CINXE.COM
Search results for: spectrum sensing
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: spectrum sensing</title> <meta name="description" content="Search results for: spectrum sensing"> <meta name="keywords" content="spectrum sensing"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="spectrum sensing" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="spectrum sensing"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2566</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: spectrum sensing</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2386</span> Image Reconstruction Method Based on L0 Norm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jianhong%20Xiang">Jianhong Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Xiang"> Hao Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Linyu%20Wang"> Linyu Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) has a wide range of applications in sparse signal reconstruction. Aiming at the problems of low recovery accuracy and long reconstruction time of existing reconstruction algorithms in medical imaging, this paper proposes a corrected smoothing L0 algorithm based on compressed sensing (CSL0). First, an approximate hyperbolic tangent function (AHTF) that is more similar to the L0 norm is proposed to approximate the L0 norm. Secondly, in view of the "sawtooth phenomenon" in the steepest descent method and the problem of sensitivity to the initial value selection in the modified Newton method, the use of the steepest descent method and the modified Newton method are jointly optimized to improve the reconstruction accuracy. Finally, the CSL0 algorithm is simulated on various images. The results show that the algorithm proposed in this paper improves the reconstruction accuracy of the test image by 0-0. 98dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smoothed%20L0" title="smoothed L0">smoothed L0</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20processing" title=" image processing"> image processing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20reconstruction" title=" sparse reconstruction"> sparse reconstruction</a> </p> <a href="https://publications.waset.org/abstracts/155598/image-reconstruction-method-based-on-l0-norm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155598.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2385</span> Strain Sensing Seams for Monitoring Body Movement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sheilla%20Atieno%20Odhiambo">Sheilla Atieno Odhiambo</a>, <a href="https://publications.waset.org/abstracts/search?q=Simona%20Vasile"> Simona Vasile</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandra%20De%20Raeve"> Alexandra De Raeve</a>, <a href="https://publications.waset.org/abstracts/search?q=Ann%20Schwarz"> Ann Schwarz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strain sensing seams have been developed by integrating conductive sewing threads in different types of seams design on a fabric typical for sports clothing using sewing technology. The aim is to have a simple integrated textile strain sensor that can be applied to sports clothing to monitor the movements of the upper body parts of the user during sports. Different types of commercially available sewing threads were used as the bobbin thread in the production of different architectural seam sensors. These conductive sewing threads have been integrated into seams in particular designs using specific seam types. Some of the threads are delicate and needed to be laid into the seam with as little friction as possible and less tension; thus, they could only be sewn in as the bobbin thread and not the needle thread. Stitch type 304; 406; 506; 601;602; 605. were produced. The seams were made on a fabric of 80% polyamide 6.6 and 20% elastane. The seams were cycled(stretch-release-stretch) for five cycles and up to 44 cycles following EN ISO 14704-1: 2005 (modified), using a tensile instrument and the changes in the resistance of the seams with time were recorded using Agilent meter U1273A. Both experiments were conducted simultaneously on the same seam sample. Sensing functionality, among which is sensor gauge and reliability, were evaluated on the promising sensor seams. The results show that the sensor seams made from HC Madeira 40 conductive yarns performed better inseam stitch 304 and 602 compared to the other combination of stitch type and conductive sewing threads. These sensing seams 304, 406 and 602 will further be interconnected to our developed processing and communicating unit and further integrated into a sports clothing prototype that can track body posture. This research is done within the framework of the project SmartSeam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conductive%20sewing%20thread" title="conductive sewing thread">conductive sewing thread</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20seams" title=" sensing seams"> sensing seams</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20seam" title=" smart seam"> smart seam</a>, <a href="https://publications.waset.org/abstracts/search?q=sewing%20technology" title=" sewing technology"> sewing technology</a> </p> <a href="https://publications.waset.org/abstracts/138619/strain-sensing-seams-for-monitoring-body-movement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2384</span> Detection of Nanotoxic Material Using DNA Based QCM</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juneseok%20You">Juneseok You</a>, <a href="https://publications.waset.org/abstracts/search?q=Chanho%20Park"> Chanho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuehwan%20Jang"> Kuehwan Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungsoo%20Na"> Sungsoo Na</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sensing of nanotoxic materials is strongly important, as their engineering applications are growing recently and results in that nanotoxic material can harmfully influence human health and environment. In current study we report the quartz crystal microbalance (QCM)-based, in situ and real-time sensing of nanotoxic-material by frequency shift. We propose the in situ detection of nanotoxic material of zinc oxice by using QCM functionalized with a taget-specific DNA. Since the mass of a target material is comparable to that of an atom, the mass change caused by target binding to DNA on the quartz electrode is so small that it is practically difficult to detect the ions at low concentrations. In our study, we have demonstrated the in-situ and fast detection of zinc oxide using the quartz crystal microbalance (QCM). The detection was derived from the DNA hybridization between the DNA on the quartz electrode. The results suggest that QCM-based detection opens a new avenue for the development of a practical water-testing sensor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanotoxic%20material" title="nanotoxic material">nanotoxic material</a>, <a href="https://publications.waset.org/abstracts/search?q=qcm" title=" qcm"> qcm</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20sensing" title=" in situ sensing"> in situ sensing</a> </p> <a href="https://publications.waset.org/abstracts/41494/detection-of-nanotoxic-material-using-dna-based-qcm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2383</span> The Role of MAOA Gene in the Etiology of Autism Spectrum Disorder in Males</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jana%20Kiskov%C3%A1">Jana Kisková</a>, <a href="https://publications.waset.org/abstracts/search?q=Dana%20Gabrikov%C3%A1"> Dana Gabriková</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Monoamine oxidase A gene (MAOA) is suggested to be a candidate gene implicated in many neuropsychiatric disorders, including autism spectrum disorder (ASD). This meta-analytic review evaluates the relationship between ASD and MAOA markers such as 30 bp variable number tandem repeats in the promoter region (uVNTR) and single nucleotide polymorphisms (SNPs) by using findings from recently published studies. It seems that in Caucasian males, the risk of developing ASD increase with the presence of 4-repeat allele in the promoter region of MAOA gene whereas no differences were found between autistic patients and controls in Egyptian, West Bengal and Korean population. Some studies point to the importance specific haplotype groups of SNPs and interaction of MAOA with others genes (e.g. FOXP2 or SRY). The results of existing studies are insufficient