CINXE.COM
Molecules | Editor’s choice Articles
<!DOCTYPE html> <html lang="en" xmlns:og="http://ogp.me/ns#" xmlns:fb="https://www.facebook.com/2008/fbml"> <head> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1"> <meta content="mdpi" name="sso-service" /> <meta content="width=device-width, initial-scale=1.0" name="viewport" /> <title>Molecules | Editor’s choice Articles</title><link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/font-awesome.min.css?eb190a3a77e5e1ee?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery.multiselect.css?f56c135cbf4d1483?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/chosen.min.css?d7ca5ca9441ef9e1?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/main2.css?69b39374e6b554b7?1732286508"> <link rel="mask-icon" href="https://pub.mdpi-res.com/img/mask-icon-128.svg?c1c7eca266cd7013?1732286508" color="#4f5671"> <link rel="apple-touch-icon" sizes="180x180" href="https://pub.mdpi-res.com/icon/apple-touch-icon-180x180.png?1732286508"> <link rel="apple-touch-icon" sizes="152x152" href="https://pub.mdpi-res.com/icon/apple-touch-icon-152x152.png?1732286508"> <link rel="apple-touch-icon" sizes="144x144" href="https://pub.mdpi-res.com/icon/apple-touch-icon-144x144.png?1732286508"> <link rel="apple-touch-icon" sizes="120x120" href="https://pub.mdpi-res.com/icon/apple-touch-icon-120x120.png?1732286508"> <link rel="apple-touch-icon" sizes="114x114" href="https://pub.mdpi-res.com/icon/apple-touch-icon-114x114.png?1732286508"> <link rel="apple-touch-icon" sizes="76x76" href="https://pub.mdpi-res.com/icon/apple-touch-icon-76x76.png?1732286508"> <link rel="apple-touch-icon" sizes="72x72" href="https://pub.mdpi-res.com/icon/apple-touch-icon-72x72.png?1732286508"> <link rel="apple-touch-icon" sizes="57x57" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="apple-touch-icon-precomposed" href="https://pub.mdpi-res.com/icon/apple-touch-icon-57x57.png?1732286508"> <link rel="manifest" href="/manifest.json"> <meta name="theme-color" content="#ffffff"> <meta name="application-name" content=" "/> <link rel="apple-touch-startup-image" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <link rel="apple-touch-icon" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <meta name="msapplication-TileImage" content="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="32x32" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="96x96" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="16x16" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <link rel="icon" type="image/png" sizes="192x192" href="https://pub.mdpi-res.com/img/journals/molecules-logo-sq.png?8600e93ff98dbf14"> <meta name="title" content="Molecules"> <meta name="description" content="Molecules, an international, peer-reviewed Open Access journal." /> <link rel="image_src" href="https://pub.mdpi-res.com/img/journals/molecules-logo.png?8600e93ff98dbf14" /> <meta property="og:title" content="Molecules" /> <meta property="og:type" content="website" /> <meta property="og:url" content="https://www.mdpi.com/journal/molecules/editors_choice" /> <meta property="og:description" content="Molecules, an international, peer-reviewed Open Access journal." /> <meta property="og:image" content="https://pub.mdpi-res.com/img/journals/molecules-logo-social.png?8600e93ff98dbf14" /> <style> h2, #abstract .related_suggestion_title { } .batch_articles a { color: #000; } a, .batch_articles .authors a, a:focus, a:hover, a:active, .batch_articles a:focus, .batch_articles a:hover, li.side-menu-li a { } span.label a { color: #fff; } #main-content a.title-link:hover, #main-content a.title-link:focus, #main-content div.generic-item a.title-link:hover, #main-content div.generic-item a.title-link:focus { } #main-content #middle-column .generic-item.article-item a.title-link:hover, #main-content #middle-column .generic-item.article-item a.title-link:focus { } .art-authors a.toEncode { color: #333; font-weight: 700; } #main-content #middle-column ul li::before { } .accordion-navigation.active a.accordion__title, .accordion-navigation.active a.accordion__title::after { } .accordion-navigation li:hover::before, .accordion-navigation li:hover a, .accordion-navigation li:focus a { } .relative-size-container .relative-size-image .relative-size { } .middle-column__help__fixed a:hover i, } input[type="checkbox"]:checked:after { } input[type="checkbox"]:not(:disabled):hover:before { } #main-content .bolded-text { } #main-content .hypothesis-count-container { } #main-content .hypothesis-count-container:before { } .full-size-menu ul li.menu-item .dropdown-wrapper { } .full-size-menu ul li.menu-item > a.open::after { } #title-story .title-story-orbit .orbit-caption { #background: url('/img/design/000000_background.png') !important; background: url('/img/design/ffffff_background.png') !important; color: rgb(51, 51, 51) !important; } #main-content .content__container__orbit { background-color: #000 !important; } #main-content .content__container__journal { color: #fff; } .html-article-menu .row span { } .html-article-menu .row span.active { } .accordion-navigation__journal .side-menu-li.active::before, .accordion-navigation__journal .side-menu-li.active a { color: rgba(0,124,127,0.75) !important; font-weight: 700; } .accordion-navigation__journal .side-menu-li:hover::before , .accordion-navigation__journal .side-menu-li:hover a { color: rgba(0,124,127,0.75) !important; } .side-menu-ul li.active a, .side-menu-ul li.active, .side-menu-ul li.active::before { color: rgba(0,124,127,0.75) !important; } .side-menu-ul li.active a { } .result-selected, .active-result.highlighted, .active-result:hover, .result-selected, .active-result.highlighted, .active-result:focus { } .search-container.search-container__default-scheme { } nav.tab-bar .open-small-search.active:after { } .search-container.search-container__default-scheme .custom-accordion-for-small-screen-link::after { color: #fff; } @media only screen and (max-width: 50em) { #main-content .content__container.journal-info { color: #fff; } #main-content .content__container.journal-info a { color: #fff; } } .button.button--color { } .button.button--color:hover, .button.button--color:focus { } .button.button--color-journal { position: relative; background-color: rgba(0,124,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color-journal:hover::before { content: ''; position: absolute; top: 0; left: 0; height: 100%; width: 100%; background-color: #ffffff; opacity: 0.2; } .button.button--color-journal:visited, .button.button--color-journal:hover, .button.button--color-journal:focus { background-color: rgba(0,124,127,0.75); border-color: #fff; color: #fff !important; } .button.button--color path { } .button.button--color:hover path { fill: #fff; } #main-content #search-refinements .ui-slider-horizontal .ui-slider-range { } .breadcrumb__element:last-of-type a { } #main-header { } #full-size-menu .top-bar, #full-size-menu li.menu-item span.user-email { } .top-bar-section li:not(.has-form) a:not(.button) { } #full-size-menu li.menu-item .dropdown-wrapper li a:hover { } #full-size-menu li.menu-item a:hover, #full-size-menu li.menu.item a:focus, nav.tab-bar a:hover { } #full-size-menu li.menu.item a:active, #full-size-menu li.menu.item a.active { } #full-size-menu li.menu-item a.open-mega-menu.active, #full-size-menu li.menu-item div.mega-menu, a.open-mega-menu.active { } #full-size-menu li.menu-item div.mega-menu li, #full-size-menu li.menu-item div.mega-menu a { border-color: #9a9a9a; } div.type-section h2 { font-size: 20px; line-height: 26px; font-weight: 300; } div.type-section h3 { margin-left: 15px; margin-bottom: 0px; font-weight: 300; } .journal-tabs .tab-title.active a { } </style> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Latest articles" href="https://www.mdpi.com/rss"> <link rel="alternate" type="application/rss+xml" title="MDPI Publishing - Molecules - Latest Articles" href="/rss/journal/molecules"> <meta name="google-site-verification" content="PxTlsg7z2S00aHroktQd57fxygEjMiNHydKn3txhvwY"> <meta name="facebook-domain-verification" content="mcoq8dtq6sb2hf7z29j8w515jjoof7" /> <script id="Cookiebot" data-cfasync="false" src="https://consent.cookiebot.com/uc.js" data-cbid="51491ddd-fe7a-4425-ab39-69c78c55829f" type="text/javascript" async></script> <!--[if lt IE 9]> <script>var browserIe8 = true;</script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/ie8foundationfix.css?50273beac949cbf0?1732286508"> <script src="//html5shiv.googlecode.com/svn/trunk/html5.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.6.2/html5shiv.js"></script> <script src="//s3.amazonaws.com/nwapi/nwmatcher/nwmatcher-1.2.5-min.js"></script> <script src="//html5base.googlecode.com/svn-history/r38/trunk/js/selectivizr-1.0.3b.js"></script> <script src="//cdnjs.cloudflare.com/ajax/libs/respond.js/1.1.0/respond.min.js"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8patch.js?9e1d3c689a0471df?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/rem.min.js?94b62787dcd6d2f2?1732286508"></script> <![endif]--> <script type="text/plain" data-cookieconsent="statistics"> (function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-WPK7SW5'); </script> <script type="text/plain" data-cookieconsent="statistics"> _linkedin_partner_id = "2846186"; window._linkedin_data_partner_ids = window._linkedin_data_partner_ids || []; window._linkedin_data_partner_ids.push(_linkedin_partner_id); </script><script type="text/javascript"> (function(){var s = document.getElementsByTagName("script")[0]; var b = document.createElement("script"); b.type = "text/javascript";b.async = true; b.src = "https://snap.licdn.com/li.lms-analytics/insight.min.js"; s.parentNode.insertBefore(b, s);})(); </script> <script type="text/plain" data-cookieconsent="statistics" data-cfasync="false" src="//script.crazyegg.com/pages/scripts/0116/4951.js" async="async" ></script> </head> <body> <div id="menuModal" class="reveal-modal reveal-modal-new reveal-modal-menu" aria-hidden="true" data-reveal role="dialog"> <div class="menu-container"> <div class="UI_NavMenu"> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Journals</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about/journals">Active Journals</a> <a href="/about/journalfinder">Find a Journal</a> <a href="/about/journals/proposal">Journal Proposal</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <a href="/topics"> <h2>Topics</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Information</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; max-width: 200px; float: left;"> <a href="/authors">For Authors</a> <a href="/reviewers">For Reviewers</a> <a href="/editors">For Editors</a> <a href="/librarians">For Librarians</a> <a href="/publishing_services">For Publishers</a> <a href="/societies">For Societies</a> <a href="/conference_organizers">For Conference Organizers</a> </div> <div style="width: 100%; max-width: 250px; float: left;"> <a href="/openaccess">Open Access Policy</a> <a href="/ioap">Institutional Open Access Program</a> <a href="/special_issues_guidelines">Special Issues Guidelines</a> <a href="/editorial_process">Editorial Process</a> <a href="/ethics">Research and Publication Ethics</a> <a href="/apc">Article Processing Charges</a> <a href="/awards">Awards</a> <a href="/testimonials">Testimonials</a> </div> </div> </div> </div> <a href="/authors/english"> <h2>Editing Services</h2> </a> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>Initiatives</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer">Sciforum</a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer">MDPI Books</a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer">Preprints.org</a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer">Scilit</a> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer">SciProfiles</a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer">Encyclopedia</a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer">JAMS</a> <a href="/about/proceedings">Proceedings Series</a> </div> </div> </div> </div> <div class="content__container " > <div class="custom-accordion-for-small-screen-link " > <h2>About</h2> </div> <div class="target-item custom-accordion-for-small-screen-content show-for-medium-up"> <div class="menu-container__links"> <div style="width: 100%; float: left;"> <a href="/about">Overview</a> <a href="/about/contact">Contact</a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer">Careers</a> <a href="/about/announcements">News</a> <a href="/about/press">Press</a> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer">Blog</a> </div> </div> </div> </div> </div> <div class="menu-container__buttons"> <a class="button UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> </div> </div> </div> <div id="captchaModal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-label="Captcha" aria-hidden="true" role="dialog"></div> <div id="actionDisabledModal" class="reveal-modal" data-reveal aria-labelledby="actionDisableModalTitle" aria-hidden="true" role="dialog" style="width: 300px;"> <h2 id="actionDisableModalTitle">Notice</h2> <form action="/email/captcha" method="post" id="emailCaptchaForm"> <div class="row"> <div id="js-action-disabled-modal-text" class="small-12 columns"> </div> <div id="js-action-disabled-modal-submit" class="small-12 columns" style="margin-top: 10px; display: none;"> You can make submissions to other journals <a href="https://susy.mdpi.com/user/manuscripts/upload">here</a>. </div> </div> </form> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="rssNotificationModal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="rssNotificationModalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="rssNotificationModalTitle">Notice</h2> <p> You are accessing a machine-readable page. In order to be human-readable, please install an RSS reader. </p> </div> </div> <div class="row"> <div class="small-12 columns"> <a class="button button--color js-rss-notification-confirm">Continue</a> <a class="button button--grey" onclick="$(this).closest('.reveal-modal').find('.close-reveal-modal').click(); return false;">Cancel</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="drop-article-label-openaccess" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> All articles published by MDPI are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by MDPI, including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to <a href="https://www.mdpi.com/openaccess">https://www.mdpi.com/openaccess</a>. </p> </div> <div id="drop-article-label-feature" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications. </p> <p> Feature papers are submitted upon individual invitation or recommendation by the scientific editors and must receive positive feedback from the reviewers. </p> </div> <div id="drop-article-label-choice" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. <div style="margin-top: -10px;"> <div id="drop-article-label-choice-journal-link" style="display: none; margin-top: -10px; padding-top: 10px;"> </div> </div> </p> </div> <div id="drop-article-label-resubmission" class="f-dropdown medium" data-dropdown-content aria-hidden="true" tabindex="-1"> <p> Original Submission Date Received: <span id="drop-article-label-resubmission-date"></span>. </p> </div> <div id="container"> <noscript> <div id="no-javascript"> You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled. </div> </noscript> <div class="fixed"> <nav class="tab-bar show-for-medium-down"> <div class="row full-width collapse"> <div class="medium-3 small-4 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" style="width: 64px;" title="MDPI Open Access Journals"> </a> </div> <div class="medium-3 small-4 columns right-aligned"> <div class="show-for-medium-down"> <a href="#" style="display: none;"> <i class="material-icons" onclick="$('#menuModal').foundation('reveal', 'close'); return false;">clear</i> </a> <a class="js-toggle-desktop-layout-link" title="Toggle desktop layout" style="display: none;" href="/toggle_desktop_layout_cookie"> <i class="material-icons">zoom_out_map</i> </a> <a href="#" class="js-open-small-search open-small-search"> <i class="material-icons show-for-small only">search</i> </a> <a title="MDPI main page" class="js-open-menu" data-reveal-id="menuModal" href="#"> <i class="material-icons">menu</i> </a> </div> </div> </div> </nav> </div> <section class="main-section"> <header> <div class="full-size-menu show-for-large-up"> <div class="row full-width"> <div class="large-1 columns"> <a href="/"> <img class="full-size-menu__mdpi-logo" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-black-small1.svg?da3a8dcae975a41c?1732286508" title="MDPI Open Access Journals"> </a> </div> <div class="large-8 columns text-right UI_NavMenu"> <ul> <li class="menu-item"> <a href="/about/journals" data-dropdown="journals-dropdown" aria-controls="journals-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Journals</a> <ul id="journals-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about/journals"> Active Journals </a> </li> <li> <a href="/about/journalfinder"> Find a Journal </a> </li> <li> <a href="/about/journals/proposal"> Journal Proposal </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/topics">Topics</a> </li> <li class="menu-item"> <a href="/authors" data-dropdown="information-dropdown" aria-controls="information-dropdown" aria-expanded="false" data-options="is_hover:true; hover_timeout:200">Information</a> <ul id="information-dropdown" class="f-dropdown dropdown-wrapper" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-5 columns right-border"> <ul> <li> <a href="/authors">For Authors</a> </li> <li> <a href="/reviewers">For Reviewers</a> </li> <li> <a href="/editors">For Editors</a> </li> <li> <a href="/librarians">For Librarians</a> </li> <li> <a href="/publishing_services">For Publishers</a> </li> <li> <a href="/societies">For Societies</a> </li> <li> <a href="/conference_organizers">For Conference Organizers</a> </li> </ul> </div> <div class="small-7 columns"> <ul> <li> <a href="/openaccess">Open Access Policy</a> </li> <li> <a href="/ioap">Institutional Open Access Program</a> </li> <li> <a href="/special_issues_guidelines">Special Issues Guidelines</a> </li> <li> <a href="/editorial_process">Editorial Process</a> </li> <li> <a href="/ethics">Research and Publication Ethics</a> </li> <li> <a href="/apc">Article Processing Charges</a> </li> <li> <a href="/awards">Awards</a> </li> <li> <a href="/testimonials">Testimonials</a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/authors/english">Editing Services</a> </li> <li class="menu-item"> <a href="/about/initiatives" data-dropdown="initiatives-dropdown" aria-controls="initiatives-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">Initiatives</a> <ul id="initiatives-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> </li> <li> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> </li> <li> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> </li> <li> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> </li> <li> <a href="https://sciprofiles.com" target="_blank" rel="noopener noreferrer"> SciProfiles </a> </li> <li> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> </li> <li> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> </li> <li> <a href="/about/proceedings"> Proceedings Series </a> </li> </ul> </div> </div> </li> </ul> </li> <li class="menu-item"> <a href="/about" data-dropdown="about-dropdown" aria-controls="about-dropdown" aria-expanded="false" data-options="is_hover: true; hover_timeout: 200">About</a> <ul id="about-dropdown" class="f-dropdown dropdown-wrapper dropdown-wrapper__small" data-dropdown-content aria-hidden="true" tabindex="-1"> <li> <div class="row"> <div class="small-12 columns"> <ul> <li> <a href="/about"> Overview </a> </li> <li> <a href="/about/contact"> Contact </a> </li> <li> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Careers </a> </li> <li> <a href="/about/announcements"> News </a> </li> <li> <a href="/about/press"> Press </a> </li> <li> <a href="http://blog.mdpi.com/" target="_blank" rel="noopener noreferrer"> Blog </a> </li> </ul> </div> </div> </li> </ul> </li> </ul> </div> <div class="large-3 columns text-right full-size-menu__buttons"> <div> <a class="button button--default-inversed UA_SignInUpButton" href="/user/login">Sign In / Sign Up</a> <a class="button button--default js-journal-active-only-link js-journal-active-only-submit-link UC_NavSubmitButton" href=" https://susy.mdpi.com/user/manuscripts/upload?journal=molecules " data-disabledmessage="new submissions are not possible.">Submit</a> </div> </div> </div> </div> <div class="header-divider"> </div> <div class="search-container hide-for-small-down row search-container__homepage-scheme"> <form id="basic_search" style="background-color: inherit !important;" class="large-12 medium-12 columns " action="/search" method="get"> <div class="row search-container__main-elements"> <div class="large-2 medium-2 small-12 columns text-right1 small-only-text-left"> <div class="show-for-medium-up"> <div class="search-input-label"> </div> </div> <span class="search-container__title">Search<span class="hide-for-medium"> for Articles</span><span class="hide-for-small">:</span></span> </div> <div class="custom-accordion-for-small-screen-content"> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Title / Keyword</div> </div> <input type="text" placeholder="Title / Keyword" id="q" tabindex="1" name="q" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Author / Affiliation / Email</div> </div> <input type="text" id="authors" placeholder="Author / Affiliation / Email" tabindex="2" name="authors" value="" /> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Journal</div> </div> <select id="journal" tabindex="3" name="journal" class="chosen-select"> <option value="">All Journals</option> <option value="acoustics" > Acoustics </option> <option value="amh" > Acta Microbiologica Hellenica (AMH) </option> <option value="actuators" > Actuators </option> <option value="admsci" > Administrative Sciences </option> <option value="adolescents" > Adolescents </option> <option value="arm" > Advances in Respiratory Medicine (ARM) </option> <option value="aerobiology" > Aerobiology </option> <option value="aerospace" > Aerospace </option> <option value="agriculture" > Agriculture </option> <option value="agriengineering" > AgriEngineering </option> <option value="agrochemicals" > Agrochemicals </option> <option value="agronomy" > Agronomy </option> <option value="ai" > AI </option> <option value="air" > Air </option> <option value="algorithms" > Algorithms </option> <option value="allergies" > Allergies </option> <option value="alloys" > Alloys </option> <option value="analytica" > Analytica </option> <option value="analytics" > Analytics </option> <option value="anatomia" > Anatomia </option> <option value="anesthres" > Anesthesia Research </option> <option value="animals" > Animals </option> <option value="antibiotics" > Antibiotics </option> <option value="antibodies" > Antibodies </option> <option value="antioxidants" > Antioxidants </option> <option value="applbiosci" > Applied Biosciences </option> <option value="applmech" > Applied Mechanics </option> <option value="applmicrobiol" > Applied Microbiology </option> <option value="applnano" > Applied Nano </option> <option value="applsci" > Applied Sciences </option> <option value="asi" > Applied System Innovation (ASI) </option> <option value="appliedchem" > AppliedChem </option> <option value="appliedmath" > AppliedMath </option> <option value="aquacj" > Aquaculture Journal </option> <option value="architecture" > Architecture </option> <option value="arthropoda" > Arthropoda </option> <option value="arts" > Arts </option> <option value="astronomy" > Astronomy </option> <option value="atmosphere" > Atmosphere </option> <option value="atoms" > Atoms </option> <option value="audiolres" > Audiology Research </option> <option value="automation" > Automation </option> <option value="axioms" > Axioms </option> <option value="bacteria" > Bacteria </option> <option value="batteries" > Batteries </option> <option value="behavsci" > Behavioral Sciences </option> <option value="beverages" > Beverages </option> <option value="BDCC" > Big Data and Cognitive Computing (BDCC) </option> <option value="biochem" > BioChem </option> <option value="bioengineering" > Bioengineering </option> <option value="biologics" > Biologics </option> <option value="biology" > Biology </option> <option value="blsf" > Biology and Life Sciences Forum </option> <option value="biomass" > Biomass </option> <option value="biomechanics" > Biomechanics </option> <option value="biomed" > BioMed </option> <option value="biomedicines" > Biomedicines </option> <option value="biomedinformatics" > BioMedInformatics </option> <option value="biomimetics" > Biomimetics </option> <option value="biomolecules" > Biomolecules </option> <option value="biophysica" > Biophysica </option> <option value="biosensors" > Biosensors </option> <option value="biotech" > BioTech </option> <option value="birds" > Birds </option> <option value="blockchains" > Blockchains </option> <option value="brainsci" > Brain Sciences </option> <option value="buildings" > Buildings </option> <option value="businesses" > Businesses </option> <option value="carbon" > C </option> <option value="cancers" > Cancers </option> <option value="cardiogenetics" > Cardiogenetics </option> <option value="catalysts" > Catalysts </option> <option value="cells" > Cells </option> <option value="ceramics" > Ceramics </option> <option value="challenges" > Challenges </option> <option value="ChemEngineering" > ChemEngineering </option> <option value="chemistry" > Chemistry </option> <option value="chemproc" > Chemistry Proceedings </option> <option value="chemosensors" > Chemosensors </option> <option value="children" > Children </option> <option value="chips" > Chips </option> <option value="civileng" > CivilEng </option> <option value="cleantechnol" > Clean Technologies (Clean Technol.) </option> <option value="climate" > Climate </option> <option value="ctn" > Clinical and Translational Neuroscience (CTN) </option> <option value="clinbioenerg" > Clinical Bioenergetics </option> <option value="clinpract" > Clinics and Practice </option> <option value="clockssleep" > Clocks & Sleep </option> <option value="coasts" > Coasts </option> <option value="coatings" > Coatings </option> <option value="colloids" > Colloids and Interfaces </option> <option value="colorants" > Colorants </option> <option value="commodities" > Commodities </option> <option value="complications" > Complications </option> <option value="compounds" > Compounds </option> <option value="computation" > Computation </option> <option value="csmf" > Computer Sciences & Mathematics Forum </option> <option value="computers" > Computers </option> <option value="condensedmatter" > Condensed Matter </option> <option value="conservation" > Conservation </option> <option value="constrmater" > Construction Materials </option> <option value="cmd" > Corrosion and Materials Degradation (CMD) </option> <option value="cosmetics" > Cosmetics </option> <option value="covid" > COVID </option> <option value="crops" > Crops </option> <option value="cryo" > Cryo </option> <option value="cryptography" > Cryptography </option> <option value="crystals" > Crystals </option> <option value="cimb" > Current Issues in Molecular Biology (CIMB) </option> <option value="curroncol" > Current Oncology </option> <option value="dairy" > Dairy </option> <option value="data" > Data </option> <option value="dentistry" > Dentistry Journal </option> <option value="dermato" > Dermato </option> <option value="dermatopathology" > Dermatopathology </option> <option value="designs" > Designs </option> <option value="diabetology" > Diabetology </option> <option value="diagnostics" > Diagnostics </option> <option value="dietetics" > Dietetics </option> <option value="digital" > Digital </option> <option value="disabilities" > Disabilities </option> <option value="diseases" > Diseases </option> <option value="diversity" > Diversity </option> <option value="dna" > DNA </option> <option value="drones" > Drones </option> <option value="ddc" > Drugs and Drug Candidates (DDC) </option> <option value="dynamics" > Dynamics </option> <option value="earth" > Earth </option> <option value="ecologies" > Ecologies </option> <option value="econometrics" > Econometrics </option> <option value="economies" > Economies </option> <option value="education" > Education Sciences </option> <option value="electricity" > Electricity </option> <option value="electrochem" > Electrochem </option> <option value="electronicmat" > Electronic Materials </option> <option value="electronics" > Electronics </option> <option value="ecm" > Emergency Care and Medicine </option> <option value="encyclopedia" > Encyclopedia </option> <option value="endocrines" > Endocrines </option> <option value="energies" > Energies </option> <option value="esa" > Energy Storage and Applications (ESA) </option> <option value="eng" > Eng </option> <option value="engproc" > Engineering Proceedings </option> <option value="entropy" > Entropy </option> <option value="environsciproc" > Environmental Sciences Proceedings </option> <option value="environments" > Environments </option> <option value="epidemiologia" > Epidemiologia </option> <option value="epigenomes" > Epigenomes </option> <option value="ebj" > European Burn Journal (EBJ) </option> <option value="ejihpe" > European Journal of Investigation in Health, Psychology and Education (EJIHPE) </option> <option value="fermentation" > Fermentation </option> <option value="fibers" > Fibers </option> <option value="fintech" > FinTech </option> <option value="fire" > Fire </option> <option value="fishes" > Fishes </option> <option value="fluids" > Fluids </option> <option value="foods" > Foods </option> <option value="forecasting" > Forecasting </option> <option value="forensicsci" > Forensic Sciences </option> <option value="forests" > Forests </option> <option value="fossstud" > Fossil Studies </option> <option value="foundations" > Foundations </option> <option value="fractalfract" > Fractal and Fractional (Fractal Fract) </option> <option value="fuels" > Fuels </option> <option value="future" > Future </option> <option value="futureinternet" > Future Internet </option> <option value="futurepharmacol" > Future Pharmacology </option> <option value="futuretransp" > Future Transportation </option> <option value="galaxies" > Galaxies </option> <option value="games" > Games </option> <option