CINXE.COM
Calculus II - Cross Product
<!DOCTYPE html> <html> <head><meta charset="utf-8" /><meta name="viewport" content="width=device-width, initial-scale=1, user-scalable=yes" /><meta http-equiv="X-UA-Compatible" content="IE=edge" /> <!-- For best MathJax performance on IE --> <meta name="google-site-verification" content="uLoA31CJfOhIVMJWBjCmQL8xNMmmLybZU3LRKavy9WQ" /><title> Calculus II - Cross Product </title> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-9SCXJM7BEJ"></script> <script> window.dataLayer = window.dataLayer || []; function gtag() { dataLayer.push(arguments); } gtag('js', new Date()); gtag('config', 'G-9SCXJM7BEJ'); </script> <link type="text/css" href="/css/jquery.mmenu.all.css" rel="stylesheet" /><link type="text/css" href="/css/jquery.dropdown.css" rel="stylesheet" /><link href="/FA/css/all.min.css" rel="stylesheet" /><link type="text/css" href="/css/notes-all.css" rel="stylesheet" /><link type="text/css" href="/css/notes-google.css" rel="stylesheet" /><link type="text/css" href="/css/notes-mmenu.css" rel="stylesheet" /><link type="text/css" href="/css/notes-dropdown.css" rel="stylesheet" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ TeX: { equationNumbers: { autoNumber: "AMS" } } }); </script> <script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.2/MathJax.js?config=TeX-AMS_CHTML-full"></script> <script type="text/javascript" src="/js/jquery_on.js"></script> <script type="text/javascript" src="/js/jquery.mmenu.all.js"></script> <script type="text/javascript" src="/js/jquery.dropdown.js"></script> <script type="text/javascript" src="/js/notes-all.js"></script> <script> (function () { var cx = '001004262401526223570:11yv6vpcqvy'; var gcse = document.createElement('script'); gcse.type = 'text/javascript'; gcse.async = true; gcse.src = 'https://cse.google.com/cse.js?cx=' + cx; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(gcse, s); })(); </script> <meta http-equiv="keywords" name="keywords" content="cross product, parallel vectors" /><meta http-equiv="description" name="description" content="In this section we define the cross product of two vectors and give some of the basic facts and properties of cross products." /></head> <body onload="init({Notes: 'NoteMobile;8/21/2018;true'})"> <div id="page"> <div class="header"> <div class="header-row"> <!--<a href="#menu"><span></span></a>--> <div id="side-menu-icon" class="header-side-menu-icon"><a href="#menu"><span class="fas fa-bars fa-lg" aria-hidden="true" title="Main Menu - Change between topics, chapters and sections as well as a few extra pages."></span></a></div> <span class="header-title"><a href="/" class="header-title-link">Paul's Online Notes</a></span> <div class="header-spacer"></div> <div id="content-top-menu" class="top-menu"> <button id="content-type-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-type" title="View (Notes, Practice Problems or Assignment Problems, Show/Hide Solutions and/or Steps) Menu"> <span id="tab_top_menu_notes" class="top-menu-item-title">Notes</span> <span class="far fa-eye fa-lg" aria-hidden="true"></span> </button> <button id="quicknav-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-quicknav" title="Quick Navigation (Previous/Next Sections and Problems and Full Problem List) Menu"> <span class="top-menu-item-title">Quick Nav</span> <span class="fas fa-exchange fa-lg" aria-hidden="true"></span> </button> <button id="download-menu" class="top-menu-button" data-jq-dropdown="#jq-dropdown-download" title="Download pdf Menu"> <span class="top-menu-item-title">Download</span> <span class="far fa-download fa-lg" aria-hidden="true"></span> </button> <button id="print-menu" class="top-menu-button top-menu-button-icon-only" data-jq-dropdown="#jq-print-download" title="Print Menu"> <span class="far fa-print fa-lg" aria-hidden="true"></span> </button> </div> <div id="header-google-search" class="header-search"> <gcse:search></gcse:search> </div> <div id="header-search-icon" title="Site Search" class="header-menu-icon"><span id="search-icon" class="fas fa-search" aria-hidden="true"></span></div> </div> </div> <div id="jq-dropdown-type" class="jq-dropdown jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_type_menu_goto" class="top-menu-nav-title">Go To</li> <li id="li_type_menu_notes"> <span id="type_menu_notes_span" title="Viewing the Notes for the current topic." class="top-menu-current">Notes</span> </li> <li id="li_type_menu_practice"> <a href="/Problems/CalcII/CrossProduct.aspx" id="type_menu_practice_link" title="Go to Practice Problems for current topic.">Practice Problems</a> </li> <li id="li_type_menu_asgn"> <a href="/ProblemsNS/CalcII/CrossProduct.aspx" id="type_menu_asgn_link" title="Go to Assignment Problems for current topic.">Assignment Problems</a> </li> <li id="li_type_menu_sh" class="top-menu-nav-title">Show/Hide</li> <li id="li_type_menu_show" title="Show any hidden solutions and/or steps that may be present on the page."><a href="javascript:SHPrintPage(1,0)" id="view_menu_show">Show all Solutions/Steps/<em>etc.</em></a></li> <li id="li_type_menu_hide" title="Hide any visible solutions and/or steps that may be present on the page."><a href="javascript:SHPrintPage(0,0)" id="view_menu_hide">Hide all Solutions/Steps/<em>etc.</em></a></li> </ul> </div> <div id="jq-dropdown-quicknav" class="jq-dropdown jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_nav_menu_sections" class="top-menu-nav-title">Sections</li> <li id="li_nav_menu_prev_section"><a href="/Classes/CalcII/DotProduct.aspx" id="a_nav_menu_prev_section" class="top-menu-nav-link" title="Previous Section : Dot Product"><span class="top-menu-prev fas fa-chevron-left"></span> Dot Product</a></li> <li id="li_nav_menu_next_section"><a href="/Classes/CalcII/3DSpace.aspx" id="a_nav_menu_next_section" class="top-menu-nav-link" title="Next Section : 3-Dimensional Space Introduction"><span class="top-menu-prev-hidden fas fa-chevron-left"></span> 3-Dimensional Space Introduction <span class="top-menu-next fas fa-chevron-right"></span></a></li> <li id="li_nav_menu_chapters" class="top-menu-nav-title">Chapters</li> <li id="li_nav_menu_prev_chapter"><a href="/Classes/CalcII/SeriesIntro.aspx" id="a_nav_menu_prev_chapter" class="top-menu-nav-link" title="Previous Chapter : Series & Sequences"><span class="top-menu-prev fas fa-chevron-left"></span><span class="top-menu-prev fas fa-chevron-left"></span> Series & Sequences</a></li> <li id="li_nav_menu_next_chapter"><a href="/Classes/CalcII/3DSpace.aspx" id="a_nav_menu_next_chapter" class="top-menu-nav-link" title="Next Chapter : 3-Dimensional Space"><span class="top-menu-prev-hidden fas fa-chevron-left"></span><span class="top-menu-prev-hidden fas fa-chevron-left"></span> 3-Dimensional Space <span class="top-menu-next fas fa-chevron-right"></span><span class="top-menu-next fas fa-chevron-right"></span></a></li> <li id="li_nav_menu_classes" class="top-menu-nav-title">Classes</li> <li> <a href="/Classes/Alg/Alg.aspx" id="nav_menu_alg_link" title="Go To Algebra Notes">Algebra</a> </li> <li> <a href="/Classes/CalcI/CalcI.aspx" id="nav_menu_calci_link" title="Go To Calculus I Notes">Calculus I</a> </li> <li> <span id="nav_menu_calcii_span" title="Currently Viewing Calculus II Material" class="top-menu-current">Calculus II</span> </li> <li> <a href="/Classes/CalcIII/CalcIII.aspx" id="nav_menu_calciii_link" title="Go To Calculus III Notes">Calculus III</a> </li> <li> <a href="/Classes/DE/DE.aspx" id="nav_menu_de_link" title="Go To Differential Equations Notes">Differential Equations</a> </li> <li id="li_nav_menu_extras" class="top-menu-nav-title">Extras</li> <li> <a href="/Extras/AlgebraTrigReview/AlgebraTrig.aspx" id="nav_menu_algtrig_link" title="Go To Algebra & Trig Review">Algebra & Trig Review</a> </li> <li> <a href="/Extras/CommonErrors/CommonMathErrors.aspx" id="nav_menu_commonerrors_link" title="Go To Common Math Errors">Common Math Errors</a> </li> <li> <a href="/Extras/ComplexPrimer/ComplexNumbers.aspx" id="nav_menu_complexnumbers_link" title="Go To Complex Numbers Primer">Complex Number Primer</a> </li> <li> <a href="/Extras/StudyMath/HowToStudyMath.aspx" id="nav_menu_studymath_link" title="Go To How To Study Math">How To Study Math</a> </li> <li> <a href="/Extras/CheatSheets_Tables.aspx" id="nav_menu_cheattables_link" title="Go To List of Cheat Sheets and Tables">Cheat Sheets & Tables</a> </li> <li id="li_nav_menu_misc" class="top-menu-nav-title">Misc</li> <li><a href="/contact.aspx" id="nav_menu_contact" title="Contact Me!">Contact Me</a></li> <li><a href="/mathjax.aspx" id="nav_menu_mathjax" title="Info on MathJax and MathJax Configuration Menu">MathJax Help and Configuration</a></li> </ul> </div> <div id="jq-dropdown-download" class="jq-dropdown jq-dropdown-anchor-right jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_download_menu_notes" class="top-menu-nav-title">Notes Downloads</li> <li id="li_download_menu_notes_book"><a href="/GetFile.aspx?file=B,20,N" id="download_menu_notes_book" data-PDF="Download - Menu$Notes - Book$Calculus$/Downloads/Calculus/Notes/Complete.pdf">Complete Book</a></li> <li id="li_download_menu_practice" class="top-menu-nav-title">Practice