarding and packet classification, but they are also useful in a variety of other applications that require high-speed table look-up. The main TCAM-design challenge is to decrease the power consumption associated with the large amount of parallel active circuitry, without compromising with speed or memory density. Furthermore, when the channel length decreases, leakage power becomes more significant, and it can even dominate dynamic power at lower technologies. In this paper, we propose a TCAM-design technique, called Virtual Power Supply technique that reduces the leakage by a substantial amount. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=match%20line%20%28ML%29" title="match line (ML)">match line (ML)</a>, <a href="https://publications.waset.org/abstracts/search?q=search%20line%20%28SL%29" title=" search line (SL)"> search line (SL)</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20content%20addressable%20memory%20%28TCAM%29" title=" ternary content addressable memory (TCAM)"> ternary content addressable memory (TCAM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Leakage%20power%20%28LP%29" title=" Leakage power (LP)"> Leakage power (LP)</a> </p> <a href="https://publications.waset.org/abstracts/52223/ternary-content-addressable-memory-cell-with-a-leakage-reduction-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52223.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17889</span> Electrolyte Loaded Hexagonal Boron Nitride/Polyacrylonitrile Nanofibers for Lithium Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Umran%20Kurtan">Umran Kurtan</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamide%20Aydin"> Hamide Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sevim%20Unugur%20Celik"> Sevim Unugur Celik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Bozkurt"> Ayhan Bozkurt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, novel hBN/polyacrylonitrile composite nanofibers were produced via electrospinning approach and loaded with the electrolyte for rechargeable lithium-ion battery applications. The electrospun nanofibers comprising various hBN contents were characterized by using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The influence of hBN/PAN ratios onto the properties of the porous composite system, such as fiber diameter, porosity, and the liquid electrolyte uptake capability were systematically studied. Ionic conductivities and electrochemical characterizations were evaluated after loading electrospun hBN/PAN composite nanofiber with liquid electrolyte, i.e., 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC)/ethyl methyl carbonate (EMC) (1:1 vol). The electrolyte loaded nanofiber has a highest ionic conductivity of 10−3 S cm⁻¹ at room temperature. According to cyclic voltammetry (CV) results it exhibited a high electrochemical stability window up to 4.7 V versus Li+/Li. Li//10 wt% hBN/PAN//LiCO₂ cell was produced which delivered high discharge capacity of 144 mAhg⁻¹ and capacity retention of 92.4%. Considering high safety and low cost properties of the resulting hBN/PAN fiber electrolytes, these materials can be suggested as potential separator materials for lithium-ion batteries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hexagonal%20boron%20nitride" title="hexagonal boron nitride">hexagonal boron nitride</a>, <a href="https://publications.waset.org/abstracts/search?q=polyacrylonitrile" title=" polyacrylonitrile"> polyacrylonitrile</a>, <a href="https://publications.waset.org/abstracts/search?q=electrospinning" title=" electrospinning"> electrospinning</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20ion%20battery" title=" lithium ion battery"> lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/96557/electrolyte-loaded-hexagonal-boron-nitridepolyacrylonitrile-nanofibers-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17888</span> Study on the Strength and Durability Properties of Ternary Blended Concrete</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Athira%20Babu">Athira Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Nazeer"> M. Nazeer </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Concrete is the most common and versatile construction material used in any type of civil engineering structure. The durability and strength characteristics of concrete make it more desirable among any other construction materials. The manufacture and use of concrete produces wide range of environmental and social consequences. The major component in concrete, cement accounts for roughly 5 % of global CO2 emissions. In order to improve the environmental friendliness of concrete, suitable substitutes are added to concrete. The present study deals with GGBS and silica fume as supplementary cementitious materials. The strength and durability studies were conducted in this ternary blended concrete. Several mixes were adopted with varying percentages of Silica Fume i.e., 5%, 10% and 15%. Binary mix with 50% GGBS was also prepared. GGBS content has been kept constant for the rest of mixes. There is an improvement in compressive strength with addition of Silica Fume.Maximum workability, split tensile strength, modulus of elasticity, flexural strength and impact resistance are obtained for GGBS binary blend. For durability studies, maximum sulphate resistance,carbonation resistance andresistance to chloride ion penetration are obtained for ternary blended concrete. Partial replacement of GGBS and Silica Fume reduces the environmental effects, produces economical and eco-friendly concrete. The study showed that for strength characteristics, binary blended concrete showed better performance while for durability study ternary blend performed better. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concrete" title="concrete">concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=GGBS" title=" GGBS"> GGBS</a>, <a href="https://publications.waset.org/abstracts/search?q=silica%20fume" title=" silica fume"> silica fume</a>, <a href="https://publications.waset.org/abstracts/search?q=ternary%20blend" title=" ternary blend"> ternary blend</a> </p> <a href="https://publications.waset.org/abstracts/19595/study-on-the-strength-and-durability-properties-of-ternary-blended-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17887</span> A Study of the Alumina Distribution in the Lab-Scale Cell during Aluminum Electrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olga%20Tkacheva">Olga Tkacheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20Arkhipov"> Pavel Arkhipov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Rudenko"> Alexey Rudenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Yurii%20Zaikov"> Yurii Zaikov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aluminum electrolysis process in the conventional cryolite-alumina electrolyte with cryolite ratio of 2.7 was carried out at an initial temperature of 970 °C and the anode current density of 0.5 A/cm<sup>2</sup> in a 15A lab-scale cell in order to study the formation of the side ledge during electrolysis and the alumina distribution between electrolyte and side ledge. The alumina contained 35.97% α-phase and 64.03% γ-phase with the particles size in the range of 10-120 μm. The cryolite ratio and the alumina concentration were determined in molten electrolyte during electrolysis and in frozen bath after electrolysis. The side ledge in the electrolysis cell was formed only by the 13<sup>th</sup> hour of electrolysis. With a slight temperature decrease a significant increase in the side ledge thickness was observed. The basic components of the side ledge obtained by the XRD phase analysis were Na<sub>3</sub>AlF<sub>6</sub>, Na<sub>5</sub>Al<sub>3</sub>F<sub>14</sub>, Al<sub>2</sub>O<sub>3</sub>, and NaF<sup>.</sup>5CaF<sub>2</sub><sup>.</sup>AlF<sub>3</sub>. As in the industrial cell, the increased alumina concentration in the side ledge formed on the cell walls and at the ledge-electrolyte-aluminum three-phase boundary during aluminum electrolysis in the lab cell was found (FTP No 05.604.21.0239, IN RFMEFI60419X0239). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20distribution" title="alumina distribution">alumina distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20electrolyzer" title=" aluminum electrolyzer"> aluminum electrolyzer</a>, <a href="https://publications.waset.org/abstracts/search?q=cryolie-alumina%20electrolyte" title=" cryolie-alumina electrolyte"> cryolie-alumina electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=side%20ledge" title=" side ledge"> side ledge</a> </p> <a href="https://publications.waset.org/abstracts/118301/a-study-of-the-alumina-distribution-in-the-lab-scale-cell-during-aluminum-electrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118301.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">273</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17886</span> Clathrate Hydrate Measurements and Thermodynamic Modelling for Refrigerants with Electrolytes Solution in the Presence of Cyclopentane</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Peterson%20Thokozani%20Ngema">Peterson Thokozani Ngema</a>, <a href="https://publications.waset.org/abstracts/search?q=Paramespri%20Naidoo"> Paramespri Naidoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20H.