and further research is needed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=MAOA" title=" MAOA"> MAOA</a>, <a href="https://publications.waset.org/abstracts/search?q=uVNTR" title=" uVNTR"> uVNTR</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20nucleotide%20polymorphism" title=" single nucleotide polymorphism"> single nucleotide polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/14965/the-role-of-maoa-gene-in-the-etiology-of-autism-spectrum-disorder-in-males" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2382</span> Simulation and Fabrication of Plasmonic Lens for Bacteria Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sangwoo%20Oh">Sangwoo Oh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewoo%20Kim"> Jaewoo Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongmin%20Seo"> Dongmin Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaewon%20Park"> Jaewon Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongha%20Hwang"> Yongha Hwang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungkyu%20Seo"> Sungkyu Seo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plasmonics has been regarded one of the most powerful bio-sensing modalities to evaluate bio-molecular interactions in real-time. However, most of the plasmonic sensing methods are based on labeling metallic nanoparticles, e.g. gold or silver, as optical modulation markers, which are non-recyclable and expensive. This plasmonic modulation can be usually achieved through various nano structures, e.g., nano-hole arrays. Among those structures, plasmonic lens has been regarded as a unique plasmonic structure due to its light focusing characteristics. In this study, we introduce a custom designed plasmonic lens array for bio-sensing, which was simulated by finite-difference-time-domain (FDTD) approach and fabricated by top-down approach. In our work, we performed the FDTD simulations of various plasmonic lens designs for bacteria sensor, i.e., Samonella and Hominis. We optimized the design parameters, i.e., radius, shape, and material, of the plasmonic lens. The simulation results showed the change in the peak intensity value with the introduction of each bacteria and antigen i.e., peak intensity 1.8711 a.u. with the introduction of antibody layer of thickness of 15nm. For Salmonella, the peak intensity changed from 1.8711 a.u. to 2.3654 a.u. and for Hominis, the peak intensity changed from 1.8711 a.u. to 3.2355 a.u. This significant shift in the intensity due to the interaction between bacteria and antigen showed a promising sensing capability of the plasmonic lens. With the batch processing and bulk production of this nano scale design, the cost of biological sensing can be significantly reduced, holding great promise in the fields of clinical diagnostics and bio-defense. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=plasmonic%20lens" title="plasmonic lens">plasmonic lens</a>, <a href="https://publications.waset.org/abstracts/search?q=FDTD" title=" FDTD"> FDTD</a>, <a href="https://publications.waset.org/abstracts/search?q=fabrication" title=" fabrication"> fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria%20sensor" title=" bacteria sensor"> bacteria sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=salmonella" title=" salmonella"> salmonella</a>, <a href="https://publications.waset.org/abstracts/search?q=hominis" title=" hominis"> hominis</a> </p> <a href="https://publications.waset.org/abstracts/57412/simulation-and-fabrication-of-plasmonic-lens-for-bacteria-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2381</span> Analysis and Detection of Facial Expressions in Autism Spectrum Disorder People Using Machine Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Maisam%20Abbas">Muhammad Maisam Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Tariq"> Salman Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Riaz"> Usama Riaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Tanveer"> Muhammad Tanveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Abdul%20Ghafoor"> Humaira Abdul Ghafoor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Autism Spectrum Disorder (ASD) refers to a developmental disorder that impairs an individual's communication and interaction ability. Individuals feel difficult to read facial expressions while communicating or interacting. Facial Expression Recognition (FER) is a unique method of classifying basic human expressions, i.e., happiness, fear, surprise, sadness, disgust, neutral, and anger through static and dynamic sources. This paper conducts a comprehensive comparison and proposed optimal method for a continued research project—a system that can assist people who have Autism Spectrum Disorder (ASD) in recognizing facial expressions. Comparison has been conducted on three supervised learning algorithms EigenFace, FisherFace, and LBPH. The JAFFE, CK+, and TFEID (I&II) datasets have been used to train and test the algorithms. The results were then evaluated based on variance, standard deviation, and accuracy. The experiments showed that FisherFace has the highest accuracy for all datasets and is considered the best algorithm to be implemented in our system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorder" title="autism spectrum disorder">autism spectrum disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=ASD" title=" ASD"> ASD</a>, <a href="https://publications.waset.org/abstracts/search?q=EigenFace" title=" EigenFace"> EigenFace</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20expression%20recognition" title=" facial expression recognition"> facial expression recognition</a>, <a href="https://publications.waset.org/abstracts/search?q=FisherFace" title=" FisherFace"> FisherFace</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20binary%20pattern%20histogram" title=" local binary pattern histogram"> local binary pattern histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=LBPH" title=" LBPH"> LBPH</a> </p> <a href="https://publications.waset.org/abstracts/129718/analysis-and-detection-of-facial-expressions-in-autism-spectrum-disorder-people-using-machine-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129718.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2380</span> A Decision Tree Approach to Estimate Permanent Residents Using Remote Sensing Data in Lebanese Municipalities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Allaw">K. Allaw</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Adjizian%20Gerard"> J. Adjizian Gerard</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Chehayeb"> M. Chehayeb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Raad"> A. Raad</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Fahs"> W. Fahs</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Badran"> A. Badran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Fakherdin"> A. Fakherdin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Madi"> H. Madi</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Badaro%20Saliba"> N. Badaro Saliba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Population estimation using Geographic Information System (GIS) and remote sensing faces many obstacles such as the determination of permanent residents. A permanent resident is an individual who stays and works during all four seasons in his village. So, all those who move towards other cities or villages are excluded from this category. The aim of this study is to identify the factors affecting the percentage of permanent residents in a village and to determine the attributed weight to each factor. To do so, six factors have been chosen (slope, precipitation, temperature, number of services, time to Central Business District (CBD) and the proximity to conflict zones) and each one of those factors has been evaluated using one of the following data: the contour lines map of 50 m, the precipitation map, four temperature maps and data collected through surveys. The weighting procedure has been done using decision tree method. As a result of this procedure, temperature (50.8%) and percentage of precipitation (46.5%) are the most influencing factors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=GIS" title=" GIS"> GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=permanent%20residence" title=" permanent residence"> permanent residence</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20tree" title=" decision tree"> decision tree</a>, <a