Problems Downloads</li> <li id="li_download_menu_practice_book"><a href="/GetFile.aspx?file=B,20,P" id="download_menu_practice_book" data-PDF="Download - Menu$Practice Problems - Book$Calculus$/Downloads/Calculus/Practice Problems/Complete.pdf">Complete Book - Problems Only</a></li> <li id="li_download_menu_solutions_book"><a href="/GetFile.aspx?file=B,20,S" id="download_menu_solutions_book" data-PDF="Download - Menu$Practice Problems Solutions - Book$Calculus$/Downloads/Calculus/Practice Problems Solutions/Complete.pdf">Complete Book - Solutions</a></li> <li id="li_download_menu_asgn" class="top-menu-nav-title">Assignment Problems Downloads</li> <li id="li_download_menu_asgn_book"><a href="/GetFile.aspx?file=B,20,A" id="download_menu_asgn_book" data-PDF="Download - Menu$Assignment Problems - Book$Calculus$/Downloads/Calculus/Assignment Problems/Complete.pdf">Complete Book</a></li> <li id="li_download_menu_other" class="top-menu-nav-title">Other Items</li> <li id="li_download_menu_urls"> <a href="/DownloadURLs.aspx?bi=20" id="download_menu_urls">Get URL's for Download Items</a> </li> </ul> </div> <div id="jq-print-download" class="jq-dropdown jq-dropdown-anchor-right jq-dropdown-tip"> <ul class="jq-dropdown-menu"> <li id="li_print_menu_default"><a href="javascript:SHPrintPage()" id="print_menu_default">Print Page in Current Form (Default)</a></li> <li id="li_print_menu_show"><a href="javascript:SHPrintPage(1,1)" id="print_menu_show">Show all Solutions/Steps and Print Page</a></li> <li id="li_print_menu_hide"><a href="javascript:SHPrintPage(0,1)" id="print_menu_hide">Hide all Solutions/Steps and Print Page</a></li> </ul> </div> <nav id="menu" class="notes-nav"> <ul> <li><a href="/" class="mm-link">Home</a></li> <li><span>Classes</span></li> <li><a href="/Classes/Alg/Alg.aspx" class="mm-link">Algebra</a> <ul> <li><a href="/Classes/Alg/Preliminaries.aspx" class="mm-link">1. Preliminaries</a> <ul> <li><a href="/Classes/Alg/IntegerExponents.aspx" class="mm-link">1.1 Integer Exponents</a></li> <li><a href="/Classes/Alg/RationalExponents.aspx" class="mm-link">1.2 Rational Exponents</a></li> <li><a href="/Classes/Alg/Radicals.aspx" class="mm-link">1.3 Radicals</a></li> <li><a href="/Classes/Alg/Polynomials.aspx" class="mm-link">1.4 Polynomials</a></li> <li><a href="/Classes/Alg/Factoring.aspx" class="mm-link">1.5 Factoring Polynomials</a></li> <li><a href="/Classes/Alg/RationalExpressions.aspx" class="mm-link">1.6 Rational Expressions</a></li> <li><a href="/Classes/Alg/ComplexNumbers.aspx" class="mm-link">1.7 Complex Numbers</a></li> </ul> </li> <li><a href="/Classes/Alg/Solving.aspx" class="mm-link">2. Solving Equations and Inequalities</a> <ul> <li><a href="/Classes/Alg/SolutionSets.aspx" class="mm-link">2.1 Solutions and Solution Sets</a></li> <li><a href="/Classes/Alg/SolveLinearEqns.aspx" class="mm-link">2.2 Linear Equations</a></li> <li><a href="/Classes/Alg/LinearApps.aspx" class="mm-link">2.3 Applications of Linear Equations</a></li> <li><a href="/Classes/Alg/SolveMultiVariable.aspx" class="mm-link">2.4 Equations With More Than One Variable</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnsI.aspx" class="mm-link">2.5 Quadratic Equations - Part I</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnsII.aspx" class="mm-link">2.6 Quadratic Equations - Part II</a></li> <li><a href="/Classes/Alg/SolveQuadraticEqnSummary.aspx" class="mm-link">2.7 Quadratic Equations : A Summary</a></li> <li><a href="/Classes/Alg/QuadraticApps.aspx" class="mm-link">2.8 Applications of Quadratic Equations</a></li> <li><a href="/Classes/Alg/ReducibleToQuadratic.aspx" class="mm-link">2.9 Equations Reducible to Quadratic in Form</a></li> <li><a href="/Classes/Alg/SolveRadicalEqns.aspx" class="mm-link">2.10 Equations with Radicals</a></li> <li><a href="/Classes/Alg/SolveLinearInequalities.aspx" class="mm-link">2.11 Linear Inequalities</a></li> <li><a href="/Classes/Alg/SolvePolyInequalities.aspx" class="mm-link">2.12 Polynomial Inequalities</a></li> <li><a href="/Classes/Alg/SolveRationalInequalities.aspx" class="mm-link">2.13 Rational Inequalities</a></li> <li><a href="/Classes/Alg/SolveAbsValueEqns.aspx" class="mm-link">2.14 Absolute Value Equations</a></li> <li><a href="/Classes/Alg/SolveAbsValueIneq.aspx" class="mm-link">2.15 Absolute Value Inequalities</a></li> </ul> </li> <li><a href="/Classes/Alg/Graphing_Functions.aspx" class="mm-link">3. Graphing and Functions</a> <ul> <li><a href="/Classes/Alg/Graphing.aspx" class="mm-link">3.1 Graphing</a></li> <li><a href="/Classes/Alg/Lines.aspx" class="mm-link">3.2 Lines</a></li> <li><a href="/Classes/Alg/Circles.aspx" class="mm-link">3.3 Circles</a></li> <li><a href="/Classes/Alg/FunctionDefn.aspx" class="mm-link">3.4 The Definition of a Function</a></li> <li><a href="/Classes/Alg/GraphFunctions.aspx" class="mm-link">3.5 Graphing Functions</a></li> <li><a href="/Classes/Alg/CombineFunctions.aspx" class="mm-link">3.6 Combining Functions</a></li> <li><a href="/Classes/Alg/InverseFunctions.aspx" class="mm-link">3.7 Inverse Functions</a></li> </ul> </li> <li><a href="/Classes/Alg/CommonGraphs.aspx" class="mm-link">4. Common Graphs</a> <ul> <li><a href="/Classes/Alg/Lines_Circles_PWF.aspx" class="mm-link">4.1 Lines, Circles and Piecewise Functions</a></li> <li><a href="/Classes/Alg/Parabolas.aspx" class="mm-link">4.2 Parabolas</a></li> <li><a href="/Classes/Alg/Ellipses.aspx" class="mm-link">4.3 Ellipses</a></li> <li><a href="/Classes/Alg/Hyperbolas.aspx" class="mm-link">4.4 Hyperbolas</a></li> <li><a href="/Classes/Alg/MiscFunctions.aspx" class="mm-link">4.5 Miscellaneous Functions</a></li> <li><a href="/Classes/Alg/Transformations.aspx" class="mm-link">4.6 Transformations</a></li> <li><a href="/Classes/Alg/Symmetry.aspx" class="mm-link">4.7 Symmetry</a></li> <li><a href="/Classes/Alg/GraphRationalFcns.aspx" class="mm-link">4.8 Rational Functions</a></li> </ul> </li> <li><a href="/Classes/Alg/PolynomialFunctions.aspx" class="mm-link">5. Polynomial Functions</a> <ul> <li><a href="/Classes/Alg/DividingPolynomials.aspx" class="mm-link">5.1 Dividing Polynomials</a></li> <li><a href="/Classes/Alg/ZeroesOfPolynomials.aspx" class="mm-link">5.2 Zeroes/Roots of Polynomials</a></li> <li><a href="/Classes/Alg/GraphingPolynomials.aspx" class="mm-link">5.3 Graphing Polynomials</a></li> <li><a href="/Classes/Alg/FindingZeroesOfPolynomials.aspx" class="mm-link">5.4 Finding Zeroes of Polynomials</a></li> <li><a href="/Classes/Alg/PartialFractions.aspx" class="mm-link">5.5 Partial Fractions</a></li> </ul> </li> <li><a href="/Classes/Alg/ExpAndLog.aspx" class="mm-link">6. Exponential and Logarithm Functions</a> <ul> <li><a href="/Classes/Alg/ExpFunctions.aspx" class="mm-link">6.1 Exponential Functions</a></li> <li><a href="/Classes/Alg/LogFunctions.aspx" class="mm-link">6.2 Logarithm Functions</a></li> <li><a href="/Classes/Alg/SolveExpEqns.aspx" class="mm-link">6.3 Solving Exponential Equations</a></li> <li><a href="/Classes/Alg/SolveLogEqns.aspx" class="mm-link">6.4 Solving Logarithm Equations</a></li> <li><a href="/Classes/Alg/ExpLogApplications.aspx" class="mm-link">6.5 Applications</a></li> </ul> </li> <li><a href="/Classes/Alg/Systems.aspx" class="mm-link">7. Systems of Equations</a> <ul> <li><a href="/Classes/Alg/SystemsTwoVrble.aspx" class="mm-link">7.1 Linear Systems with Two Variables</a></li> <li><a href="/Classes/Alg/SystemsThreeVrble.aspx" class="mm-link">7.2 Linear Systems with Three Variables</a></li> <li><a href="/Classes/Alg/AugmentedMatrix.aspx" class="mm-link">7.3 Augmented Matrices</a></li> <li><a href="/Classes/Alg/AugmentedMatrixII.aspx" class="mm-link">7.4 More on the Augmented Matrix</a></li> <li><a href="/Classes/Alg/NonlinearSystems.aspx" class="mm-link">7.5 Nonlinear Systems</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcI/CalcI.aspx" class="mm-link">Calculus I</a> <ul> <li><a href="/Classes/CalcI/ReviewIntro.aspx" class="mm-link">1. Review</a> <ul> <li><a href="/Classes/CalcI/Functions.aspx" class="mm-link">1.1 Functions</a></li> <li><a href="/Classes/CalcI/InverseFunctions.aspx" class="mm-link">1.2 Inverse Functions</a></li> <li><a href="/Classes/CalcI/TrigFcns.aspx" class="mm-link">1.3 Trig Functions</a></li> <li><a href="/Classes/CalcI/TrigEquations.aspx" class="mm-link">1.4 Solving Trig Equations</a></li> <li><a href="/Classes/CalcI/TrigEquations_CalcI.aspx" class="mm-link">1.5 Trig Equations with Calculators, Part I</a></li> <li><a href="/Classes/CalcI/TrigEquations_CalcII.aspx" class="mm-link">1.6 Trig Equations with Calculators, Part II</a></li> <li><a href="/Classes/CalcI/ExpFunctions.aspx" class="mm-link">1.7 Exponential Functions</a></li> <li><a href="/Classes/CalcI/LogFcns.aspx" class="mm-link">1.8 Logarithm Functions</a></li> <li><a href="/Classes/CalcI/ExpLogEqns.aspx" class="mm-link">1.9 Exponential and Logarithm Equations</a></li> <li><a href="/Classes/CalcI/CommonGraphs.aspx" class="mm-link">1.10 Common Graphs</a></li> </ul> </li> <li><a href="/Classes/CalcI/limitsIntro.aspx" class="mm-link">2. Limits</a> <ul> <li><a href="/Classes/CalcI/Tangents_Rates.aspx" class="mm-link">2.1 Tangent Lines and Rates of Change</a></li> <li><a