value="gases" > Gases </option> <option value="gastroent" > Gastroenterology Insights </option> <option value="gastrointestdisord" > Gastrointestinal Disorders </option> <option value="gastronomy" > Gastronomy </option> <option value="gels" > Gels </option> <option value="genealogy" > Genealogy </option> <option value="genes" > Genes </option> <option value="geographies" > Geographies </option> <option value="geohazards" > GeoHazards </option> <option value="geomatics" > Geomatics </option> <option value="geometry" > Geometry </option> <option value="geosciences" > Geosciences </option> <option value="geotechnics" > Geotechnics </option> <option value="geriatrics" > Geriatrics </option> <option value="glacies" > Glacies </option> <option value="gucdd" > Gout, Urate, and Crystal Deposition Disease (GUCDD) </option> <option value="grasses" > Grasses </option> <option value="hardware" > Hardware </option> <option value="healthcare" > Healthcare </option> <option value="hearts" > Hearts </option> <option value="hemato" > Hemato </option> <option value="hematolrep" > Hematology Reports </option> <option value="heritage" > Heritage </option> <option value="histories" > Histories </option> <option value="horticulturae" > Horticulturae </option> <option value="hospitals" > Hospitals </option> <option value="humanities" > Humanities </option> <option value="humans" > Humans </option> <option value="hydrobiology" > Hydrobiology </option> <option value="hydrogen" > Hydrogen </option> <option value="hydrology" > Hydrology </option> <option value="hygiene" > Hygiene </option> <option value="immuno" > Immuno </option> <option value="idr" > Infectious Disease Reports </option> <option value="informatics" > Informatics </option> <option value="information" > Information </option> <option value="infrastructures" > Infrastructures </option> <option value="inorganics" > Inorganics </option> <option value="insects" > Insects </option> <option value="instruments" > Instruments </option> <option value="iic" > Intelligent Infrastructure and Construction </option> <option value="ijerph" > International Journal of Environmental Research and Public Health (IJERPH) </option> <option value="ijfs" > International Journal of Financial Studies (IJFS) </option> <option value="ijms" > International Journal of Molecular Sciences (IJMS) </option> <option value="IJNS" > International Journal of Neonatal Screening (IJNS) </option> <option value="ijpb" > International Journal of Plant Biology (IJPB) </option> <option value="ijt" > International Journal of Topology </option> <option value="ijtm" > International Journal of Translational Medicine (IJTM) </option> <option value="ijtpp" > International Journal of Turbomachinery, Propulsion and Power (IJTPP) </option> <option value="ime" > International Medical Education (IME) </option> <option value="inventions" > Inventions </option> <option value="IoT" > IoT </option> <option value="ijgi" > ISPRS International Journal of Geo-Information (IJGI) </option> <option value="J" > J </option> <option value="jal" > Journal of Ageing and Longevity (JAL) </option> <option value="jcdd" > Journal of Cardiovascular Development and Disease (JCDD) </option> <option value="jcto" > Journal of Clinical & Translational Ophthalmology (JCTO) </option> <option value="jcm" > Journal of Clinical Medicine (JCM) </option> <option value="jcs" > Journal of Composites Science (J. Compos. Sci.) </option> <option value="jcp" > Journal of Cybersecurity and Privacy (JCP) </option> <option value="jdad" > Journal of Dementia and Alzheimer's Disease (JDAD) </option> <option value="jdb" > Journal of Developmental Biology (JDB) </option> <option value="jeta" > Journal of Experimental and Theoretical Analyses (JETA) </option> <option value="jfb" > Journal of Functional Biomaterials (JFB) </option> <option value="jfmk" > Journal of Functional Morphology and Kinesiology (JFMK) </option> <option value="jof" > Journal of Fungi (JoF) </option> <option value="jimaging" > Journal of Imaging (J. Imaging) </option> <option value="jintelligence" > Journal of Intelligence (J. Intell.) </option> <option value="jlpea" > Journal of Low Power Electronics and Applications (JLPEA) </option> <option value="jmmp" > Journal of Manufacturing and Materials Processing (JMMP) </option> <option value="jmse" > Journal of Marine Science and Engineering (JMSE) </option> <option value="jmahp" > Journal of Market Access & Health Policy (JMAHP) </option> <option value="jmp" > Journal of Molecular Pathology (JMP) </option> <option value="jnt" > Journal of Nanotheranostics (JNT) </option> <option value="jne" > Journal of Nuclear Engineering (JNE) </option> <option value="ohbm" > Journal of Otorhinolaryngology, Hearing and Balance Medicine (JOHBM) </option> <option value="jop" > Journal of Parks </option> <option value="jpm" > Journal of Personalized Medicine (JPM) </option> <option value="jpbi" > Journal of Pharmaceutical and BioTech Industry (JPBI) </option> <option value="jor" > Journal of Respiration (JoR) </option> <option value="jrfm" > Journal of Risk and Financial Management (JRFM) </option> <option value="jsan" > Journal of Sensor and Actuator Networks (JSAN) </option> <option value="joma" > Journal of the Oman Medical Association (JOMA) </option> <option value="jtaer" > Journal of Theoretical and Applied Electronic Commerce Research (JTAER) </option> <option value="jvd" > Journal of Vascular Diseases (JVD) </option> <option value="jox" > Journal of Xenobiotics (JoX) </option> <option value="jzbg" > Journal of Zoological and Botanical Gardens (JZBG) </option> <option value="journalmedia" > Journalism and Media </option> <option value="kidneydial" > Kidney and Dialysis </option> <option value="kinasesphosphatases" > Kinases and Phosphatases </option> <option value="knowledge" > Knowledge </option> <option value="labmed" > LabMed </option> <option value="laboratories" > Laboratories </option> <option value="land" > Land </option> <option value="languages" > Languages </option> <option value="laws" > Laws </option> <option value="life" > Life </option> <option value="limnolrev" > Limnological Review </option> <option value="lipidology" > Lipidology </option> <option value="liquids" > Liquids </option> <option value="literature" > Literature </option> <option value="livers" > Livers </option> <option value="logics" > Logics </option> <option value="logistics" > Logistics </option> <option value="lubricants" > Lubricants </option> <option value="lymphatics" > Lymphatics </option> <option value="make" > Machine Learning and Knowledge Extraction (MAKE) </option> <option value="machines" > Machines </option> <option value="macromol" > Macromol </option> <option value="magnetism" > Magnetism </option> <option value="magnetochemistry" > Magnetochemistry </option> <option value="marinedrugs" > Marine Drugs </option> <option value="materials" > Materials </option> <option value="materproc" > Materials Proceedings </option> <option value="mca" > Mathematical and Computational Applications (MCA) </option> <option value="mathematics" > Mathematics </option> <option value="medsci" > Medical Sciences </option> <option value="msf" > Medical Sciences Forum </option> <option value="medicina" > Medicina </option> <option value="medicines" > Medicines </option> <option value="membranes" > Membranes </option> <option value="merits" > Merits </option> <option value="metabolites" > Metabolites </option> <option value="metals" > Metals </option> <option value="meteorology" > Meteorology </option> <option value="methane" > Methane </option> <option value="mps" > Methods and Protocols (MPs) </option> <option value="metrics" > Metrics </option> <option value="metrology" > Metrology </option> <option value="micro" > Micro </option> <option value="microbiolres" > Microbiology Research </option> <option value="micromachines" > Micromachines </option> <option value="microorganisms" > Microorganisms </option> <option value="microplastics" > Microplastics </option> <option value="minerals" > Minerals </option> <option value="mining" > Mining </option> <option value="modelling" > Modelling </option> <option value="mmphys" > Modern Mathematical Physics </option> <option value="molbank" > Molbank </option> <option value="molecules" selected='selected'> Molecules </option> <option value="mti" > Multimodal Technologies and Interaction (MTI) </option> <option value="muscles" > Muscles </option> <option value="nanoenergyadv" > Nanoenergy Advances </option> <option value="nanomanufacturing" > Nanomanufacturing </option> <option value="nanomaterials" > Nanomaterials </option> <option value="ndt" > NDT </option> <option value="network" > Network </option> <option value="neuroglia" > Neuroglia </option> <option value="neurolint" > Neurology International </option> <option value="neurosci" > NeuroSci </option> <option value="nitrogen" > Nitrogen </option> <option value="ncrna" > Non-Coding RNA (ncRNA) </option> <option value="nursrep" > Nursing Reports </option> <option value="nutraceuticals" > Nutraceuticals </option> <option value="nutrients" > Nutrients </option> <option value="obesities" > Obesities </option> <option value="oceans" > Oceans </option> <option value="onco" > Onco </option> <option value="optics" > Optics </option> <option value="oral" > Oral </option> <option value="organics" > Organics </option> <option value="organoids" > Organoids </option> <option value="osteology" > Osteology </option> <option value="oxygen" > Oxygen </option> <option value="parasitologia" > Parasitologia </option> <option value="particles" > Particles </option> <option value="pathogens" > Pathogens </option> <option value="pathophysiology" > Pathophysiology </option> <option value="pediatrrep" > Pediatric Reports </option> <option value="pets" > Pets </option> <option value="pharmaceuticals" > Pharmaceuticals </option> <option value="pharmaceutics" > Pharmaceutics </option> <option value="pharmacoepidemiology" > Pharmacoepidemiology </option> <option value="pharmacy" > Pharmacy </option> <option value="philosophies" > Philosophies </option> <option value="photochem" > Photochem </option> <option value="photonics" > Photonics </option> <option value="phycology" > Phycology </option> <option value="physchem" > Physchem </option> <option value="psf" > Physical Sciences Forum </option> <option value="physics" > Physics </option> <option value="physiologia" > Physiologia </option> <option value="plants" > Plants </option> <option value="plasma" > Plasma </option> <option value="platforms" > Platforms </option> <option value="pollutants" > Pollutants </option> <option value="polymers" > Polymers </option> <option value="polysaccharides" > Polysaccharides </option> <option value="populations" > Populations </option> <option value="poultry" > Poultry </option> <option value="powders" > Powders </option> <option value="proceedings" > Proceedings </option> <option value="processes" > Processes </option> <option value="prosthesis" > Prosthesis </option> <option value="proteomes" > Proteomes </option> <option value="psychiatryint" > Psychiatry International </option> <option value="psychoactives" > Psychoactives </option> <option value="psycholint" > Psychology International </option> <option value="publications" > Publications </option> <option value="qubs" > Quantum Beam Science (QuBS) </option> <option value="quantumrep" > Quantum Reports </option> <option value="quaternary" > Quaternary </option> <option value="radiation" > Radiation </option> <option value="reactions" > Reactions </option> <option value="realestate" > Real Estate </option> <option value="receptors" > Receptors </option> <option value="recycling" > Recycling </option> <option value="rsee" > Regional Science and Environmental Economics (RSEE) </option> <option value="religions" > Religions </option> <option value="remotesensing" > Remote Sensing </option> <option value="reports" > Reports </option> <option value="reprodmed" > Reproductive Medicine (Reprod. Med.) </option> <option value="resources" > Resources </option> <option value="rheumato" > Rheumato </option> <option value="risks" > Risks </option> <option value="robotics" > Robotics </option> <option value="ruminants" > Ruminants </option> <option value="safety" > Safety </option> <option value="sci" > Sci </option> <option value="scipharm" > Scientia Pharmaceutica (Sci. Pharm.) </option> <option value="sclerosis" > Sclerosis </option> <option value="seeds" > Seeds </option> <option value="sensors" > Sensors </option> <option value="separations" > Separations </option> <option value="sexes" > Sexes </option> <option value="signals" > Signals </option> <option value="sinusitis" > Sinusitis </option> <option value="smartcities" > Smart Cities </option> <option value="socsci" > Social Sciences </option> <option value="siuj" > Société Internationale d’Urologie Journal (SIUJ) </option> <option value="societies" > Societies </option> <option value="software" > Software </option> <option value="soilsystems" > Soil Systems </option> <option value="solar" > Solar </option> <option value="solids" > Solids </option> <option value="spectroscj" > Spectroscopy Journal </option> <option value="sports" > Sports </option> <option value="standards" > Standards </option> <option value="stats" > Stats </option> <option value="stresses" > Stresses </option> <option value="surfaces" > Surfaces </option> <option value="surgeries" > Surgeries </option> <option value="std" > Surgical Techniques Development </option> <option value="sustainability" > Sustainability </option> <option value="suschem" > Sustainable Chemistry </option> <option value="symmetry" > Symmetry </option> <option value="synbio" > SynBio </option> <option value="systems" > Systems </option> <option value="targets" > Targets </option> <option value="taxonomy" > Taxonomy </option> <option value="technologies" > Technologies </option> <option value="telecom" > Telecom </option> <option value="textiles" > Textiles </option> <option value="thalassrep" > Thalassemia Reports </option> <option value="therapeutics" > Therapeutics </option> <option value="thermo" > Thermo </option> <option value="timespace" > Time and Space </option> <option value="tomography" > Tomography </option> <option value="tourismhosp" > Tourism and Hospitality </option> <option value="toxics" > Toxics </option> <option value="toxins" > Toxins </option> <option value="transplantology" > Transplantology </option> <option value="traumacare" > Trauma Care </option> <option value="higheredu" > Trends in Higher Education </option> <option value="tropicalmed" > Tropical Medicine and Infectious Disease (TropicalMed) </option> <option value="universe" > Universe </option> <option value="urbansci" > Urban Science </option> <option value="uro" > Uro </option> <option value="vaccines" > Vaccines </option> <option value="vehicles" > Vehicles </option> <option value="venereology" > Venereology </option> <option value="vetsci" > Veterinary Sciences </option> <option value="vibration" > Vibration </option> <option value="virtualworlds" > Virtual Worlds </option> <option value="viruses" > Viruses </option> <option value="vision" > Vision </option> <option value="waste" > Waste </option> <option value="water" > Water </option> <option value="wild" > Wild </option> <option value="wind" > Wind </option> <option value="women" > Women </option> <option value="world" > World </option> <option value="wevj" > World Electric Vehicle Journal (WEVJ) </option> <option value="youth" > Youth </option> <option value="zoonoticdis" > Zoonotic Diseases </option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Article Type</div> </div> <select id="article_type" tabindex="4" name="article_type" class="chosen-select"> <option value="">All Article Types</option> <option value="research-article">Article</option> <option value="review-article">Review</option> <option value="rapid-communication">Communication</option> <option value="editorial">Editorial</option> <option value="abstract">Abstract</option> <option value="book-review">Book Review</option> <option value="brief-communication">Brief Communication</option> <option value="brief-report">Brief Report</option> <option value="case-report">Case Report</option> <option value="clinicopathological-challenge">Clinicopathological Challenge</option> <option value="article-commentary">Comment</option> <option value="commentary">Commentary</option> <option value="concept-paper">Concept Paper</option> <option value="conference-report">Conference Report</option> <option value="correction">Correction</option> <option value="creative">Creative</option> <option value="data-descriptor">Data Descriptor</option> <option value="discussion">Discussion</option> <option value="Entry">Entry</option> <option value="essay">Essay</option> <option value="expression-of-concern">Expression of Concern</option> <option value="extended-abstract">Extended Abstract</option> <option value="field-guide">Field Guide</option> <option value="guidelines">Guidelines</option> <option value="hypothesis">Hypothesis</option> <option value="interesting-image">Interesting Images</option> <option value="letter">Letter</option> <option value="books-received">New Book Received</option> <option value="obituary">Obituary</option> <option value="opinion">Opinion</option> <option value="perspective">Perspective</option> <option value="proceedings">Proceeding Paper</option> <option value="project-report">Project Report</option> <option value="protocol">Protocol</option> <option value="registered-report">Registered Report</option> <option value="reply">Reply</option> <option value="retraction">Retraction</option> <option value="note">Short Note</option> <option value="study-protocol">Study Protocol</option> <option value="systematic_review">Systematic Review</option> <option value="technical-note">Technical Note</option> <option value="tutorial">Tutorial</option> <option value="viewpoint">Viewpoint</option> </select> </div> <div class="large-1 medium-1 small-6 end columns small-push-6 medium-reset-order large-reset-order js-search-collapsed-button-container"> <div class="search-input-label"> </div> <input type="submit" id="search" value="Search" class="button button--dark button--full-width searchButton1 US_SearchButton" tabindex="12"> </div> <div class="large-1 medium-1 small-6 end columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-collapsed-link-container"> <div class="search-input-label"> </div> <a class="main-search-clear search-container__link" href="#" onclick="openAdvanced(''); return false;">Advanced<span class="show-for-small-only"> Search</span></a> </div> </div> </div> <div class="search-container__advanced" style="margin-top: 0; padding-top: 0px; background-color: inherit; color: inherit;"> <div class="row"> <div class="large-2 medium-2 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Section</div> </div> <select id="section" tabindex="5" name="section" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-2 medium-2 small-6 columns "> <div class=""> <div class="search-input-label">Special Issue</div> </div> <select id="special_issue" tabindex="6" name="special_issue" class="chosen-select"> <option value=""></option> </select> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Volume</div> <input type="text" id="volume" tabindex="7" name="volume" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Issue</div> <input type="text" id="issue" tabindex="8" name="issue" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Number</div> <input type="text" id="number" tabindex="9" name="number" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 end columns "> <div class="search-input-label">Page</div> <input type="text" id="page" tabindex="10" name="page" placeholder="..." value="" /> </div> <div class="large-1 medium-1 small-6 columns small-push-6 medium-reset order large-reset-order medium-reset-order js-search-expanded-button-container"></div> <div class="large-1 medium-1 small-6 columns large-text-left small-only-text-center small-pull-6 medium-reset-order large-reset-order js-search-expanded-link-container"></div> </div> </div> </form> <form id="advanced-search" class="large-12 medium-12 columns"> <div class="search-container__advanced"> <div id="advanced-search-template" class="row advanced-search-row"> <div class="large-2 medium-2 small-12 columns show-for-medium-up"> </div> <div class="large-2 medium-2 small-3 columns connector-div"> <div class="search-input-label"><span class="show-for-medium-up">Logical Operator</span><span class="show-for-small">Operator</span></div> <select class="connector"> <option value="and">AND</option> <option value="or">OR</option> </select> </div> <div class="large-3 medium-3 small-6 columns search-text-div"> <div class="search-input-label">Search Text</div> <input type="text" class="search-text" placeholder="Search text"> </div> <div class="large-2 medium-2 small-6 large-offset-0 medium-offset-0 small-offset-3 columns search-field-div"> <div class="search-input-label">Search Type</div> <select class="search-field"> <option value="all">All fields</option> <option value="title">Title</option> <option value="abstract">Abstract</option> <option value="keywords">Keywords</option> <option value="authors">Authors</option> <option value="affiliations">Affiliations</option> <option value="doi">Doi</option> <option value="full_text">Full Text</option> <option value="references">References</option> </select> </div> <div class="large-1 medium-1 small-3 columns"> <div class="search-input-label"> </div> <div class="search-action-div"> <div class="search-plus"> <i class="material-icons">add_circle_outline</i> </div> </div> <div class="search-action-div"> <div class="search-minus"> <i class="material-icons">remove_circle_outline</i> </div> </div> </div> <div class="large-1 medium-1 small-6 large-offset-0 medium-offset-0 small-offset-3 end columns"> <div class="search-input-label"> </div> <input class="advanced-search-button button button--dark search-submit" type="submit" value="Search"> </div> <div class="large-1 medium-1 small-6 end columns show-for-medium-up"></div> </div> </div> </form> </div> <div class="header-divider"> </div> <div class="breadcrumb row full-row"> <div style="position: absolute; right: 40px; z-index: 10; top: 5px;"> <div class="iflogo1"> <a href="https://www.scopus.com/sourceid/26370" target="_blank" rel="noopener noreferrer" style="text-decoration: none;"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/CS_no_number.svg?62107aae53c39662?1732286508" class="iflogo2"> <div class="iflogo1__citescore-number">7.4</div> </a> </div> <div class="iflogo1" style="/*z-index:30;*/"> <a href="https://www.ncbi.nlm.nih.gov/pubmed/?term=1420-3049" target="_blank" rel="noopener noreferrer"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/PM.svg?d6a69b922515dcf5?1732286508" class="iflogo2"> </a> </div> <div class="iflogo1"> <a href="/journal/molecules/stats" target="_blank" rel="noopener noreferrer" style="text-decoration: none;"> <img src="https://pub.mdpi-res.com/img/journal_indexing_logos/IF_no_number.svg?af8a884fb765d812?1732286508" class="iflogo2"> <div class="iflogo1__if-number">4.2</div> </a> </div> </div> <div class="breadcrumb__element"> <a href="/about/journals">Journals</a> </div> <div class="breadcrumb__element"> <a class="lean" href="/journal/molecules">Molecules</a> </div> <div class="breadcrumb__element"> <a href="#">Editor’s Choice</a> </div> </div> </header> <div id="main-content" class=""> <div class="row full-width "> <div id="left-column" class="content__column large-3 medium-3 small-12 columns"> <div id="js-large-main-top-container"> <div id="js-main-top-container" class="content__container"> <a href="/journal/molecules"> <img src="https://pub.mdpi-res.com/img/journals/molecules-logo.png?8600e93ff98dbf14" alt="molecules-logo" title="Molecules" style="max-height: 60px; margin: 0 0 0 0;"> </a> <div class="generic-item no-border" style="position: relative;"> <div class=""> <a class="button button--color button--color-journal button--full-width js-journal-active-only-link js-journal-active-only-submit-link UC_JournalSubmitButton" href="https://susy.mdpi.com/user/manuscripts/upload?form[journal_id]=1" data-disabledmessage="creating new submissions is not possible."> Submit to <i>Molecules</i> </a> <a class="button button--color button--full-width js-journal-active-only-link UC_JournalReviewButton" href="https://susy.mdpi.com/volunteer/journals/review" data-disabledmessage="volunteering as journal reviewer is not possible."> Review for <em>Molecules</em> </a> </div> </div> <div class="generic-item condensed-small UI_JournalMenu"> <h2 class="show-for-medium-up">Journal Menu</h2> <a href="#" class="bolded-text link-journal-menu show-for-small"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Journal Menu </a> <ul class="accordion__dummy accordion__menu hide-small-down-initially" style="margin-top: 10px;"> <li class="accordion-navigation accordion-navigation__journal"> <ul> <li class="side-menu-li "> <a href="/journal/molecules"><em>Molecules</em> Home </a> </li> <li class="side-menu-li "> <a href="/journal/molecules/about">Aims & Scope</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/editors"> Editorial Board </a> </li> <li class="side-menu-li "> <a href="/journal/molecules/submission_reviewers">Reviewer Board</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/topical_advisory_panel">Topical Advisory Panel</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/instructions">Instructions for Authors</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/special_issues">Special Issues</a> </li> <li class="side-menu-li"> <a href="/topics?journal=molecules">Topics</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/sections">Sections & Collections</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/apc">Article Processing Charge</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/indexing">Indexing & Archiving</a> </li> <li class="side-menu-li active "> <a href="/journal/molecules/editors_choice">Editor’s Choice Articles</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/most_cited">Most Cited & Viewed</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/stats">Journal Statistics</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/history">Journal History</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/awards">Journal Awards</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/societies">Society Collaborations</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/events">Conferences</a> </li> <li class="side-menu-li "> <a href="/journal/molecules/editorial_office">Editorial Office</a> </li> </ul> </li> </ul> </div> <h2 class="show-for-medium-up">Journal Browser</h2> <a href="#" class="bolded-text link-journal-browser show-for-small" style="margin-bottom: 10px;"> <span class="closed">►</span> <span class="open" style="display: none;">▼</span> Journal Browser </a> <div class="show-for-medium-up"> <div class="generic-item last-item no-border"> <form method="post" action="/journal/molecules" id="qckvi" onsubmit="return !