href="https://publications.waset.org/abstracts/search?q=Lebanon" title=" Lebanon"> Lebanon</a> </p> <a href="https://publications.waset.org/abstracts/121948/a-decision-tree-approach-to-estimate-permanent-residents-using-remote-sensing-data-in-lebanese-municipalities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">140</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2379</span> Remote Sensing and Gis Use in Trends of Urbanization and Regional Planning </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawan%20Kumar%20Jangid">Sawan Kumar Jangid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper attempts to study various facets of urbanization and regional planning in the framework of the present conditions and future needs. Urbanization is a dynamic system in which development and changes are prominent features; which implies population growth and changes in the primary, secondary and tertiary sector in the economy. Urban population is increasing day by day due to a natural increase in population and migration from rural areas, and the impact is bound to have in urban areas in terms of infrastructure, environment, water supply and other vital resources. For the organized way of planning and monitoring the implementation of Physical urban and regional plans high-resolution satellite imagery is the potential solution. Now the Remote Sensing data is widely used in urban as well as regional planning, infrastructure planning mainly telecommunication and transport network planning, highway development, accessibility to market area development in terms of catchment and population built-up area density. With Remote Sensing it is possible to identify urban growth, which falls outside the formal planning control. Remote Sensing and GIS technique combined together facilitate the planners, in making a decision, for general public and investors to have relevant data for their use in minimum time. This paper sketches out the Urbanization modal for the future development of Urban and Regional Planning. The paper suggests, a dynamic approach towards regional development strategy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=development" title="development">development</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic" title=" dynamic"> dynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=migration" title=" migration"> migration</a>, <a href="https://publications.waset.org/abstracts/search?q=resolution" title=" resolution"> resolution</a> </p> <a href="https://publications.waset.org/abstracts/56529/remote-sensing-and-gis-use-in-trends-of-urbanization-and-regional-planning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56529.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2378</span> Estimation of Foliar Nitrogen in Selected Vegetation Communities of Uttrakhand Himalayas Using Hyperspectral Satellite Remote Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yogita%20Mishra">Yogita Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Arijit%20Roy"> Arijit Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhruval%20Bhavsar"> Dhruval Bhavsar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study estimates the nitrogen concentration in selected vegetation community’s i.e. chir pine (pinusroxburghii) by using hyperspectral satellite data and also identified the appropriate spectral bands and nitrogen indices. The Short Wave InfraRed reflectance spectrum at 1790 nm and 1680 nm shows the maximum possible absorption by nitrogen in selected species. Among the nitrogen indices, log normalized nitrogen index performed positively and negatively too. The strong positive correlation is taken out from 1510 nm and 760 nm for the pinusroxburghii for leaf nitrogen concentration and leaf nitrogen mass while using NDNI. The regression value of R² developed by using linear equation achieved maximum at 0.7525 for the analysis of satellite image data and R² is maximum at 0.547 for ground truth data for pinusroxburghii respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title="hyperspectral">hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=NDNI" title=" NDNI"> NDNI</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen%20concentration" title=" nitrogen concentration"> nitrogen concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20value" title=" regression value"> regression value</a> </p> <a href="https://publications.waset.org/abstracts/74753/estimation-of-foliar-nitrogen-in-selected-vegetation-communities-of-uttrakhand-himalayas-using-hyperspectral-satellite-remote-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2377</span> HR MRI CS Based Image Reconstruction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krzysztof%20Malczewski">Krzysztof Malczewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic Resonance Imaging (MRI) reconstruction algorithm using compressed sensing is presented in this paper. It is exhibited that the offered approach improves MR images spatial resolution in circumstances when highly undersampled k-space trajectories are applied. Compressed Sensing (CS) aims at signal and images reconstructing from significantly fewer measurements than were conventionally assumed necessary. Magnetic Resonance Imaging (MRI) is a fundamental medical imaging method struggles with an inherently slow data acquisition process. The use of CS to MRI has the potential for significant scan time reductions, with visible benefits for patients and health care economics. In this study the objective is to combine super-resolution image enhancement algorithm with CS framework benefits to achieve high resolution MR output image. Both methods emphasize on maximizing image sparsity on known sparse transform domain and minimizing fidelity. The presented algorithm considers the cardiac and respiratory movements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super-resolution" title="super-resolution">super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI" title=" MRI"> MRI</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title=" compressed sensing"> compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse-sense" title=" sparse-sense"> sparse-sense</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20enhancement" title=" image enhancement"> image enhancement</a> </p> <a href="https://publications.waset.org/abstracts/6021/hr-mri-cs-based-image-reconstruction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6021.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2376</span> Assesing Spatio-Temporal Growth of Kochi City Using Remote Sensing Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navya%20Saira%20%20George">Navya Saira George</a>, <a href="https://publications.waset.org/abstracts/search?q=Patroba%20Achola%20Odera"> Patroba Achola Odera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to determine spatio-temporal expansion of Kochi City, situated on the west coast of Kerala State in India. Remote sensing and GIS techniques have been used to determine land use/cover and urban expansion of the City. Classification of Landsat images of the years 1973, 1988, 2002 and 2018 have been used to reproduce a visual story of the growth of the City over a period of 45 years. Accuracy range of 0.79 ~ 0.86 is achieved with kappa coefficient range of 0.69 ~ 0.80. Results show that the areas covered by vegetation and water bodies decreased progressively from 53.0 ~ 30.1% and 34.1 ~ 26.2% respectively, while built-up areas increased steadily from 12.5 to 42.2% over the entire study period (1973 ~ 2018). The shift in land use from agriculture to non-agriculture may be attributed to the land reforms since 1980s. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geographical%20Information%20Systems" title="Geographical Information Systems">Geographical Information Systems</a>, <a href="https://publications.waset.org/abstracts/search?q=Kochi%20City" title=" Kochi City"> Kochi City</a>, <a href="https://publications.waset.org/abstracts/search?q=Land%20use%2Fcover" title=" Land use/cover"> Land use/cover</a>, <a href="https://publications.waset.org/abstracts/search?q=Remote%20Sensing" title=" Remote Sensing"> Remote Sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Urban%20Sprawl" title=" Urban Sprawl"> Urban Sprawl</a> </p> <a href="https://publications.waset.org/abstracts/124291/assesing-spatio-temporal-growth-of-kochi-city-using-remote-sensing-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2375</span> Sub-Pixel Level Classification Using Remote Sensing For Arecanut Crop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Athiralakshmi">S. Athiralakshmi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.E.