href="/Classes/CalcI/TheLimit.aspx" class="mm-link">2.2 The Limit</a></li> <li><a href="/Classes/CalcI/OneSidedLimits.aspx" class="mm-link">2.3 One-Sided Limits</a></li> <li><a href="/Classes/CalcI/LimitsProperties.aspx" class="mm-link">2.4 Limit Properties</a></li> <li><a href="/Classes/CalcI/ComputingLimits.aspx" class="mm-link">2.5 Computing Limits</a></li> <li><a href="/Classes/CalcI/InfiniteLimits.aspx" class="mm-link">2.6 Infinite Limits</a></li> <li><a href="/Classes/CalcI/LimitsAtInfinityI.aspx" class="mm-link">2.7 Limits At Infinity, Part I</a></li> <li><a href="/Classes/CalcI/LimitsAtInfinityII.aspx" class="mm-link">2.8 Limits At Infinity, Part II</a></li> <li><a href="/Classes/CalcI/Continuity.aspx" class="mm-link">2.9 Continuity</a></li> <li><a href="/Classes/CalcI/DefnOfLimit.aspx" class="mm-link">2.10 The Definition of the Limit</a></li> </ul> </li> <li><a href="/Classes/CalcI/DerivativeIntro.aspx" class="mm-link">3. Derivatives</a> <ul> <li><a href="/Classes/CalcI/DefnOfDerivative.aspx" class="mm-link">3.1 The Definition of the Derivative</a></li> <li><a href="/Classes/CalcI/DerivativeInterp.aspx" class="mm-link">3.2 Interpretation of the Derivative</a></li> <li><a href="/Classes/CalcI/DiffFormulas.aspx" class="mm-link">3.3 Differentiation Formulas</a></li> <li><a href="/Classes/CalcI/ProductQuotientRule.aspx" class="mm-link">3.4 Product and Quotient Rule</a></li> <li><a href="/Classes/CalcI/DiffTrigFcns.aspx" class="mm-link">3.5 Derivatives of Trig Functions</a></li> <li><a href="/Classes/CalcI/DiffExpLogFcns.aspx" class="mm-link">3.6 Derivatives of Exponential and Logarithm Functions</a></li> <li><a href="/Classes/CalcI/DiffInvTrigFcns.aspx" class="mm-link">3.7 Derivatives of Inverse Trig Functions</a></li> <li><a href="/Classes/CalcI/DiffHyperFcns.aspx" class="mm-link">3.8 Derivatives of Hyperbolic Functions</a></li> <li><a href="/Classes/CalcI/ChainRule.aspx" class="mm-link">3.9 Chain Rule</a></li> <li><a href="/Classes/CalcI/ImplicitDIff.aspx" class="mm-link">3.10 Implicit Differentiation</a></li> <li><a href="/Classes/CalcI/RelatedRates.aspx" class="mm-link">3.11 Related Rates</a></li> <li><a href="/Classes/CalcI/HigherOrderDerivatives.aspx" class="mm-link">3.12 Higher Order Derivatives</a></li> <li><a href="/Classes/CalcI/LogDiff.aspx" class="mm-link">3.13 Logarithmic Differentiation</a></li> </ul> </li> <li><a href="/Classes/CalcI/DerivAppsIntro.aspx" class="mm-link">4. Applications of Derivatives</a> <ul> <li><a href="/Classes/CalcI/RateOfChange.aspx" class="mm-link">4.1 Rates of Change</a></li> <li><a href="/Classes/CalcI/CriticalPoints.aspx" class="mm-link">4.2 Critical Points</a></li> <li><a href="/Classes/CalcI/MinMaxValues.aspx" class="mm-link">4.3 Minimum and Maximum Values</a></li> <li><a href="/Classes/CalcI/AbsExtrema.aspx" class="mm-link">4.4 Finding Absolute Extrema</a></li> <li><a href="/Classes/CalcI/ShapeofGraphPtI.aspx" class="mm-link">4.5 The Shape of a Graph, Part I</a></li> <li><a href="/Classes/CalcI/ShapeofGraphPtII.aspx" class="mm-link">4.6 The Shape of a Graph, Part II</a></li> <li><a href="/Classes/CalcI/MeanValueTheorem.aspx" class="mm-link">4.7 The Mean Value Theorem</a></li> <li><a href="/Classes/CalcI/Optimization.aspx" class="mm-link">4.8 Optimization</a></li> <li><a href="/Classes/CalcI/MoreOptimization.aspx" class="mm-link">4.9 More Optimization Problems</a></li> <li><a href="/Classes/CalcI/LHospitalsRule.aspx" class="mm-link">4.10 L'Hospital's Rule and Indeterminate Forms</a></li> <li><a href="/Classes/CalcI/LinearApproximations.aspx" class="mm-link">4.11 Linear Approximations</a></li> <li><a href="/Classes/CalcI/Differentials.aspx" class="mm-link">4.12 Differentials</a></li> <li><a href="/Classes/CalcI/NewtonsMethod.aspx" class="mm-link">4.13 Newton's Method</a></li> <li><a href="/Classes/CalcI/BusinessApps.aspx" class="mm-link">4.14 Business Applications</a></li> </ul> </li> <li><a href="/Classes/CalcI/IntegralsIntro.aspx" class="mm-link">5. Integrals</a> <ul> <li><a href="/Classes/CalcI/IndefiniteIntegrals.aspx" class="mm-link">5.1 Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/ComputingIndefiniteIntegrals.aspx" class="mm-link">5.2 Computing Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleIndefinite.aspx" class="mm-link">5.3 Substitution Rule for Indefinite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleIndefinitePtII.aspx" class="mm-link">5.4 More Substitution Rule</a></li> <li><a href="/Classes/CalcI/AreaProblem.aspx" class="mm-link">5.5 Area Problem</a></li> <li><a href="/Classes/CalcI/DefnOfDefiniteIntegral.aspx" class="mm-link">5.6 Definition of the Definite Integral</a></li> <li><a href="/Classes/CalcI/ComputingDefiniteIntegrals.aspx" class="mm-link">5.7 Computing Definite Integrals</a></li> <li><a href="/Classes/CalcI/SubstitutionRuleDefinite.aspx" class="mm-link">5.8 Substitution Rule for Definite Integrals</a></li> </ul> </li> <li><a href="/Classes/CalcI/IntAppsIntro.aspx" class="mm-link">6. Applications of Integrals</a> <ul> <li><a href="/Classes/CalcI/AvgFcnValue.aspx" class="mm-link">6.1 Average Function Value</a></li> <li><a href="/Classes/CalcI/AreaBetweenCurves.aspx" class="mm-link">6.2 Area Between Curves</a></li> <li><a href="/Classes/CalcI/VolumeWithRings.aspx" class="mm-link">6.3 Volumes of Solids of Revolution / Method of Rings</a></li> <li><a href="/Classes/CalcI/VolumeWithCylinder.aspx" class="mm-link">6.4 Volumes of Solids of Revolution/Method of Cylinders</a></li> <li><a href="/Classes/CalcI/MoreVolume.aspx" class="mm-link">6.5 More Volume Problems</a></li> <li><a href="/Classes/CalcI/Work.aspx" class="mm-link">6.6 Work</a></li> </ul> </li> <li><a href="/Classes/CalcI/ExtrasIntro.aspx" class="mm-link">Appendix A. Extras</a> <ul> <li><a href="/Classes/CalcI/LimitProofs.aspx" class="mm-link">A.1 Proof of Various Limit Properties</a></li> <li><a href="/Classes/CalcI/DerivativeProofs.aspx" class="mm-link">A.2 Proof of Various Derivative Properties</a></li> <li><a href="/Classes/CalcI/ProofTrigDeriv.aspx" class="mm-link">A.3 Proof of Trig Limits</a></li> <li><a href="/Classes/CalcI/DerivativeAppsProofs.aspx" class="mm-link">A.4 Proofs of Derivative Applications Facts</a></li> <li><a href="/Classes/CalcI/ProofIntProp.aspx" class="mm-link">A.5 Proof of Various Integral Properties </a></li> <li><a href="/Classes/CalcI/Area_Volume_Formulas.aspx" class="mm-link">A.6 Area and Volume Formulas</a></li> <li><a href="/Classes/CalcI/TypesOfInfinity.aspx" class="mm-link">A.7 Types of Infinity</a></li> <li><a href="/Classes/CalcI/SummationNotation.aspx" class="mm-link">A.8 Summation Notation</a></li> <li><a href="/Classes/CalcI/ConstantofIntegration.aspx" class="mm-link">A.9 Constant of Integration</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcII/CalcII.aspx" class="mm-link">Calculus II</a> <ul> <li><a href="/Classes/CalcII/IntTechIntro.aspx" class="mm-link">7. Integration Techniques</a> <ul> <li><a href="/Classes/CalcII/IntegrationByParts.aspx" class="mm-link">7.1 Integration by Parts</a></li> <li><a href="/Classes/CalcII/IntegralsWithTrig.aspx" class="mm-link">7.2 Integrals Involving Trig Functions</a></li> <li><a href="/Classes/CalcII/TrigSubstitutions.aspx" class="mm-link">7.3 Trig Substitutions</a></li> <li><a href="/Classes/CalcII/PartialFractions.aspx" class="mm-link">7.4 Partial Fractions</a></li> <li><a href="/Classes/CalcII/IntegralsWithRoots.aspx" class="mm-link">7.5 Integrals Involving Roots</a></li> <li><a href="/Classes/CalcII/IntegralsWithQuadratics.aspx" class="mm-link">7.6 Integrals Involving Quadratics</a></li> <li><a href="/Classes/CalcII/IntegrationStrategy.aspx" class="mm-link">7.7 Integration Strategy</a></li> <li><a href="/Classes/CalcII/ImproperIntegrals.aspx" class="mm-link">7.8 Improper Integrals</a></li> <li><a href="/Classes/CalcII/ImproperIntegralsCompTest.aspx" class="mm-link">7.9 Comparison Test for Improper Integrals</a></li> <li><a href="/Classes/CalcII/ApproximatingDefIntegrals.aspx" class="mm-link">7.10 Approximating Definite Integrals</a></li> </ul> </li> <li><a href="/Classes/CalcII/IntAppsIntro.aspx" class="mm-link">8. Applications of Integrals</a> <ul> <li><a href="/Classes/CalcII/ArcLength.aspx" class="mm-link">8.1 Arc Length</a></li> <li><a href="/Classes/CalcII/SurfaceArea.aspx" class="mm-link">8.2 Surface Area</a></li> <li><a href="/Classes/CalcII/CenterOfMass.aspx" class="mm-link">8.3 Center of Mass</a></li> <li><a href="/Classes/CalcII/HydrostaticPressure.aspx" class="mm-link">8.4 Hydrostatic Pressure</a></li> <li><a href="/Classes/CalcII/Probability.aspx" class="mm-link">8.5 Probability</a></li> </ul> </li> <li><a href="/Classes/CalcII/ParametricIntro.aspx" class="mm-link">9. Parametric Equations and Polar Coordinates</a> <ul> <li><a href="/Classes/CalcII/ParametricEqn.aspx" class="mm-link">9.1 Parametric Equations and Curves</a></li> <li><a href="/Classes/CalcII/ParaTangent.aspx" class="mm-link">9.2 Tangents with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaArea.aspx" class="mm-link">9.3 Area with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaArcLength.aspx" class="mm-link">9.4 Arc Length with Parametric Equations</a></li> <li><a href="/Classes/CalcII/ParaSurfaceArea.aspx" class="mm-link">9.5 