$('#journal-browser-go').hasClass('button--grey');"> <div style="margin-bottom: 10px;" class="UI_JournalBrowser_Volume"> <select id="journal-browser-volume" name="volume" style="width: 100%; margin-bottom: 0;" class="chosen-select"> <option value='' data-id="0">volume</option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="29"> 29 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="28"> 28 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="27"> 27 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="26"> 26 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="25"> 25 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="24"> 24 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="23"> 23 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="22"> 22 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="21"> 21 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="20"> 20 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="19"> 19 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="18"> 18 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="17"> 17 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="16"> 16 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="15"> 15 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="14"> 14 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="13"> 13 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="12"> 12 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="11"> 11 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="10"> 10 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="9"> 9 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="8"> 8 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="7"> 7 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="6"> 6 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="5"> 5 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="4"> 4 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="3"> 3 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="2"> 2 </option> <option onclick="$('#journal-browser-namesystem').val($(this).data('namesystem'));" data-namesystem="molecules" value="1"> 1 </option> </select> </div> <div style="margin-bottom: 10px;" class="UI_JournalBrowser_Issue"> <select id="journal-browser-issue" name="issue" style="width: 100%; margin-bottom: 0;" class="chosen-select"> <option value='' class="volume-0">issue</option> <option value="1" class="volume-29" style="display: none;"> 1 </option> <option value="2" class="volume-29" style="display: none;"> 2 </option> <option value="3" class="volume-29" style="display: none;"> 3 </option> <option value="4" class="volume-29" style="display: none;"> 4 </option> <option value="5" class="volume-29" style="display: none;"> 5 </option> <option value="6" class="volume-29" style="display: none;"> 6 </option> <option value="7" class="volume-29" style="display: none;"> 7 </option> <option value="8" class="volume-29" style="display: none;"> 8 </option> <option value="9" class="volume-29" style="display: none;"> 9 </option> <option value="10" class="volume-29" style="display: none;"> 10 </option> <option value="11" class="volume-29" style="display: none;"> 11 </option> <option value="12" class="volume-29" style="display: none;"> 12 </option> <option value="13" class="volume-29" style="display: none;"> 13 </option> <option value="14" class="volume-29" style="display: none;"> 14 </option> <option value="15" class="volume-29" style="display: none;"> 15 </option> <option value="16" class="volume-29" style="display: none;"> 16 </option> <option value="17" class="volume-29" style="display: none;"> 17 </option> <option value="18" class="volume-29" style="display: none;"> 18 </option> <option value="19" class="volume-29" style="display: none;"> 19 </option> <option value="20" class="volume-29" style="display: none;"> 20 </option> <option value="21" class="volume-29" style="display: none;"> 21 </option> <option value="22" class="volume-29" style="display: none;"> 22 </option> <option value="23" class="volume-29" style="display: none;"> 23 </option> <option value="1" class="volume-28" style="display: none;"> 1 </option> <option value="2" class="volume-28" style="display: none;"> 2 </option> <option value="3" class="volume-28" style="display: none;"> 3 </option> <option value="4" class="volume-28" style="display: none;"> 4 </option> <option value="5" class="volume-28" style="display: none;"> 5 </option> <option value="6" class="volume-28" style="display: none;"> 6 </option> <option value="7" class="volume-28" style="display: none;"> 7 </option> <option value="8" class="volume-28" style="display: none;"> 8 </option> <option value="9" class="volume-28" style="display: none;"> 9 </option> <option value="10" class="volume-28" style="display: none;"> 10 </option> <option value="11" class="volume-28" style="display: none;"> 11 </option> <option value="12" class="volume-28" style="display: none;"> 12 </option> <option value="13" class="volume-28" style="display: none;"> 13 </option> <option value="14" class="volume-28" style="display: none;"> 14 </option> <option value="15" class="volume-28" style="display: none;"> 15 </option> <option value="16" class="volume-28" style="display: none;"> 16 </option> <option value="17" class="volume-28" style="display: none;"> 17 </option> <option value="18" class="volume-28" style="display: none;"> 18 </option> <option value="19" class="volume-28" style="display: none;"> 19 </option> <option value="20" class="volume-28" style="display: none;"> 20 </option> <option value="21" class="volume-28" style="display: none;"> 21 </option> <option value="22" class="volume-28" style="display: none;"> 22 </option> <option value="23" class="volume-28" style="display: none;"> 23 </option> <option value="24" class="volume-28" style="display: none;"> 24 </option> <option value="1" class="volume-27" style="display: none;"> 1 </option> <option value="2" class="volume-27" style="display: none;"> 2 </option> <option value="3" class="volume-27" style="display: none;"> 3 </option> <option value="4" class="volume-27" style="display: none;"> 4 </option> <option value="5" class="volume-27" style="display: none;"> 5 </option> <option value="6" class="volume-27" style="display: none;"> 6 </option> <option value="7" class="volume-27" style="display: none;"> 7 </option> <option value="8" class="volume-27" style="display: none;"> 8 </option> <option value="9" class="volume-27" style="display: none;"> 9 </option> <option value="10" class="volume-27" style="display: none;"> 10 </option> <option value="11" class="volume-27" style="display: none;"> 11 </option> <option value="12" class="volume-27" style="display: none;"> 12 </option> <option value="13" class="volume-27" style="display: none;"> 13 </option> <option value="14" class="volume-27" style="display: none;"> 14 </option> <option value="15" class="volume-27" style="display: none;"> 15 </option> <option value="16" class="volume-27" style="display: none;"> 16 </option> <option value="17" class="volume-27" style="display: none;"> 17 </option> <option value="18" class="volume-27" style="display: none;"> 18 </option> <option value="19" class="volume-27" style="display: none;"> 19 </option> <option value="20" class="volume-27" style="display: none;"> 20 </option> <option value="21" class="volume-27" style="display: none;"> 21 </option> <option value="22" class="volume-27" style="display: none;"> 22 </option> <option value="23" class="volume-27" style="display: none;"> 23 </option> <option value="24" class="volume-27" style="display: none;"> 24 </option> <option value="1" class="volume-26" style="display: none;"> 1 </option> <option value="2" class="volume-26" style="display: none;"> 2 </option> <option value="3" class="volume-26" style="display: none;"> 3 </option> <option value="4" class="volume-26" style="display: none;"> 4 </option> <option value="5" class="volume-26" style="display: none;"> 5 </option> <option value="6" class="volume-26" style="display: none;"> 6 </option> <option value="7" class="volume-26" style="display: none;"> 7 </option> <option value="8" class="volume-26" style="display: none;"> 8 </option> <option value="9" class="volume-26" style="display: none;"> 9 </option> <option value="10" class="volume-26" style="display: none;"> 10 </option> <option value="11" class="volume-26" style="display: none;"> 11 </option> <option value="12" class="volume-26" style="display: none;"> 12 </option> <option value="13" class="volume-26" style="display: none;"> 13 </option> <option value="14" class="volume-26" style="display: none;"> 14 </option> <option value="15" class="volume-26" style="display: none;"> 15 </option> <option value="16" class="volume-26" style="display: none;"> 16 </option> <option value="17" class="volume-26" style="display: none;"> 17 </option> <option value="18" class="volume-26" style="display: none;"> 18 </option> <option value="19" class="volume-26" style="display: none;"> 19 </option> <option value="20" class="volume-26" style="display: none;"> 20 </option> <option value="21" class="volume-26" style="display: none;"> 21 </option> <option value="22" class="volume-26" style="display: none;"> 22 </option> <option value="23" class="volume-26" style="display: none;"> 23 </option> <option value="24" class="volume-26" style="display: none;"> 24 </option> <option value="1" class="volume-25" style="display: none;"> 1 </option> <option value="2" class="volume-25" style="display: none;"> 2 </option> <option value="3" class="volume-25" style="display: none;"> 3 </option> <option value="4" class="volume-25" style="display: none;"> 4 </option> <option value="5" class="volume-25" style="display: none;"> 5 </option> <option value="6" class="volume-25" style="display: none;"> 6 </option> <option value="7" class="volume-25" style="display: none;"> 7 </option> <option value="8" class="volume-25" style="display: none;"> 8 </option> <option value="9" class="volume-25" style="display: none;"> 9 </option> <option value="10" class="volume-25" style="display: none;"> 10 </option> <option value="11" class="volume-25" style="display: none;"> 11 </option> <option value="12" class="volume-25" style="display: none;"> 12 </option> <option value="13" class="volume-25" style="display: none;"> 13 </option> <option value="14" class="volume-25" style="display: none;"> 14 </option> <option value="15" class="volume-25" style="display: none;"> 15 </option> <option value="16" class="volume-25" style="display: none;"> 16 </option> <option value="17" class="volume-25" style="display: none;"> 17 </option> <option value="18" class="volume-25" style="display: none;"> 18 </option> <option value="19" class="volume-25" style="display: none;"> 19 </option> <option value="20" class="volume-25" style="display: none;"> 20 </option> <option value="21" class="volume-25" style="display: none;"> 21 </option> <option value="22" class="volume-25" style="display: none;"> 22 </option> <option value="23" class="volume-25" style="display: none;"> 23 </option> <option value="24" class="volume-25" style="display: none;"> 24 </option> <option value="1" class="volume-24" style="display: none;"> 1 </option> <option value="2" class="volume-24" style="display: none;"> 2 </option> <option value="3" class="volume-24" style="display: none;"> 3 </option> <option value="4" class="volume-24" style="display: none;"> 4 </option> <option value="5" class="volume-24" style="display: none;"> 5 </option> <option value="6" class="volume-24" style="display: none;"> 6 </option> <option value="7" class="volume-24" style="display: none;"> 7 </option> <option value="8" class="volume-24" style="display: none;"> 8 </option> <option value="9" class="volume-24" style="display: none;"> 9 </option> <option value="10" class="volume-24" style="display: none;"> 10 </option> <option value="11" class="volume-24" style="display: none;"> 11 </option> <option value="12" class="volume-24" style="display: none;"> 12 </option> <option value="13" class="volume-24" style="display: none;"> 13 </option> <option value="14" class="volume-24" style="display: none;"> 14 </option> <option value="15" class="volume-24" style="display: none;"> 15 </option> <option value="16" class="volume-24" style="display: none;"> 16 </option> <option value="17" class="volume-24" style="display: none;"> 17 </option> <option value="18" class="volume-24" style="display: none;"> 18 </option> <option value="19" class="volume-24" style="display: none;"> 19 </option> <option value="20" class="volume-24" style="display: none;"> 20 </option> <option value="21" class="volume-24" style="display: none;"> 21 </option> <option value="22" class="volume-24" style="display: none;"> 22 </option> <option value="23" class="volume-24" style="display: none;"> 23 </option> <option value="24" class="volume-24" style="display: none;"> 24 </option> <option value="1" class="volume-23" style="display: none;"> 1 </option> <option value="2" class="volume-23" style="display: none;"> 2 </option> <option value="3" class="volume-23" style="display: none;"> 3 </option> <option value="4" class="volume-23" style="display: none;"> 4 </option> <option value="5" class="volume-23" style="display: none;"> 5 </option> <option value="6" class="volume-23" style="display: none;"> 6 </option> <option value="7" class="volume-23" style="display: none;"> 7 </option> <option value="8" class="volume-23" style="display: none;"> 8 </option> <option value="9" class="volume-23" style="display: none;"> 9 </option> <option value="10" class="volume-23" style="display: none;"> 10 </option> <option value="11" class="volume-23" style="display: none;"> 11 </option> <option value="12" class="volume-23" style="display: none;"> 12 </option> <option value="1" class="volume-22" style="display: none;"> 1 </option> <option value="2" class="volume-22" style="display: none;"> 2 </option> <option value="3" class="volume-22" style="display: none;"> 3 </option> <option value="4" class="volume-22" style="display: none;"> 4 </option> <option value="5" class="volume-22" style="display: none;"> 5 </option> <option value="6" class="volume-22" style="display: none;"> 6 </option> <option value="7" class="volume-22" style="display: none;"> 7 </option> <option value="8" class="volume-22" style="display: none;"> 8 </option> <option value="9" class="volume-22" style="display: none;"> 9 </option> <option value="10" class="volume-22" style="display: none;"> 10 </option> <option value="11" class="volume-22" style="display: none;"> 11 </option> <option value="12" class="volume-22" style="display: none;"> 12 </option> <option value="1" class="volume-21" style="display: none;"> 1 </option> <option value="2" class="volume-21" style="display: none;"> 2 </option> <option value="3" class="volume-21" style="display: none;"> 3 </option> <option value="4" class="volume-21" style="display: none;"> 4 </option> <option value="5" class="volume-21" style="display: none;"> 5 </option> <option value="6" class="volume-21" style="display: none;"> 6 </option> <option value="7" class="volume-21" style="display: none;"> 7 </option> <option value="8" class="volume-21" style="display: none;"> 8 </option> <option value="9" class="volume-21" style="display: none;"> 9 </option> <option value="10" class="volume-21" style="display: none;"> 10 </option> <option value="11" class="volume-21" style="display: none;"> 11 </option> <option value="12" class="volume-21" style="display: none;"> 12 </option> <option value="1" class="volume-20" style="display: none;"> 1 </option> <option value="2" class="volume-20" style="display: none;"> 2 </option> <option value="3" class="volume-20" style="display: none;"> 3 </option> <option value="4" class="volume-20" style="display: none;"> 4 </option> <option value="5" class="volume-20" style="display: none;"> 5 </option> <option value="6" class="volume-20" style="display: none;"> 6 </option> <option value="7" class="volume-20" style="display: none;"> 7 </option> <option value="8" class="volume-20" style="display: none;"> 8 </option> <option value="9" class="volume-20" style="display: none;"> 9 </option> <option value="10" class="volume-20" style="display: none;"> 10 </option> <option value="11" class="volume-20" style="display: none;"> 11 </option> <option value="12" class="volume-20" style="display: none;"> 12 </option> <option value="1" class="volume-19" style="display: none;"> 1 </option> <option value="2" class="volume-19" style="display: none;"> 2 </option> <option value="3" class="volume-19" style="display: none;"> 3 </option> <option value="4" class="volume-19" style="display: none;"> 4 </option> <option value="5" class="volume-19" style="display: none;"> 5 </option> <option value="6" class="volume-19" style="display: none;"> 6 </option> <option value="7" class="volume-19" style="display: none;"> 7 </option> <option value="8" class="volume-19" style="display: none;"> 8 </option> <option value="9" class="volume-19" style="display: none;"> 9 </option> <option value="10" class="volume-19" style="display: none;"> 10 </option> <option value="11" class="volume-19" style="display: none;"> 11 </option> <option value="12" class="volume-19" style="display: none;"> 12 </option> <option value="1" class="volume-18" style="display: none;"> 1 </option> <option value="2" class="volume-18" style="display: none;"> 2 </option> <option value="3" class="volume-18" style="display: none;"> 3 </option> <option value="4" class="volume-18" style="display: none;"> 4 </option> <option value="5" class="volume-18" style="display: none;"> 5 </option> <option value="6" class="volume-18" style="display: none;"> 6 </option> <option value="7" class="volume-18" style="display: none;"> 7 </option> <option value="8" class="volume-18" style="display: none;"> 8 </option> <option value="9" class="volume-18" style="display: none;"> 9 </option> <option value="10" class="volume-18" style="display: none;"> 10 </option> <option value="11" class="volume-18" style="display: none;"> 11 </option> <option value="12" class="volume-18" style="display: none;"> 12 </option> <option value="1" class="volume-17" style="display: none;"> 1 </option> <option value="2" class="volume-17" style="display: none;"> 2 </option> <option value="3" class="volume-17" style="display: none;"> 3 </option> <option value="4" class="volume-17" style="display: none;"> 4 </option> <option value="5" class="volume-17" style="display: none;"> 5 </option> <option value="6" class="volume-17" style="display: none;"> 6 </option> <option value="7" class="volume-17" style="display: none;"> 7 </option> <option value="8" class="volume-17" style="display: none;"> 8 </option> <option value="9" class="volume-17" style="display: none;"> 9 </option> <option value="10" class="volume-17" style="display: none;"> 10 </option> <option value="11" class="volume-17" style="display: none;"> 11 </option> <option value="12" class="volume-17" style="display: none;"> 12 </option> <option value="1" class="volume-16" style="display: none;"> 1 </option> <option value="2" class="volume-16" style="display: none;"> 2 </option> <option value="3" class="volume-16" style="display: none;"> 3 </option> <option value="4" class="volume-16" style="display: none;"> 4 </option> <option value="5" class="volume-16" style="display: none;"> 5 </option> <option value="6" class="volume-16" style="display: none;"> 6 </option> <option value="7" class="volume-16" style="display: none;"> 7 </option> <option value="8" class="volume-16" style="display: none;"> 8 </option> <option value="9" class="volume-16" style="display: none;"> 9 </option> <option value="10" class="volume-16" style="display: none;"> 10 </option> <option value="11" class="volume-16" style="display: none;"> 11 </option> <option value="12" class="volume-16" style="display: none;"> 12 </option> <option value="1" class="volume-15" style="display: none;"> 1 </option> <option value="2" class="volume-15" style="display: none;"> 2 </option> <option value="3" class="volume-15" style="display: none;"> 3 </option> <option value="4" class="volume-15" style="display: none;"> 4 </option> <option value="5" class="volume-15" style="display: none;"> 5 </option> <option value="6" class="volume-15" style="display: none;"> 6 </option> <option value="7" class="volume-15" style="display: none;"> 7 </option> <option value="8" class="volume-15" style="display: none;"> 8 </option> <option value="9" class="volume-15" style="display: none;"> 9 </option> <option value="10" class="volume-15" style="display: none;"> 10 </option> <option value="11" class="volume-15" style="display: none;"> 11 </option> <option value="12" class="volume-15" style="display: none;"> 12 </option> <option value="1" class="volume-14" style="display: none;"> 1 </option> <option value="2" class="volume-14" style="display: none;"> 2 </option> <option value="3" class="volume-14" style="display: none;"> 3 </option> <option value="4" class="volume-14" style="display: none;"> 4 </option> <option value="5" class="volume-14" style="display: none;"> 5 </option> <option value="6" class="volume-14" style="display: none;"> 6 </option> <option value="7" class="volume-14" style="display: none;"> 7 </option> <option value="8" class="volume-14" style="display: none;"> 8 </option> <option value="9" class="volume-14" style="display: none;"> 9 </option> <option value="10" class="volume-14" style="display: none;"> 10 </option> <option value="11" class="volume-14" style="display: none;"> 11 </option> <option value="12" class="volume-14" style="display: none;"> 12 </option> <option value="1" class="volume-13" style="display: none;"> 1 </option> <option value="2" class="volume-13" style="display: none;"> 2 </option> <option value="3" class="volume-13" style="display: none;"> 3 </option> <option value="4" class="volume-13" style="display: none;"> 4 </option> <option value="5" class="volume-13" style="display: none;"> 5 </option> <option value="6" class="volume-13" style="display: none;"> 6 </option> <option value="7" class="volume-13" style="display: none;"> 7 </option> <option value="8" class="volume-13" style="display: none;"> 8 </option> <option value="9" class="volume-13" style="display: none;"> 9 </option> <option value="10" class="volume-13" style="display: none;"> 10 </option> <option value="11" class="volume-13" style="display: none;"> 11 </option> <option value="12" class="volume-13" style="display: none;"> 12 </option> <option value="1" class="volume-12" style="display: none;"> 1 </option> <option value="2" class="volume-12" style="display: none;"> 2 </option> <option value="3" class="volume-12" style="display: none;"> 3 </option> <option value="4" class="volume-12" style="display: none;"> 4 </option> <option value="5" class="volume-12" style="display: none;"> 5 </option> <option value="6" class="volume-12" style="display: none;"> 6 </option> <option value="7" class="volume-12" style="display: none;"> 7 </option> <option value="8" class="volume-12" style="display: none;"> 8 </option> <option value="9" class="volume-12" style="display: none;"> 9 </option> <option value="10" class="volume-12" style="display: none;"> 10 </option> <option value="11" class="volume-12" style="display: none;"> 11 </option> <option value="12" class="volume-12" style="display: none;"> 12 </option> <option value="1" class="volume-11" style="display: none;"> 1 </option> <option value="2" class="volume-11" style="display: none;"> 2 </option> <option value="4" class="volume-11" style="display: none;"> 4 </option> <option value="5" class="volume-11" style="display: none;"> 5 </option> <option value="6" class="volume-11" style="display: none;"> 6 </option> <option value="7" class="volume-11" style="display: none;"> 7 </option> <option value="8" class="volume-11" style="display: none;"> 8 </option> <option value="9" class="volume-11" style="display: none;"> 9 </option> <option value="10" class="volume-11" style="display: none;"> 10 </option> <option value="11" class="volume-11" style="display: none;"> 11 </option> <option value="12" class="volume-11" style="display: none;"> 12 </option> <option value="1" class="volume-10" style="display: none;"> 1 </option> <option value="2" class="volume-10" style="display: none;"> 2 </option> <option value="3" class="volume-10" style="display: none;"> 3 </option> <option value="6" class="volume-10" style="display: none;"> 6 </option> <option value="7" class="volume-10" style="display: none;"> 7 </option> <option value="8" class="volume-10" style="display: none;"> 8 </option> <option value="9" class="volume-10" style="display: none;"> 9 </option> <option value="10" class="volume-10" style="display: none;"> 10 </option> <option value="11" class="volume-10" style="display: none;"> 11 </option> <option value="12" class="volume-10" style="display: none;"> 12 </option> <option value="1" class="volume-9" style="display: none;"> 1 </option> <option value="3" class="volume-9" style="display: none;"> 3 </option> <option value="4" class="volume-9" style="display: none;"> 4 </option> <option value="5" class="volume-9" style="display: none;"> 5 </option> <option value="6" class="volume-9" style="display: none;"> 6 </option> <option value="7" class="volume-9" style="display: none;"> 7 </option> <option value="8" class="volume-9" style="display: none;"> 8 </option> <option value="9" class="volume-9" style="display: none;"> 9 </option> <option value="10" class="volume-9" style="display: none;"> 10 </option> <option value="11" class="volume-9" style="display: none;"> 11 </option> <option value="12" class="volume-9" style="display: none;"> 12 </option> <option value="1" class="volume-8" style="display: none;"> 1 </option> <option value="2" class="volume-8" style="display: none;"> 2 </option> <option value="3" class="volume-8" style="display: none;"> 3 </option> <option value="4" class="volume-8" style="display: none;"> 4 </option> <option value="5" class="volume-8" style="display: none;"> 5 </option> <option value="6" class="volume-8" style="display: none;"> 6 </option> <option value="7" class="volume-8" style="display: none;"> 7 </option> <option value="8" class="volume-8" style="display: none;"> 8 </option> <option value="9" class="volume-8" style="display: none;"> 9 </option> <option value="10" class="volume-8" style="display: none;"> 10 </option> <option value="11" class="volume-8" style="display: none;"> 11 </option> <option value="12" class="volume-8" style="display: none;"> 12 </option> <option value="1" class="volume-7" style="display: none;"> 1 </option> <option value="2" class="volume-7" style="display: none;"> 2 </option> <option value="3" class="volume-7" style="display: none;"> 3 </option> <option value="4" class="volume-7" style="display: none;"> 4 </option> <option value="5" class="volume-7" style="display: none;"> 5 </option> <option value="6" class="volume-7" style="display: none;"> 6 </option> <option value="7" class="volume-7" style="display: none;"> 7 </option> <option value="8" class="volume-7" style="display: none;"> 8 </option> <option value="9" class="volume-7" style="display: none;"> 9 </option> <option value="10" class="volume-7" style="display: none;"> 10 </option> <option value="11" class="volume-7" style="display: none;"> 11 </option> <option value="12" class="volume-7" style="display: none;"> 12 </option> <option value="1" class="volume-6" style="display: none;"> 1 </option> <option value="2" class="volume-6" style="display: none;"> 2 </option> <option value="3" class="volume-6" style="display: none;"> 3 </option> <option value="4" class="volume-6" style="display: none;"> 4 </option> <option value="5" class="volume-6" style="display: none;"> 5 </option> <option value="6" class="volume-6" style="display: none;"> 6 </option> <option value="7" class="volume-6" style="display: none;"> 7 </option> <option value="8" class="volume-6" style="display: none;"> 8 </option> <option value="9" class="volume-6" style="display: none;"> 9 </option> <option value="10" class="volume-6" style="display: none;"> 10 </option> <option value="11" class="volume-6" style="display: none;"> 11 </option> <option value="12" class="volume-6" style="display: none;"> 12 </option> <option value="1" class="volume-5" style="display: none;"> 1 </option> <option value="2" class="volume-5" style="display: none;"> 2 </option> <option value="3" class="volume-5" style="display: none;"> 3 </option> <option value="4" class="volume-5" style="display: none;"> 4 </option> <option value="5" class="volume-5" style="display: none;"> 5 </option> <option value="6" class="volume-5" style="display: none;"> 6 </option> <option value="7" class="volume-5" style="display: none;"> 7 </option> <option value="8" class="volume-5" style="display: none;"> 8 </option> <option value="9" class="volume-5" style="display: none;"> 9 </option> <option value="10" class="volume-5" style="display: none;"> 10 </option> <option value="11" class="volume-5" style="display: none;"> 11 </option> <option value="12" class="volume-5" style="display: none;"> 12 </option> <option value="1" class="volume-4" style="display: none;"> 1 </option> <option value="2" class="volume-4" style="display: none;"> 2 </option> <option value="3" class="volume-4" style="display: none;"> 3 </option> <option value="4" class="volume-4" style="display: none;"> 4 </option> <option value="5" class="volume-4" style="display: none;"> 5 </option> <option value="6" class="volume-4" style="display: none;"> 6 </option> <option value="7" class="volume-4" style="display: none;"> 7 </option> <option value="8" class="volume-4" style="display: none;"> 8 </option> <option value="9" class="volume-4" style="display: none;"> 9 </option> <option value="10" class="volume-4" style="display: none;"> 10 </option> <option value="11" class="volume-4" style="display: none;"> 11 </option> <option value="12" class="volume-4" style="display: none;"> 12 </option> <option value="1" class="volume-3" style="display: none;"> 1 </option> <option value="2" class="volume-3" style="display: none;"> 2 </option> <option value="3" class="volume-3" style="display: none;"> 3 </option> <option value="4" class="volume-3" style="display: none;"> 4 </option> <option value="5" class="volume-3" style="display: none;"> 5 </option> <option value="6" class="volume-3" style="display: none;"> 6 </option> <option value="7" class="volume-3" style="display: none;"> 7 </option> <option value="8" class="volume-3" style="display: none;"> 8 </option> <option value="1" class="volume-2" style="display: none;"> 1 </option> <option value="2" class="volume-2" style="display: none;"> 2 </option> <option value="3" class="volume-2" style="display: none;"> 3 </option> <option value="4" class="volume-2" style="display: none;"> 4 </option> <option value="5" class="volume-2" style="display: none;"> 5 </option> <option value="6" class="volume-2" style="display: none;"> 6 </option> <option value="7" class="volume-2" style="display: none;"> 7 </option> <option value="8" class="volume-2" style="display: none;"> 8 </option> <option value="9" class="volume-2" style="display: none;"> 9 </option> <option value="10" class="volume-2" style="display: none;"> 10 </option> <option value="11" class="volume-2" style="display: none;"> 11 </option> <option value="12" class="volume-2" style="display: none;"> 12 </option> <option value="1" class="volume-1" style="display: none;"> 1 </option> </select> </div> <input type="hidden" name="_token" value="Xy6Lj-rSiu_iYlba2g995RqbmE3PVYqzl5tahaC6ohc"> <input type="hidden" id="journal-browser-namesystem" name="namesystem" value="molecules"> <input type="hidden" name="getIssueByVI" value="1"> <input type="submit" id="journal-browser-go" value="Go" style="" class="button button--grey button--full-width UI_JournalBrowser_GoButton"> </form> <div style="clear:both;"></div> </div> <div class="generic-item last-item first-item no-border"> <ul class="side-menu-ul"> <li class="side-menu-li side-menu-li__padded"> <a href="/1420-3049/29/23"> <i class="material-icons arrow" style="display: inline-block"> arrow_forward_ios </i> <strong>Forthcoming issue</strong> </a> <br/> <a href="/1420-3049/29/22"> <i class="material-icons arrow" style="display: inline-block"> arrow_forward_ios </i> <strong>Current issue</strong> </a> </li> <div class="show-for-medium-up"> <div class=""> <div class="journal-browser-volumes "> <li class="side-menu-li"> <a href="/1420-3049/29"> Vol. 29 (2024) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/28"> Vol. 28 (2023) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/27"> Vol. 27 (2022) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/26"> Vol. 26 (2021) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/25"> Vol. 25 (2020) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/24"> Vol. 24 (2019) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/23"> Vol. 23 (2018) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/22"> Vol. 22 (2017) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/21"> Vol. 21 (2016) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/20"> Vol. 20 (2015) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/19"> Vol. 19 (2014) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/18"> Vol. 18 (2013) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/17"> Vol. 17 (2012) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/16"> Vol. 16 (2011) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/15"> Vol. 15 (2010) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/14"> Vol. 14 (2009) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/13"> Vol. 13 (2008) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/12"> Vol. 12 (2007) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/11"> Vol. 11 (2006) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/10"> Vol. 10 (2005) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/9"> Vol. 9 (2004) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/8"> Vol. 8 (2003) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/7"> Vol. 7 (2002) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/6"> Vol. 6 (2001) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/5"> Vol. 5 (2000) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/4"> Vol. 4 (1999) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/3"> Vol. 3 (1998) </a> </li> <li class="side-menu-li"> <a href="/1420-3049/2"> Vol. 2 (1997) </a> </li> </div> <li class="side-menu-header-li">Volumes not published by MDPI</li> <div style="column-count: 2"> <li class="side-menu-li"> <a href="/1420-3049/1"> Vol. 1 (1996) </a> </li> </div> </div> </div> </ul> </div> </div> </div> </div> <div class="show-for-medium-up"> <div class="content__container banner-container" style="padding:0px;"> <div> <div class="generic-item1"> <div id="bestAwardPaperAD" style="padding: 0px; width: 100%;"> <div id="banner1" class="adserver-banner" data-zone="4" data-repeat-interval="10" style="width: 100%; padding:0px;margin:0px;"></div> </div> </div> </div> </div> </div> </div> <div id="middle-column" class="content__column large-9 medium-9 small-12 columns end middle-bordered"> <div class="middle-column__help"> <div class="middle-column__help__fixed show-for-medium-up"> <a href="#" class="UA_ShareButton" data-reveal-id="main-share-modal" title="Share"> <i class="material-icons">share</i> </a> <a href="#" data-reveal-id="main-help-modal" title="Help"> <i class="material-icons">announcement</i> </a> </div> <div id="main-help-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Need Help?