%20Bhojaraja"> B.E. Bhojaraja</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Pruthviraj"> U. Pruthviraj</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In agriculture, remote sensing is applied for monitoring of plant development, evaluating of physiological processes and growth conditions. Especially valuable are the spatio-temporal aspects of the remotely sensed data in detecting crop state differences and stress situations. In this study, hyperion imagery is used for classifying arecanut crops based on their age so that these maps can be used in yield estimation of crops, irrigation purposes, applying fertilizers etc. Traditional hard classifiers assigns the mixed pixels to the dominant classes. The proposed method uses a sub pixel level classifier called linear spectral unmixing available in ENVI software. It provides the relative abundance of surface materials and the context within a pixel that may be a potential solution to effectively identifying the land-cover distribution. Validation is done referring to field spectra collected using spectroradiometer and the ground control points obtained from GPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FLAASH" title="FLAASH">FLAASH</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyperspectral%20remote%20sensing" title=" Hyperspectral remote sensing"> Hyperspectral remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Linear%20Spectral%20Unmixing" title=" Linear Spectral Unmixing"> Linear Spectral Unmixing</a>, <a href="https://publications.waset.org/abstracts/search?q=Spectral%20Angle%20Mapper%20Classifier." title=" Spectral Angle Mapper Classifier. "> Spectral Angle Mapper Classifier. </a> </p> <a href="https://publications.waset.org/abstracts/32732/sub-pixel-level-classification-using-remote-sensing-for-arecanut-crop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32732.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2374</span> PPB-Level H₂ Gas-Sensor Based on Porous Ni-MOF Derived NiO@CuO Nanoflowers for Superior Sensing Performance</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shah%20Sufaid">Shah Sufaid</a>, <a href="https://publications.waset.org/abstracts/search?q=Hussain%20Shahid"> Hussain Shahid</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianyan%20You"> Tianyan You</a>, <a href="https://publications.waset.org/abstracts/search?q=Liu%20Guiwu"> Liu Guiwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiao%20Guanjun"> Qiao Guanjun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide (NiO) is an optimal material for precise detection of hydrogen (H₂) gas due to its high catalytic activity and low resistivity. However, the gas response kinetics of H₂ gas molecules with the surface of NiO concurrence limitation imposed by its solid structure, leading to a diminished gas response value and slow electron-hole transport. Herein, NiO@CuO NFs with porous sharp-tip and nanospheres morphology were successfully synthesized by using a metal-organic framework (MOFs) as a precursor. The fabricated porous 2 wt% NiO@CuO NFs present outstanding selectivity towards H₂ gas, including a high sensitivity of a response value (170 to 20 ppm at 150 °C) higher than that of porous Ni-MOF (6), low detection limit (300 ppb) with a notable response (21), short response and recovery times at (300 ppb, 40/63 s and 20 ppm, 100/167 s), exceptional long-term stability and repeatability. Furthermore, an understanding of NiO@CuO sensor functioning in an actual environment has been obtained by using the impact of relative humidity as well. The boosted hydrogen sensing properties may be attributed due to synergistic effects of numerous facts including p-p heterojunction at the interface between NiO and CuO nanoflowers. Particularly, a porous Ni-MOF structure combined with the chemical sensitization effect of NiO with the rough surface of CuO nanosphere, are examined. This research presents an effective method for development of Ni-MOF derived metal oxide semiconductor (MOS) heterostructures with rigorous morphology and composition, suitable for gas sensing application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiO%40CuO%20NFs" title="NiO@CuO NFs">NiO@CuO NFs</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20organic%20framework" title=" metal organic framework"> metal organic framework</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20structure" title=" porous structure"> porous structure</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%82%82" title=" H₂"> H₂</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a> </p> <a href="https://publications.waset.org/abstracts/186504/ppb-level-h2-gas-sensor-based-on-porous-ni-mof-derived-nio-at-cuo-nanoflowers-for-superior-sensing-performance" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186504.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2373</span> Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samiah%20Alammari">Samiah Alammari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassim%20Ammour"> Nassim Ammour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=continual%20learning" title="continual learning">continual learning</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20reconstruction" title=" data reconstruction"> data reconstruction</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral%20image%20segmentation" title=" hyperspectral image segmentation"> hyperspectral image segmentation</a> </p> <a href="https://publications.waset.org/abstracts/150863/continual-learning-using-data-generation-for-hyperspectral-remote-sensing-scene-classification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150863.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">275</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2372</span> Geographic Information Systems and Remotely Sensed Data for the Hydrological Modelling of Mazowe Dam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ellen%20Nhedzi%20Gozo">Ellen Nhedzi Gozo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Unavailability of adequate hydro-meteorological data has always limited the analysis and understanding of hydrological behaviour of several dam catchments including Mazowe Dam in Zimbabwe. The problem of insufficient data for Mazowe Dam catchment analysis was solved by extracting catchment characteristics and aerial hydro-meteorological data from ASTER, LANDSAT, Shuttle Radar Topographic Mission SRTM remote sensing (RS) images using ILWIS, ArcGIS and ERDAS Imagine geographic information systems (GIS) software. Available observed hydrological as well as meteorological data complemented the use of the remotely sensed information. Ground truth land cover was mapped using a Garmin Etrex global positioning system (GPS) system. This information was then used to validate land cover classification detail that was obtained from remote sensing images. A bathymetry survey was conducted using a SONAR system connected to GPS. Hydrological modelling using the HBV model was then performed to simulate the hydrological process of the catchment in an effort to verify the reliability of the derived parameters. The model output shows a high Nash-Sutcliffe Coefficient that is close to 1 indicating that the parameters derived from remote sensing and GIS can be applied with confidence in the analysis of Mazowe Dam catchment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20systems" title="geographic information systems">geographic information systems</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrological%20modelling" title=" hydrological modelling"> hydrological modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20resources%20management" title=" water resources management"> water resources management</a> </p> <a href="https://publications.waset.org/abstracts/46387/geographic-information-systems-and-remotely-sensed-data-for-the-hydrological-modelling-of-mazowe-dam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46387.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2371</span> Chipless RFID Capacity Enhancement Using the E-pulse Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Haythem%20H.%20Abdullah">Haythem H. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hesham%20Elkady"> Hesham Elkady</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the fast increase in radio frequency identification (RFID) applications such as medical recording, library management, etc., the limitation of active tags stems from its need to external batteries as well as passive or active chips. The chipless RFID tag reduces the cost to a large extent but at the expense of utilizing the spectrum. The reduction of the cost of chipless RFID is due to the absence of the chip itself. The identification is done by utilizing the spectrum in such a way that the frequency response of the tags consists of some resonance frequencies that represent the bits. The system capacity is decided by the number of resonators within the pre-specified band. It is important to find a solution to enhance the spectrum utilization when using chipless RFID. Target identification is a process that results in a decision that a specific target is present or not. Several target identification schemes are present, but one of the most successful techniques in radar target identification in the oscillatory region is the extinction pulse technique (E-Pulse). The E-Pulse technique is used to identify targets via its characteristics (natural) modes. By introducing an innovative solution for chipless RFID reader and tag designs, the spectrum utilization goes to the optimum case. In this paper, a novel capacity enhancement scheme based on the E-pulse technique is introduced to improve the performance of the chipless RFID system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chipless%20RFID" title="chipless RFID">chipless RFID</a>, <a href="https://publications.waset.org/abstracts/search?q=E-pulse" title=" E-pulse"> E-pulse</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20modes" title=" natural modes"> natural modes</a>, <a href="https://publications.waset.org/abstracts/search?q=resonators" title=" resonators"> resonators</a> </p> <a href="https://publications.waset.org/abstracts/172234/chipless-rfid-capacity-enhancement-using-the-e-pulse-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2370</span> Collaborative Drawing with Children Having Autism Spectrum Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charalambous-Darden%20Nefi">Charalambous-Darden Nefi</a>, <a href="https://publications.waset.org/abstracts/search?q=Antoniou%20Phivi"> Antoniou Phivi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents drawing as an alternative tool for facilitating interaction and communication among the members of a class (teachers and students) in an inclusive school setting. It applies elements of the Collaborative Drawing Method (CDM), an interactive method of drawing where two individuals draw together on the same surface. For the past ten years, the facilitators of this study have been researching the effects of spontaneous and non-spontaneous drawing upon elementary school students with Autism Spectrum Conditions (ASC). This research eventually led them to the application of elements of the CDM. The method was applied to both adults and children and children with one another. The astonishing outcomes of these applications indicate that collaborative drawing, with its inclusive nature, has the potential to help individuals develop interaction and communication among themselves, making it suitable for everyone. This workshop aims to allow the participants to become familiar with the CDM by applying it during the workshop, with the ultimate goal of enhancing their educational approaches by adding the CDM to their teaching methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism" title="autism">autism</a>, <a href="https://publications.waset.org/abstracts/search?q=collaborative%20drawing" title=" collaborative drawing"> collaborative drawing</a>, <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20condition" title=" autism spectrum condition"> autism spectrum condition</a>, <a href="https://publications.waset.org/abstracts/search?q=ASC" title=" ASC"> ASC</a> </p> <a href="https://publications.waset.org/abstracts/188532/collaborative-drawing-with-children-having-autism-spectrum-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188532.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">40</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2369</span> Application of Advanced Remote Sensing Data in Mineral Exploration in the Vicinity of Heavy Dense Forest Cover Area of Jharkhand and Odisha State Mining Area</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hemant%20Kumar">Hemant Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20N.%20K.%20Sharma"> R. N. K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20P.%20Krishna"> A. P. Krishna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study has been carried out on the Saranda in Jharkhand and a part of Odisha state. Geospatial data of Hyperion, a remote sensing satellite, have been used. This study has used a wide variety of patterns related to image processing to enhance and extract the mining class of Fe and Mn ores.Landsat-8, OLI sensor data have also been used to correctly explore related minerals. In this way, various processes have been applied to increase the mineralogy class and comparative evaluation with related frequency done. The Hyperion dataset for hyperspectral remote sensing has been specifically verified as an effective tool for mineral or rock information extraction within the band range of shortwave infrared used. The abundant spatial and spectral information contained in hyperspectral images enables the differentiation of different objects of any object into targeted applications for exploration such as exploration detection, mining. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyperion" title="Hyperion">Hyperion</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperspectral" title=" hyperspectral"> hyperspectral</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat-8" title=" Landsat-8"> Landsat-8</a> </p> <a href="https://publications.waset.org/abstracts/128008/application-of-advanced-remote-sensing-data-in-mineral-exploration-in-the-vicinity-of-heavy-dense-forest-cover-area-of-jharkhand-and-odisha-state-mining-area" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2368</span> Sparsity Order Selection and Denoising in Compressed Sensing Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Shamsi">Mahdi Shamsi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tohid%20Yousefi%20Rezaii"> Tohid Yousefi Rezaii</a>, <a href="https://publications.waset.org/abstracts/search?q=Siavash%20Eftekharifar"> Siavash Eftekharifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compressed sensing (CS) is a new powerful mathematical theory concentrating on sparse signals which is widely used in signal processing. The main idea is to sense sparse signals by far fewer measurements than the Nyquist sampling rate, but the reconstruction process becomes nonlinear and more complicated. Common dilemma in sparse signal recovery in CS is the lack of knowledge about sparsity order of the signal, which can be viewed as model order selection procedure. In this paper, we address the problem of sparsity order estimation in sparse signal recovery. This is of main interest in situations where the signal sparsity is unknown or the signal to be recovered is approximately sparse. It is shown that the proposed method also leads to some kind of signal denoising, where the observations are contaminated with noise. Finally, the performance of the proposed approach is evaluated in different scenarios and compared to an existing method, which shows the effectiveness of the proposed method in terms of order selection as well as denoising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressed%20sensing" title="compressed sensing">compressed sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20denoising" title=" data denoising"> data denoising</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20order%20selection" title=" model order selection"> model order selection</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20representation" title=" sparse representation"> sparse representation</a> </p> <a href="https://publications.waset.org/abstracts/31470/sparsity-order-selection-and-denoising-in-compressed-sensing-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31470.