Surface Area with Parametric Equations</a></li> <li><a href="/Classes/CalcII/PolarCoordinates.aspx" class="mm-link">9.6 Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarTangents.aspx" class="mm-link">9.7 Tangents with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarArea.aspx" class="mm-link">9.8 Area with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarArcLength.aspx" class="mm-link">9.9 Arc Length with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/PolarSurfaceArea.aspx" class="mm-link">9.10 Surface Area with Polar Coordinates</a></li> <li><a href="/Classes/CalcII/ArcLength_SurfaceArea.aspx" class="mm-link">9.11 Arc Length and Surface Area Revisited</a></li> </ul> </li> <li><a href="/Classes/CalcII/SeriesIntro.aspx" class="mm-link">10. Series & Sequences</a> <ul> <li><a href="/Classes/CalcII/Sequences.aspx" class="mm-link">10.1 Sequences</a></li> <li><a href="/Classes/CalcII/MoreSequences.aspx" class="mm-link">10.2 More on Sequences</a></li> <li><a href="/Classes/CalcII/Series_Basics.aspx" class="mm-link">10.3 Series - The Basics</a></li> <li><a href="/Classes/CalcII/ConvergenceOfSeries.aspx" class="mm-link">10.4 Convergence/Divergence of Series</a></li> <li><a href="/Classes/CalcII/Series_Special.aspx" class="mm-link">10.5 Special Series</a></li> <li><a href="/Classes/CalcII/IntegralTest.aspx" class="mm-link">10.6 Integral Test</a></li> <li><a href="/Classes/CalcII/SeriesCompTest.aspx" class="mm-link">10.7 Comparison Test/Limit Comparison Test</a></li> <li><a href="/Classes/CalcII/AlternatingSeries.aspx" class="mm-link">10.8 Alternating Series Test</a></li> <li><a href="/Classes/CalcII/AbsoluteConvergence.aspx" class="mm-link">10.9 Absolute Convergence</a></li> <li><a href="/Classes/CalcII/RatioTest.aspx" class="mm-link">10.10 Ratio Test</a></li> <li><a href="/Classes/CalcII/RootTest.aspx" class="mm-link">10.11 Root Test</a></li> <li><a href="/Classes/CalcII/SeriesStrategy.aspx" class="mm-link">10.12 Strategy for Series</a></li> <li><a href="/Classes/CalcII/EstimatingSeries.aspx" class="mm-link">10.13 Estimating the Value of a Series</a></li> <li><a href="/Classes/CalcII/PowerSeries.aspx" class="mm-link">10.14 Power Series</a></li> <li><a href="/Classes/CalcII/PowerSeriesandFunctions.aspx" class="mm-link">10.15 Power Series and Functions</a></li> <li><a href="/Classes/CalcII/TaylorSeries.aspx" class="mm-link">10.16 Taylor Series</a></li> <li><a href="/Classes/CalcII/TaylorSeriesApps.aspx" class="mm-link">10.17 Applications of Series</a></li> <li><a href="/Classes/CalcII/BinomialSeries.aspx" class="mm-link">10.18 Binomial Series</a></li> </ul> </li> <li><a href="/Classes/CalcII/VectorsIntro.aspx" class="mm-link">11. Vectors</a> <ul> <li><a href="/Classes/CalcII/Vectors_Basics.aspx" class="mm-link">11.1 Vectors - The Basics</a></li> <li><a href="/Classes/CalcII/VectorArithmetic.aspx" class="mm-link">11.2 Vector Arithmetic</a></li> <li><a href="/Classes/CalcII/DotProduct.aspx" class="mm-link">11.3 Dot Product</a></li> <li><a href="/Classes/CalcII/CrossProduct.aspx" class="mm-link">11.4 Cross Product</a></li> </ul> </li> <li><a href="/Classes/CalcII/3DSpace.aspx" class="mm-link">12. 3-Dimensional Space</a> <ul> <li><a href="/Classes/CalcII/3DCoords.aspx" class="mm-link">12.1 The 3-D Coordinate System</a></li> <li><a href="/Classes/CalcII/EqnsOfLines.aspx" class="mm-link">12.2 Equations of Lines</a></li> <li><a href="/Classes/CalcII/EqnsOfPlanes.aspx" class="mm-link">12.3 Equations of Planes</a></li> <li><a href="/Classes/CalcII/QuadricSurfaces.aspx" class="mm-link">12.4 Quadric Surfaces</a></li> <li><a href="/Classes/CalcII/MultiVrbleFcns.aspx" class="mm-link">12.5 Functions of Several Variables</a></li> <li><a href="/Classes/CalcII/VectorFunctions.aspx" class="mm-link">12.6 Vector Functions</a></li> <li><a href="/Classes/CalcII/VectorFcnsCalculus.aspx" class="mm-link">12.7 Calculus with Vector Functions</a></li> <li><a href="/Classes/CalcII/TangentNormalVectors.aspx" class="mm-link">12.8 Tangent, Normal and Binormal Vectors</a></li> <li><a href="/Classes/CalcII/VectorArcLength.aspx" class="mm-link">12.9 Arc Length with Vector Functions</a></li> <li><a href="/Classes/CalcII/Curvature.aspx" class="mm-link">12.10 Curvature</a></li> <li><a href="/Classes/CalcII/Velocity_Acceleration.aspx" class="mm-link">12.11 Velocity and Acceleration</a></li> <li><a href="/Classes/CalcII/CylindricalCoords.aspx" class="mm-link">12.12 Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcII/SphericalCoords.aspx" class="mm-link">12.13 Spherical Coordinates</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/CalcIII/CalcIII.aspx" class="mm-link">Calculus III</a> <ul> <li><a href="/Classes/CalcIII/3DSpace.aspx" class="mm-link">12. 3-Dimensional Space</a> <ul> <li><a href="/Classes/CalcIII/3DCoords.aspx" class="mm-link">12.1 The 3-D Coordinate System</a></li> <li><a href="/Classes/CalcIII/EqnsOfLines.aspx" class="mm-link">12.2 Equations of Lines</a></li> <li><a href="/Classes/CalcIII/EqnsOfPlanes.aspx" class="mm-link">12.3 Equations of Planes</a></li> <li><a href="/Classes/CalcIII/QuadricSurfaces.aspx" class="mm-link">12.4 Quadric Surfaces</a></li> <li><a href="/Classes/CalcIII/MultiVrbleFcns.aspx" class="mm-link">12.5 Functions of Several Variables</a></li> <li><a href="/Classes/CalcIII/VectorFunctions.aspx" class="mm-link">12.6 Vector Functions</a></li> <li><a href="/Classes/CalcIII/VectorFcnsCalculus.aspx" class="mm-link">12.7 Calculus with Vector Functions</a></li> <li><a href="/Classes/CalcIII/TangentNormalVectors.aspx" class="mm-link">12.8 Tangent, Normal and Binormal Vectors</a></li> <li><a href="/Classes/CalcIII/VectorArcLength.aspx" class="mm-link">12.9 Arc Length with Vector Functions</a></li> <li><a href="/Classes/CalcIII/Curvature.aspx" class="mm-link">12.10 Curvature</a></li> <li><a href="/Classes/CalcIII/Velocity_Acceleration.aspx" class="mm-link">12.11 Velocity and Acceleration</a></li> <li><a href="/Classes/CalcIII/CylindricalCoords.aspx" class="mm-link">12.12 Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcIII/SphericalCoords.aspx" class="mm-link">12.13 Spherical Coordinates</a></li> </ul> </li> <li><a href="/Classes/CalcIII/PartialDerivsIntro.aspx" class="mm-link">13. Partial Derivatives</a> <ul> <li><a href="/Classes/CalcIII/Limits.aspx" class="mm-link">13.1 Limits</a></li> <li><a href="/Classes/CalcIII/PartialDerivatives.aspx" class="mm-link">13.2 Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/PartialDerivInterp.aspx" class="mm-link">13.3 Interpretations of Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/HighOrderPartialDerivs.aspx" class="mm-link">13.4 Higher Order Partial Derivatives</a></li> <li><a href="/Classes/CalcIII/Differentials.aspx" class="mm-link">13.5 Differentials</a></li> <li><a href="/Classes/CalcIII/ChainRule.aspx" class="mm-link">13.6 Chain Rule</a></li> <li><a href="/Classes/CalcIII/DirectionalDeriv.aspx" class="mm-link">13.7 Directional Derivatives</a></li> </ul> </li> <li><a href="/Classes/CalcIII/PartialDerivAppsIntro.aspx" class="mm-link">14. Applications of Partial Derivatives</a> <ul> <li><a href="/Classes/CalcIII/TangentPlanes.aspx" class="mm-link">14.1 Tangent Planes and Linear Approximations</a></li> <li><a href="/Classes/CalcIII/GradientVectorTangentPlane.aspx" class="mm-link">14.2 Gradient Vector, Tangent Planes and Normal Lines</a></li> <li><a href="/Classes/CalcIII/RelativeExtrema.aspx" class="mm-link">14.3 Relative Minimums and Maximums</a></li> <li><a href="/Classes/CalcIII/AbsoluteExtrema.aspx" class="mm-link">14.4 Absolute Minimums and Maximums</a></li> <li><a href="/Classes/CalcIII/LagrangeMultipliers.aspx" class="mm-link">14.5 Lagrange Multipliers</a></li> </ul> </li> <li><a href="/Classes/CalcIII/MultipleIntegralsIntro.aspx" class="mm-link">15. Multiple Integrals</a> <ul> <li><a href="/Classes/CalcIII/DoubleIntegrals.aspx" class="mm-link">15.1 Double Integrals</a></li> <li><a href="/Classes/CalcIII/IteratedIntegrals.aspx" class="mm-link">15.2 Iterated Integrals</a></li> <li><a href="/Classes/CalcIII/DIGeneralRegion.aspx" class="mm-link">15.3 Double Integrals over General Regions</a></li> <li><a href="/Classes/CalcIII/DIPolarCoords.aspx" class="mm-link">15.4 Double Integrals in Polar Coordinates</a></li> <li><a href="/Classes/CalcIII/TripleIntegrals.aspx" class="mm-link">15.5 Triple Integrals</a></li> <li><a href="/Classes/CalcIII/TICylindricalCoords.aspx" class="mm-link">15.6 Triple Integrals in Cylindrical Coordinates</a></li> <li><a href="/Classes/CalcIII/TISphericalCoords.aspx" class="mm-link">15.7 Triple Integrals in Spherical Coordinates</a></li> <li><a href="/Classes/CalcIII/ChangeOfVariables.aspx" class="mm-link">15.8 Change of Variables</a></li> <li><a href="/Classes/CalcIII/SurfaceArea.aspx" class="mm-link">15.9 Surface Area</a></li> <li><a href="/Classes/CalcIII/Area_Volume.aspx" class="mm-link">15.10 Area and Volume Revisited</a></li> </ul> </li> <li><a href="/Classes/CalcIII/LineIntegralsIntro.aspx" class="mm-link">16. Line Integrals</a> <ul> <li><a href="/Classes/CalcIII/VectorFields.aspx" class="mm-link">16.1 Vector Fields</a></li> <li><a href="/Classes/CalcIII/LineIntegralsPtI.aspx" class="mm-link">16.2 