</h2> </div> <div class="small-6 columns"> <h3>Support</h3> <p> Find support for a specific problem in the support section of our website. </p> <a target="_blank" href="/about/contactform" class="button button--color button--full-width"> Get Support </a> </div> <div class="small-6 columns"> <h3>Feedback</h3> <p> Please let us know what you think of our products and services. </p> <a target="_blank" href="/feedback/send" class="button button--color button--full-width"> Give Feedback </a> </div> <div class="small-6 columns end"> <h3>Information</h3> <p> Visit our dedicated information section to learn more about MDPI. </p> <a target="_blank" href="/authors" class="button button--color button--full-width"> Get Information </a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div class="middle-column__main ul-spaced"> <div class="content__container"> <h1>Editor’s Choice Articles</h1> <p> Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal. </p> <form id="exportArticles" method="post" style="margin: 0em 0px 1em 0px;" action="/export"> <input type="hidden" name="_token" value="Ya3q8mUNypGmJd2OEcgGEpt6ARfAFtxMDr3_4q9Hu-4"> <div class="ui-tabs-panel article-listing"> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { availableFonts: ["TeX"], preferredFonts: "TeX", webFont:"TeX", imageFont:"TeX", undefinedFamily:"'Arial Unicode MS',serif", scale: 80, linebreaks: { automatic: true, width: "container" } }, "TeX": { extensions: ["noErrors.js"], noErrors: { inlineDelimiters: ["",""], multiLine: true, style: { "font-size": "90%", "text-align": "left", "color": "black", "padding": "1px 3px", "border": "1px solid" } } } }); MathJax.Hub.Register.StartupHook("End",function () { $(".art-abstract").css("display", "block"); }); </script> <script type="text/javascript" src="https://pub.mdpi-res.com/bundles/mathjax/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <div class="header listing-header"> <div class="listing-display-options1" id="selectView"> <div class="row generic-item indented1"> <div class="large-4 medium-4 small-12 columns"> <div class="listing-option__label"> Order results </div> <div class="listing-option__options"> <select class="chosen-select" name="listby" onchange="$('#articleBrowserView').click(); return false;"> <option value="type" > Content type </option> <option value="date" selected="selected"> Publication Date </option> <option value="cited" > Times Cited </option> <option value="viewed" > Times Viewed </option> </select> </div> </div> <div class="large-4 medium-4 small-12 columns"> <div class="listing-option__label"> Result details </div> <div class="listing-option__options"> <select class="chosen-select" name="view" onchange="$('#articleBrowserView').click(); return false;"> <option value="default">Normal</option> <option value="abstract">Extended</option> <option value="compact">Compact</option> </select> </div> </div> <div class="large-4 medium-4 small-12 columns"> <div class="listing-option__label"> Results per page </div> <div class="listing-option__options"> <select class="chosen-select" name="page_count" onchange="$('#articleBrowserView').click(); return false;"> <option value="10"> 10 </option> <option value="50" selected="selected"> 50 </option> <option value="100"> 100 </option> <option value="200"> 200 </option> </select> </div> </div> <div class="listing-apply" style="display: none;"> <input type="submit" value="Apply Settings" class="articleBrowserSubmit" data-url="https://www.mdpi.com/journal/molecules/editors_choice" id="articleBrowserView"> </div> </div> </div> <div class="row listing-select-options1"> <div class="columns small-12"> <div class="select generic-item"> <a href="#" class="export-options-show export-element export-expanded"> Show export options <i class="material-icons">expand_more</i> </a> <a href="#" class="export-options-show export-element"> Show export options <i class="material-icons">expand_less</i> </a> </div> <div class="listing-export-options export-element"> <div class="export-element" style="margin-top: 10px; margin-bottom: 10px;"> <input type="checkbox" class="selector selectUnselectAll bb-checkbox" id="selectUnselectAll" data-select-all="article-listing"> <div class="indented bb-indented"> Select all </div> </div> <input type="hidden" id="exportPosition" name="export_position" value=""> <div class="indented1"> <span style="display: inline-block; margin-right: 15px; margin-bottom: 10px;">Export citation of selected articles as:</span> <br class="show-for-medium-down" /> <div class="listing-export"> <select class="chosen-select inline" name="format_top"> <option value="plaintext"> Plain Text </option> <option value="bibtex"> BibTeX </option> <option value="bibtex_no_abstract"> BibTeX (without abstracts) </option> <option value="endnote"> Endnote </option> <option value="endnote_no_abstract"> Endnote (without abstracts) </option> <option value="tab_delimited"> Tab-delimited </option> <option value="ris"> RIS </option> </select> </div> <input type="submit" value="Export" class="articleBrowserSubmit button button--color-inversed" id="articleBrowserExport_top"> </div> </div> <a id="link-export-modal-nothing-selected" data-reveal-id="export-modal-nothing-selected" style="display: none;"></a> <div id="export-modal-nothing-selected" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2>Error</h2> Oops... you haven't selected anything for export. </div> <div class="small-12 columns"> <a class="button button--color" onclick="$(this).closest('.reveal-modal-new').foundation('reveal', 'close'); return false;">Ok</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div> <div style="clear: both"></div> </div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1020796" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-1020796" aria-controls="drop-supplementary-1020796" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-1020796" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/28/1/315/s1?version=1672407293"> Supplementary File 1 (ZIP, 4896 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 3282 KiB </span> <a href="/1420-3049/28/1/315/pdf?version=1672407292" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Efficient Hydrogen and Oxygen Evolution Catalysis Using 3D-Structured Nickel Phosphosulfide Nanosheets in Alkaline Media" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/28/1/315">Efficient Hydrogen and Oxygen Evolution Catalysis Using 3D-Structured Nickel Phosphosulfide Nanosheets in Alkaline Media</a> <div class="authors"> by <span class="inlineblock "><strong>Lei Lin</strong>, </span><span class="inlineblock "><strong>Qiang Fu</strong>, </span><span class="inlineblock "><strong>Junbei Hu</strong>, </span><span class="inlineblock "><strong>Ran Wang</strong> and </span><span class="inlineblock "><strong>Xianjie Wang</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2023</b>, <em>28</em>(1), 315; <a href="https://doi.org/10.3390/molecules28010315">https://doi.org/10.3390/molecules28010315</a> - 30 Dec 2022 </div> <a href="/1420-3049/28/1/315#metrics">Cited by 3</a> | Viewed by 2514 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Water electrolysis offers a zero-carbon route to generate renewable energy conversion systems. Herein, a self-supported nickel phosphosulfide nanosheet (NS) electrocatalyst was fabricated at a low temperature on carbon cloth, which was then subjected to Ar etching to enhance its catalytic activity. Etching resulted <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/315/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Water electrolysis offers a zero-carbon route to generate renewable energy conversion systems. Herein, a self-supported nickel phosphosulfide nanosheet (NS) electrocatalyst was fabricated at a low temperature on carbon cloth, which was then subjected to Ar etching to enhance its catalytic activity. Etching resulted in better hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performance than other samples, with overpotentials of 103.1 mV (at 10 mA cm<sup>−2</sup>) and 278.9 mV (at 50 mA cm<sup>−2</sup>), respectively. The characterization results confirmed that Ar etching created a thin amorphous layer around the NiPS<sub>3</sub> NSs, which increased the number of active sites and modulated their electronic structures. These 3D-structured NiPS<sub>3</sub> NSs and their subsequent Ar etching process show promise for applications in overall water splitting in alkaline media. <a href="/1420-3049/28/1/315">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Energy_Storage_Materials_Applications ">Advanced Energy Storage Materials and Their Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/315/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1020796"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1020796"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1020796" data-cycle-prev="#prev1020796" data-cycle-progressive="#images1020796" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1020796-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g001-550.jpg?1672407362" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1020796" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1020796-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g002-550.jpg?1672407366'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1020796-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g003-550.jpg?1672407359'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1020796-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g004-550.jpg?1672407364'><p>Figure 4</p></div></script></div></div><div id="article-1020796-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g001-550.jpg?1672407362" title=" <strong>Figure 1</strong><br/> <p>(<b>a</b>) Schematic illustration of the synthesis process for Ar-NiPS<sub>3</sub>; (<b>b</b>) SEM image and (<b>c</b>) TEM image of an Ar-etched NiPS<sub>3</sub> nanosheet; (<b>d</b>) HRTEM image of an Ar-etched NiPS<sub>3</sub> nanosheet with a ~10 nm amorphous layer; (<b>e</b>) enlarged HRTEM image and (<b>f</b>) SAED pattern of the basal plane; (<b>g</b>) EDS line scan profile of the nanosheet.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/315'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g002-550.jpg?1672407366" title=" <strong>Figure 2</strong><br/> <p>(<b>a</b>) XRD patterns of NiPS<sub>3</sub> powder, NiPS<sub>3</sub> NSs, Ar-NiPS<sub>3</sub> NSs, and CC; (<b>b</b>) Raman spectra of NiPS<sub>3</sub> powder, NiPS<sub>3</sub> NSs, and Ar-NiPS<sub>3</sub> NSs; (<b>c</b>) EPR spectra of NiPS<sub>3</sub> NSs and Ar-NiPS<sub>3</sub> NSs; XPS spectra of (<b>d</b>) Ni 2p, (<b>e</b>) P 2p, and (<b>f</b>) S 2p regions of NiPS<sub>3</sub> NSs before and after Ar etching.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/315'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g003-550.jpg?1672407359" title=" <strong>Figure 3</strong><br/> <p>(<b>a</b>) iR-corrected LSV curves of different samples measured in 1 M KOH and (<b>b</b>) Nyquist plots of different samples; (<b>c</b>) corresponding Tafel slopes; (<b>d</b>) electrochemical double-layer capacitance of the corresponding samples of the as-prepared Ar-NiPS<sub>3</sub>, NiPS<sub>3</sub> NS, NiPS<sub>3</sub> powder, and Ni precursor; (<b>e</b>) stability test of Ar-NiPS<sub>3</sub> NSs (LSV curves before and after 1000 CV are shown in the inset); (<b>f</b>) comparison of HER activities of Ar-NiPS<sub>3</sub> and other representative electrocatalysts reported in refs. [<a href="#B19-molecules-28-00315" class="html-bibr">19</a>,<a href="#B43-molecules-28-00315" class="html-bibr">43</a>,<a href="#B44-molecules-28-00315" class="html-bibr">44</a>,<a href="#B45-molecules-28-00315" class="html-bibr">45</a>,<a href="#B46-molecules-28-00315" class="html-bibr">46</a>,<a href="#B47-molecules-28-00315" class="html-bibr">47</a>,<a href="#B48-molecules-28-00315" class="html-bibr">48</a>,<a href="#B49-molecules-28-00315" class="html-bibr">49</a>,<a href="#B50-molecules-28-00315" class="html-bibr">50</a>,<a href="#B51-molecules-28-00315" class="html-bibr">51</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/315'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00315/article_deploy/html/images/molecules-28-00315-g004-550.jpg?1672407364" title=" <strong>Figure 4</strong><br/> <p>Electrochemical OER performance of different samples: (<b>a</b>) iR-corrected LSV curves of different samples measured in 1 M KOH; (<b>b</b>) Nyquist plots of different samples; (<b>c</b>) corresponding Tafel slopes; (<b>d</b>) stability test of Ar-NiPS<sub>3</sub> NSs under different current densities; (<b>e</b>) performance of the full water-splitting device using the Ar-NiPS<sub>3</sub> and NiPS<sub>3</sub> electrode as both the anode and cathode; (<b>f</b>) stability test before and after 1000 CV cycles of Ar-NiPS<sub>3</sub>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/315'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1019069" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-1019069" aria-controls="drop-supplementary-1019069" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-1019069" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/28/1/278/s1?version=1672309628"> Supplementary File 1 (ZIP, 623 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 18 pages, 13113 KiB </span> <a href="/1420-3049/28/1/278/pdf?version=1672996683" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/28/1/278">Gaseous- and Condensed-Phase Activities of Some Reactive P- and N-Containing Fire Retardants in Polystyrenes</a> <div class="authors"> by <span class="inlineblock "><strong>Svetlana Tretsiakova-McNally</strong>, </span><span class="inlineblock "><strong>Aloshy Baby</strong>, </span><span class="inlineblock "><strong>Paul Joseph</strong>, </span><span class="inlineblock "><strong>Doris Pospiech</strong>, </span><span class="inlineblock "><strong>Eileen Schierz</strong>, </span><span class="inlineblock "><strong>Albena Lederer</strong>, </span><span class="inlineblock "><strong>Malavika Arun</strong> and </span><span class="inlineblock "><strong>Gaëlle Fontaine</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2023</b>, <em>28</em>(1), 278; <a href="https://doi.org/10.3390/molecules28010278">https://doi.org/10.3390/molecules28010278</a> - 29 Dec 2022 </div> <a href="/1420-3049/28/1/278#metrics">Cited by 2</a> | Viewed by 2254 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-<i>p</i>-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/278/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Polystyrene (PS) was modified by covalently binding P-, P-N- and/or N- containing fire-retardant moieties through co- or ter-polymerization reactions of styrene with diethyl(acryloyloxymethyl)phosphonate (DEAMP), diethyl-<i>p</i>-vinylbenzyl phosphonate (DEpVBP), acrylic acid-2-[(diethoxyphosphoryl)methylamino]ethyl ester (ADEPMAE) and maleimide (MI). In the present study, the condensed-phase and the gaseous-phase activities of the abovementioned fire retardants within the prepared co- and ter-polymers were evaluated for the first time. Pyrolysis–Gas Chromatography/Mass Spectrometry was employed to identify the volatile products formed during the thermal decomposition of the modified polymers. Benzaldehyde, α-methylstyrene, acetophenone, triethyl phosphate and styrene (monomer, dimer and trimer) were detected in the gaseous phase following the thermal cracking of fire-retardant groups and through main chain scissions. In the case of PS modified with ADEPMAE, the evolution of pyrolysis gases was suppressed by possible inhibitory actions of triethyl phosphate in the gaseous phase. The reactive modification of PS by simultaneously incorporating P- (DEAMP or DEpVBP) and N- (MI) monomeric units, in the chains of ter-polymers, resulted in a predominantly condensed-phase mode of action owing to synergistic P and N interactions. The solid-state <sup>31</sup>P NMR spectroscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy, Inductively-Coupled Plasma/Optical Emission Spectroscopy and X-ray Photoelectron Spectroscopy of char residues, obtained from ter-polymers, confirmed the retention of the phosphorus species in their structures. <a href="/1420-3049/28/1/278">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/feature_papers_in_materials_chemistry ">Feature Papers in Materials Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/278/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1019069"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1019069"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1019069" data-cycle-prev="#prev1019069" data-cycle-progressive="#images1019069" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1019069-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-ag-550.jpg?1672996778" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images1019069" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g001-550.jpg?1672996769'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g002-550.jpg?1672996768'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g003-550.jpg?1672996771'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g004-550.jpg?1672996774'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g005-550.jpg?1672996778'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g006-550.jpg?1672996766'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g007-550.jpg?1672996772'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g008-550.jpg?1672996765'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g009-550.jpg?1672996764'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-sch001-550.jpg?1672996770'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-1019069-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-sch002-550.jpg?1672996776'><p>Scheme 2</p></div></script></div></div><div id="article-1019069-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-ag-550.jpg?1672996778" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g001-550.jpg?1672996769" title=" <strong>Figure 1</strong><br/> <p>The chemical structures of P- containing (<b>I</b>–<b>III</b>) and N-containing (<b>VI</b>) monomers.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g002-550.jpg?1672996768" title=" <strong>Figure 2</strong><br/> <p>Gas chromatograms of pyrolysis gases released upon the decomposition of poly(S-<span class="html-italic">co</span>-DEAMP) at 210 °C (black), 325 °C (blue) and 380 °C (red).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g003-550.jpg?1672996771" title=" <strong>Figure 3</strong><br/> <p>Mass spectrum of gases formed as a result of poly(S-<span class="html-italic">co</span>-DEAMP) pyrolysis at 325 °C (6.006 min).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g004-550.jpg?1672996774" title=" <strong>Figure 4</strong><br/> <p>Gas chromatograms of pyrolysis gases released upon the decomposition of poly(S-<span class="html-italic">co</span>-DEpVBP) at 240 °C (black), 355 °C (blue) and 445 °C (red).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g005-550.jpg?1672996778" title=" <strong>Figure 5</strong><br/> <p>Gas chromatograms of pyrolysis gases released upon the decomposition of poly(S-<span class="html-italic">co</span>-ADEPMAE) at 250 °C (black), 300 °C (blue) and 400 °C (red).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g006-550.jpg?1672996766" title=" <strong>Figure 6</strong><br/> <p>Mass spectrum of gases formed as a result of poly(S-<span class="html-italic">co</span>-ADEPMAE) pyrolysis at 250 °C (14.003 min).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g007-550.jpg?1672996772" title=" <strong>Figure 7</strong><br/> <p>The EDS spectra of char residues obtained from the samples of: PS (<b>a</b>), poly(S-<span class="html-italic">co</span>-ADEPMAE) (<b>b</b>), poly(S-<span class="html-italic">ter</span>-DEAMP-<span class="html-italic">ter</span>-MI) (<b>c</b>), and poly(S-<span class="html-italic">ter</span>-DEpVBP-<span class="html-italic">ter</span>-MI) (<b>d</b>). All the samples were sputtered with gold (Au).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g008-550.jpg?1672996765" title=" <strong>Figure 8</strong><br/> <p>The P2p spectra of chars obtained from poly(S-<span class="html-italic">ter</span>-DEAMP-<span class="html-italic">ter</span>-MI) (<b>a</b>) and poly(S-<span class="html-italic">ter</span>-DEpVBP-<span class="html-italic">ter</span>-MI) (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-g009-550.jpg?1672996764" title=" <strong>Figure 9</strong><br/> <p>The N1s spectra of chars obtained from poly(S-<span class="html-italic">ter</span>-DEAMP-<span class="html-italic">ter</span>-MI) (<b>a</b>) and poly(S-<span class="html-italic">ter</span>-DEpVBP-<span class="html-italic">ter</span>-MI) (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-sch001-550.jpg?1672996770" title=" <strong>Scheme 1</strong><br/> <p>Proposed decomposition routes of ADEPMAE moeities in the gaseous phase.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00278/article_deploy/html/images/molecules-28-00278-sch002-550.jpg?1672996776" title=" <strong>Scheme 2</strong><br/> <p>Proposed mechanistic pathways occurring in the condensed phase of ter-polymers (R is a hydrocarbon radical).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/278'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1015441" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-1015441" aria-controls="drop-supplementary-1015441" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-1015441" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/28/1/204/s1?version=1672051527"> Supplementary File 1 (ZIP, 97 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 12 pages, 6615 KiB </span> <a href="/1420-3049/28/1/204/pdf?version=1672051527" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Low-Temperature Toluene Oxidation on Fe-Containing Modified SBA-15 Materials" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/28/1/204">Low-Temperature Toluene Oxidation on Fe-Containing Modified SBA-15 Materials</a> <div class="authors"> by <span class="inlineblock "><strong>Ivalina Trendafilova</strong>, </span><span class="inlineblock "><strong>Manuel Ojeda</strong>, </span><span class="inlineblock "><strong>John M. Andresen</strong>, </span><span class="inlineblock "><strong>Alenka Ristić</strong>, </span><span class="inlineblock "><strong>Momtchil Dimitrov</strong>, </span><span class="inlineblock "><strong>Nataša Novak Tušar</strong>, </span><span class="inlineblock "><strong>Genoveva Atanasova</strong> and </span><span class="inlineblock "><strong>Margarita Popova</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2023</b>, <em>28</em>(1), 204; <a href="https://doi.org/10.3390/molecules28010204">https://doi.org/10.3390/molecules28010204</a> - 26 Dec 2022 </div> <a href="/1420-3049/28/1/204#metrics">Cited by 3</a> | Viewed by 2245 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Transition metals as catalysts for total VOC oxidation at low temperatures (150–280 °C) are a big challenge nowadays. Therefore, iron-modified SBA-15, AlSBA-15, and ZrSBA-15 materials with 0.5 to 5.0 wt.% Fe loading were prepared and tested for toluene oxidation. It was found that <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/204/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Transition metals as catalysts for total VOC oxidation at low temperatures (150–280 °C) are a big challenge nowadays. Therefore, iron-modified SBA-15, AlSBA-15, and ZrSBA-15 materials with 0.5 to 5.0 wt.% Fe loading were prepared and tested for toluene oxidation. It was found that increasing Fe loading significantly improved the rate of oxidation and lowered the temperature of achieving 100% removal of toluene from above 500 °C for the supports (AlSBA-15 and ZrSBA-15) to below 400 °C for 5FeZrSBA-15. The formation of finely dispersed iron oxide active sites with a particle size less than 5 nm was observed on all the SBA-15, AlSBA-15, and ZrSBA-15 supports. It was found that the surface properties of the mesoporous support due to the addition of Al or Zr predetermined the type of formed iron oxide species and their localization on the support surface. Fe-containing SBA-15 and AlSBA-15 showed activity in total toluene oxidation at higher temperatures (280–450 °C). However, 5 wt. % Fe-containing ZrSBA-15 showed excellent activity in the total oxidation of toluene as a model VOC at lower temperatures (150–380 °C) due to the synergistic effect of Fe-Zr and the presence of accessible and stable Fe<sup>2+</sup>/Fe<sup>3+</sup> active sites. <a href="/1420-3049/28/1/204">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Catalysis_Hybrid_Materials ">Catalysis by Hybrid Materials</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/204/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1015441"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1015441"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1015441" data-cycle-prev="#prev1015441" data-cycle-progressive="#images1015441" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1015441-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-ag-550.jpg?1672051627" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images1015441" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g001-550.jpg?1672051606'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g002a-550.jpg?1672051625'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g002b-550.jpg?1672051627'><p>Figure 2 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g003-550.jpg?1672051623'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g004-550.jpg?1672051605'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g005-550.jpg?1672051617'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1015441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g006-550.jpg?1672051615'><p>Figure 6</p></div></script></div></div><div id="article-1015441-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-ag-550.jpg?1672051627" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g001-550.jpg?1672051606" title=" <strong>Figure 1</strong><br/> <p>Low-angle XRD patterns of the studied samples.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g002a-550.jpg?1672051625" title=" <strong>Figure 2</strong><br/> <p>Nitrogen physisorption isotherms (<b>A</b>–<b>C</b>) and pore size distributions (<b>D</b>–<b>F</b>) of the samples. (<b>A</b>,<b>D</b>) Fe-modified SBA-15; (<b>B</b>,<b>E</b>) Fe-modified AlSBA-15; (<b>C</b>,<b>F</b>) Fe-modified ZrSBA-15.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g002b-550.jpg?1672051627" title=" <strong>Figure 2 Cont.</strong><br/> <p>Nitrogen physisorption isotherms (<b>A</b>–<b>C</b>) and pore size distributions (<b>D</b>–<b>F</b>) of the samples. (<b>A</b>,<b>D</b>) Fe-modified SBA-15; (<b>B</b>,<b>E</b>) Fe-modified AlSBA-15; (<b>C</b>,<b>F</b>) Fe-modified ZrSBA-15.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g003-550.jpg?1672051623" title=" <strong>Figure 3</strong><br/> <p>SEM images of the parent SBA-15, AlSBA-15, and ZrSBA-15 and their Fe modifications.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g004-550.jpg?1672051605" title=" <strong>Figure 4</strong><br/> <p>Fe3p XPS regions of the studied samples.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g005-550.jpg?1672051617" title=" <strong>Figure 5</strong><br/> <p>TPR-DTG profiles of the studied samples. (<b>A</b>) Fe-modified SBA-15; (<b>B</b>) Fe-modified AlSBA-15; (<b>C</b>) Fe-modified ZrSBA-15.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00204/article_deploy/html/images/molecules-28-00204-g006-550.jpg?1672051615" title=" <strong>Figure 6</strong><br/> <p>Toluene conversion vs. reaction temperature (<b>A</b>,<b>C</b>,<b>E</b>) and vs. time on stream (<b>B</b>,<b>D</b>,<b>F</b>) on the studied samples.