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">488</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2367</span> Sensitivity Assessment of Spectral Salinity Indices over Desert Sabkha of Western UAE</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rubab%20Ammad">Rubab Ammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelgadir%20Abuelgasim"> Abdelgadir Abuelgasim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> UAE typically lies in one of the aridest regions of the world and is thus home to geologic features common to such climatic conditions including vast open deserts, sand dunes, saline soils, inland Sabkha and coastal Sabkha. Sabkha are characteristic salt flats formed in arid environment due to deposition and precipitation of salt and silt over sand surface because of low laying water table and rates of evaporation exceeding rates of precipitation. The study area, which comprises of western UAE, is heavily concentrated with inland Sabkha. Remote sensing is conventionally used to study the soil salinity of agriculturally degraded lands but not so broadly for Sabkha. The focus of this study was to identify these highly saline Sabkha areas on remotely sensed data, using salinity indices. The existing salinity indices in the literature have been designed for agricultural soils and they have not frequently used the spectral response of short-wave infra-red (SWIR1 and SWIR2) parts of electromagnetic spectrum. Using Landsat 8 OLI data and field ground truthing, this study formulated indices utilizing NIR-SWIR parts of spectrum and compared the results with existing salinity indices. Most indices depict reasonably good relationship between salinity and spectral index up until a certain value of salinity after which the reflectance reaches a saturation point. This saturation point varies with index. However, the study findings suggest a role of incorporating near infra-red and short-wave infra-red in salinity index with a potential of showing a positive relationship between salinity and reflectance up to a higher salinity value, compared to rest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sabkha" title="Sabkha">Sabkha</a>, <a href="https://publications.waset.org/abstracts/search?q=salinity%20index" title=" salinity index"> salinity index</a>, <a href="https://publications.waset.org/abstracts/search?q=saline%20soils" title=" saline soils"> saline soils</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%208" title=" Landsat 8"> Landsat 8</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIR1" title=" SWIR1"> SWIR1</a>, <a href="https://publications.waset.org/abstracts/search?q=SWIR2" title=" SWIR2"> SWIR2</a>, <a href="https://publications.waset.org/abstracts/search?q=UAE%20desert" title=" UAE desert"> UAE desert</a> </p> <a href="https://publications.waset.org/abstracts/77468/sensitivity-assessment-of-spectral-salinity-indices-over-desert-sabkha-of-western-uae" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">219</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2366</span> Application of Remote Sensing and GIS for Delineating Groundwater Potential Zones of Ariyalur, Southern Part of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Gnanachandrasamy">G. Gnanachandrasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Zhou"> Y. Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Venkatramanan"> S. Venkatramanan</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Ramkumar"> T. Ramkumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Wang"> S. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural resources of groundwater are the most precious resources around the world that balances are shrinking day by day. In connection, there is an urgency need for demarcation of potential groundwater zone. For these rationale integration of geographical information system (GIS) and remote sensing techniques (RS) for the hydrological studies have become a dramatic change in the field of hydrological research. These techniques are provided to locate the potential zone of groundwater. This research has been made to indent groundwater potential zone in Ariyalur of the southern part of India with help of GIS and remote sensing techniques. To identify the groundwater potential zone used by different thematic layers of geology, geomorphology, drainage, drainage density, lineaments, lineaments density, soil and slope with inverse distance weighting (IDW) methods. From the overall result reveals that the potential zone of groundwater in the study area classified into five classes named as very good (12.18 %), good (22.74 %), moderate (32.28 %), poor (27.7 %) and very poor (5.08 %). This technique suggested that very good potential zone of groundwater occurred in patches of northern and central parts of Jayamkondam, Andimadam and Palur regions in Ariyalur district. The result exhibited that inverse distance weighting method offered in this research is an effective tool for interpreting groundwater potential zones for suitable development and management of groundwater resources in different hydrogeological environments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=GIS" title="GIS">GIS</a>, <a href="https://publications.waset.org/abstracts/search?q=groundwater%20potential%20zone" title=" groundwater potential zone"> groundwater potential zone</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrology" title=" hydrology"> hydrology</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/79645/application-of-remote-sensing-and-gis-for-delineating-groundwater-potential-zones-of-ariyalur-southern-part-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">210</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2365</span> A Combined Fiber-Optic Surface Plasmon Resonance and Ta2O5: rGO Nanocomposite Synergistic Scheme for Trace Detection of Insecticide Fenitrothion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Kant">Ravi Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=Banshi%20D.%20Gupta"> Banshi D. Gupta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The unbridled application of insecticides to enhance agricultural yield has become a matter of grave concern to both the environment and the human health and, thus pose a potential threat to sustainable development. Fenitrothion is an extensively used organophosphate insecticide whose residues are reported to be extremely toxic for birds, humans and aquatic life. A sensitive, swift and accurate detection protocol for fenitrothion is, thus, highly demanded. In this work, we report an SPR based fiber optic sensor for the detection of fenitrothion, where a nanocomposite arrangement of Ta2O5 and reduced graphene oxide (rGO) (Ta₂O₅: rGO) decorated on silver coated unclad core region of an optical fiber forms the sensing channel. A nanocomposite arrangement synergistically integrates the properties of involved components and consequently furnishes a conducive framework for sensing applications. The modification of the dielectric function of the sensing layer on exposure to fenitrothion solutions of diverse concentration forms the sensing mechanism. This modification is reflected in terms of the shift in resonance wavelength. Experimental variables such as the concentration of rGO in the nanocomposite configuration, dip time of silver coated fiber optic probe for deposition of sensing layer and influence of pH on the performance of the sensor have been optimized to extract the best performance of the sensor. SPR studies on the optimized sensing probe reveal the high sensitivity, wide operating range and good reproducibility of the fabricated sensor, which unveil the promising utility of Ta₂O₅: rGO nanocomposite framework for developing an efficient detection methodology for fenitrothion. FOSPR approach in cooperation with nanomaterials projects the present work as a beneficial approach for fenitrothion detection by imparting numerous useful advantages such as sensitivity, selectivity, compactness and cost-effectiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surface%20plasmon%20resonance" title="surface plasmon resonance">surface plasmon resonance</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20fiber" title=" optical fiber"> optical fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=fenitrothion" title=" fenitrothion"> fenitrothion</a> </p> <a href="https://publications.waset.org/abstracts/73438/a-combined-fiber-optic-surface-plasmon-resonance-and-ta2o5-rgo-nanocomposite-synergistic-scheme-for-trace-detection-of-insecticide-fenitrothion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2364</span> Gold-Bearing Alteration Zones in South Eastern Desert of Egypt: Geology and Remote Sensing Analysis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20F.