%20Mohammadi"> Amir H. Mohammadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Deresh%20Ramjugernath"> Deresh Ramjugernath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase equilibrium data (dissociation data) for clathrate hydrate (gas hydrate) were undertaken for systems involving fluorinated refrigerants with a single and mixed electrolytes (NaCl, CaCl₂, MgCl₂, and Na₂SO₄) aqueous solution at various salt concentrations in the absence and presence of cyclopentane (CP). The ternary systems for (R410a or R507) with the water system in the presence of CP were performed in the temperature and pressures ranges of (279.8 to 294.4) K and (0.158 to 1.385) MPa, respectively. Measurements for R410a with single electrolyte {NaCl or CaCl₂} solution in the presence of CP were undertaken at salt concentrations of (0.10, 0.15 and 0.20) mass fractions in the temperature and pressure ranges of (278.4 to 293.7) K and (0.214 to1.179) MPa, respectively. The temperature and pressure conditions for R410a with Na₂SO₄ aqueous solution system were investigated at a salt concentration of 0.10 mass fraction in the range of (283.3 to 291.6) K and (0.483 to 1.373) MPa respectively. Measurements for {R410a or R507} with mixed electrolytes {NaCl, CaCl₂, MgCl₂} aqueous solution was undertaken at various salt concentrations of (0.002 to 0.15) mass fractions in the temperature and pressure ranges of (274.5 to 292.9) K and (0.149 to1.119) MPa in the absence and presence of CP, in which there is no published data related to mixed salt and a promoter. The phase equilibrium measurements were performed using a non-visual isochoric equilibrium cell that co-operates the pressure-search technique. This study is focused on obtaining equilibrium data that can be utilized to design and optimize industrial wastewater, desalination process and the development of Hydrate Electrolyte–Cubic Plus Association (HE–CPA) Equation of State. The results show an impressive improvement in the presence of promoter (CP) on hydrate formation because it increases the dissociation temperatures near ambient conditions. The results obtained were modeled using a developed HE–CPA equation of state. The model results strongly agree with the measured hydrate dissociation data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=association" title="association">association</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytes" title=" electrolytes"> electrolytes</a>, <a href="https://publications.waset.org/abstracts/search?q=promoter" title=" promoter"> promoter</a> </p> <a href="https://publications.waset.org/abstracts/89032/clathrate-hydrate-measurements-and-thermodynamic-modelling-for-refrigerants-with-electrolytes-solution-in-the-presence-of-cyclopentane" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89032.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17885</span> Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Binbin%20Chen">Binbin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Dennis%20Y.%20C.%20Leung"> Dennis Y. C. Leung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium-air%20cell" title="aluminium-air cell">aluminium-air cell</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20efficiency" title=" high efficiency"> high efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen" title=" hydrogen"> hydrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20recharge" title=" mechanical recharge"> mechanical recharge</a> </p> <a href="https://publications.waset.org/abstracts/38532/operation-system-for-aluminium-air-cell-a-strategy-to-harvest-the-energy-from-secondary-aluminium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17884</span> Alcohols as a Phase Change Material with Excellent Thermal Storage Properties in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dehong%20Li">Dehong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuchen%20Chen"> Yuchen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Kaboorani"> Alireza Kaboorani</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Rodrigue"> Denis Rodrigue</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20%28Alice%29%20Wang"> Xiaodong (Alice) Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Utilizing solar energy for thermal energy storage has emerged as an appealing option for lowering the amount of energy that is consumed by buildings. Due to their high heat storage density, and non-corrosive and non-polluting properties, alcohols can be a good alternative to petroleum-derived paraffin phase change materials (PCMs). In this paper, ternary eutectic PCMs with suitable phase change temperatures were designed and prepared using lauryl alcohol (LA), cetyl alcohol (CA), stearyl alcohol (SA), and xylitol (X). The differential scanning calorimetry (DSC) results revealed that the phase change temperatures of LA-CA-SA, LA-CA-X, and LA-SA-X were 20.52°C, 20.37°C, and 22.18°C, respectively. The latent heat of phase change of the ternary eutectic PCMs was all stronger than that of the paraffinic PCMs at roughly the same temperature. The highest latent heat was 195 J/g. It had good thermal energy storage capacity. The preparation mechanism was investigated using Fourier-transform Infrared Spectroscopy (FTIR), and it was found that the ternary eutectic PCMs were only physically mixed among the components. Ternary eutectic PCMs had a simple preparation process, suitable phase change temperature, and high energy storage density. They are suitable for low-temperature architectural packaging applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy%20storage" title="thermal energy storage">thermal energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=buildings" title=" buildings"> buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20change%20materials" title=" phase change materials"> phase change materials</a>, <a href="https://publications.waset.org/abstracts/search?q=alcohols" title=" alcohols"> alcohols</a> </p> <a href="https://publications.waset.org/abstracts/164542/alcohols-as-a-phase-change-material-with-excellent-thermal-storage-properties-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164542.