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/204'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1013448" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 18 pages, 5435 KiB </span> <a href="/1420-3049/28/1/134/pdf?version=1672800138" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Recent Progresses in Solution-Processed Tandem Organic and Quantum Dots Light-Emitting Diodes" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/28/1/134">Recent Progresses in Solution-Processed Tandem Organic and Quantum Dots Light-Emitting Diodes</a> <div class="authors"> by <span class="inlineblock "><strong>Shu-Guang Meng</strong>, </span><span class="inlineblock "><strong>Xiao-Zhao Zhu</strong>, </span><span class="inlineblock "><strong>Dong-Ying Zhou</strong> and </span><span class="inlineblock "><strong>Liang-Sheng Liao</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2023</b>, <em>28</em>(1), 134; <a href="https://doi.org/10.3390/molecules28010134">https://doi.org/10.3390/molecules28010134</a> - 23 Dec 2022 </div> <a href="/1420-3049/28/1/134#metrics">Cited by 4</a> | Viewed by 4863 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Solution processes have promising advantages of low manufacturing cost and large-scale production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes (OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and lighting applications, tandem architecture by <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/134/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Solution processes have promising advantages of low manufacturing cost and large-scale production, potentially applied for the fabrication of organic and quantum dot light-emitting diodes (OLEDs and QLEDs). To meet the expected lifespan of OLEDs/QLEDs in practical display and lighting applications, tandem architecture by connecting multiple light-emitting units (LEUs) through a feasible intermediate connection layer (ICL) is preferred. However, the combination of tandem architecture with solution processes is still limited by the choices of obtainable ICLs due to the unsettled challenges, such as orthogonal solubility, surface wettability, interfacial corrosion, and charge injection. This review focuses on the recent progresses of solution-processed tandem OLEDs and tandem QLEDs, covers the design and fabrication of various ICLs by solution process, and provides suggestions on the future challenges of corresponding materials and devices, which are anticipated to stimulate the exploitation of the emerging light technologies. <a href="/1420-3049/28/1/134">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Organic_Light_Emitting_Diodes3 ">Organic Light-Emitting Diodes 3.0</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/134/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1013448"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1013448"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1013448" data-cycle-prev="#prev1013448" data-cycle-progressive="#images1013448" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1013448-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g001-550.jpg?1672800222" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1013448" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g002-550.jpg?1672800219'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g003-550.jpg?1672800222'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g004-550.jpg?1672800220'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g005-550.jpg?1672800231'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g006-550.jpg?1672800218'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g007-550.jpg?1672800230'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g008-550.jpg?1672800236'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g009-550.jpg?1672800223'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g010-550.jpg?1672800233'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g011-550.jpg?1672800227'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g012-550.jpg?1672800225'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g013-550.jpg?1672800226'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-1013448-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g014-550.jpg?1672800235'><p>Figure 14</p></div></script></div></div><div id="article-1013448-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g001-550.jpg?1672800222" title=" <strong>Figure 1</strong><br/> <p>Schematic diagram of this review on the topic of solution-processed tandem organic and quantum dot light-emitting diodes (OLEDs/QLEDs); Light-emitting units (LEUs); Intermediate connection layer (ICL).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g002-550.jpg?1672800219" title=" <strong>Figure 2</strong><br/> <p>(<b>a</b>) Illustrated energy diagram of a two-EL-unit tandem OLED under forward bias. Reproduced with permission from ref. [<a href="#B36-molecules-28-00134" class="html-bibr">36</a>]. Copyright 2016, WILEY. (<b>b</b>) Illustrated energy diagram of a multilayer stack of Bphen/Mg:Bphen/MoO<sub>3</sub>/NPB. Reprinted with permission from ref. [<a href="#B42-molecules-28-00134" class="html-bibr">42</a>]. Copyright 2010, AIP Publishing.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g003-550.jpg?1672800222" title=" <strong>Figure 3</strong><br/> <p>Schematic energy diagram and operational mechanism of the PEDOT:PSS/ZnO ICL. The values of the energy levels are taken from ref. [<a href="#B62-molecules-28-00134" class="html-bibr">62</a>]. Reprinted with permission from ref. [<a href="#B61-molecules-28-00134" class="html-bibr">61</a>]. Copyright 2017, American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g004-550.jpg?1672800220" title=" <strong>Figure 4</strong><br/> <p>Schematic structures of tandem devices with (<b>a</b>) regular and (<b>b</b>) inverted configurations. The blue circle and dot represent the hole and electron carriers, respectively. Hole injection layer (HIL); Electron injection layer (EIL); Indium tin oxide (ITO).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g005-550.jpg?1672800231" title=" <strong>Figure 5</strong><br/> <p>(<b>a</b>) Schematic diagram of the tandem device based on the TMO/ZnO/PEI ICL. (<b>b</b>) Current density versus voltage (J–V) characteristics and (<b>c</b>) current efficiency versus luminance (CE–L) characteristics of the corresponding single and tandem devices. Reprinted with permission from ref. [<a href="#B65-molecules-28-00134" class="html-bibr">65</a>]. Copyright 2017, American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g006-550.jpg?1672800218" title=" <strong>Figure 6</strong><br/> <p>(<b>a</b>) Schematic diagram of the tandem OLED based on PMA/PEIE/ZnO ICL. (<b>b</b>) J–V characteristics and (<b>c</b>) current efficiency versus current density (CE–J) characteristics of the corresponding single and tandem OLEDs. Reproduced with permission from ref. [<a href="#B66-molecules-28-00134" class="html-bibr">66</a>]. Copyright 2014, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g007-550.jpg?1672800230" title=" <strong>Figure 7</strong><br/> <p>(<b>a</b>) Schematic diagram of the yellow (left) and white (right) tandem OLEDs based on the WO<sub>3/</sub>PEDOT:PSS/ZnO/PEI ICL. (<b>b</b>) Normalized EL spectra of the single and tandem white devices. <span class="html-italic">CE</span>–<span class="html-italic">L</span> characteristics of (<b>c</b>) yellow and (<b>d</b>) white tandem OLEDs. Reproduced with permission from ref. [<a href="#B68-molecules-28-00134" class="html-bibr">68</a>]. Copyright 2014, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g008-550.jpg?1672800236" title=" <strong>Figure 8</strong><br/> <p>(<b>a</b>) Schematic diagram of tandem OLED based on the PEDOT:PSS/n-PEODT:PSS/ZnO/PEIE ICL. (<b>b</b>) Normalized EL spectra and (<b>c</b>) CE–J characteristics of green single and tandem devices. (<b>d</b>) Normalized EL spectra and (<b>e</b>) CE–J characteristics of bule/red single devices and white tandem device. Reproduced with permission from ref. [<a href="#B69-molecules-28-00134" class="html-bibr">69</a>]. Copyright 2015, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g009-550.jpg?1672800223" title=" <strong>Figure 9</strong><br/> <p>(<b>a</b>) Schematic diagram of tandem white QLEDs based on the PEDOT:PSS/ZnMgO ICL. (<b>b</b>) CIE coordinates of R/G/B monochrome QLEDs in comparison with the NTSC standard and their changes in white QLEDs under different driving current densities. (<b>c</b>) Current efficiency–luminance–external quantum efficiency (CE–J–EQE) characteristics of tandem white QLEDs. Reproduced with permission from ref. [<a href="#B76-molecules-28-00134" class="html-bibr">76</a>]. Copyright 2017, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g010-550.jpg?1672800233" title=" <strong>Figure 10</strong><br/> <p>(<b>a</b>) Schematic diagram of tandem white QLEDs based on the PMA/ZnO ICL. (<b>b</b>) Cross-section transmission electron microscopy (TEM) image of tandem QLEDs. (<b>c</b>) EQE versus current efficiency (<span class="html-italic">EQE-J)</span> characteristics and (<b>d</b>) dependence of CIE coordinates and luminance for different tandem QLEDs. Reprinted with permission from ref. [<a href="#B77-molecules-28-00134" class="html-bibr">77</a>]. Copyright 2018, American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g011-550.jpg?1672800227" title=" <strong>Figure 11</strong><br/> <p>(<b>a</b>) Schematic diagram of the green tandem QLEDs based on the PEDOT:PSS/ZnMgO ICL. (<b>b</b>) Cross-section TEM image of tandem green QLEDs. (<b>c</b>) <span class="html-italic">CE–J</span> characteristics of single and tandem devices. Reproduced with permission from ref. [<a href="#B80-molecules-28-00134" class="html-bibr">80</a>]. Copyright 2017, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g012-550.jpg?1672800225" title=" <strong>Figure 12</strong><br/> <p>(<b>a</b>) Energy level diagram, (<b>b</b>) cross-section TEM image, and (<b>c</b>) CE–L–EQE characteristics of tandem green QLEDs based on the PEDOT:PSS/ZnO/PEIE ICL. Reprinted with permission from ref. [<a href="#B81-molecules-28-00134" class="html-bibr">81</a>]. Copyright 2019, American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g013-550.jpg?1672800226" title=" <strong>Figure 13</strong><br/> <p>(<b>a</b>) Schematic structure diagram, (<b>b</b>) cross-sectional TEM image, (<b>c</b>) and CE–L–EQE characteristics of tandem white QLEDs based on PEDOT:PSS/ZnO/PEIE. Reproduced with permission from ref. [<a href="#B82-molecules-28-00134" class="html-bibr">82</a>]. Copyright 2018, WILEY.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00134/article_deploy/html/images/molecules-28-00134-g014-550.jpg?1672800235" title=" <strong>Figure 14</strong><br/> <p>(<b>a</b>) Schematic structure diagram, (<b>b</b>) schematic of carrier transport under positive bias and negative bias, and (<b>c</b>) EL spectra of color tunable QLEDs under different duty cycles of all solution-processed color tunable QLEDs. Reproduced with permission from ref. [<a href="#B86-molecules-28-00134" class="html-bibr">86</a>]. Copyright 2020, Royal Society of Chemistry.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/134'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1011993" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 1133 KiB </span> <a href="/1420-3049/28/1/94/pdf?version=1672817611" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Possibility of New Active Substrates (ASs) to Be Used to Prevent the Migration of Heavy Metals to the Soil and Water Environments" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/28/1/94">Possibility of New Active Substrates (ASs) to Be Used to Prevent the Migration of Heavy Metals to the Soil and Water Environments</a> <div class="authors"> by <span class="inlineblock "><strong>Katarzyna Witt</strong>, </span><span class="inlineblock "><strong>Waldemar Studziński</strong> and </span><span class="inlineblock "><strong>Daria Bożejewicz</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2023</b>, <em>28</em>(1), 94; <a href="https://doi.org/10.3390/molecules28010094">https://doi.org/10.3390/molecules28010094</a> - 22 Dec 2022 </div> Viewed by 1675 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> This paper aims to propose an alternative to the known permeable reactive barriers (PRBs). PRB is one of the methods, which is a reactive barrier placed below the ground, to clean up contaminated groundwater. New polymer active substrates (ASs) were used to prevent <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/94/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> This paper aims to propose an alternative to the known permeable reactive barriers (PRBs). PRB is one of the methods, which is a reactive barrier placed below the ground, to clean up contaminated groundwater. New polymer active substrates (ASs) were used to prevent soil contamination by toxic heavy metals. The active substrates consisted of a mixture of poly(vinyl chloride), Aliquat 336, and bis(2-ethylhexyl)adipate, which was applied to the skeleton material (fiberglass or textile). Aliquat 336 was used as a binding agent for metal ions (Cr(VI), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II)). In contrast with the PRBs, the ASs (from <b>AS-1</b> to <b>AS-5</b>) were obtained in a simple way using the pouring method. The obtained ASs could be recycled and reused. The active substrates were used for the binding of various metal ions from aqueous solutions and the examined soil. It was found that the active substrate <b>AS-1</b> decreased the concentrations of nickel, cadmium, and lead by more than 50% and that of chromium by more than 90% in the aqueous solution. High sorption efficiency for chromium and zinc metals (81% and 66%) with the use of <b>AS-2</b> was also found, owing to which the migration of metals from soil to water can be limited. In the soil environment, active substrate <b>AS-5</b> with the addition of a plasticizer showed the greatest effectiveness. This solution resulted in a reduction in each tested metal ion of at least 50%, and reductions in cadmium, lead, and copper of over 70%. <a href="/1420-3049/28/1/94">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/51A591OA2B ">Innovative Adsorbents for Water Treatment</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/28/1/94/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1011993"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1011993"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1011993" data-cycle-prev="#prev1011993" data-cycle-progressive="#images1011993" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1011993-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-ag-550.jpg?1672817692" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images1011993" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g001-550.jpg?1672817691'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g002-550.jpg?1672817687'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g003-550.jpg?1672817685'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g004-550.jpg?1672817689'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g005a-550.jpg?1672817682'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g005b-550.jpg?1672817681'><p>Figure 5 Cont.</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1011993-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g006-550.jpg?1672817683'><p>Figure 6</p></div></script></div></div><div id="article-1011993-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-ag-550.jpg?1672817692" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g001-550.jpg?1672817691" title=" <strong>Figure 1</strong><br/> <p>The mechanism of action of a permeable reactive barrier. Source: own graph based on Moore et al., 2016 [<a href="#B9-molecules-28-00094" class="html-bibr">9</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g002-550.jpg?1672817687" title=" <strong>Figure 2</strong><br/> <p>Sorption of metal ions on the active substrate (<b>AS-1</b>) according to experiment 1.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g003-550.jpg?1672817685" title=" <strong>Figure 3</strong><br/> <p>Sorption of metal ions on the active substrate (<b>AS-2</b>) according to experiment 2.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g004-550.jpg?1672817689" title=" <strong>Figure 4</strong><br/> <p>Sorption of metal ions on the active substrate (<b>AS-4</b> and <b>AS-5</b>) according to Experiments 4 and 5, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g005a-550.jpg?1672817682" title=" <strong>Figure 5</strong><br/> <p>Chromatograms of (<b>A</b>) Aliquat 336 with a concentration of 0.1 mg·mL<sup>−1</sup> and (<b>B</b>) the tested soil extract.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g005b-550.jpg?1672817681" title=" <strong>Figure 5 Cont.</strong><br/> <p>Chromatograms of (<b>A</b>) Aliquat 336 with a concentration of 0.1 mg·mL<sup>−1</sup> and (<b>B</b>) the tested soil extract.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-28-00094/article_deploy/html/images/molecules-28-00094-g006-550.jpg?1672817683" title=" <strong>Figure 6</strong><br/> <p>Graphical presentation of the sorption processes: (<b>a</b>) Experiment 1, (<b>b</b>) Experiment 2, and (<b>c</b>) Experiments 3, 4, and 5.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/28/1/94'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1008211" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 16 pages, 8684 KiB </span> <a href="/1420-3049/27/24/9064/pdf?version=1671613370" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/24/9064">Mechanisms Involved in the Modification of Textiles by Non-Equilibrium Plasma Treatment</a> <div class="authors"> by <span class="inlineblock "><strong>Gregor Primc</strong>, </span><span class="inlineblock "><strong>Rok Zaplotnik</strong>, </span><span class="inlineblock "><strong>Alenka Vesel</strong> and </span><span class="inlineblock "><strong>Miran Mozetič</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(24), 9064; <a href="https://doi.org/10.3390/molecules27249064">https://doi.org/10.3390/molecules27249064</a> - 19 Dec 2022 </div> <a href="/1420-3049/27/24/9064#metrics">Cited by 4</a> | Viewed by 1779 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/9064/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Plasma methods are often employed for the desired wettability and soaking properties of polymeric textiles, but the exact mechanisms involved in plasma–textile interactions are yet to be discovered. This review presents the fundamentals of plasma penetration into textiles and illustrates mechanisms that lead to the appropriate surface finish of fibers inside the textile. The crucial relations are provided, and the different concepts of low-pressure and atmospheric-pressure discharges useful for the modification of textile’s properties are explained. The atmospheric-pressure plasma sustained in the form of numerous stochastical streamers will penetrate textiles of reasonable porosity, so the reactive species useful for the functionalization of fibers deep inside the textile will be created inside the textile. Low-pressure plasmas sustained at reasonable discharge power will not penetrate into the textile, so the depth of the modified textile is limited by the diffusion of reactive species. Since the charged particles neutralize on the textile surface, the neutral species will functionalize the fibers deep inside the textile when low-pressure plasma is chosen for the treatment of textiles. <a href="/1420-3049/27/24/9064">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Textile_Materials_Chemistry ">Advances in Textile Materials Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/9064/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1008211"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1008211"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1008211" data-cycle-prev="#prev1008211" data-cycle-progressive="#images1008211" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1008211-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g001-550.jpg?1671613450" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1008211" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g002-550.jpg?1671613445'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g003-550.jpg?1671613444'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g004-550.jpg?1671613454'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g005-550.jpg?1671613448'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g006-550.jpg?1671613451'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g007-550.jpg?1671613449'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g008-550.jpg?1671613442'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g009-550.jpg?1671613441'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g010-550.jpg?1671613446'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-1008211-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g011-550.jpg?1671613447'><p>Figure 11</p></div></script></div></div><div id="article-1008211-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g001-550.jpg?1671613450" title=" <strong>Figure 1</strong><br/> <p>The number of publications published each year on plasma modification of textiles. The data were obtained from the Web of Science by searching with the keywords “textile” and “plasma” and “surface”.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g002-550.jpg?1671613445" title=" <strong>Figure 2</strong><br/> <p>Examples of low-pressure high-frequency discharges. (<b>a</b>) Microwave in a dielectric tube, (<b>b</b>) inductive cylindrical RF in H-mode, (<b>c</b>) microwave in a metallic chamber, (<b>d</b>) inductive RF in a metallic chamber, (<b>e</b>) classical capacitive RF, and (<b>f</b>) electrodeless capacitive RF.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g003-550.jpg?1671613444" title=" <strong>Figure 3</strong><br/> <p>Photos of inductively coupled RF discharge in two distinguished modes: (<b>a</b>) H-mode (almost pure inductive character of the impedance) and (<b>b</b>) E-mode (with predominant capacitive component).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g004-550.jpg?1671613454" title=" <strong>Figure 4</strong><br/> <p>A photo of a textile in a plasma reactor powered with a rather low-power RF discharge.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g005-550.jpg?1671613448" title=" <strong>Figure 5</strong><br/> <p>Schematic of the DBD (<b>a</b>) and the corona (<b>b</b>) discharges. The voltage source could be low-frequency RF, alternative current (AC), direct current (DC), or pulsed voltage source.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g006-550.jpg?1671613451" title=" <strong>Figure 6</strong><br/> <p>Schematic of the surface discharges sustained in the DBD mode (<b>a</b>) and a feasible solution to assure a constant distance between the textile and the dielectric plate for uniform treatment of textile surfaces (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g007-550.jpg?1671613449" title=" <strong>Figure 7</strong><br/> <p>The Debye length (<b>a</b>) and the power dissipated on a surface facing a continuous plasma (<b>b</b>) versus the electron density at <span class="html-italic">kT</span><sub>e</sub> = 3 eV.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g008-550.jpg?1671613442" title=" <strong>Figure 8</strong><br/> <p>Illustration of a streamer penetration inside the textile and propagation through textile fibers from (<b>a</b>) to (<b>e</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g009-550.jpg?1671613441" title=" <strong>Figure 9</strong><br/> <p>An illustration of the penetration path of VUV and UV radiation, charged particles, metastables, and radicals in textiles.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g010-550.jpg?1671613446" title=" <strong>Figure 10</strong><br/> <p>An illustration of a polymer fiber surface finishes upon interacting with positively charged oxygen ions: <b>a</b>—before interaction with plasma, <b>b</b>—immediately after turning on the plasma, <b>c</b>—after saturating the surface with polar groups, and <b>d</b>—after prolonged treatment.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09064/article_deploy/html/images/molecules-27-09064-g011-550.jpg?1671613447" title=" <strong>Figure 11</strong><br/> <p>An illustration of a polymer fiber surface finishes upon interacting with neutral oxygen atoms. <b>a</b>—before interaction, <b>b</b>—after receiving the dose of about 10<sup>19</sup>m<sup>−3</sup>, <b>c</b>—after receiving the dose of about 10<sup>22</sup> m<sup>−3</sup>, and <b>d</b>—after very large doses.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9064'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1006664" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 3575 KiB </span> <a href="/1420-3049/27/24/9013/pdf?version=1671609610" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Electrochemical Characterization and Voltammetric Determination of Methylisothiazolinone on a Boron-Doped Diamond Electrode" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/24/9013">Electrochemical Characterization and Voltammetric Determination of Methylisothiazolinone on a Boron-Doped Diamond Electrode</a> <div class="authors"> by <span class="inlineblock "><strong>Magdalena Jakubczyk</strong>, </span><span class="inlineblock "><strong>Slawomir Michalkiewicz</strong>, </span><span class="inlineblock "><strong>Agata Skorupa</strong> and </span><span class="inlineblock "><strong>Kinga Krajcarz</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(24), 9013; <a href="https://doi.org/10.3390/molecules27249013">https://doi.org/10.3390/molecules27249013</a> - 17 Dec 2022 </div> Viewed by 2225 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The electrochemical properties of methylisothiazolinone (MIT), the most widely used preservative, were investigated by cyclic (CV) and differential pulse voltammetry (DPV) to develop a new method for its determination. To our knowledge, this is the first demonstration of a voltammetric procedure for the <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/9013/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The electrochemical properties of methylisothiazolinone (MIT), the most widely used preservative, were investigated by cyclic (CV) and differential pulse voltammetry (DPV) to develop a new method for its determination. To our knowledge, this is the first demonstration of a voltammetric procedure for the determination of MIT on a boron-doped diamond electrode (BDDE) in a citrate–phosphate buffer (C-PB) environment. The anodic oxidation process of methylisothiazolinone, which is the basis of this method, proved to be diffusion-controlled and proceeded with an irreversible two-electron exchange. The radical cations, as unstable primary products, were converted in subsequent chemical reactions to sulfoxides and sulfones, and finally to more stable final products. Performed determinations were based on the DPV technique. A linear calibration curve was obtained in the concentration range from 0.7 to 18.7 mg L<sup>−1</sup>, with a correlation coefficient of 0.9999. The proposed procedure was accurate and precise, allowing the detection of MIT at a concentration level of 0.24 mg L<sup>−1</sup>. It successfully demonstrated its suitability for the determination of methylisothiazolinone in household products without the need for any separation steps. The proposed method can serve as an alternative to the prevailing chromatographic determinations of MIT in real samples. <a href="/1420-3049/27/24/9013">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/boron_compounds_nanomaterials ">New Science of Boron Allotropes, Compounds, and Nanomaterials</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/9013/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1006664"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1006664"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1006664" data-cycle-prev="#prev1006664" data-cycle-progressive="#images1006664" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1006664-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g001-550.jpg?1671609747" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1006664" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g002-550.jpg?1671609745'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g003-550.jpg?1671609744'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g004-550.jpg?1671609738'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g005-550.jpg?1671609739'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g006-550.jpg?1671609743'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-sch001-550.jpg?1671609737'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1006664-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-sch002-550.jpg?1671609742'><p>Scheme 2</p></div></script></div></div><div id="article-1006664-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g001-550.jpg?1671609747" title=" <strong>Figure 1</strong><br/> <p>(<b>A</b>) Relationship between MIT (10.38 mg L<sup>−1</sup>) oxidation peak current, <span class="html-italic">I</span><sub>p</sub> and the pH obtained in buffer solutions: B-RB, AcB, PB, CB, and C-PB on BDDE. (<b>B</b>) DPV curves (d<span class="html-italic">E</span> = 20 mV) recorded in tested solutions at pH (given in parenthesis) guaranteeing the maximum value of the peak current.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g002-550.jpg?1671609745" title=" <strong>Figure 2</strong><br/> <p>Comparison of DPV curves (d<span class="html-italic">E</span> = 20 mV) recorded in C-PB buffer (pH 5.6) containing MIT (10.38 mg L<sup>−1</sup>) on different electrode materials (each Φ = 3 mm, given in the curves). The dashed line shows the curve recorded for the supporting electrolyte on the gold electrode.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g003-550.jpg?1671609744" title=" <strong>Figure 3</strong><br/> <p>CVs (<span class="html-italic">v</span> = 50 mV s<sup>−1</sup>) for MIT oxidation (10.38 mg L<sup>−1</sup>) recorded on a BDDE in C-PB solution (pH 5.6). The dashed line is the residual current. Inset: CVs (<span class="html-italic">v</span> = 500 mV s<sup>−1</sup>). The direction of electrode polarization was reversed from anodic to cathodic at potentials <span class="html-italic">E</span><sub>λ</sub> = 1.6; 1.7; 1.9 V.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g004-550.jpg?1671609738" title=" <strong>Figure 4</strong><br/> <p>CVs for MIT oxidation (10.36 mg L<sup>−1</sup>) on BDDE in C-PB solution (pH 5.6) at different scan rates: (a) 6.2; (b) 12.5; (c) 25; (d) 50; (e) 100; (f) 250; (g) 500 mV s<sup>−1</sup>. Insets: (<b>A</b>) the relationship between anodic peak currents, <span class="html-italic">I</span><sub>p</sub>, and the square root of scan rate, <span class="html-italic">v</span><sup>1/2</sup>; (<b>B</b>) the dependence log <span class="html-italic">I</span><sub>p</sub> = f(log <span class="html-italic">v</span>); (<b>C</b>) the dependence <span class="html-italic">E</span><sub>p</sub> = f(log <span class="html-italic">v</span>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g005-550.jpg?1671609739" title=" <strong>Figure 5</strong><br/> <p>DPVs (d<span class="html-italic">E</span> = 50 mV) recorded on BDDE in C-PB solution (pH 5.6) containing different concentrations of MIT ranging from (<span class="html-italic">a</span>) 0.24–(<span class="html-italic">u</span>) 20.74 mg L<sup>−1</sup>. Insets: (<b>A</b>) enlarging part of the main picture for small concentrations (0.24–0.98 mg L<sup>−1</sup>); (<b>B</b>) calibration plot for MIT.