Line Integrals - Part I</a></li> <li><a href="/Classes/CalcIII/LineIntegralsPtII.aspx" class="mm-link">16.3 Line Integrals - Part II</a></li> <li><a href="/Classes/CalcIII/LineIntegralsVectorFields.aspx" class="mm-link">16.4 Line Integrals of Vector Fields</a></li> <li><a href="/Classes/CalcIII/FundThmLineIntegrals.aspx" class="mm-link">16.5 Fundamental Theorem for Line Integrals</a></li> <li><a href="/Classes/CalcIII/ConservativeVectorField.aspx" class="mm-link">16.6 Conservative Vector Fields</a></li> <li><a href="/Classes/CalcIII/GreensTheorem.aspx" class="mm-link">16.7 Green's Theorem</a></li> </ul> </li> <li><a href="/Classes/CalcIII/SurfaceIntegralsIntro.aspx" class="mm-link">17.Surface Integrals</a> <ul> <li><a href="/Classes/CalcIII/CurlDivergence.aspx" class="mm-link">17.1 Curl and Divergence</a></li> <li><a href="/Classes/CalcIII/ParametricSurfaces.aspx" class="mm-link">17.2 Parametric Surfaces</a></li> <li><a href="/Classes/CalcIII/SurfaceIntegrals.aspx" class="mm-link">17.3 Surface Integrals</a></li> <li><a href="/Classes/CalcIII/SurfIntVectorField.aspx" class="mm-link">17.4 Surface Integrals of Vector Fields</a></li> <li><a href="/Classes/CalcIII/StokesTheorem.aspx" class="mm-link">17.5 Stokes' Theorem</a></li> <li><a href="/Classes/CalcIII/DivergenceTheorem.aspx" class="mm-link">17.6 Divergence Theorem</a></li> </ul> </li> </ul> </li> <li><a href="/Classes/DE/DE.aspx" class="mm-link">Differential Equations</a> <ul> <li><a href="/Classes/DE/IntroBasic.aspx" class="mm-link">1. Basic Concepts</a> <ul> <li><a href="/Classes/DE/Definitions.aspx" class="mm-link">1.1 Definitions</a></li> <li><a href="/Classes/DE/DirectionFields.aspx" class="mm-link">1.2 Direction Fields</a></li> <li><a href="/Classes/DE/FinalThoughts.aspx" class="mm-link">1.3 Final Thoughts</a></li> </ul> </li> <li><a href="/Classes/DE/IntroFirstOrder.aspx" class="mm-link">2. First Order DE's</a> <ul> <li><a href="/Classes/DE/Linear.aspx" class="mm-link">2.1 Linear Equations</a></li> <li><a href="/Classes/DE/Separable.aspx" class="mm-link">2.2 Separable Equations</a></li> <li><a href="/Classes/DE/Exact.aspx" class="mm-link">2.3 Exact Equations</a></li> <li><a href="/Classes/DE/Bernoulli.aspx" class="mm-link">2.4 Bernoulli Differential Equations</a></li> <li><a href="/Classes/DE/Substitutions.aspx" class="mm-link">2.5 Substitutions</a></li> <li><a href="/Classes/DE/IoV.aspx" class="mm-link">2.6 Intervals of Validity</a></li> <li><a href="/Classes/DE/Modeling.aspx" class="mm-link">2.7 Modeling with First Order DE's</a></li> <li><a href="/Classes/DE/EquilibriumSolutions.aspx" class="mm-link">2.8 Equilibrium Solutions</a></li> <li><a href="/Classes/DE/EulersMethod.aspx" class="mm-link">2.9 Euler's Method</a></li> </ul> </li> <li><a href="/Classes/DE/IntroSecondOrder.aspx" class="mm-link">3. Second Order DE's</a> <ul> <li><a href="/Classes/DE/SecondOrderConcepts.aspx" class="mm-link">3.1 Basic Concepts</a></li> <li><a href="/Classes/DE/RealRoots.aspx" class="mm-link">3.2 Real & Distinct Roots</a></li> <li><a href="/Classes/DE/ComplexRoots.aspx" class="mm-link">3.3 Complex Roots</a></li> <li><a href="/Classes/DE/RepeatedRoots.aspx" class="mm-link">3.4 Repeated Roots</a></li> <li><a href="/Classes/DE/ReductionofOrder.aspx" class="mm-link">3.5 Reduction of Order</a></li> <li><a href="/Classes/DE/FundamentalSetsofSolutions.aspx" class="mm-link">3.6 Fundamental Sets of Solutions</a></li> <li><a href="/Classes/DE/Wronskian.aspx" class="mm-link">3.7 More on the Wronskian</a></li> <li><a href="/Classes/DE/NonhomogeneousDE.aspx" class="mm-link">3.8 Nonhomogeneous Differential Equations</a></li> <li><a href="/Classes/DE/UndeterminedCoefficients.aspx" class="mm-link">3.9 Undetermined Coefficients</a></li> <li><a href="/Classes/DE/VariationofParameters.aspx" class="mm-link">3.10 Variation of Parameters</a></li> <li><a href="/Classes/DE/Vibrations.aspx" class="mm-link">3.11 Mechanical Vibrations</a></li> </ul> </li> <li><a href="/Classes/DE/LaplaceIntro.aspx" class="mm-link">4. Laplace Transforms</a> <ul> <li><a href="/Classes/DE/LaplaceDefinition.aspx" class="mm-link">4.1 The Definition</a></li> <li><a href="/Classes/DE/LaplaceTransforms.aspx" class="mm-link">4.2 Laplace Transforms</a></li> <li><a href="/Classes/DE/InverseTransforms.aspx" class="mm-link">4.3 Inverse Laplace Transforms</a></li> <li><a href="/Classes/DE/StepFunctions.aspx" class="mm-link">4.4 Step Functions</a></li> <li><a href="/Classes/DE/IVPWithLaplace.aspx" class="mm-link">4.5 Solving IVP's with Laplace Transforms</a></li> <li><a href="/Classes/DE/IVPWithNonConstantCoefficient.aspx" class="mm-link">4.6 Nonconstant Coefficient IVP's</a></li> <li><a href="/Classes/DE/IVPWithStepFunction.aspx" class="mm-link">4.7 IVP's With Step Functions</a></li> <li><a href="/Classes/DE/DiracDeltaFunction.aspx" class="mm-link">4.8 Dirac Delta Function</a></li> <li><a href="/Classes/DE/ConvolutionIntegrals.aspx" class="mm-link">4.9 Convolution Integrals</a></li> <li><a href="/Classes/DE/Laplace_Table.aspx" class="mm-link">4.10 Table Of Laplace Transforms</a></li> </ul> </li> <li><a href="/Classes/DE/SystemsIntro.aspx" class="mm-link">5. Systems of DE's</a> <ul> <li><a href="/Classes/DE/LA_Systems.aspx" class="mm-link">5.1 Review : Systems of Equations</a></li> <li><a href="/Classes/DE/LA_Matrix.aspx" class="mm-link">5.2 Review : Matrices & Vectors</a></li> <li><a href="/Classes/DE/LA_Eigen.aspx" class="mm-link">5.3 Review : Eigenvalues & Eigenvectors</a></li> <li><a href="/Classes/DE/SystemsDE.aspx" class="mm-link">5.4 Systems of Differential Equations</a></li> <li><a href="/Classes/DE/SolutionsToSystems.aspx" class="mm-link">5.5 Solutions to Systems</a></li> <li><a href="/Classes/DE/PhasePlane.aspx" class="mm-link">5.6 Phase Plane</a></li> <li><a href="/Classes/DE/RealEigenvalues.aspx" class="mm-link">5.7 Real Eigenvalues</a></li> <li><a href="/Classes/DE/ComplexEigenvalues.aspx" class="mm-link">5.8 Complex Eigenvalues</a></li> <li><a href="/Classes/DE/RepeatedEigenvalues.aspx" class="mm-link">5.9 Repeated Eigenvalues</a></li> <li><a href="/Classes/DE/NonhomogeneousSystems.aspx" class="mm-link">5.10 Nonhomogeneous Systems</a></li> <li><a href="/Classes/DE/SystemsLaplace.aspx" class="mm-link">5.11 Laplace Transforms</a></li> <li><a href="/Classes/DE/SystemsModeling.aspx" class="mm-link">5.12 Modeling</a></li> </ul> </li> <li><a href="/Classes/DE/SeriesIntro.aspx" class="mm-link">6. Series Solutions to DE's</a> <ul> <li><a href="/Classes/DE/PowerSeries.aspx" class="mm-link">6.1 Review : Power Series</a></li> <li><a href="/Classes/DE/TaylorSeries.aspx" class="mm-link">6.2 Review : Taylor Series</a></li> <li><a href="/Classes/DE/SeriesSolutions.aspx" class="mm-link">6.3 Series Solutions</a></li> <li><a href="/Classes/DE/EulerEquations.aspx" class="mm-link">6.4 Euler Equations</a></li> </ul> </li> <li><a href="/Classes/DE/IntroHigherOrder.aspx" class="mm-link">7. Higher Order Differential Equations</a> <ul> <li><a href="/Classes/DE/HOBasicConcepts.aspx" class="mm-link">7.1 Basic Concepts for <em>n</em><sup>th</sup> Order Linear Equations</a></li> <li><a href="/Classes/DE/HOHomogeneousDE.aspx" class="mm-link">7.2 Linear Homogeneous Differential Equations</a></li> <li><a href="/Classes/DE/HOUndeterminedCoeff.aspx" class="mm-link">7.3 Undetermined Coefficients</a></li> <li><a href="/Classes/DE/HOVariationOfParam.aspx" class="mm-link">7.4 Variation of Parameters</a></li> <li><a href="/Classes/DE/HOLaplaceTransforms.aspx" class="mm-link">7.5 Laplace Transforms</a></li> <li><a href="/Classes/DE/HOSystems.aspx" class="mm-link">7.6 Systems of Differential Equations</a></li> <li><a href="/Classes/DE/HOSeries.aspx" class="mm-link">7.7 Series Solutions</a></li> </ul> </li> <li><a href="/Classes/DE/IntroBVP.aspx" class="mm-link">8. Boundary Value Problems & Fourier Series</a> <ul> <li><a href="/Classes/DE/BoundaryValueProblem.aspx" class="mm-link">8.1 Boundary Value Problems</a></li> <li><a href="/Classes/DE/BVPEvals.aspx" class="mm-link">8.2 Eigenvalues and Eigenfunctions</a></li> <li><a href="/Classes/DE/PeriodicOrthogonal.aspx" class="mm-link">8.3 Periodic Functions & Orthogonal Functions</a></li> <li><a href="/Classes/DE/FourierSineSeries.aspx" class="mm-link">8.4 Fourier Sine Series</a></li> <li><a href="/Classes/DE/FourierCosineSeries.aspx" class="mm-link">8.5 Fourier Cosine Series</a></li> <li><a href="/Classes/DE/FourierSeries.aspx" class="mm-link">8.6 Fourier Series</a></li> <li><a href="/Classes/DE/ConvergenceFourierSeries.aspx" class="mm-link">8.7 Convergence of Fourier Series</a></li> </ul> </li> <li><a href="/Classes/DE/IntroPDE.aspx" class="mm-link">9. Partial Differential Equations </a> <ul> <li><a href="/Classes/DE/TheHeatEquation.aspx" class="mm-link">9.1 The Heat Equation</a></li> <li><a href="/Classes/DE/TheWaveEquation.aspx" class="mm-link">9.2 The Wave Equation</a></li> <li><a href="/Classes/DE/PDETerminology.aspx" class="mm-link">9.3 Terminology</a></li> <li><a href="/Classes/DE/SeparationofVariables.aspx" class="mm-link">9.4 Separation of Variables</a></li> <li><a href="/Classes/DE/SolvingHeatEquation.aspx" class="mm-link">9.5 Solving the Heat Equation</a></li> <li><a