%20Sadek">Mohamed F. Sadek</a>, <a href="https://publications.waset.org/abstracts/search?q=Safaa%20M.%20%20Hassan"> Safaa M. Hassan</a>, <a href="https://publications.waset.org/abstracts/search?q=Safwat%20S.%20%20Gabr"> Safwat S. Gabr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Several alteration zones hosting gold mineralization are wide spreading in the South Eastern Desert of Egypt where gold has been mined from many localities since the time of the Pharaohs. The Sukkari is the only mine currently producing gold in the Eastern Desert of Egypt. Therefore, it is necessary to conduct more detailed studies on these locations using modern exploratory methods. The remote sensing plays an important role in lithological mapping and detection of associated hydrothermal mineralization particularly the exploration of gold mineralization. This study is focused on three localities in South Eastern Desert of Egypt, namely Beida, Defiet and Hoteib-Eiqat aiming to detect the gold-bearing hydrothermal alteration zones using the integrated data of remote sensing, field study and mineralogical investigation. Generally, these areas are dominated by Precambrian basement rocks including metamorphic and magmatic assemblages. They comprise ophiolitic serpentinite-talc carbonate, island-arc metavolcanics which were intruded by syn to late orogenic mafic and felsic intrusions mainly gabbro, granodiorite and monzogranite. The processed data of Advanced Spaceborne Thermal Emission and Reflection (ASTER) and Landsat-8 images are used in the present study to map the gold bearing-hydrothermal alteration zones. Band rationing and principal component analysis techniques are used to discriminate the different lithologic units exposed in the studied three areas. Field study and mineralogical investigation have been used to verify the remote sensing data. This study concluded that, the integrated remote sensing data with geological, field and mineralogical investigations are very effective in lithological discrimination, detailed geological mapping and detection of the gold-bearing hydrothermal alteration zones. More detailed exploration for gold mineralization with the help of remote sensing techniques is recommended to evaluate its potentiality in the study areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pan-african" title="pan-african">pan-african</a>, <a href="https://publications.waset.org/abstracts/search?q=Egypt" title=" Egypt"> Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=landsat-8%3B%20ASTER" title=" landsat-8; ASTER"> landsat-8; ASTER</a>, <a href="https://publications.waset.org/abstracts/search?q=gold" title=" gold"> gold</a>, <a href="https://publications.waset.org/abstracts/search?q=alteration%20zones" title=" alteration zones"> alteration zones</a> </p> <a href="https://publications.waset.org/abstracts/114792/gold-bearing-alteration-zones-in-south-eastern-desert-of-egypt-geology-and-remote-sensing-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/114792.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2363</span> Luminescent Functionalized Graphene Oxide Based Sensitive Detection of Deadly Explosive TNP</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diptiman%20Dinda">Diptiman Dinda</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyamal%20Kumar%20Saha"> Shyamal Kumar Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the 21st century, sensitive and selective detection of trace amounts of explosives has become a serious problem. Generally, nitro compound and its derivatives are being used worldwide to prepare different explosives. Recently, TNP (2, 4, 6 trinitrophenol) is the most commonly used constituent to prepare powerful explosives all over the world. It is even powerful than TNT or RDX. As explosives are electron deficient in nature, it is very difficult to detect one separately from a mixture. Again, due to its tremendous water solubility, detection of TNP in presence of other explosives from water is very challenging. Simple instrumentation, cost-effective, fast and high sensitivity make fluorescence based optical sensing a grand success compared to other techniques. Graphene oxide (GO), with large no of epoxy grps, incorporate localized nonradiative electron-hole centres on its surface to give very weak fluorescence. In this work, GO is functionalized with 2, 6-diamino pyridine to remove those epoxy grps. through SN2 reaction. This makes GO into a bright blue luminescent fluorophore (DAP/rGO) which shows an intense PL spectrum at ∼384 nm when excited at 309 nm wavelength. We have also characterized the material by FTIR, XPS, UV, XRD and Raman measurements. Using this as fluorophore, a large fluorescence quenching (96%) is observed after addition of only 200 µL of 1 mM TNP in water solution. Other nitro explosives give very moderate PL quenching compared to TNP. Such high selectivity is related to the operation of FRET mechanism from fluorophore to TNP during this PL quenching experiment. TCSPC measurement also reveals that the lifetime of DAP/rGO drastically decreases from 3.7 to 1.9 ns after addition of TNP. Our material is also quite sensitive to 125 ppb level of TNP. Finally, we believe that this graphene based luminescent material will emerge a new class of sensing materials to detect trace amounts of explosives from aqueous solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graphene" title="graphene">graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=functionalization" title=" functionalization"> functionalization</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence%20quenching" title=" fluorescence quenching"> fluorescence quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=FRET" title=" FRET"> FRET</a>, <a href="https://publications.waset.org/abstracts/search?q=nitroexplosive%20detection" title=" nitroexplosive detection "> nitroexplosive detection </a> </p> <a href="https://publications.waset.org/abstracts/25873/luminescent-functionalized-graphene-oxide-based-sensitive-detection-of-deadly-explosive-tnp" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25873.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2362</span> Internet of Things Applications on Supply Chain Management</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beatriz%20Cort%C3%A9s">Beatriz Cortés</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Boza"> Andrés Boza</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20P%C3%A9rez"> David Pérez</a>, <a href="https://publications.waset.org/abstracts/search?q=Llanos%20Cuenca"> Llanos Cuenca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Internet of Things (IoT) field is been applied in industries with different purposes. Sensing Enterprise (SE) is an attribute of an enterprise or a network that allows it to react to business stimuli originating on the internet. These fields have come into focus recently on the enterprises and there is some evidence of the use and implications in supply chain management while finding it as an interesting aspect to work on. This paper presents a revision and proposals of IoT applications in supply chain management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industrial" title="industrial">industrial</a>, <a href="https://publications.waset.org/abstracts/search?q=internet%20of%20things" title=" internet of things"> internet of things</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing%20enterprises" title=" sensing enterprises"> sensing enterprises</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=supply%20%20chain%20management" title=" supply chain management"> supply chain management</a> </p> <a href="https://publications.waset.org/abstracts/32455/internet-of-things-applications-on-supply-chain-management" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2361</span> Suspended Nickel Oxide Nano-Beam and Its Heterostructure Device for Gas Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kusuma%20Urs%20M.%20B.">Kusuma Urs M. B.</a>, <a href="https://publications.waset.org/abstracts/search?q=Navakant%20Bhat"> Navakant Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Vinayak%20B.