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-g006-550.jpg?1671609743" title=" <strong>Figure 6</strong><br/> <p>(<b>A</b>) DPVs recorded in a solution containing (a) Perwoll (<span class="html-italic">V</span><sub>0</sub> = 2.0 mL) and after addition of the MIT standard solution (207.4 mg L<sup>−1</sup>) with the volume of: (<span class="html-italic">b</span>) 50 μL, (<span class="html-italic">c</span>) 100 μL, (<span class="html-italic">d</span>) 150 μL, (<span class="html-italic">e</span>) 200 μL. (<b>B</b>) DPV curves from (<b>A</b>) after subtracting the background current. (<b>C</b>) Calibration plots for five determinations in the standard addition method.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-sch001-550.jpg?1671609737" title=" <strong>Scheme 1</strong><br/> <p>Chemical structures of selected isothiazolinones.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-09013/article_deploy/html/images/molecules-27-09013-sch002-550.jpg?1671609742" title=" <strong>Scheme 2</strong><br/> <p>Proposed mechanism of MIT oxidation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/9013'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="1001667" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 4814 KiB </span> <a href="/1420-3049/27/24/8840/pdf?version=1670916319" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Desorption of Ammonia Adsorbed on Prussian Blue Analogs by Washing with Saturated Ammonium Hydrogen Carbonate Solution" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/24/8840">Desorption of Ammonia Adsorbed on Prussian Blue Analogs by Washing with Saturated Ammonium Hydrogen Carbonate Solution</a> <div class="authors"> by <span class="inlineblock "><strong>Hatsuho Usuda</strong>, </span><span class="inlineblock "><strong>Yoshie Mishima</strong>, </span><span class="inlineblock "><strong>Tohru Kawamoto</strong> and </span><span class="inlineblock "><strong>Kimitaka Minami</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(24), 8840; <a href="https://doi.org/10.3390/molecules27248840">https://doi.org/10.3390/molecules27248840</a> - 13 Dec 2022 </div> <a href="/1420-3049/27/24/8840#metrics">Cited by 3</a> | Viewed by 2765 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Prussian blue analogs (PBAs) have been reported as promising ammonia (NH<sub>3</sub>) adsorbents with a high capacity compared to activated carbon, zeolite, and ion exchange resins. The adsorbed NH<sub>3</sub> was desorbed by heating and washing with water or acid. Recently, we <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/8840/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Prussian blue analogs (PBAs) have been reported as promising ammonia (NH<sub>3</sub>) adsorbents with a high capacity compared to activated carbon, zeolite, and ion exchange resins. The adsorbed NH<sub>3</sub> was desorbed by heating and washing with water or acid. Recently, we demonstrated that desorption was also possible by washing with a saturated ammonium hydrogen carbonate solution (sat. NH<sub>4</sub>HCO<sub>3</sub><i>aq</i>) and recovered NH<sub>3</sub> as an NH<sub>4</sub>HCO<sub>3</sub> solid by introducing CO<sub>2</sub> into the washing liquid after desorption. However, this has only been proven for copper ferrocyanide and the relationship between the adsorption/desorption behavior and metal ions in PBAs has not been identified. In this study, we investigated the adsorption/desorption behavior of PBAs that are complexes of first row transition metals with hexacyanometalate anions. Six types of PBAs were tested in this study and copper ferricyanide exhibited the highest desorption/adsorption ratio. X-ray diffraction results revealed high structural stability for cobalt hexacyanocobaltate (CoHCC) and nickel ferricyanide (NiHCF). The Fourier transform infrared spectroscopy results showed that the NH<sub>3</sub> adsorbed on the vacancy sites tended to desorb compared to the NH<sub>3</sub> adsorbed on the interstitial sites as ammonium ions. Interestingly, the desorption/adsorption ratio exhibited the Irving-Williams order. <a href="/1420-3049/27/24/8840">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/feature_papers_in_materials_chemistry ">Feature Papers in Materials Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/8840/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev1001667"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next1001667"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next1001667" data-cycle-prev="#prev1001667" data-cycle-progressive="#images1001667" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-1001667-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g001-550.jpg?1670916411" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images1001667" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g002-550.jpg?1670916409'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g003-550.jpg?1670916406'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g004-550.jpg?1670916410'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g005-550.jpg?1670916408'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g006-550.jpg?1670916405'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g007-550.jpg?1670916407'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g008-550.jpg?1670916411'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g009-550.jpg?1670916404'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g010-550.jpg?1670916401'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-1001667-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g011-550.jpg?1670916402'><p>Figure 11</p></div></script></div></div><div id="article-1001667-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g001-550.jpg?1670916411" title=" <strong>Figure 1</strong><br/> <p>The crystal structure of PBA with a hexacyanoferrate vacancy at the center. The interstitial sites and vacancy sites are exhibited as red and blue balls, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g002-550.jpg?1670916409" title=" <strong>Figure 2</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of copper hexacyanoferrate (CuHCF). “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g003-550.jpg?1670916406" title=" <strong>Figure 3</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of cobalt hexacyanocobaltate (CoHCC). “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g004-550.jpg?1670916410" title=" <strong>Figure 4</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of Nickel hexacyanoferrate. “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g005-550.jpg?1670916408" title=" <strong>Figure 5</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of zinc hexacyanoferrate (ZnHCF). “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g006-550.jpg?1670916405" title=" <strong>Figure 6</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of cobalt hexacyanoferrate (CoHCF). “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g007-550.jpg?1670916407" title=" <strong>Figure 7</strong><br/> <p>XRD patterns (<b>a</b>) and FTIR spectra (<b>b</b>) of manganese hexacyanoferrate (MnHCF). “Initial” sample is literally the sample before adsorption. The samples after adsorption and desorption are denoted by “ads” and “des”, respectively. The measurements were performed at ambient temperature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g008-550.jpg?1670916411" title=" <strong>Figure 8</strong><br/> <p>The area ratio of the M-NH<sub>3</sub> and NH<sub>4</sub> peak as observed in the FTIR spectra.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g009-550.jpg?1670916404" title=" <strong>Figure 9</strong><br/> <p>(<b>a</b>) The desorption/adsorption ratio plotted against atomic number of M in PBA (A<span class="html-italic"><sub>y</sub></span>M[M’(CN)<sub>6</sub>]<span class="html-italic"><sub>x</sub></span>). Lines connect hexacyanoferrate PBAs showing the same order as the Irving-Williams series [<a href="#B30-molecules-27-08840" class="html-bibr">30</a>]. (<b>b</b>) Stability constants of divalent transition metal chelate complex [<a href="#B31-molecules-27-08840" class="html-bibr">31</a>,<a href="#B32-molecules-27-08840" class="html-bibr">32</a>,<a href="#B33-molecules-27-08840" class="html-bibr">33</a>,<a href="#B34-molecules-27-08840" class="html-bibr">34</a>,<a href="#B35-molecules-27-08840" class="html-bibr">35</a>,<a href="#B36-molecules-27-08840" class="html-bibr">36</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g010-550.jpg?1670916401" title=" <strong>Figure 10</strong><br/> <p>The experimental scheme.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08840/article_deploy/html/images/molecules-27-08840-g011-550.jpg?1670916402" title=" <strong>Figure 11</strong><br/> <p>(<b>a</b>) The adsorption method. (<b>b</b>) The desorption method.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8840'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="998682" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-998682" aria-controls="drop-supplementary-998682" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-998682" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/24/8737/s1?version=1670582488"> Supplementary File 1 (ZIP, 521 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 27 pages, 5817 KiB </span> <a href="/1420-3049/27/24/8737/pdf?version=1670582487" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/24/8737">The Effect of Combined Atmospheric Plasma/UV Treatments on Improving the Durability of Flame Retardants Applied to Cotton</a> <div class="authors"> by <span class="inlineblock "><strong>Maram Ayesh</strong>, </span><span class="inlineblock "><strong>Arthur Richard Horrocks</strong> and </span><span class="inlineblock "><strong>Baljinder K. Kandola</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(24), 8737; <a href="https://doi.org/10.3390/molecules27248737">https://doi.org/10.3390/molecules27248737</a> - 9 Dec 2022 </div> <a href="/1420-3049/27/24/8737#metrics">Cited by 9</a> | Viewed by 2014 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Application of a combined atmospheric plasma/UV laser to cotton fabrics impregnated with selected non-durable flame retardants (FRs) has shown evidence of covalent grafting of the latter species on to cotton fibre surfaces. As a result, an increase in their durability to water-soaking for <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/8737/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Application of a combined atmospheric plasma/UV laser to cotton fabrics impregnated with selected non-durable flame retardants (FRs) has shown evidence of covalent grafting of the latter species on to cotton fibre surfaces. As a result, an increase in their durability to water-soaking for 30 min at 40 °C has been recorded. Based on previous research plasma gases comprising Ar<sup>80%</sup>/CO<sub>2</sub><sup>20%</sup> or N<sub>2</sub><sup>80%</sup>/O<sub>2</sub><sup>20%</sup> were used to pre-expose cotton fabric prior to or after FR impregnation to promote the formation of radical species and increased –COOH groups on surface cellulosic chains, which would encourage formation of FR-cellulose bonds. Analysis by scanning electron microscopy (SEM/EDX), X-ray photoelectron spectroscopy (XPS) and thermal analysis (TGA) suggested that organophosphorus- and nitrogen- containing flame retarding species in the presence of the silicon-containing molecules such as 3-aminopropyltriethoxy silane (APTS) resulted in formation of FR-S-O-cellulose links, which gave rise to post-water-soaking FR retentions > 10%. Similarly, the organophosphorus FR, diethyl N, N bis (2-hydroxyethyl) aminomethylphosphonate (DBAP), after plasma/UV exposure produced similar percentage retention values possibly via (PO).O.cellulose bond formation, While none of the plasmas/UV-treated, FR-impregnated fabrics showed self-extinction behaviour, although burning rates reduced and significant char formation was evident, it has been shown that FR durability may be increased using plasma/UV treatments. <a href="/1420-3049/27/24/8737">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/0136A0C4CC ">Flame-Resistant Materials</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/24/8737/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev998682"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next998682"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next998682" data-cycle-prev="#prev998682" data-cycle-progressive="#images998682" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-998682-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g001-550.jpg?1670582569" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images998682" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g002-550.jpg?1670582577'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g003-550.jpg?1670582573'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g004-550.jpg?1670582564'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g005-550.jpg?1670582570'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g006-550.jpg?1670582566'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g007-550.jpg?1670582585'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g008-550.jpg?1670582581'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g009-550.jpg?1670582584'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g010-550.jpg?1670582561'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g011-550.jpg?1670582579'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-sch001-550.jpg?1670582582'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-998682-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-sch002-550.jpg?1670582571'><p>Scheme 2</p></div></script></div></div><div id="article-998682-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g001-550.jpg?1670582569" title=" <strong>Figure 1</strong><br/> <p>SEM images of cotton samples before and after coating with GM (<b>a</b>) Pure cotton (Cot), (<b>b</b>) without plasma/UV treatment (Cot/GM), (<b>c</b>) after N<sub>2</sub>-O<sub>2</sub> plasma/UV laser treatment (Cot/GM_ PL(N<sub>2</sub>/O<sub>2</sub>); all samples before water-soaking.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g002-550.jpg?1670582577" title=" <strong>Figure 2</strong><br/> <p>SEM images of unexposed cotton samples coated with GM and APTS, Cot/GM-APTS, (<b>a</b>) before and (<b>b</b>) after water-soaking; plasma-treated (Cot/GM-APTS_PL(N<sub>2</sub>/O<sub>2</sub>)) samples (<b>c</b>) before and (<b>d</b>) after water-soaking. Horizontal scale bars equal 20µm.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g003-550.jpg?1670582573" title=" <strong>Figure 3</strong><br/> <p>EDX traces for cotton samples before water-soaking: (<b>a</b>) Cot/GM, (<b>b</b>) Cot/GM_PL(N<sub>2</sub>/O<sub>2</sub>), (<b>c</b>) Cot/GM-APTS,(<b>d</b>) Cot/GM-APTS_PL(N<sub>2</sub>/O<sub>2</sub>); and after water-soaking (<b>e</b>) Cot/GM-APTS-(ws), (<b>f</b>) Cot/GM-APTS _PL(N<sub>2</sub>/O<sub>2</sub>)-(ws). The peaks in order from the left are carbon, nitrogen, oxygen, silicon and phosphorus.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g004-550.jpg?1670582564" title=" <strong>Figure 4</strong><br/> <p>XPS spectra for cotton fabric after water-soaking, (<b>a</b>) Cot/DAP-urea-APTS and (<b>b</b>) Cot/DAP-urea-APTS_PL(N<sub>2</sub>/O<sub>2</sub>) samples.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g005-550.jpg?1670582570" title=" <strong>Figure 5</strong><br/> <p>TGA traces for pure cotton before (Cot) and after water-soaking (Cot)-(ws) and N<sub>2</sub>/O<sub>2</sub> plasma gas treatment after water-soaking (Cot_PL(N<sub>2</sub>/O<sub>2</sub>)-(ws)).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g006-550.jpg?1670582566" title=" <strong>Figure 6</strong><br/> <p>Thermal analysis traces for Cot/GM-APTS, Cot/GM-APTS_PL(N<sub>2</sub>/O<sub>2</sub>) samples and cotton controls (Cot, Cot_PL(N<sub>2</sub>/O<sub>2</sub>) in air (<b>a</b>) TGA and (<b>b</b>) DTG before water-soaking and (<b>c</b>) TGA and (<b>d</b>) DTG after water-soaking (respective samples with suffix (ws)).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g007-550.jpg?1670582585" title=" <strong>Figure 7</strong><br/> <p>DTG2 temperature versus char at 400 °C.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g008-550.jpg?1670582581" title=" <strong>Figure 8</strong><br/> <p>The vertical strip flammability test results for cotton samples before water-soaking (<b>a</b>) Cot/GM, (<b>b</b>) Cot/GM_PL(N<sub>2</sub>/O<sub>2</sub>) (<b>c</b>) Cot/GM-APTS, (<b>d</b>) Cot/GM-APTS_PL(N<sub>2</sub>/O<sub>2</sub>), (<b>e</b>) Cot/DAP-urea-APTS, (<b>f</b>) Cot/DAP-urea-APTS_PL(N<sub>2</sub>/O<sub>2</sub>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g009-550.jpg?1670582584" title=" <strong>Figure 9</strong><br/> <p>The vertical strip flammability test results for cotton samples after water-soaking, (<b>a</b>) Cot/GM-(ws), (<b>b</b>) Cot/GM_PL(N<sub>2</sub>/O<sub>2</sub>)-(ws) (<b>c</b>) Cot/GM-APTS-(ws), (<b>d</b>) Cot/GM-APTS_ PL(N<sub>2</sub>/O<sub>2</sub>)-(ws), (<b>e</b>) Cot/DAP-urea-APTS-(ws), (<b>f</b>) Cot/DAP-urea-APTS- PL(N<sub>2</sub>/O<sub>2</sub>)-(ws).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g010-550.jpg?1670582561" title=" <strong>Figure 10</strong><br/> <p>SEM images for water-soaked cotton sample chars after vertical strip testing from (<b>a</b>) Cot/DAP-urea-APTS-(ws) and (<b>b</b>) Cot/DAP-urea-APTS_PL(N<sub>2</sub>/O<sub>2</sub>)-(ws).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-g011-550.jpg?1670582579" title=" <strong>Figure 11</strong><br/> <p>EDX results for cotton chars formed after vertical strip testing of water-soaked samples: (<b>a</b>) Cot/DAP-urea-APTS-(ws), (<b>b</b>) Cot/DAP-urea-APTS_PL(N<sub>2</sub>/O<sub>2</sub>)-(ws). The peaks in order from the left are carbon, nitrogen, oxygen, silicon and phosphorus.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-sch001-550.jpg?1670582582" title=" <strong>Scheme 1</strong><br/> <p>Possible reactions occurring during plasma exposure of DBAP-impregnated cellulose.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08737/article_deploy/html/images/molecules-27-08737-sch002-550.jpg?1670582571" title=" <strong>Scheme 2</strong><br/> <p>(<b>a</b>) Tetraethoxysilane (TEOS) 13% Si, (<b>b</b>) di ammonium phosphate (DAP) 23% P, (<b>c</b>) urea, (<b>d</b>) 3-aminopropyltriethoxy silane (APTS) 13%Si, (<b>e</b>) guanidine monophosphate (GM) 19% P and (<b>f</b>) Diethyl N, N bis (2-hydroxyethyl) aminomethylphosphonate (DBAP or Fyrol 6, 12%P).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/24/8737'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="993825" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-993825" aria-controls="drop-supplementary-993825" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-993825" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/23/8561/s1?version=1670233516"> Supplementary File 1 (ZIP, 1374 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 16 pages, 2368 KiB </span> <a href="/1420-3049/27/23/8561/pdf?version=1670233515" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Direct Correlation of Surface Tension and Surface Composition of Ionic Liquid Mixtures—A Combined Vacuum Pendant Drop and Angle-Resolved X-ray Photoelectron Spectroscopy Study" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/23/8561">Direct Correlation of Surface Tension and Surface Composition of Ionic Liquid Mixtures—A Combined Vacuum Pendant Drop and Angle-Resolved X-ray Photoelectron Spectroscopy Study</a> <div class="authors"> by <span class="inlineblock "><strong>Ulrike Paap</strong>, </span><span class="inlineblock "><strong>Vera Seidl</strong>, </span><span class="inlineblock "><strong>Karsten Meyer</strong>, </span><span class="inlineblock "><strong>Florian Maier</strong> and </span><span class="inlineblock "><strong>Hans-Peter Steinrück</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(23), 8561; <a href="https://doi.org/10.3390/molecules27238561">https://doi.org/10.3390/molecules27238561</a> - 5 Dec 2022 </div> <a href="/1420-3049/27/23/8561#metrics">Cited by 6</a> | Viewed by 1871 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> We investigated the surface tension and surface composition of various mixtures of the two ionic liquids (ILs) 1-methyl-3-octyl-imidazolium hexafluorophosphate [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>] and 1,3-<i>bis</i>(polyethylene glycol)imidazolium iodide [(mPEG<sub>2</sub>)<sub>2</sub>Im]I in the temperature range from 230 <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8561/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> We investigated the surface tension and surface composition of various mixtures of the two ionic liquids (ILs) 1-methyl-3-octyl-imidazolium hexafluorophosphate [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>] and 1,3-<i>bis</i>(polyethylene glycol)imidazolium iodide [(mPEG<sub>2</sub>)<sub>2</sub>Im]I in the temperature range from 230 to 370 K under ultraclean vacuum conditions. The surface tension was measured using a newly developed apparatus, and the surface composition was determined by angle-resolved X-ray photoelectron spectroscopy (ARXPS). In the pure ILs, the alkyl chains of [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>] and the PEG chains of [(mPEG<sub>2</sub>)<sub>2</sub>Im]I are enriched at the IL/vacuum interface. In the mixtures, a strong selective surface enrichment of the alkyl chains occurs, which is most pronounced at low [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>] contents. For the surface tension, strong deviations from an ideal mixing behaviour take place. By applying a simple approach based on the surface composition of the mixtures as deduced from ARXPS, we are able to predict and reproduce the experimentally measured temperature-dependent surface tension values with astonishingly high accuracy. <a href="/1420-3049/27/23/8561">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/769UJYOI7K ">Properties and Applications of Ionic Liquids-Based Advanced Materials</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8561/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev993825"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next993825"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next993825" data-cycle-prev="#prev993825" data-cycle-progressive="#images993825" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-993825-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g001-550.jpg?1670233588" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images993825" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-993825-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g002-550.jpg?1670233591'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-993825-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g003-550.jpg?1670233592'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-993825-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g004-550.jpg?1670233588'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-993825-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g005-550.jpg?1670233590'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-993825-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g006-550.jpg?1670233589'><p>Figure 6</p></div></script></div></div><div id="article-993825-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g001-550.jpg?1670233588" title=" <strong>Figure 1</strong><br/> <p>Structure of 1-methyl-3-octyl-imidazolium hexafluorophosphate [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>] (<b>top</b>) and 1,3-bis(polyethylene glycol)imidazolium iodide [(mPEG<sub>2</sub>)<sub>2</sub>Im]I (<b>bottom</b>). The different carbon atoms giving rise to the three discernible C 1s peaks are color-coded in blue (C<sub>2</sub> peak), in turquoise (C<sub>hetero</sub>), and in pink (C<sub>alkyl</sub>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g002-550.jpg?1670233591" title=" <strong>Figure 2</strong><br/> <p>O 1s and C 1s spectra at 0° (black) and 80° (red) emission of pure [C<sub>8</sub>C<sub>1</sub>Im][PF<sub>6</sub>], pure [(mPEG<sub>2</sub>)<sub>2</sub>Im]I, and of different mixtures of these ILs, collected at T = 298 K. The relative increase in C<sub>alkyl</sub> intensity upon changing the emission angle from 0° to 80° is indicated (for details, see text).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g003-550.jpg?1670233592" title=" <strong>Figure 3</strong><br/> <p>Normalized content n(80°)/n<sub>nominal</sub> for O<sub>PEG</sub> (red) and C<sub>alkyl</sub> (grey), derived from the corresponding 80° intensities and the nominal atomic numbers of O<sub>PEG</sub> and C<sub>alkyl</sub> for the pure ILs and mixtures at T = 298 K.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g004-550.jpg?1670233588" title=" <strong>Figure 4</strong><br/> <p>Normalized content n(80°)/n<sub>nominal</sub> for O<sub>PEG</sub> (<b>top</b>) and C<sub>alkyl</sub> (<b>bottom</b>), derived from the corresponding 80° intensities and their nominal atomic numbers of O<sub>PEG</sub> and C<sub>alkyl</sub> for the pure ILs and mixtures for different temperatures (measurements started at 363 K).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g005-550.jpg?1670233590" title=" <strong>Figure 5</strong><br/> <p>Surface tension values measured using the PD method are shown as open and full squares, along with their linear fits (lines) using Equation (1). The surface tension values calculated from the 80° ARXPS data using Equation (3) are shown as filled circles. Furthermore, the ideal behaviour for the surface tension of the 4.5 and 49.8 mol% mixtures as determined by Equation (2) (dashed lines) is included for comparison (a comparison for all mixtures is shown in <a href="#app1-molecules-27-08561" class="html-app">Figure S4</a>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08561/article_deploy/html/images/molecules-27-08561-g006-550.jpg?1670233589" title=" <strong>Figure 6</strong><br/> <p>(<b>a</b>) Surface tension values of the pure ILs and the mixtures at 298 K (black squares), as determined from pendant drop measurements in <a href="#molecules-27-08561-f005" class="html-fig">Figure 5</a>, along with the surface tension values calculated from the 80° ARXPS data according to Equation (3) (open orange circles) as a function of bulk mole fraction. For comparison, the surface tension of ideal mixtures without enrichment/depletion effects is shown as the black line. (<b>b</b>) Number of atoms, n(80°), as determined from the ARXPS data at 80°, normalised to the number of corresponding atoms in the IL for O<sub>PEG</sub> (red circles) and for C<sub>alkyl</sub> (grey circles) for the pure ILs and for the mixtures at T = 298 K. Straight lines show ideal behaviour, that is, expected changes without surface enrichment/depletion effects being present.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8561'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="993370" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-993370" aria-controls="drop-supplementary-993370" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-993370" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/23/8546/s1?version=1670158882"> Supplementary File 1 (ZIP, 1715 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 2840 KiB </span> <a href="/1420-3049/27/23/8546/pdf?version=1670158881" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Chemistry of Phenylimidotechnetium(V) Complexes with Isocyanides: Steric and Electronic Factors" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/23/8546">The Chemistry of Phenylimidotechnetium(V) Complexes with Isocyanides: Steric and Electronic Factors</a> <div class="authors"> by <span class="inlineblock "><strong>Guilhem Claude</strong>, </span><span class="inlineblock "><strong>Laura Zeh</strong>, </span><span class="inlineblock "><strong>Maximilian Roca Jungfer</strong>, </span><span class="inlineblock "><strong>Adelheid Hagenbach</strong>, </span><span class="inlineblock "><strong>Joshua S. Figueroa</strong> and </span><span class="inlineblock "><strong>Ulrich Abram</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(23), 8546; <a href="https://doi.org/10.3390/molecules27238546">https://doi.org/10.3390/molecules27238546</a> - 4 Dec 2022 </div> <a href="/1420-3049/27/23/8546#metrics">Cited by 5</a> | Viewed by 22778 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Organometallic approaches are of ongoing interest for the development of novel functional <sup>99m</sup>Tc radiopharmaceuticals, while the basic organotechnetium chemistry seems frequently to be little explored. Thus, structural and reactivity studies with the long-lived isotope <sup>99</sup>Tc are of permanent interest as the <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8546/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Organometallic approaches are of ongoing interest for the development of novel functional <sup>99m</sup>Tc radiopharmaceuticals, while the basic organotechnetium chemistry seems frequently to be little explored. Thus, structural and reactivity studies with the long-lived isotope <sup>99</sup>Tc are of permanent interest as the foundation for further progress in the related radiopharmaceutical research with this artificial element. Particularly the knowledge about the organometallic chemistry of high-valent technetium compounds is scarcely developed. Here, phenylimido complexes of technetium(V) with different isocyanides are introduced. They have been synthesized by ligand-exchange procedures starting from [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub>]. Different reactivity patterns and products have been obtained depending on the steric and electronic properties of the individual ligands. This involves the formation of 1:1 and 1:2 exchange products of Tc(V) with the general formulae [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(isocyanide)], <i>cis</i>- or <i>trans</i>-[Tc(NPh)Cl<sub>3</sub>(isocyanide)<sub>2</sub>], but also the reduction in the metal and the formation of cationic technetium(I) complex of the formula [Tc(isocyanide)<sub>6</sub>]<sup>+</sup> when p-fluorophenyl isocyanide is used. The products have been studied by single-crystal X-ray diffraction and spectroscopic methods, including IR and multinuclear NMR spectroscopy. DFT calculations on the different isocyanides allow the prediction of their reactivity towards electron-rich and electron-deficient metal centers by means of the empirical SADAP parameter, which has been derived from the potential energy surface of the electron density on their potentially coordinating carbon atoms. <a href="/1420-3049/27/23/8546">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/molecules_TechnetiumandRheniuminChemistry ">Technetium and Rhenium in Chemistry and Their Advanced Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8546/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev993370"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next993370"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next993370" data-cycle-prev="#prev993370" data-cycle-progressive="#images993370" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-993370-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-ag-550.jpg?1670230581" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images993370" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g001-550.jpg?1670158964'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g002-550.jpg?1670158965'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g003-550.jpg?1670158960'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g004-550.jpg?1670158959'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch001-550.jpg?1670158962'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch002-550.jpg?1670158969'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-993370-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch003-550.jpg?1670158967'><p>Scheme 3</p></div></script></div></div><div id="article-993370-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-ag-550.jpg?1670230581" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g001-550.jpg?1670158964" title=" <strong>Figure 1</strong><br/> <p>Isocyanides discussed in the present paper together with their electrostatic potential mapping (MO = 0.02; ρ<sub>iso</sub> = 0.004) normalized to the potential boundaries of CNMe (7.478 × 10<sup>−2</sup> [e/Å<sup>3</sup>]; blue = positive, red = negative) [<a href="#B11-molecules-27-08546" class="html-bibr">11</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g002-550.jpg?1670158965" title=" <strong>Figure 2</strong><br/> <p>Ellipsoid representations of the molecular structures of (<b>a</b>) [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(CN<sup>t</sup>Bu)] (<b>2a</b>), (<b>b</b>) [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(CNMes)] (<b>2b</b>), (<b>c</b>) [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(CNPh<sup>i-prop2</sup>)] (<b>2c</b>), (<b>d</b>) <span class="html-italic">cis</span>-[Tc(NPh)Cl<sub>3</sub>(CNAr<sup>Mes2</sup>)<sub>2</sub>] (<b>3a</b>) and (<b>e</b>) <span class="html-italic">trans</span>-[Tc(NPh)Cl<sub>3</sub>(CNAr<sup>Tripp2</sup>)<sub>2</sub>] (<b>4b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g003-550.jpg?1670158960" title=" <strong>Figure 3</strong><br/> <p>(<b>a</b>) Ellipsoid representation of the molecular structure of [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(CN<span class="html-italic">p</span>-FAr<sup>DarF2</sup>)] (<b>5</b>) and illustration of the steric bulk caused by the isocyanide and PPh<sub>3</sub> ligands by (<b>b</b>) A view along the phenylimido plane and (<b>c</b>) A view along the isocyanide bond. Selected bond lengths and angles: Tc-N10 1.710(4) Å, Tc-Cl1 2.434(2) Å, Tc-Cl2 2.398(2) Å, Tc-Cl3 2.389(2) Å, Tc-C1 2.009(5) Å, C1-N1 1.176(6) Å, N10-Tc-Cl1 165.5(2)°.