href="/Classes/DE/HeatEqnNonZero.aspx" class="mm-link">9.6 Heat Equation with Non-Zero Temperature Boundaries</a></li> <li><a href="/Classes/DE/LaplacesEqn.aspx" class="mm-link">9.7 Laplace's Equation</a></li> <li><a href="/Classes/DE/VibratingString.aspx" class="mm-link">9.8 Vibrating String</a></li> <li><a href="/Classes/DE/PDESummary.aspx" class="mm-link">9.9 Summary of Separation of Variables</a></li> </ul> </li> </ul> </li> <li><span>Extras</span></li> <li><a href="/Extras/AlgebraTrigReview/AlgebraTrig.aspx" class="mm-link">Algebra & Trig Review</a> <ul> <li><a href="/Extras/AlgebraTrigReview/AlgebraIntro.aspx" class="mm-link">1. Algebra</a> <ul> <li><a href="/Extras/AlgebraTrigReview/Exponents.aspx" class="mm-link">1.1 Exponents </a></li> <li><a href="/Extras/AlgebraTrigReview/AbsoluteValue.aspx" class="mm-link">1.2 Absolute Value</a></li> <li><a href="/Extras/AlgebraTrigReview/Radicals.aspx" class="mm-link">1.3 Radicals</a></li> <li><a href="/Extras/AlgebraTrigReview/Rationalizing.aspx" class="mm-link">1.4 Rationalizing </a></li> <li><a href="/Extras/AlgebraTrigReview/Functions.aspx" class="mm-link">1.5 Functions </a></li> <li><a href="/Extras/AlgebraTrigReview/MultPoly.aspx" class="mm-link">1.6 Multiplying Polynomials</a></li> <li><a href="/Extras/AlgebraTrigReview/Factoring.aspx" class="mm-link">1.7 Factoring</a></li> <li><a href="/Extras/AlgebraTrigReview/SimpRatExp.aspx" class="mm-link">1.8 Simplifying Rational Expressions</a></li> <li><a href="/Extras/AlgebraTrigReview/Graphing.aspx" class="mm-link">1.9 Graphing and Common Graphs</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveEqnPtI.aspx" class="mm-link">1.10 Solving Equations, Part I</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveEqnPtII.aspx" class="mm-link">1.11 Solving Equations, Part II</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveSystems.aspx" class="mm-link">1.12 Solving Systems of Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveIneq.aspx" class="mm-link">1.13 Solving Inequalities</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveAbsValue.aspx" class="mm-link">1.14 Absolute Value Equations and Inequalities</a></li> </ul> </li> <li><a href="/Extras/AlgebraTrigReview/TrigIntro.aspx" class="mm-link">2. Trigonometry</a> <ul> <li><a href="/Extras/AlgebraTrigReview/TrigFunctions.aspx" class="mm-link">2.1 Trig Function Evaluation</a></li> <li><a href="/Extras/AlgebraTrigReview/TrigGraphs.aspx" class="mm-link">2.2 Graphs of Trig Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/TrigFormulas.aspx" class="mm-link">2.3 Trig Formulas</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveTrigEqn.aspx" class="mm-link">2.4 Solving Trig Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/InverseTrig.aspx" class="mm-link">2.5 Inverse Trig Functions</a></li> </ul> </li> <li><a href="/Extras/AlgebraTrigReview/ExpLogIntro.aspx" class="mm-link">3. Exponentials & Logarithms</a> <ul> <li><a href="/Extras/AlgebraTrigReview/ExponentialFcns.aspx" class="mm-link">3.1 Basic Exponential Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/LogarithmFcns.aspx" class="mm-link">3.2 Basic Logarithm Functions</a></li> <li><a href="/Extras/AlgebraTrigReview/LogProperties.aspx" class="mm-link">3.3 Logarithm Properties</a></li> <li><a href="/Extras/AlgebraTrigReview/SimpLogs.aspx" class="mm-link">3.4 Simplifying Logarithms</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveExpEqn.aspx" class="mm-link">3.5 Solving Exponential Equations</a></li> <li><a href="/Extras/AlgebraTrigReview/SolveLogEqn.aspx" class="mm-link">3.6 Solving Logarithm Equations</a></li> </ul> </li> </ul> </li> <li><a href="/Extras/CommonErrors/CommonMathErrors.aspx" class="mm-link">Common Math Errors</a> <ul> <li><a href="/Extras/CommonErrors/GeneralErrors.aspx" class="mm-link">1. General Errors</a> </li> <li><a href="/Extras/CommonErrors/AlgebraErrors.aspx" class="mm-link">2. Algebra Errors</a> </li> <li><a href="/Extras/CommonErrors/TrigErrors.aspx" class="mm-link">3. Trig Errors</a> </li> <li><a href="/Extras/CommonErrors/CommonErrors.aspx" class="mm-link">4. Common Errors</a> </li> <li><a href="/Extras/CommonErrors/CalculusErrors.aspx" class="mm-link">5. Calculus Errors</a> </li> </ul> </li> <li><a href="/Extras/ComplexPrimer/ComplexNumbers.aspx" class="mm-link">Complex Number Primer</a> <ul> <li><a href="/Extras/ComplexPrimer/Definition.aspx" class="mm-link">1. The Definition</a> </li> <li><a href="/Extras/ComplexPrimer/Arithmetic.aspx" class="mm-link">2. Arithmetic</a> </li> <li><a href="/Extras/ComplexPrimer/ConjugateModulus.aspx" class="mm-link">3. Conjugate and Modulus</a> </li> <li><a href="/Extras/ComplexPrimer/Forms.aspx" class="mm-link">4. Polar and Exponential Forms</a> </li> <li><a href="/Extras/ComplexPrimer/Roots.aspx" class="mm-link">5. Powers and Roots</a> </li> </ul> </li> <li><a href="/Extras/StudyMath/HowToStudyMath.aspx" class="mm-link">How To Study Math</a> <ul> <li><a href="/Extras/StudyMath/GeneralTips.aspx" class="mm-link">1. General Tips</a> </li> <li><a href="/Extras/StudyMath/TakingNotes.aspx" class="mm-link">2. Taking Notes</a> </li> <li><a href="/Extras/StudyMath/GettingHelp.aspx" class="mm-link">3. Getting Help</a> </li> <li><a href="/Extras/StudyMath/Homework.aspx" class="mm-link">4. Doing Homework</a> </li> <li><a href="/Extras/StudyMath/ProblemSolving.aspx" class="mm-link">5. Problem Solving</a> </li> <li><a href="/Extras/StudyMath/StudyForExam.aspx" class="mm-link">6. Studying For an Exam</a> </li> <li><a href="/Extras/StudyMath/TakingExam.aspx" class="mm-link">7. Taking an Exam</a> </li> <li><a href="/Extras/StudyMath/Errors.aspx" class="mm-link">8. Learn From Your Errors</a> </li> </ul> </li> <li><span>Misc Links</span></li> <li><a href="/contact.aspx" class="mm-link">Contact Me</a></li> <li><a href="/links.aspx" class="mm-link">Links</a></li> <li><a href="/mathjax.aspx" class="mm-link">MathJax Help and Configuration</a></li> <li><a href="/privacy.aspx" class="mm-link">Privacy Statement</a></li> <li><a href="/help.aspx" class="mm-link">Site Help & FAQ</a></li> <li><a href="/terms.aspx" class="mm-link">Terms of Use</a></li> </ul> </nav> <div class="top-info-bar"> <span id="mobile-title" class="mobile-header-title header-title">Paul's Online Notes</span> <br /> <span class="top-menu-breadcrumb"> <a href="/" id="breadcrumb_home_link" title="Go to Main Page">Home</a> <span id="breadcrumb_h_b_sep_span">/ </span> <a href="/Classes/CalcII/CalcII.aspx" id="breadcrumb_book_link" title="Go to Book Introduction">Calculus II</a> <span id="breadcrumb_b_c_sep_span">/ </span> <a href="/Classes/CalcII/VectorsIntro.aspx" id="breadcrumb_chapter_link" title="Go to Chapter Introduction">Vectors</a> <span id="breadcrumb_section_span"> / Cross Product</span> </span> </div> <div id="nav_links" class="top-nav-bar"> <a href="/Classes/CalcII/DotProduct.aspx" id="nav_links_prev_section" title="Goto Previous Section : Dot Product"><span class="top-menu-prev fas fa-chevron-left"></span><span class="nav_desktop_extra_pn"> Prev. Section</span></a> <div class="top-nav-bar-link-spacer"></div> <span id="nav_current_notes">Notes</span> <a href="/Problems/CalcII/CrossProduct.aspx" id="nav_links_practice" title="Go to Practice Problems for current topic.">Practice<span class="nav_desktop_extra"> Problems</span></a> <a href="/ProblemsNS/CalcII/CrossProduct.aspx" id="nav_links_asgn" title="Go to Assignment Problems for current topic.">Assignment<span class="nav_desktop_extra"> Problems</span></a> <div class="top-nav-bar-link-spacer"></div> <a href="/Classes/CalcII/3DSpace.aspx" id="nav_links_next_section" title="Goto Next Section : 3-Dimensional Space Introduction"><span class="nav_desktop_extra_pn"> Next Section </span><span class="top-menu-next fas fa-chevron-right"></span></a> </div> <div class="header-divider"></div> <div class="content"> <span id="SHLink_NoteMobile" class="SH-Link content-note-link-mobile">Show Mobile Notice</span> <span id="SHImg_NoteMobile" class="fas fa-caret-right SH-padding content-note-link-mobile" aria-hidden="true"></span> <span id="SHALink_S_Note" class="SH-Link SH-Hide SH-Bracket">Show All Notes</span> <span id="SHALink_H_Note" class="SH-Link SH-Hide SH-Bracket">Hide All Notes</span> <div id="SHObj_NoteMobile" class="content-note-container content-note-container-mobile"> <div class="content-note-header">Mobile Notice</div> <div class="content-note">You appear to be on a device with a "narrow" screen width (<em>i.e.</em> you are probably on a mobile phone). Due to the nature of the mathematics on this site it is best viewed in landscape mode. If your device is not in landscape mode many of the equations will run off the side of your device (you should be able to scroll/swipe to see them) and some of the menu items will be cut off due to the narrow screen width.