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">97</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17883</span> High Efficiency Electrolyte Lithium Battery and RF Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wei%20Quan">Wei Quan</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Chao"> Liu Chao</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20N.%20Afsar"> Mohammed N. Afsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by radio-frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40 oC to +150 oC and can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by capacitance bridge and inwave guide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte" title="polymer electrolyte">polymer electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20permittivity" title=" dielectric permittivity"> dielectric permittivity</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20battery" title=" lithium battery"> lithium battery</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20relaxation" title=" ionic relaxation"> ionic relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20measurement" title=" microwave measurement"> microwave measurement</a> </p> <a href="https://publications.waset.org/abstracts/22483/high-efficiency-electrolyte-lithium-battery-and-rf-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22483.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">478</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17882</span> A First-Principles Molecular Dynamics Study on Li+ Solvation Structures in THF/MTHF Containing Electrolytes for Lithium Metal Batteries.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiu-Neng%20Su">Chiu-Neng Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In lithium-ion batteries (LIBs) the solid–electrolyte interphase (SEI) layer, which forms on the anode surface, plays a crucial role in stabilizing battery performance. Over the past two decades, efforts to enhance LIB electrolytes have primarily focused on refining the quality of SEI components. Despite these endeavors, several observed phenomena remain inadequately improved the SEI layer. Consequently, there has been a significant surge in research interest regarding the behavior of electrolyte solvation structures to elucidate improvements in battery performance. Thus, in this study, we aimed to explore the solvation structures of LiPF₆ in a mixture of organic solvents, tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran (MTHF) using ab-initio molecular dynamics (AIMD) simulations. Our work investigated the solvation structure of electrolytes with different salt concentrations: low-concentration electrolyte (1.0M LiPF6 in 1:1v/v mixture of THF and MTHF), and high-concentration electrolyte (2.0M LiPF₆ in 1:1v/v mixture of THF and MTHF) and compared them with that of conventional electrolyte (1.0M LiPF₆ in 1:1v/v mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC)). Furthermore, the reduction stability of Li+ solvation structures in these electrolyte systems are investigated. It is found that the first solvation shell of Li+ primary consists of THF. We also analyzed the molecular orbital energy levels to understand the reducing stability of these solvents. Compared with the solvation sheath of commercial electrolyte, the THF/MTHF-containing electrolytes have a higher lowest unoccupied molecular orbital (LUMO) energy level, resulting in improved reduction and interface stability. It has been shown that Li-Al alloy can significantly improve cycle life and promote the formation of a dense SEI layer. Therefore, this study aims to construct the solvation structures obtained from calculations of the pure electrolyte system on the surface of Al-Li alloy. Additionally, AIMD simulations will be conducted to investigate chemical reactions at the interface. This investigation aims to elucidate the composition of the SEI layer formed. Furthermore, Bader charges are used to determine the origin and flow of electrons, thereby revealing the sequence of reduction reactions for generating SEI layers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lithium" title="lithium">lithium</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum" title=" aluminum"> aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=alloy" title=" alloy"> alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=battery" title=" battery"> battery</a>, <a href="https://publications.waset.org/abstracts/search?q=solvation%20structure" title=" solvation structure"> solvation structure</a> </p> <a href="https://publications.waset.org/abstracts/192129/a-first-principles-molecular-dynamics-study-on-li-solvation-structures-in-thfmthf-containing-electrolytes-for-lithium-metal-batteries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">22</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17881</span> Solid Polymer Electrolyte Prepared From Nostoc Commune Cyanobacteria Exopolysaccharides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fernando%20G.