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-g004-550.jpg?1670158959" title=" <strong>Figure 4</strong><br/> <p><sup>1</sup>H, <sup>19</sup>F and <sup>31</sup>P NMR spectra of [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)(CNPh<sup>pF</sup>)] (<b>6</b>) in CD<sub>2</sub>Cl<sub>2</sub>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch001-550.jpg?1670158962" title=" <strong>Scheme 1</strong><br/> <p>Reactions of carbonyltechnetium(I) complexes with differently substituted isocyanides [<a href="#B11-molecules-27-08546" class="html-bibr">11</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch002-550.jpg?1670158969" title=" <strong>Scheme 2</strong><br/> <p>Reactions of [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub>] with alkyl and (alkyl-substituted) aryl isocyanides.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08546/article_deploy/html/images/molecules-27-08546-sch003-550.jpg?1670158967" title=" <strong>Scheme 3</strong><br/> <p>Reactions of [Tc(NPh)Cl<sub>3</sub>(PPh<sub>3</sub>)<sub>2</sub>] with CN<span class="html-italic">p</span>-FAr<sup>DarF2</sup> and CNPh<sup>pF</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8546'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="991071" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-991071" aria-controls="drop-supplementary-991071" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-991071" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/23/8424/s1?version=1669911051"> Supplementary File 1 (ZIP, 1823 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 12 pages, 4011 KiB </span> <a href="/1420-3049/27/23/8424/pdf?version=1669975528" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/23/8424">Toward High-Performance Electrochromic Conjugated Polymers: Influence of Local Chemical Environment and Side-Chain Engineering</a> <div class="authors"> by <span class="inlineblock "><strong>Kaiwen Lin</strong>, </span><span class="inlineblock "><strong>Changjun Wu</strong>, </span><span class="inlineblock "><strong>Guangyao Zhang</strong>, </span><span class="inlineblock "><strong>Zhixin Wu</strong>, </span><span class="inlineblock "><strong>Shiting Tang</strong>, </span><span class="inlineblock "><strong>Yingxin Lin</strong>, </span><span class="inlineblock "><strong>Xinye Li</strong>, </span><span class="inlineblock "><strong>Yuying Jiang</strong>, </span><span class="inlineblock "><strong>Hengjia Lin</strong>, </span><span class="inlineblock "><strong>Yuehui Wang</strong>, </span><span class="inlineblock "><strong>Shouli Ming</strong> and </span><span class="inlineblock "><strong>Baoyang Lu</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(23), 8424; <a href="https://doi.org/10.3390/molecules27238424">https://doi.org/10.3390/molecules27238424</a> - 1 Dec 2022 </div> <a href="/1420-3049/27/23/8424#metrics">Cited by 14</a> | Viewed by 1792 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Three homologous electrochromic conjugated polymers, each containing an asymmetric building block but decorated with distinct alkyl chains, were designed and synthesized using electrochemical polymerization in this study. The corresponding monomers, namely T610FBTT810, DT6FBT, and DT48FBT, comprise the same backbone structure, i.e., an asymmetric <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8424/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Three homologous electrochromic conjugated polymers, each containing an asymmetric building block but decorated with distinct alkyl chains, were designed and synthesized using electrochemical polymerization in this study. The corresponding monomers, namely T610FBTT810, DT6FBT, and DT48FBT, comprise the same backbone structure, i.e., an asymmetric 5-fluorobenzo[c][1,2,5]thiadiazole unit substituted by two thiophene terminals, but were decorated with different types of alkyl chain (hexyl, 2-butyloctyl, 2-hexyldecyl, or 2-octyldecyl). The effects of the side-chain structure and asymmetric repeating unit on the optical absorption, electrochemistry, morphology, and electrochromic properties were investigated comparatively. It was found that the electrochromism conjugated polymer, originating from DT6FBT with the shortest and linear alkyl chain, exhibits the best electrochromic performance with a 25% optical contrast ratio and a 0.3 s response time. The flexible electrochromic device of PDT6FBT achieved reversible colors of navy and cyan between the neutral and oxidized states, consistent with the non-device phenomenon. These results demonstrate that subtle modification of the side chain is able to change the electrochromic properties of conjugated polymers. <a href="/1420-3049/27/23/8424">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Conjugated_Polymers_Nanocomposites ">Structure and Electronic Properties of Conjugated Polymers and Nanocomposites</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/23/8424/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev991071"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next991071"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next991071" data-cycle-prev="#prev991071" data-cycle-progressive="#images991071" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-991071-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g001-550.jpg?1669975619" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images991071" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g002-550.jpg?1669975608'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g003-550.jpg?1669975616'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g004-550.jpg?1669975617'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g005-550.jpg?1669975614'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g006-550.jpg?1669975605'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g007-550.jpg?1669975605'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g008-550.jpg?1669975609'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g009-550.jpg?1669975612'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-991071-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-sch001-550.jpg?1669975607'><p>Scheme 1</p></div></script></div></div><div id="article-991071-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g001-550.jpg?1669975619" title=" <strong>Figure 1</strong><br/> <p>Optimized molecular geometries, LUMO, and HOMO of T610FBTT810, DT6FBT, and DT48FBT.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g002-550.jpg?1669975608" title=" <strong>Figure 2</strong><br/> <p>Anodic polarization curves of 0.01 mol L<sup>−1</sup> T610FBTT810, DT6FBT, and DT48FBT in CH<sub>2</sub>Cl<sub>2</sub>-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 mol L<sup>−1</sup>). Potential scan rate: 100 mV s<sup>−1</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g003-550.jpg?1669975616" title=" <strong>Figure 3</strong><br/> <p>CVs of T610FBTT810 (<b>A</b>), DT6FBT (<b>B</b>), and DT48FBT (<b>C</b>) in CH<sub>2</sub>Cl<sub>2</sub>-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 mol L<sup>−1</sup>). Potential scan rate: 100 mV s<sup>−1</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g004-550.jpg?1669975617" title=" <strong>Figure 4</strong><br/> <p>CVs of PT610FBTT810 (<b>A</b>), PDT6FBT (<b>B</b>), and PDT48FBT (<b>C</b>) modified working electrodes in monomer-free CH<sub>2</sub>Cl<sub>2</sub>-Bu<sub>4</sub>NPF<sub>6</sub> (0.10 mol L<sup>−1</sup>) at potential scan rates of 300, 250, 200, 150, 100, and 50 mV s<sup>−1</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g005-550.jpg?1669975614" title=" <strong>Figure 5</strong><br/> <p>Normalized UV-vis (<b>A</b>) and fluorescence (<b>B</b>) spectra of T610FBTT810, DT6FBT, and DT48FBT.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g006-550.jpg?1669975605" title=" <strong>Figure 6</strong><br/> <p>Spectroelectrochemistry of PDT6FBT on the ITO-coated glasses in CH<sub>3</sub>CN-Bu<sub>4</sub>NPF<sub>6</sub> (<b>A</b>), chromaticity diagram (CIE 1931) of PDT6FBT in an oxidized state (<b>B</b>) and in a neutral state (<b>C</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g007-550.jpg?1669975605" title=" <strong>Figure 7</strong><br/> <p>Time–transmittance curves of PDT6FBT in CH<sub>3</sub>CN-Bu<sub>4</sub>NPF<sub>6</sub> (0.1 mol L<sup>−1</sup>) at wavelengths of 380, 550, and 750 nm; switching time: 10 s.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g008-550.jpg?1669975609" title=" <strong>Figure 8</strong><br/> <p>Spectroelectrochemistry and color change of PDT6FBT-based flexible ECD (<b>A</b>); Time–transmittance curves of PDT6FBT-based flexible ECDs with the intervals of 20 s (<b>B</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-g009-550.jpg?1669975612" title=" <strong>Figure 9</strong><br/> <p>SEM images of PT610FBTT810, PDT6FBT, and PDT48FBT coated on ITO glasses.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-08424/article_deploy/html/images/molecules-27-08424-sch001-550.jpg?1669975607" title=" <strong>Scheme 1</strong><br/> <p>Synthetic routes of monomers (T610FBTT810, DT6FBT, and DT48FBT) and corresponding polymers (PT610FBTT810, PDT6FBT, and PDT48FBT).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/23/8424'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="974481" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 24 pages, 2746 KiB </span> <a href="/1420-3049/27/22/7928/pdf?version=1668597284" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Iridium and Ruthenium Complexes Bearing Perylene Ligands" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label feature" data-dropdown="drop-article-label-feature" aria-expanded="false">Feature Paper</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/22/7928">Iridium and Ruthenium Complexes Bearing Perylene Ligands</a> <div class="authors"> by <span class="inlineblock "><strong>Luca Mauri</strong>, </span><span class="inlineblock "><strong>Alessia Colombo</strong>, </span><span class="inlineblock "><strong>Claudia Dragonetti</strong>, </span><span class="inlineblock "><strong>Francesco Fagnani</strong> and </span><span class="inlineblock "><strong>Dominique Roberto</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(22), 7928; <a href="https://doi.org/10.3390/molecules27227928">https://doi.org/10.3390/molecules27227928</a> - 16 Nov 2022 </div> <a href="/1420-3049/27/22/7928#metrics">Cited by 1</a> | Viewed by 2414 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The present review summarizes the work carried out mostly in the last decade on iridium and ruthenium complexes bearing various perylene ligands, of particular interest for bioimaging, photodynamic therapy, and solar energy conversion. In these complexes, the absorption spectra and the electrochemical properties <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/22/7928/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The present review summarizes the work carried out mostly in the last decade on iridium and ruthenium complexes bearing various perylene ligands, of particular interest for bioimaging, photodynamic therapy, and solar energy conversion. In these complexes, the absorption spectra and the electrochemical properties are those of the perylene subunit plus those of the metal moiety. In contrast, the emissions are completely changed with respect to perylenes considered alone. Thus, fully organic perylenes are characterized by a strong fluorescence in the visible region, lifetimes of a few nanoseconds, and luminescence quantum yields approaching 100%, whereas perylene Ir and Ru complexes usually do not emit; however, in few cases, weak phosphorescent emissions, with lifetimes in the range of microseconds and relatively low quantum yields, are reported. This is due to a strong interaction between the perylene core and the heavy metal center, taking place after the excitation. Nevertheless, an important advantage deriving from the presence of the heavy metal center is represented by the ability to generate large amounts of singlet oxygen, which plays a key role in photodynamic therapy. <a href="/1420-3049/27/22/7928">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/organometallic_molecules ">Featured Reviews in Organometallic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/22/7928/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev974481"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next974481"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next974481" data-cycle-prev="#prev974481" data-cycle-progressive="#images974481" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-974481-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g001-550.jpg?1668597351" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images974481" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g002-550.jpg?1668597356'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g003-550.jpg?1668597361'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g004-550.jpg?1668597369'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g005-550.jpg?1668597366'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g006-550.jpg?1668597355'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g007-550.jpg?1668597350'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g008-550.jpg?1668597358'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-974481-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g009-550.jpg?1668597363'><p>Figure 9</p></div></script></div></div><div id="article-974481-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g001-550.jpg?1668597351" title=" <strong>Figure 1</strong><br/> <p>The following are shown from left to right: naphthalene, perylene, terrylene, quaterrylene, and a generical oligorylene.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g002-550.jpg?1668597356" title=" <strong>Figure 2</strong><br/> <p>The following are shown from left to right: perylene, perylene monoimide (PMI), and perylene diimide (PDI) with the three functionalization positions.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g003-550.jpg?1668597361" title=" <strong>Figure 3</strong><br/> <p>Structures of complexes <b>1</b>, <b>2</b>, <b>3a</b>–<b>b</b>, <b>4</b>, and <b>5</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g004-550.jpg?1668597369" title=" <strong>Figure 4</strong><br/> <p>Structures of complexes <b>6a</b>–<b>b</b>, <b>7</b>, and <b>8a</b>–<b>b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g005-550.jpg?1668597366" title=" <strong>Figure 5</strong><br/> <p>Structures of complexes <b>9</b>, <b>10</b>, <b>11</b>, and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g006-550.jpg?1668597355" title=" <strong>Figure 6</strong><br/> <p>Structures of complexes <b>13a</b>–<b>d</b> and <b>14a</b>–<b>e</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g007-550.jpg?1668597350" title=" <strong>Figure 7</strong><br/> <p>Structure of complexes <b>15a</b>–<b>c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g008-550.jpg?1668597358" title=" <strong>Figure 8</strong><br/> <p>Structures of complexes <b>16</b>, <b>17</b>, <b>18</b>, and <b>19</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07928/article_deploy/html/images/molecules-27-07928-g009-550.jpg?1668597363" title=" <strong>Figure 9</strong><br/> <p>Structures of complex <b>20a</b>–<b>b</b> and <b>21</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7928'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="966201" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-966201" aria-controls="drop-supplementary-966201" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-966201" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/22/7666/s1?version=1667902780"> Supplementary File 1 (ZIP, 1910 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 21 pages, 6322 KiB </span> <a href="/1420-3049/27/22/7666/pdf?version=1668572029" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Selective Oxidation of Glycerol via Acceptorless Dehydrogenation Driven by Ir(I)-NHC Catalysts" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/22/7666">Selective Oxidation of Glycerol via Acceptorless Dehydrogenation Driven by Ir(I)-NHC Catalysts</a> <div class="authors"> by <span class="inlineblock "><strong>M. Victoria Jiménez</strong>, </span><span class="inlineblock "><strong>Ana I. Ojeda-Amador</strong>, </span><span class="inlineblock "><strong>Raquel Puerta-Oteo</strong>, </span><span class="inlineblock "><strong>Joaquín Martínez-Sal</strong>, </span><span class="inlineblock "><strong>Vincenzo Passarelli</strong> and </span><span class="inlineblock "><strong>Jesús J. Pérez-Torrente</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(22), 7666; <a href="https://doi.org/10.3390/molecules27227666">https://doi.org/10.3390/molecules27227666</a> - 8 Nov 2022 </div> <a href="/1420-3049/27/22/7666#metrics">Cited by 3</a> | Viewed by 2263 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)<sub>2</sub>(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)<sub>2</sub>]<sup>+</sup> and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/22/7666/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)<sub>2</sub>(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)<sub>2</sub>]<sup>+</sup> and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)<sub>2</sub>{(MeImCH<sub>2</sub>)<sub>2</sub>CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings. <a href="/1420-3049/27/22/7666">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Organometallic_Complexes_2022 ">Synthesis, Characterization, and Catalytic Activity of Organometallic Complexes 2022</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/22/7666/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev966201"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next966201"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next966201" data-cycle-prev="#prev966201" data-cycle-progressive="#images966201" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-966201-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-ag-550.jpg?1668572116" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images966201" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g001-550.jpg?1668572113'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g002-550.jpg?1668572108'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g003-550.jpg?1668572114'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g004-550.jpg?1668572109'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g005-550.jpg?1668572106'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g006-550.jpg?1668572103'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g007-550.jpg?1668572103'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g008-550.jpg?1668572111'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g009-550.jpg?1668572114'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g010-550.jpg?1668572110'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g011-550.jpg?1668572106'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g012-550.jpg?1668572103'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-ch001-550.jpg?1668572110'><p>Chart 1</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch001-550.jpg?1668572107'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch002-550.jpg?1668572104'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch003-550.jpg?1668572116'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch004-550.jpg?1668572115'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-966201-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch005-550.jpg?1668572106'><p>Scheme 5</p></div></script></div></div><div id="article-966201-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-ag-550.jpg?1668572116" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g001-550.jpg?1668572113" title=" <strong>Figure 1</strong><br/> <p><sup>1</sup>H NMR (CD<sub>2</sub>Cl<sub>2</sub>, 298K) spectrum of [Ir(cod){(MeImCH<sub>2</sub>)<sub>2</sub>CHOH}]Br (<b>4</b>) showing the presence of two isomers.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g002-550.jpg?1668572108" title=" <strong>Figure 2</strong><br/> <p>ORTEP plot of <b>2</b> in <b>2</b>·2 CH<sub>3</sub>OH (<b>a</b>), <b>4</b> in <b>4</b>·1.75 CH<sub>2</sub>Cl<sub>2</sub> (<b>b</b>), and <b>5</b> in <b>5</b>·CH<sub>2</sub>Cl<sub>2</sub> (<b>c</b>). Thermal ellipsoids are at 50% of probability. For clarity, most hydrogen atoms are omitted. CT, the centroid of olefinic carbons. Hydrogen bond parameters (Å, deg): <b>2</b>: O(56)-H(56)···O(16): O(56)-H(56) 0.84, H(56)···O(16) 1.90, O(56)···O(16) 2.714(6), O(56)-H(56)-O(16) 162.4; O(60)-H(60)···O(15): O(60)-H(60) 0.84, H(60)···O(15) 1.87, O(60)···O(15) 2.714(6) O(60)-H(60)···O(15) 176.3. <b>4</b>: O(16)-H(16)···Br(1): O(16)-H(16) 0.84 H(16)···Br(1) 2.36 O(16)···Br(1) 3.189(9), O(16)-H(16)-Br(1)170.6. <b>5</b>: O(16)-H(16)···Br(1): O(16)-H(16) 0.84, H(16)···Br(1) 2.42, O(16)···Br(1) 3.252(9) O(16)-H(16)-Br(1) 169.5.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g003-550.jpg?1668572114" title=" <strong>Figure 3</strong><br/> <p>Equilibrium between the two diastereomers of compound [Ir(cod){MeIm(CH<sub>2</sub>)<sub>3</sub>OH}<sub>2</sub>]Cl (<b>9</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g004-550.jpg?1668572109" title=" <strong>Figure 4</strong><br/> <p>Evolution of H<sub>2</sub>(g) vs. time for the dehydrogenation of glycerol to lactic acid catalyzed by <b>1</b>, <b>4</b> and <b>7</b> (0.2 mol%) at 130 °C. The produced hydrogen in the catalytic tests is consistent with the stoichiometric limit of added KOH (5 mmol of H<sub>2</sub>(g), horizontal line).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g005-550.jpg?1668572106" title=" <strong>Figure 5</strong><br/> <p>Complex <b>2</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g006-550.jpg?1668572103" title=" <strong>Figure 6</strong><br/> <p>Complex <b>3</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g007-550.jpg?1668572103" title=" <strong>Figure 7</strong><br/> <p>Diastereomers of complex <b>4</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g008-550.jpg?1668572111" title=" <strong>Figure 8</strong><br/> <p>Diastereomers of complex <b>5</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g009-550.jpg?1668572114" title=" <strong>Figure 9</strong><br/> <p>Complex <b>6</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g010-550.jpg?1668572110" title=" <strong>Figure 10</strong><br/> <p>Complex <b>7</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g011-550.jpg?1668572106" title=" <strong>Figure 11</strong><br/> <p>Complex <b>8</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-g012-550.jpg?1668572103" title=" <strong>Figure 12</strong><br/> <p>Diastereomers of complex <b>9</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-ch001-550.jpg?1668572110" title=" <strong>Chart 1</strong><br/> <p>Imidazolium salts precursors of the NHC ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch001-550.jpg?1668572107" title=" <strong>Scheme 1</strong><br/> <p>Synthesis of bis-NHC carbonyl iridium(I) compounds <b>2</b> and <b>3</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch002-550.jpg?1668572104" title=" <strong>Scheme 2</strong><br/> <p>Synthesis of bis-NHC iridium(I) compounds <b>4</b> and <b>5</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch003-550.jpg?1668572116" title=" <strong>Scheme 3</strong><br/> <p>Synthesis of the bis-NHC iridium(I) compound <b>6</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch004-550.jpg?1668572115" title=" <strong>Scheme 4</strong><br/> <p>Synthesis of NHC iridium(I) compounds <b>7</b>–<b>9</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-07666/article_deploy/html/images/molecules-27-07666-sch005-550.jpg?1668572106" title=" <strong>Scheme 5</strong><br/> <p>Proposed mechanism for the conversion of glycerol to lactate and hydrogen and commonly related byproducts.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/22/7666'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="939225" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-939225" aria-controls="drop-supplementary-939225" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-939225" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/20/6805/s1?version=1665496163"> Supplementary File 1 (ZIP, 402 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 20 pages, 6561 KiB </span> <a href="/1420-3049/27/20/6805/pdf?version=1665554866" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/20/6805">Molecular Engineering of Quinone-Based Nickel Complexes and Polymers for All-Organic Li-Ion Batteries</a> <div class="authors"> by <span class="inlineblock "><strong>Yanislav Danchovski</strong>, </span><span class="inlineblock "><strong>Hristo Rasheev</strong>, </span><span class="inlineblock "><strong>Radostina Stoyanova</strong> and </span><span class="inlineblock "><strong>Alia Tadjer</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(20), 6805; <a href="https://doi.org/10.3390/molecules27206805">https://doi.org/10.3390/molecules27206805</a> - 11 Oct 2022 </div> <a href="/1420-3049/27/20/6805#metrics">Cited by 2</a> | Viewed by 2063 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> All-organic Li-ion batteries appear to be a sustainable and safer alternative to the currently-used Li-ion batteries but their application is still limited due to the lack of organic compounds with high redox potentials toward Li<sup>+</sup>/Li<sup>0</sup>. Herein, we report a <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/20/6805/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> All-organic Li-ion batteries appear to be a sustainable and safer alternative to the currently-used Li-ion batteries but their application is still limited due to the lack of organic compounds with high redox potentials toward Li<sup>+</sup>/Li<sup>0</sup>. Herein, we report a computational design of nickel complexes and coordination polymers that have redox potentials spanning the full voltage range: from the highest, 4.7 V, to the lowest, 0.4 V. The complexes and polymers are modeled by binding low- and high-oxidized Ni ions (i.e., Ni(II) and Ni(IV)) to redox-active para-benzoquinone molecules substituted with carboxyl- and cyano-groups. It is found that both the nickel ions and the quinone-derived ligands are redox-active upon lithiation. The type of Ni coordination also has a bearing on the redox potentials. By combining the complex of Ni(IV) with 2-carboxylato-5-cyano-1,4-benzoquinones as a cathode and Ni(II)-2,5-dicarboxylato-3,6-dicyano-1,4-benzoquinone coordination polymer as an anode, all-organic Li-ion batteries could be assembled, operating at an average voltage exceeding 3.0 V and delivering a capacity of more than 300 mAh/g. <a href="/1420-3049/27/20/6805">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Organometallic ">Metal-Organic Complexes: Applications in Chemistry and Materials Science</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/20/6805/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev939225"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next939225"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next939225" data-cycle-prev="#prev939225" data-cycle-progressive="#images939225" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-939225-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-ag-550.jpg?1665554945" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images939225" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g001-550.jpg?1665554944'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g002-550.jpg?1665554942'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g003-550.jpg?1665554944'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g004-550.jpg?1665554943'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g005-550.jpg?1665554941'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g006-550.jpg?1665554942'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g007-550.jpg?1665554942'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g008-550.jpg?1665554942'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g009-550.jpg?1665554944'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g010-550.jpg?1665554938'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g011-550.jpg?1665554941'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g012-550.jpg?1665554943'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g013-550.jpg?1665554941'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g014-550.jpg?1665554943'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-939225-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g015-550.jpg?1665554940'><p>Figure 15</p></div></script></div></div><div id="article-939225-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-ag-550.jpg?1665554945" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g001-550.jpg?1665554944" title=" <strong>Figure 1</strong><br/> <p>Schematic representation of the designed constructs and the study objectives: 1,4-benzoquinone functionalized with (<b>a</b>) a –COO<sup>−</sup> and a -C≡N group (L1) to be used as a ligand in complexes with Ni(II) and Ni(IV); (<b>b</b>) two –COO<sup>−</sup> groups (L2) or (<b>c</b>) two –COO<sup>−</sup> and two -C≡N groups (L3), to be used as ligands in coordination polymers with Ni(II) and Ni(IV); the assemblies comprising Ni(IV) are neutralized by Cl<sup>−</sup> ions.