</div> </div> <form method="post" action="./CrossProduct.aspx" id="ctl00"> <div class="aspNetHidden"> <input type="hidden" name="__VIEWSTATE" id="__VIEWSTATE" value="I44RDnTNpYShZeGwocQBp1NVn/R0VuLICnuJArw0hHRFHybx2P+vDy1Uy5Nm+cxFR9ciFHt8ak2zy/33+XBapq9RDwqu+ZMKrRTHkz784YW/egkyU9LgNh4wwrDrM/KenmSb0NDRAYvXkm7SI7OgpVk3ZEZONSLIAGjkU9aNXm5ICHIMOGGJBZxreQ4AUNPWmZMeMqY/DcSTliQU732wWIrOfLJH2cM8LWV7M6NbCpuNkDxYIL+TlwVZoYJmkwbaJMd8YKxsIEFn0s3wOUXvifytlEGyuGpv/+hBnNt+mHUdU5kfHRjnJXVqEEdblnNUcyaDdTVpRFSAAgMaImPDlNzMbHgzyrxO3diYJkIdjIF0SDuzfkIH0YMjb58O05eAvuuEpzQSY6+dGjW8tSrFWhU65oKQur/H4MxSn7E/9Oe1ajcVDk3OD0EEg5agtg67pMEKTYeIQoD9NIAhk/IDzc0zwh/jD11ce8Tx6kzLVvIO8hPc8QyOvcVpiRlceOfoKRerog0lT585miWb6rbOXH6T4We4mfRX8MpBLAQ+xQi6gHNnvfGqPornnwgLz+yZU65cv9GRgyotgsIyR4i7hmA//EVlvgyXNRRMdoaRJxF+qZ3NpJK1mA4ULbpNDHIEq2fpyZuyqxjO/BF0UcfRF1wrN2LnTz4hzrHeWzbKVtfRI4fhQ/CSYTjWtRZ/EsCluyQkMrJ/RzEAZt1z+oQ6i2sD/RZFyhljiNne3p3vzPghQMeXDbExXcTQM2vkHdmN5Wuhul0ojeKY7K6AKN/0fqsqIpEJFpM7YRsBaMKplgIpuQ6oGDXleQzmuYK06wMsDBsNv1X7mCzkoFfAN6zePpCNR69r3XzYrmuF0/Oj2Lz9Imshqk1WNdprYx82sXS34NZ875Oh5bemWUgtWcNnnZBZYuIiyXci2hBeLsgWQMv1UzubHWdmBR/tsEQ0NybrT25oChM4F/HvVDQ/Qply3w3bB03EQIJs/L93N5xjj2VnkXXzT2Aq0A97/uT31a2O3uCxkHCCnMo01vKeNSqeSqNHOxpdBI5IK1TtY+4WB02tGrp0NOJdW2b+tAjYxThVssTmB9nNn5H0llRIb5HaQ8zkJlC6CSEuE9rLQcR+mOHrjU8VNJynebHhiHHtNbJ8fLhDlvOS6O3WJS9gyE6M3zh8SQq1MiY+ay1g53ENRI4LxfO3XsqoMDkGoVE0TzohYgbhFSgoilMMPh921G9L+KPnQrVTAGfCor/mZ9mE/zx/ADLkFD8hidTZI9atl5LC0nYG3Uc116R7EQlu4unJ+1y+Aqj8h63lMCd2u9rm4YoGlk6DO0lbmlHhh0hwthGPyb+Yq17zE5m6GTzWNUC8h7sU1sjaNQzBmQ/yZ/cAsbNan0+8STYD4nv2+bkGMb2gqvf2G30VnBdAfiUHxsqpGztKsR5vAjiEcYuw/sr5zyQL5jiz0EOq2dt8GcQ5qP6PtEKHR4yPbJtdaG49/1mXQkZUuPUfkoJMxhIzpGsMSs0+5K5g/h095B0UTb2kKze7SDfrp2QVJ5e9ukNRkAFOMu1oHzja9JkXrkzuBGmG9gRmFwlnAg9Ih96g9wQOwMOb840dpSqxgmCTvs6OZgEiZ2RCjwHUinAA7MzdMUsyTAjYWnxHASzWqz4Gvawnlq+Yv+2gnTTKTqm9BmsY6LmB6bOSZ8iY5lTw3gikeWsEuykf+wWhPQhIH1zS3vHN9UUXim0V4/0kT3kgGm/JKihwiF39K9p9ygA611gFtP3uOM+S0EZVfjX4NY121SdN8CUyxJC8hakwmMrtSu3q/9k4L6XVT763wco6vYLIVQKsFbKj1kUT0PMBGXUCMFPwU1M5iNUkMgeu/X2Drzw+JqRRUmP+lTEdfIXZUrSyR+JKaltCbsYuxU8f4GgNEFsMEOajPFswF7LzpV3IN99JDDPNcYfpnw2q5w0nVeqFOz+9eEkvJSG1gJKeUgOxv6d5Un0rgZwe8wrA8APN17+EuGAshoggv6GlyYYdgasMd9vdig2b8pqTVA+MV5scZPkZarZwyHbHPB74gexIrGuQHe0l9ESi4p7YIJ9xMQ4BaCFpbT8x0++ouzfcov5HzMdSOHW65bPCMTYd/ejMQTEiCPkbOxpu4mQyOQYkMMKpbBL90XNtI6yZuHjdi7hTlxjq9YNTr/Ix6TuenhWsvWJ4SEqLAPhiQ3XfqGfqbkGHRSSs3cz0kN22z1pb4JRMD8guL/zqBix4pzYxFW9RvvgL6tOCxY8NC+5v7ktqoXVc7mwjQQFBfrw4Y60IP77hA7XYhlxkWKPCUQrHLPseBQm/XkugHr8xRRhOpBze8WuHVAZT7FjhmVpSBIUKTIFhp9jqsvtN2NYwV40KLKLkHCPWHvV1gWjRPDE7avhblxDxkQ+BCltXx7wA1feH/H3m2yzB/Vhvo79/z27lTRKb1uy6iBLIuqF70iv+lMjLayOE2DQIiOI3BDWWXlSbFvkthNjdy7BZt0lTbQgiTHrYc7d73uXHPteaLKvMNTiC9VvpCrv5lWC3bbloeVJp2K9HH0cpuGQanUn1KIw8s2DxP0eDb9bksLJMcjChOBxsGGe4oOUHaSfbnJzMmvi+T5vctJsAMdxMFX8k7ObBJl4dqzd97hF8OYjob2h6AlWh5XcFzcLdXKLFAQXIsaN72SbwikYDN0ZdwsHqoOgIWBFNk8jkVPTw80CZyACOAEiWOJyICVoaqLpd5AQ4W2Lo5e2680kFws9SO1SJSoNgesiduxardUmorbRm18Opf8Ou/oIkSwLzIXAiNo99XPJRus6r41b1vdwYPRliq0jUmCi0S/aBi1eixJuhfLBEFU1WqitjVaXtoj7btfcHRcPD0s3QBIh7SHovcz9XxYQNfXRfNPlwTsfsmS6llBH73JwM39Ihs28uCqE0kaSGsnl45op7RAWwdP0t51NFKHH5QdDxBRzo42+w+ztYGSWBzyiEY942I5NBr3FnwsiRMUbLQklnF0n7ReT2vCCFcGBcCY/4xbDlxv1tTma43EwkxREyGGyzyKuBj1SDQmjdMyemuNJVmksRwNY0QzhJHPsGT6sBoiMGBYKGbwE9BJ0kTSScOV/dVZzNN6nWiN0VkdyJHHomyPKHZAbsCGUwlNmwRcla3BxW4ceuEk+4zSfRCX2ehks8+MHc5D/VB8ul+zkbNyH6UcyMjsoQNI34FsT8wVGqQFbLK8rIccVpointPIpd7gHX9JmakTJIZvn6GRsEQbZZjq6t6tVSRi7NTe0xiHDD3uqlgoGCMCNu3CodqJKOvDYnUzgpSsQEPWcbnUsSwyDBnRna132/5ZzbqZMuzIWiynduioerteHG8zE8gDFrRVwfFkDPyhgFlY8MyFBRpnfOpFi+5xuZpguVuDFKSxYe+3gmPEgdgYW+5NaW9y/JWTwnWSDPcIMbZEhra3iO5RQa2wVgsPNvMZp4apdKMvsBEb1tehqYH1sVaXnm6Q+qE42Lrcxs6uN0C+/dQv8ODKOhl3YL/DM2YDTfMew7hG6my3JuTf1hig==" /> </div> <div class="aspNetHidden"> <input type="hidden" name="__VIEWSTATEGENERATOR" id="__VIEWSTATEGENERATOR" value="167442CC" /> </div> </form> <h3>Section 11.4 : Cross Product</h3> <p>In this final section of this chapter we will look at the cross product of two vectors. We should note that the cross product requires both of the vectors to be three dimensional vectors.</p> <p>Also, before getting into how to compute these we should point out a major difference between dot products and cross products. The result of a dot product is a number and the result of a cross product is a vector! Be careful not to confuse the two.</p> <p>So, let’s start with the two vectors \(\vec a = \left\langle {{a_1},{a_2},{a_3}} \right\rangle \) and \(\vec b = \left\langle {{b_1},{b_2},{b_3}} \right\rangle \) then the cross product is given by the formula,</p> <div class="fact"> \[\vec a \times \vec b = \left\langle {{a_2}{b_3} - {a_3}{b_2},{a_3}{b_1} - {a_1}{b_3},{a_1}{b_2} - {a_2}{b_1}} \right\rangle \] </div> <p>This is not an easy formula to remember. There are two ways to derive this formula. Both of them use the fact that the cross product is really the determinant of a 3x3 matrix. If you don’t know what that is don’t worry about it. You don’t need to know anything about matrices or determinants to use either of the methods. The notation for the determinant is as follows,</p> <div class="fact"> \[\vec a \times \vec b = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\] </div> <p>The first row is the standard basis vectors and must appear in the order given here. The second row is the components of \(\vec a\) and the third row is the components of \(\vec b\). Now, let’s take a look at the different methods for getting the formula.</p> <p>The first method uses the Method of Cofactors. If you don’t know the method of cofactors that is fine, the result is all that we need. Here is the formula.</p> <div class="fact"> \[\vec a \times \vec b = \left| {\begin{array}{*{20}{c}}{{a_2}}&{{a_3}}\\{{b_2}}&{{b_3}}\end{array}} \right|\vec i - \left| {\begin{array}{*{20}{c}}{{a_1}}&{{a_3}}\\{{b_1}}&{{b_3}}\end{array}} \right|\vec j + \left| {\begin{array}{*{20}{c}}{{a_1}}&{{a_2}}\\{{b_1}}&{{b_2}}\end{array}} \right|\vec k\] <p>where,</p> \[\left| {\begin{array}{*{20}{c}}a&b\\c&d\end{array}} \right| = ad - bc\] </div> <p>This formula is not as difficult to remember as it might at first appear to be. First, the terms alternate in sign and notice that the 2x2 is missing the column below the standard basis vector that multiplies it as well as the row of standard basis vectors.</p> <p>The second method is slightly easier; however, many textbooks don’t cover this method as it will only work on 3x3 determinants. This method says to take the determinant as listed above and then copy the first two columns onto the end as shown below.</p> \[\vec a \times \vec b = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{{a_1}}&{{a_2}}&{{a_3}}\\{{b_1}}&{{b_2}}&{{b_3}}\end{array}} \right|\,\,\,\,\begin{array}{*{20}{c}}{\vec i}&{\vec j}\\{{a_1}}&{{a_2}}\\{{b_1}}&{{b_2}}\end{array}\] <p>We now have three diagonals that move from left to right and three diagonals that move from right to left. We multiply along each diagonal and add those that move from left to right and subtract those that move from right to left.</p> <p>This is best seen in an example. We’ll also use this example to illustrate a fact about cross products.</p> <a class="anchor" name="Vectors_CrossProd_Ex1"></a> <div class="example"> <span class="example-title">Example 1</span> If \(\vec a = \left\langle {2,1, - 1} \right\rangle \) and \(\vec b = \left\langle { - 3,4,1} \right\rangle \) compute each of the following. <ol class="example_parts_list"> <li>\(\vec a \times \vec b\)</li> <li>\(\vec b \times \vec a\)</li> </ol> <span id="SHALink_S_Soln1" class="SH-Link SH-All">Show All Solutions</span> <span id="SHALink_H_Soln1" class="SH-Link SH-All">Hide All Solutions</span> <div class="example-content"> <span class="soln-list-item soln-list-subitem">a</span> \(\vec a \times \vec b\) <span id="SHLink_Soln1a" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1a" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1a" class="soln-content"> <p>Here is the computation for this one.</p> \[\begin{align*}\vec a \times \vec b & = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\2&1&{ - 1}\\{ - 3}&4&1\end{array}} \right|\,\,\,\,\begin{array}{*{20}{c}}{\vec i}&{\vec j}\\2&1\\{ - 3}&4\end{array}\\ & = \vec i\left( 1 \right)\left( 1 \right) + \vec j\left( { - 1} \right)\left( { - 3} \right) + \vec k\left( 2 \right)\left( 4 \right) - \vec j\left( 2 \right)\left( 1 \right) - \vec i\left( { - 1} \right)\left( 4 \right) - \vec k\left( 1 \right)\left( { - 3} \right)\\ & = 5\vec i + \vec j + 11\vec k\end{align*}\] </div> <br /> <span class="soln-list-item soln-list-subitem">b</span> \(\vec b \times \vec a\) <span id="SHLink_Soln1b" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln1b" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln1b" class="soln-content"> <p>And here is the computation for this one.</p> \[\begin{align*}\vec b \times \vec a & = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\{ - 3}&4&1\\2&1&{ - 1}\end{array}} \right|\,\,\,\,\begin{array}{*{20}{c}}{\vec i}&{\vec j}\\{ - 3}&4\\2&1\end{array}\\ & = \vec i\left( 4 \right)\left( { - 1} \right) + \vec j\left( 1 \right)\left( 2 \right) + \vec k\left( { - 3} \right)\left( 1 \right) - \vec j\left( { - 3} \right)\left( { - 1} \right) - \vec i\left( 1 \right)\left( 1 \right) - \vec k\left( 4 \right)\left( 2 \right)\\ & = - 5\vec i - \vec j - 11\vec k\end{align*}\] </div> </div> </div> <p>Notice that switching the order of the vectors in the cross product simply changed all the signs in the result. Note as well that this means that the two cross products will point in exactly opposite directions since they only differ by a sign. We’ll formalize up this fact shortly when we list several facts.