%20Torres">Fernando G. Torres</a>, <a href="https://publications.waset.org/abstracts/search?q=Omar%20P.%20Troncoso"> Omar P. Troncoso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A wide range of bacteria synthesizes and secretes polymeric substances composed of a mixture of high-molecular-mass heteropolysaccharides. Nostoc commune cyanobacteria grow in colonial spherules of 10-20 mm in diameter. These spherules are filled with an internal gel made from a variety of polysaccharides known as Nostoc commune exopolysaccharides (NCE). In this paper, we report the use of these exopolysaccharides as a raw material for the preparation of a solid polymer electrolyte. Ammonium iodide and 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) salts were used to provide NCE films with ionic conductivity. In addition, a carboxymethylation treatment was used to further increase the conductivity of NCE films. The structural characterization of the NCE films was assessed by FTIR, XRD, and DSC tests. Broadband dielectric spectroscopy (BDS) and dielectric thermal analysis (DETA) were used to evaluate the ionic conductivity of the samples. The results showed that NCE can be used to prepare solid polymer electrolyte films and that carboxymethylation improves their ionic conductivity. These NCE films can be used in the development of novel energy storage devices such as flat batteries or supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polymer%20electrolyte" title="polymer electrolyte">polymer electrolyte</a>, <a href="https://publications.waset.org/abstracts/search?q=Nostoc%20commune" title=" Nostoc commune"> Nostoc commune</a>, <a href="https://publications.waset.org/abstracts/search?q=cyanobacteria" title=" cyanobacteria"> cyanobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=exopolysaccharides" title=" exopolysaccharides"> exopolysaccharides</a> </p> <a href="https://publications.waset.org/abstracts/138093/solid-polymer-electrolyte-prepared-from-nostoc-commune-cyanobacteria-exopolysaccharides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17880</span> Effect of pH-Dependent Surface Charge on the Electroosmotic Flow through Nanochannel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Partha%20P.%20Gopmandal">Partha P. Gopmandal</a>, <a href="https://publications.waset.org/abstracts/search?q=Somnath%20Bhattacharyya"> Somnath Bhattacharyya</a>, <a href="https://publications.waset.org/abstracts/search?q=Naren%20Bag"> Naren Bag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, we have studied the effect of pH-regulated surface charge on the electroosmotic flow (EOF) through nanochannel filled with binary symmetric electrolyte solution. The channel wall possesses either an acidic or a basic functional group. Going beyond the widely employed Debye-Huckel linearization, we develop a mathematical model based on Nernst-Planck equation for the charged species, Poisson equation for the induced potential, Stokes equation for fluid flow. A finite volume based numerical algorithm is adopted to study the effect of key parameters on the EOF. We have computed the coupled governing equations through the finite volume method and our results found to be in good agreement with the analytical solution obtained from the corresponding linear model based on low surface charge condition or strong electrolyte solution. The influence of the surface charge density, reaction constant of the functional groups, bulk pH, and concentration of the electrolyte solution on the overall flow rate is studied extensively. We find the effect of surface charge diminishes with the increase in electrolyte concentration. In addition for strong electrolyte, the surface charge becomes independent of pH due to complete dissociation of the functional groups. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electroosmosis" title="electroosmosis">electroosmosis</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title=" finite volume method"> finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20group" title=" functional group"> functional group</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20charge" title=" surface charge"> surface charge</a> </p> <a href="https://publications.waset.org/abstracts/63437/effect-of-ph-dependent-surface-charge-on-the-electroosmotic-flow-through-nanochannel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=596">596</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=597">597</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=ternary%20electrolyte%20system&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>