%20Kamble"> Vinayak B. Kamble</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal oxide semiconductors (MOS) are known to be excellent candidates for solid-state gas sensor devices. However, in spite of high sensitivities, their high operating temperatures and lack of selectivity is a big concern limiting their practical applications. A lot of research has been devoted so far to enhance their sensitivity and selectivity, often empirically. Some of the promising routes to achieve the same are reducing dimensionality and formation of heterostructures. These heterostructures offer improved sensitivity, selectivity even at relatively low operating temperatures compared to bare metal oxides. Thus, a combination of n-type and p-type metal oxides leads to the formation of p-n junction at the interface resulting in the diffusion of the carriers across the barrier along with the surface adsorption. In order to achieve this and to study their sensing mechanism, we have designed and lithographically fabricated a suspended nanobeam of NiO, which is a p-type semiconductor. The response of the same has been studied for various gases and is found to exhibit selective response towards hydrogen gas at room temperature. Further, the same has been radially coated with TiO₂ shell of varying thicknesses, in order to study the effect of radial p-n junction thus formed. Subsequently, efforts have been made to study the effect of shell thickness on the space charge region and to shed some light on the basic mechanism involved in gas sensing of MOS sensors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title="gas sensing">gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=heterostructure" title=" heterostructure"> heterostructure</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20semiconductor" title=" metal oxide semiconductor"> metal oxide semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=space%20charge%20region" title=" space charge region"> space charge region</a> </p> <a href="https://publications.waset.org/abstracts/115754/suspended-nickel-oxide-nano-beam-and-its-heterostructure-device-for-gas-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115754.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2360</span> Monitoring the Rate of Expansion of Agricultural Fields in Mwekera Forest Reserve Using Remote Sensing and Geographic Information Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Kanja">K. Kanja</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mweemba"> M. Mweemba</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Malungwa"> K. Malungwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the rampant population growth coupled with retrenchments currently going on in the Copper mines in Zambia, a number of people are resorting to land clearing for agriculture, illegal settlements as well as charcoal production among other vices. This study aims at assessing the rate of expansion of agricultural fields and illegal settlements in protected areas using remote sensing and Geographic Information System. Zambia’s Mwekera National Forest Reserve was used as a case study. Iterative Self-Organizing Data Analysis Technique (ISODATA), as well as maximum likelihood, supervised classification on four Landsat images as well as an accuracy assessment of the classifications was performed. Over the period under observation, results indicate annual percentage changes to be -0.03, -0.49 and 1.26 for agriculture, forests and settlement respectively indicating a higher conversion of forests into human settlements and agriculture. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geographic%20information%20system" title="geographic information system">geographic information system</a>, <a href="https://publications.waset.org/abstracts/search?q=land%20cover%20change" title=" land cover change"> land cover change</a>, <a href="https://publications.waset.org/abstracts/search?q=Landsat%20TM%20and%20ETM%2B" title=" Landsat TM and ETM+"> Landsat TM and ETM+</a>, <a href="https://publications.waset.org/abstracts/search?q=Mwekera%20forest%20reserve" title=" Mwekera forest reserve"> Mwekera forest reserve</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title=" remote sensing"> remote sensing</a> </p> <a href="https://publications.waset.org/abstracts/106594/monitoring-the-rate-of-expansion-of-agricultural-fields-in-mwekera-forest-reserve-using-remote-sensing-and-geographic-information-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106594.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">146</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2359</span> The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lixin%20Tian">Lixin Tian</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei%20Xue"> Wei Xue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20shift" title="cyclic shift">cyclic shift</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20detection" title=" multiple detection"> multiple detection</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20combined%20spread%20spectrum" title=" parallel combined spread spectrum"> parallel combined spread spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=PN%20code" title=" PN code"> PN code</a> </p> <a href="https://publications.waset.org/abstracts/104396/the-design-of-multiple-detection-parallel-combined-spread-spectrum-communication-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2358</span> Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sina%20Fatolahzadeh">Sina Fatolahzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20A.%20Sep%C3%BAlveda"> Sergio A. Sepúlveda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=remote%20sensing" title="remote sensing">remote sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20mechanics" title=" rock mechanics"> rock mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20engineering" title=" rock engineering"> rock engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=slope%20stability" title=" slope stability"> slope stability</a>, <a href="https://publications.waset.org/abstracts/search?q=discontinuity%20properties" title=" discontinuity properties"> discontinuity properties</a> </p> <a href="https://publications.waset.org/abstracts/183400/close-range-remote-sensing-techniques-for-analyzing-rock-discontinuity-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2357</span> Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Hern%C3%A1ndez">Cesar Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Diego%20Giral"> Diego Giral</a>, <a href="https://publications.waset.org/abstracts/search?q=Ingrid%20P%C3%A1ez"> Ingrid Páez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article proposes a hybrid algorithm for spectrum allocation in cognitive radio networks based on the algorithms Analytical Hierarchical Process (AHP) and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to improve the performance of the spectrum mobility of secondary users in cognitive radio networks. To calculate the level of performance of the proposed algorithm a comparative analysis between the proposed AHP-TOPSIS, Grey Relational Analysis (GRA) and Multiplicative Exponent Weighting (MEW) algorithm is performed. Four evaluation metrics is used. These metrics are the accumulative average of failed handoffs, the accumulative average of handoffs performed, the accumulative average of transmission bandwidth, and the accumulative average of the transmission delay. The results of the comparison show that AHP-TOPSIS Algorithm provides 2.4 times better performance compared to a GRA Algorithm and, 1.5 times better than the MEW Algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cognitive%20radio" title="cognitive radio">cognitive radio</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20algorithm" title=" hybrid algorithm"> hybrid algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=spectrum%20handoff" title=" spectrum handoff"> spectrum handoff</a>, <a href="https://publications.waset.org/abstracts/search?q=wireless%20networks" title=" wireless networks"> wireless networks</a> </p> <a href="https://publications.waset.org/abstracts/34830/hybrid-algorithm-for-frequency-channel-selection-in-wi-fi-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">546</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=6" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=6">6</a></li> <li class="page-item active"><span class="page-link">7</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=85">85</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=86">86</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=spectrum%20sensing&page=8" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>