</p> <p>There is also a geometric interpretation of the cross product. First we will let \(\theta\) be the angle between the two vectors \(\vec a\) and \(\vec b\)and assume that \(0 \le \theta \le \pi \), then we have the following fact,</p> \[\begin{equation}\left\| {\vec a \times \vec b} \right\| = \left\| {\vec a} \right\|\,\,\left\| {\vec b} \right\|\,\sin \theta \label{eq:eq1} \end{equation}\] <p>and the following figure.</p> <div class="center-div"><img alt="This sketch has three vectors in it all starting at the same point. The vector $\vec{a}$ points to the left and slightly downward. The vector $\vec{b}$ points to the right and slightly downward. The angle between $\vec{a}$ and $\vec{b}$ is labeled as $\theta$. The third vector is $\vec{a}\times \vec{b}$ and points straight up in such a way that it is at right angles to the other two vectors." height="225" src="CrossProduct_Files/image001.png" width="244" /></div> <p>There should be a natural question at this point. How did we know that the cross product pointed in the direction that we’ve given it here?</p> <p>First, as this figure implies, the cross product is orthogonal to both of the original vectors. This will always be the case with one exception that we’ll get to in a second.</p> <p>Second, we knew that it pointed in the upward direction (in this case) by the “right hand rule”. This says that if we take our right hand, start at \(\vec a\) and rotate our fingers towards \(\vec b\)our thumb will point in the direction of the cross product. Therefore, if we’d sketched in \(\vec b \times \vec a\) above we would have gotten a vector in the downward direction.</p> <a class="anchor" name="Vectors_CrossProd_Ex2"></a> <div class="example"> <span class="example-title">Example 2</span> A plane is defined by any three points that are in the plane. If a plane contains the points \(P = \left( {1,0,0} \right)\), \(Q = \left( {1,1,1} \right)\) and \(R = \left( {2, - 1,3} \right)\) find a vector that is orthogonal to the plane. <div class="example-content"> <span id="SHLink_Soln2" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln2" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln2" class="soln-content"> <p>The one way that we know to get an orthogonal vector is to take a cross product. So, if we could find two vectors that we knew were in the plane and took the cross product of these two vectors we know that the cross product would be orthogonal to both the vectors. However, since both the vectors are in the plane the cross product would then also be orthogonal to the plane.</p> <p>So, we need two vectors that are in the plane. This is where the points come into the problem. Since all three points lie in the plane any vector between them must also be in the plane. There are many ways to get two vectors between these points. We will use the following two,</p> \[\begin{align*}\overrightarrow {PQ} & = \left\langle {1 - 1,1 - 0,1 - 0} \right\rangle = \left\langle {0,1,1} \right\rangle \\ \overrightarrow {PR} & = \left\langle {2 - 1, - 1 - 0,3 - 0} \right\rangle = \left\langle {1, - 1,3} \right\rangle \end{align*}\] <p>The cross product of these two vectors will be orthogonal to the plane. So, let’s find the cross product.</p> \[\begin{align*}\overrightarrow {PQ} \times \overrightarrow {PR} & = \left| {\begin{array}{*{20}{c}}{\vec i}&{\vec j}&{\vec k}\\0&1&1\\1&{ - 1}&3\end{array}} \right|\,\,\,\,\begin{array}{*{20}{c}}{\vec i}&{\vec j}\\0&1\\1&{ - 1}\end{array}\\ & = 4\vec i + \vec j - \vec k\end{align*}\] <p>So, the vector \(4\vec i + \vec j - \vec k\) will be orthogonal to the plane containing the three points.</p> </div> </div> </div> <p>Now, let’s address the one time where the cross product will not be orthogonal to the original vectors. If the two vectors, \(\vec a\) and \(\vec b\), are parallel then the angle between them is either 0 or 180 degrees. From \(\eqref{eq:eq1}\) this implies that,</p> \[\left\| {\vec a \times \vec b} \right\| = 0\] <p>From a fact about the magnitude we saw in the first section we know that this implies</p> \[\vec a \times \vec b = \vec 0\] <p>In other words, it won’t be orthogonal to the original vectors since we have the zero vector. This does give us another test for parallel vectors however.</p> <h4>Fact</h4> <div class="fact"> <p>If \(\vec a \times \vec b = \vec 0\) then \(\vec a\) and \(\vec b\) will be parallel vectors.</p> </div> <p>Let’s also formalize up the fact about the cross product being orthogonal to the original vectors.</p> <h4>Fact</h4> <div class="fact"> <p>Provided \(\vec a \times \vec b \ne \vec 0\) then \(\vec a \times \vec b\) is orthogonal to both \(\vec a\) and \(\vec b\).</p> </div> <p>Here are some nice properties about the cross product.</p> <h4>Properties</h4> <div class="fact"> <p>If \(\vec u\), \(\vec v\) and \(\vec w\) are vectors and \(c\) is a number then,</p> \[\begin{align*} & \vec u \times \vec v = - \vec v \times \vec u & \hspace{0.75in} & \left( {c\vec u} \right) \times \vec v = \vec u \times \left( {c\vec v} \right) = c\left( {\vec u \times \vec v} \right)\\ &\vec u \times \left( {\vec v + \vec w} \right) = \vec u \times \vec v + \vec u \times \vec w & \hspace{0.75in} & \vec u\centerdot \left( {\vec v \times \vec w} \right) = \left( {\vec u \times \vec v} \right)\centerdot \vec w\\ & \vec u\centerdot \left( {\vec v \times \vec w} \right) = \left| {\begin{array}{*{20}{c}}{{u_1}}&{{u_2}}&{{u_3}}\\{{v_1}}&{{v_2}}&{{v_3}}\\{{w_1}}&{{w_2}}&{{w_3}}\end{array}} \right| & & \end{align*}\] </div> <p>The determinant in the last fact is computed in the same way that the cross product is computed. We will see an example of this computation shortly.</p> <p>There are a couple of geometric applications to the cross product as well. Suppose we have three vectors \(\vec a\), \(\vec b\) and \(\vec c\) and we form the three dimensional figure shown below.</p> <div class="center-div"><img alt="A sketch showing three vectors $\vec{a}$, $\vec{b}$ and $\vec{c}$ all starting at the same point and forming the corner of a box. Each of the vectors represents one of the edges of the box coming out of that corner. Note that this is an odd “box” in that the corners to not form right angles." height="280" src="CrossProduct_Files/image002.png" width="312" /></div> <p>The area of the parallelogram (two dimensional front of this object) is given by,</p> \[{\rm{Area}} = \left\| {\vec a \times \vec b} \right\|\] <p>and the volume of the parallelepiped (the whole three dimensional object) is given by,</p> \[{\rm{Volume}} = \left| {\vec a\centerdot \left( {\vec b \times \vec c} \right)} \right|\] <p>Note that the absolute value bars are required since the quantity could be negative and volume isn’t negative.</p> <p>We can use this volume fact to determine if three vectors lie in the same plane or not. If three vectors lie in the same plane then the volume of the parallelepiped will be zero.</p> <a class="anchor" name="Vectors_CrossProd_Ex3"></a> <div class="example"> <span class="example-title">Example 3</span> Determine if the three vectors \(\vec a = \left\langle {1,4, - 7} \right\rangle \), \(\vec b = \left\langle {2, - 1,4} \right\rangle \) and \(\vec c = \left\langle {0, - 9,18} \right\rangle \) lie in the same plane or not. <div class="example-content"> <span id="SHLink_Soln3" class="SH-Link soln-title">Show Solution</span> <span id="SHImg_Soln3" class="fas fa-caret-right" aria-hidden="true"></span> <div id="SHObj_Soln3" class="soln-content"> <p>So, as we noted prior to this example all we need to do is compute the volume of the parallelepiped formed by these three vectors. If the volume is zero they lie in the same plane and if the volume isn’t zero they don’t lie in the same plane.</p> \[\begin{align*}\vec a\centerdot \left( {\vec b \times \vec c} \right) & = \left| {\begin{array}{*{20}{c}}1&4&{ - 7}\\2&{ - 1}&4\\0&{ - 9}&{18}\end{array}} \right|\,\,\,\,\begin{array}{*{20}{c}}1&4\\2&{ - 1}\\0&{ - 9}\end{array}\\ & = \left( 1 \right)\left( { - 1} \right)\left( {18} \right) + \left( 4 \right)\left( 4 \right)\left( 0 \right) + \left( { - 7} \right)\left( 2 \right)\left( { - 9} \right) - \\ & \hspace{0.75in}\left( 4 \right)\left( 2 \right)\left( {18} \right) - \left( 1 \right)\left( 4 \right)\left( { - 9} \right) - \left( { - 7} \right)\left( { - 1} \right)\left( 0 \right)\\ & = - 18 + 126 - 144 + 36\\ & = 0\end{align*}\] <p>So, the volume is zero and so they lie in the same plane.</p> </div> </div> </div> </div> <!-- End of content div --> <div class="footer"> <div class="footer-links"> [<a href="/Contact.aspx">Contact Me</a>] [<a href="/Privacy.aspx">Privacy Statement</a>] [<a href="/Help.aspx">Site Help & FAQ</a>] [<a href="/Terms.aspx">Terms of Use</a>] </div> <div class="footer-dates"> <div class="footer-copyright"><span id="lblCopyRight">© 2003 - 2025 Paul Dawkins</span></div> <div class="footer-spacer"></div> <div class="footer-modified-date">Page Last Modified : <span id="lblModified">11/16/2022</span></div> </div> </div> </div> <!-- End of page div... --> </body> </html>