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g002-550.jpg?1665554942" title=" <strong>Figure 2</strong><br/> <p>Stages of lithiation of Ni(II)(L1)<sub>2</sub>—top (<b>a</b>) and side (<b>b</b>) view of the optimized geometries. Color code: C—gray, H—white, O—red, N—deep blue, Ni—light blue, Li—pink.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g003-550.jpg?1665554944" title=" <strong>Figure 3</strong><br/> <p>Ni(II)(L1)<sub>2</sub> complex: (<b>a</b>) variation in the averaged bond lengths (Ni-O on the right axis) and bond length alternation (BLA); (<b>b</b>) averaged charges upon introduction of <span class="html-italic">n</span> Li atoms. Numerical values can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S2 and S3</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g004-550.jpg?1665554943" title=" <strong>Figure 4</strong><br/> <p>Stages of lithiation of Ni(IV)(L1)<sub>2</sub>—(<b>a</b>) top and (<b>b</b>) side view of the optimized geometries. Color code: C—gray, H—white, O—red, N—deep blue, Ni—light blue, Cl—green, Li—pink.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g005-550.jpg?1665554941" title=" <strong>Figure 5</strong><br/> <p>Ni(IV)(L1)<sub>2</sub> complex: (<b>a</b>) variation in the averaged bond lengths (Ni-O and Ni-Cl on the right axis) and BLA; (<b>b</b>) averaged charges upon introduction of <span class="html-italic">n</span> Li atoms. Numerical values can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S4 and S5</a>. Distances Ni-Cl are not shown after 2Li in (<b>a</b>) as they are too large and not informative (<a href="#app1-molecules-27-06805" class="html-app">Table S4</a>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g006-550.jpg?1665554942" title=" <strong>Figure 6</strong><br/> <p>Redox potential profile (E<sup>0</sup> vs. Li<sup>+</sup>/Li<sup>0</sup>) of: (<b>a</b>) Ni(II)(L1)<sub>2</sub> and (<b>b</b>) Ni(IV)(L1)<sub>2</sub> upon lithiation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g007-550.jpg?1665554942" title=" <strong>Figure 7</strong><br/> <p>Optimized geometries of the step-by-step lithiated coordination polymers of (<b>a</b>) Ni(II) and (<b>b</b>) Ni(IV) with 2,5-dicarboxylato-1,4-quinone (L2). Color code: C—brown, H—white, O—red, Ni –gray, Cl—green, Li—pink.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g008-550.jpg?1665554942" title=" <strong>Figure 8</strong><br/> <p>Variation in the averaged bond lengths and BLA of (<b>a</b>) [Ni(II)L2]<sub>n</sub> and (<b>b</b>) [Ni(IV)L2]<sub>n</sub>. Arrows instruct which axis corresponds to the values of the structural parameters. Numerical quantities can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S6 and S7</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g009-550.jpg?1665554944" title=" <strong>Figure 9</strong><br/> <p>Averaged AIM charges in the lithiated (<b>a</b>) [Ni(II)L2]<sub>n</sub> and (<b>b</b>) [Ni(IV)L2]<sub>n</sub>. Numerical values can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S8 and S9</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g010-550.jpg?1665554938" title=" <strong>Figure 10</strong><br/> <p>Redox potential profile (E<sup>0</sup> vs. Li<sup>+</sup>/Li<sup>0</sup>) of: (<b>a</b>) [Ni(II)L2]<sub>n</sub> and (<b>b</b>) [Ni(IV)L2]<sub>n</sub> upon lithiation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g011-550.jpg?1665554941" title=" <strong>Figure 11</strong><br/> <p>Optimized geometries of the step-by-step lithiated coordination polymers of (<b>a</b>) Ni(II) and (<b>b</b>) Ni(IV) with 2,5-dicarboxylato-3,6-dicyano-1,4-benzoquinone (L3). Color code: C—brown, H—white, O—red, Ni –gray-large, N—light blue-gray-small, Cl—green, Li—pink.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g012-550.jpg?1665554943" title=" <strong>Figure 12</strong><br/> <p>Variation in the averaged bond lengths and BLA of (<b>a</b>) [Ni(II)L3]<sub>n</sub> and (<b>b</b>) [Ni(IV)L3]<sub>n</sub>. Arrows instruct which axis corresponds to the values of the structural parameters. Numerical quantities can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S10 and S11</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g013-550.jpg?1665554941" title=" <strong>Figure 13</strong><br/> <p>Averaged AIM charges in the lithiated (<b>a</b>) [Ni(II)L3]<sub>n</sub> and (<b>b</b>) [Ni(IV)L3]<sub>n</sub>. Numerical values can be found in <a href="#app1-molecules-27-06805" class="html-app">Tables S12 and S13</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g014-550.jpg?1665554943" title=" <strong>Figure 14</strong><br/> <p>Redox potential profile (E<sup>0</sup> vs. Li<sup>+</sup>/Li<sup>0</sup>) of: (<b>a</b>) [Ni(II)L3]<sub>n</sub> and (<b>b</b>) [Ni(IV)L3]<sub>n</sub> upon lithiation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06805/article_deploy/html/images/molecules-27-06805-g015-550.jpg?1665554940" title=" <strong>Figure 15</strong><br/> <p>Voltage-capacity plot of organic-based electrode materials reported in the literature (PTPAn [<a href="#B51-molecules-27-06805" class="html-bibr">51</a>], Li<sub>4</sub>-p-DHBD.2DMF [<a href="#B47-molecules-27-06805" class="html-bibr">47</a>], Mg(Li<sub>2</sub>)-p-DHT [<a href="#B52-molecules-27-06805" class="html-bibr">52</a>], Li<sub>2</sub>-BDC [<a href="#B53-molecules-27-06805" class="html-bibr">53</a>] and ZnTPA [<a href="#B54-molecules-27-06805" class="html-bibr">54</a>]—black labels and circles), and in this study (colored labels, full circles for the high potential and patterned circles for the low potential); the most prospective structures designed in this study (in red) for the construction of an all-organic rechargeable Li-ion battery.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/20/6805'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="930397" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-930397" aria-controls="drop-supplementary-930397" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-930397" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/19/6455/s1?version=1665367399"> Supplementary File 1 (ZIP, 2073 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 29 pages, 9817 KiB </span> <a href="/1420-3049/27/19/6455/pdf?version=1665367398" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="A Journey through Diastereomeric Space: The Design, Synthesis, In Vitro and In Vivo Pharmacological Activity, and Molecular Modeling of Novel Potent Diastereomeric MOR Agonists and Antagonists" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/19/6455">A Journey through Diastereomeric Space: The Design, Synthesis, In Vitro and In Vivo Pharmacological Activity, and Molecular Modeling of Novel Potent Diastereomeric MOR Agonists and Antagonists</a> <div class="authors"> by <span class="inlineblock "><strong>Dana R. Chambers</strong>, </span><span class="inlineblock "><strong>Agnieszka Sulima</strong>, </span><span class="inlineblock "><strong>Dan Luo</strong>, </span><span class="inlineblock "><strong>Thomas E. Prisinzano</strong>, </span><span class="inlineblock "><strong>Alexander Goldberg</strong>, </span><span class="inlineblock "><strong>Bing Xie</strong>, </span><span class="inlineblock "><strong>Lei Shi</strong>, </span><span class="inlineblock "><strong>Carol A. Paronis</strong>, </span><span class="inlineblock "><strong>Jack Bergman</strong>, </span><span class="inlineblock "><strong>Nima Nassehi</strong>, </span><span class="inlineblock "><strong>Dana E. Selley</strong>, </span><span class="inlineblock "><strong>Gregory H. Imler</strong>, </span><span class="inlineblock "><strong>Arthur E. Jacobson</strong> and </span><span class="inlineblock "><strong>Kenner C. Rice</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(19), 6455; <a href="https://doi.org/10.3390/molecules27196455">https://doi.org/10.3390/molecules27196455</a> - 30 Sep 2022 </div> <a href="/1420-3049/27/19/6455#metrics">Cited by 8</a> | Viewed by 2347 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/19/6455/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Four sets of diastereomeric C9-alkenyl 5-phenylmorphans, varying in the length of the C9-alkenyl chain, were designed to examine the effect of these spatially distinct ligands on opioid receptors. Functional activity was obtained by forskolin-induced cAMP accumulation assays and several compounds were examined in the [<sup>35</sup>S]GTPgS assay and in an assay for respiratory depression. In each of the four sets, similarities and differences were observed dependent on the length of their C9-alkenyl chain and, most importantly, their stereochemistry. Three MOR antagonists were found to be as or more potent than naltrexone and, unlike naltrexone, none had MOR, KOR, or DOR agonist activity. Several potent MOR full agonists were obtained, and, of particular interest partial agonists were found that exhibited less respiratory depression than that caused by morphine. The effect of stereochemistry and the length of the C9-alkenyl chain was also explored using molecular modeling. The MOR antagonists were found to interact with the inactive (4DKL) MOR crystal structures and agonists were found to interact with the active (6DDF) MOR crystal structures. The comparison of their binding modes at the mouse MOR was used to gain insight into the structural basis for their stereochemically induced pharmacological differences. <a href="/1420-3049/27/19/6455">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Section <a href="/journal/molecules/sections/medicinal_chemistry">Medicinal Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/19/6455/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev930397"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next930397"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next930397" data-cycle-prev="#prev930397" data-cycle-progressive="#images930397" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-930397-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-ag-550.jpg?1665367488" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images930397" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g001-550.jpg?1665367471'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g002-550.jpg?1665367477'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g003-550.jpg?1665367488'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g004-550.jpg?1665367469'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g005-550.jpg?1665367481'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch001-550.jpg?1665367484'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch002-550.jpg?1665367470'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch003-550.jpg?1665367475'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch004-550.jpg?1665367483'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch005-550.jpg?1665367479'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch006-550.jpg?1665367473'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch007-550.jpg?1665367485'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-930397-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch008-550.jpg?1665367476'><p>Scheme 8</p></div></script></div></div><div id="article-930397-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-ag-550.jpg?1665367488" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g001-550.jpg?1665367471" title=" <strong>Figure 1</strong><br/> <p>X-ray crystal structure of <b>8</b> (3-((1<span class="html-italic">R</span>,5<span class="html-italic">S</span>,9<span class="html-italic">R</span>)-2-phenethyl-9-vinyl-2-azabicyclo [3.3.1] nonan-5-yl) phenol). The ellipsoids are shown at the 50% probability level. Crystal data and atomic coordinates can be found in the <a href="#app1-molecules-27-06455" class="html-app">Supplementary Materials</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g002-550.jpg?1665367477" title=" <strong>Figure 2</strong><br/> <p>X-ray crystal structure of <b>20</b> (3-((1<span class="html-italic">S</span>,5<span class="html-italic">R</span>,9<span class="html-italic">R</span>)-2-phenethyl-9-((<span class="html-italic">Z</span>)-prop-1-en-1-yl)-2-azabicyclo [3.3.1] nonan-5-yl) phenol). The ellipsoids are shown at the 50% probability level. Crystal data and atomic coordinates can be found in the <a href="#app1-molecules-27-06455" class="html-app">Supplementary Materials</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g003-550.jpg?1665367488" title=" <strong>Figure 3</strong><br/> <p>Representative docking poses of C9-substituted compounds in the active MOR. The C9-vinyl compounds <b>8</b>, <b>9</b>, <b>14</b>, and <b>15</b> are shown in (<b>B</b>,<b>C</b>) and the C9-propenyl compounds <b>17</b>, <b>18</b>, <b>21</b>, and <b>20</b> are shown in (<b>D</b>,<b>E</b>). A section of TM2 and TM3 were hidden to provide a better view of the binding site. (<b>A</b>) An overview of the DAMGO-bound MOR-Gi complex (6DDF). (<b>B</b>) The vinyl group of <b>8</b> (yellow) can form hydrophobic interactions with I322<sup>7.39</sup>. Due to the orientation of its vinyl group, <b>14</b> (tan) is unable to form this stabilizing interaction. (<b>C</b>) <b>15</b> (cyan) clashes with Y148<sup>3.33</sup> and I296<sup>6.51</sup> in the active cryo-EM receptor structure (gray), forcing these residues to adopt new configurations. Arrows show the movement of these residues from the initial active cryo-EM structure to the induced docking configuration. (<b>D</b>) The elongated substituent of <b>17</b> may form a stronger hydrophobic interaction with I322<sup>7.39</sup>. (<b>E</b>) The addition of a carbon to the vinyl group of the antagonist <b>20</b> (cyan) may make the clash with Y148<sup>3.33</sup> more extreme in the active cryo-EM receptor structure (gray).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g004-550.jpg?1665367469" title=" <strong>Figure 4</strong><br/> <p>Representative docking poses of C9-substituted compounds in the inactive MOR. The binding poses of ligands in the inactive receptor adopt a more bent configuration, which is caused by the projection of N150<sup>3.32</sup> into the binding site. The C9-vinyl compounds are shown in (<b>B</b>,<b>C</b>) and the C9-propenyl compounds are shown in (<b>D</b>,<b>E</b>). A section of TM2 and TM3 were hidden to generate a better view of the binding site. (<b>A</b>) An overview of the β-FNA-bound MOR (4DKL). (<b>B</b>) The vinyl group of <b>8</b> (yellow) may form weak interactions with I296<sup>6.51</sup> and <b>9</b> (pink) may be stabilized by I322<sup>7.39</sup>. (<b>C</b>) <b>15</b> (cyan) does not clash with Y148<sup>3.33</sup> and I296<sup>6.51</sup> in the inactive receptor, and the central hexane group is stabilized by I322<sup>7.39</sup>. The phenol moiety forms hydrogen bonds with Q124<sup>2.60</sup> and Y128<sup>2.64</sup> (<b>D</b>) The elongated substituents of <b>18</b> (pink) and <b>17</b> (yellow) may be stabilized by I296<sup>6.51</sup> and I322<sup>7.39</sup>, respectively. (<b>E</b>) The C9-propenyl antagonist <b>20</b> maintains stabilizing interactions with Q124<sup>2.60</sup>, Y128<sup>2.64</sup>, and I322<sup>7.39</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-g005-550.jpg?1665367481" title=" <strong>Figure 5</strong><br/> <p>Effects of compounds <b>8</b>, <b>9</b>, and <b>17</b> (in comparison to morphine and saline) on tail withdrawal latency (<b>left panel</b>) and on ventilatory ratio (<b>right panel</b>) in squirrel monkeys. Compound <b>8</b> like morphine, significantly increased tail withdrawal latency and reduced the ability of 5% CO<sub>2</sub> to stimulate increases in ventilation. Compound <b>17</b> increased tail withdrawal latency. without significantly altering ventilation, and Compound <b>9</b> had inconsistent effect of tail withdrawal latency and did not alter ventilation. Data are expressed as mean ± SEM (<span class="html-italic">n</span> = 3–5; results of statistical analysis are presented in text).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch001-550.jpg?1665367484" title=" <strong>Scheme 1</strong><br/> <p>Reagents and Conditions: (<b>a</b>) 1. CNBr, K2CO3, MeCN, reflux 4 h, 2. 3 N aq. HCl, MeOH, reflux 16 h, 80%; (<b>b</b>) Ph(CH2)2Br, K2CO3, MeCN, reflux 16 h, 77%; (<b>c</b>) LiHMDS (methoxymethyl) triphenylphosphonium chloride, THF, 0 °C, 65%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch002-550.jpg?1665367470" title=" <strong>Scheme 2</strong><br/> <p>Reagents and Conditions: (<b>a</b>) i. HCl, ii. KOtBu, methyltriphenylphosphonium bromide, THF, 45 °C, 3 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch003-550.jpg?1665367475" title=" <strong>Scheme 3</strong><br/> <p>Reagents and Conditions: (<b>a</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 92%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch004-550.jpg?1665367483" title=" <strong>Scheme 4</strong><br/> <p>Reagents and Conditions: (<b>a</b>) (i). HCl, (ii). KOtBu, methyltriphenylphosphonium bromide, THF, 45 °C, 3 h, 32% <b>12</b>: 24% <b>13</b>; (<b>b</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 76%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch005-550.jpg?1665367479" title=" <strong>Scheme 5</strong><br/> <p>Reagents and Conditions: (<b>a</b>) ethyltriphenylphosphonium iodide, THF, LiHMDS, rt, 15 h, 73%; (<b>b</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 60%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch006-550.jpg?1665367473" title=" <strong>Scheme 6</strong><br/> <p>Reagents and Conditions: (<b>a</b>) ethyltriphenylphosphonium iodide, THF, LiHMDS, rt, 15 h, 43%; (<b>b</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 94%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch007-550.jpg?1665367485" title=" <strong>Scheme 7</strong><br/> <p>Reagents and Conditions: (<b>a</b>) propyltriphenylphosphonium bromide, THF, LiHMDS, 45 °C 15 h, 70%; (<b>b</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 60%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06455/article_deploy/html/images/molecules-27-06455-sch008-550.jpg?1665367476" title=" <strong>Scheme 8</strong><br/> <p>Reagents and Conditions: (<b>a</b>) propyltriphenylphosphonium bromide, THF, LiHMDS, 45 °C 15 h, 53%; (<b>b</b>) BBr<sub>3</sub>, CH<sub>2</sub>Cl<sub>2</sub>, −78 °C—rt, 4 h, 61%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/19/6455'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="919228" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-919228" aria-controls="drop-supplementary-919228" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-919228" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/18/6137/s1?version=1663598291"> Supplementary File 1 (ZIP, 409 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 7069 KiB </span> <a href="/1420-3049/27/18/6137/pdf?version=1663839846" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Detailed Structural Characterization of Oxidized Sucrose and Its Application in the Fully Carbohydrate-Based Preparation of a Hydrogel from Carboxymethyl Chitosan" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/18/6137">Detailed Structural Characterization of Oxidized Sucrose and Its Application in the Fully Carbohydrate-Based Preparation of a Hydrogel from Carboxymethyl Chitosan</a> <div class="authors"> by <span class="inlineblock "><strong>Hiroyuki Kono</strong>, </span><span class="inlineblock "><strong>Junki Noda</strong> and </span><span class="inlineblock "><strong>Haruki Wakamori</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(18), 6137; <a href="https://doi.org/10.3390/molecules27186137">https://doi.org/10.3390/molecules27186137</a> - 19 Sep 2022 </div> <a href="/1420-3049/27/18/6137#metrics">Cited by 7</a> | Viewed by 2782 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Oxidized sucrose (OS) is a bio-based cross-linking agent with excellent biological safety and environmental non-toxicity. However, the precise structure of OS has not been elucidated owing to its structural complexity and low purity. Accordingly, in this study, complete chemical shift assignments were performed <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/6137/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Oxidized sucrose (OS) is a bio-based cross-linking agent with excellent biological safety and environmental non-toxicity. However, the precise structure of OS has not been elucidated owing to its structural complexity and low purity. Accordingly, in this study, complete chemical shift assignments were performed by applying various nuclear magnetic resonance techniques, which permitted the structural and quantitative characterization of the two main OS products, each of which contained four aldehyde groups. In addition, we investigated the use of OS as a cross-linking agent in the preparation of a hydrogel from carboxymethyl chitosan (CMC), one of the most popular polysaccharides for use in biomedical applications. The primary amine groups of CMC were immediately cross-linked with the aldehyde groups of OS to form hydrogels without the requirement for a catalyst. It was found that the degree of cross-linking could be easily controlled by the feed amount of OS during CMC hydrogel preparation and the final cross-linking degree affected the thermal, swelling, and rheological properties of the obtained hydrogel. The results presented in this study are therefore expected to be applicable in the preparation of fully carbohydrate-based hydrogels for medical and pharmaceutical applications. <a href="/1420-3049/27/18/6137">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Section <a href="/journal/molecules/sections/macromolecular_chemistry">Macromolecular Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/6137/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev919228"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next919228"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next919228" data-cycle-prev="#prev919228" data-cycle-progressive="#images919228" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-919228-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g001-550.jpg?1663839955" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images919228" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g002-550.jpg?1663839943'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g003-550.jpg?1663839957'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g004-550.jpg?1663839963'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g005-550.jpg?1663839967'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g006-550.jpg?1663839950'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g007-550.jpg?1663839940'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g008-550.jpg?1663839962'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g009-550.jpg?1663839959'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g010-550.jpg?1663839968'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g011-550.jpg?1663839947'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g012-550.jpg?1663839952'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-919228-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g013-550.jpg?1663839960'><p>Figure 13</p></div></script></div></div><div id="article-919228-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g001-550.jpg?1663839955" title=" <strong>Figure 1</strong><br/> <p>Schematic outlines of the preparation of oxidized sucrose (OS) from sucrose using sodium periodate (NaIO<sub>4</sub>) (top) and the carboxymethyl chitosan hydrogels (CMCG) from carboxymethyl chitosan (CMC) using oxidized sucrose (OS) as a cross-linking agent (bottom).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g002-550.jpg?1663839943" title=" <strong>Figure 2</strong><br/> <p>Water-suppressed <sup>1</sup>H (top) and quantitative <sup>13</sup>C (bottom) NMR spectra of the oxidized sucrose (OS) in D<sub>2</sub>O at 298 K. Sodium 3-(trimethylsilyl)propane-1-sulfonate (DSS) was used as an internal standard.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g003-550.jpg?1663839957" title=" <strong>Figure 3</strong><br/> <p>Two-dimensional contour plots of the <sup>1</sup>H–<sup>13</sup>C heteronuclear single quantum coherence (HSQC), and HSQC-total correlation spectroscopy (TOCSY) spectra of OS (298 K, D<sub>2</sub>O).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g004-550.jpg?1663839963" title=" <strong>Figure 4</strong><br/> <p>Quantitative <sup>13</sup>C NMR spectrum of CMC used for preparation of CMCG (298 K, D<sub>2</sub>O). Resonance assignments are also indicated. The numbers 2s, 3s, and 6s represent the resonance lines at the positions substituted by the carboxymethyl groups. <span class="html-italic">O</span>-CM and <span class="html-italic">N</span>-CM refer to the carbonyl carbon resonances of the carboxymethyl groups substituted at the hydroxyl and amine groups of chitosan, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g005-550.jpg?1663839967" title=" <strong>Figure 5</strong><br/> <p>Photographic images of the reaction mixtures for the preparation of carboxymethyl chitosan hydrogels (CMCG 1–4) after 1, 2, 4, 6, 24, and 48 h of cross-linking between carboxymethyl chitosan and the oxidized sucrose.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g006-550.jpg?1663839950" title=" <strong>Figure 6</strong><br/> <p>Full and expanded Fourier transform infrared spectra of CMCG 1–4 and CMC.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g007-550.jpg?1663839940" title=" <strong>Figure 7</strong><br/> <p>Quantitative solid-state <sup>13</sup>C NMR spectra of CMCG 1–4, CMC, and OS (left-hand spectra), and the results of lineshape analysis for the carbonyl carbon region (right-hand spectra).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g008-550.jpg?1663839962" title=" <strong>Figure 8</strong><br/> <p>Thermogravimetric (TG) and differential thermal analysis (DTA) traces for CMCG 1–4 and CMC.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g009-550.jpg?1663839959" title=" <strong>Figure 9</strong><br/> <p>The initial (<span class="html-italic">T<sub>i</sub></span>) and final (<span class="html-italic">T<sub>f</sub></span>) degradation temperatures for the second stage of thermal decomposition for CMCG 1–4 and CMC determined by thermogravimetric analysis (<a href="#molecules-27-06137-f008" class="html-fig">Figure 8</a>, top).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g010-550.jpg?1663839968" title=" <strong>Figure 10</strong><br/> <p>Absorbency of the CMCG 1–4 species toward pure water and phosphate-buffered saline after 24 h at 298 K.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g011-550.jpg?1663839947" title=" <strong>Figure 11</strong><br/> <p>Scanning electron microscopy (SEM) images for the cross-sectional surface of the CMCG 1–4 species swelled in PBS.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g012-550.jpg?1663839952" title=" <strong>Figure 12</strong><br/> <p>Rheological properties of CMCG at 298 K following swelling and saturation with PBS. The (<b>a</b>) storage modulus (G′), (<b>b</b>) loss modulus (G″), (<b>c</b>) tan <span class="html-italic">δ</span> (= G″/G′), and (<b>d</b>) complex viscosity (<span class="html-italic">ƞ</span><span class="html-italic">*</span>) profiles.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-06137/article_deploy/html/images/molecules-27-06137-g013-550.jpg?1663839960" title=" <strong>Figure 13</strong><br/> <p>Storage moduli (G′) of CMCG 1–4 at 298 K obtained by varying the cross-linking reaction time. The G′ values were recorded at an angular frequency of 1 rad∙s<sup>−1</sup>. All CMCG samples had previously undergone swelling and saturation with PBS.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/6137'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="913998" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 31 pages, 8073 KiB </span> <a href="/1420-3049/27/18/5962/pdf?version=1663718672" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Guanidinates as Alternative Ligands for Organometallic Complexes" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/18/5962">Guanidinates as Alternative Ligands for Organometallic Complexes</a> <div class="authors"> by <span class="inlineblock "><strong>Fernando Carrillo-Hermosilla</strong>, </span><span class="inlineblock "><strong>Rafael Fernández-Galán</strong>, </span><span class="inlineblock "><strong>Alberto Ramos</strong> and </span><span class="inlineblock "><strong>David Elorriaga</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(18), 5962; <a href="https://doi.org/10.3390/molecules27185962">https://doi.org/10.3390/molecules27185962</a> - 13 Sep 2022 </div> <a href="/1420-3049/27/18/5962#metrics">Cited by 10</a> | Viewed by 3285 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have dominated Coordination and Organometallic Chemistry. At the same time, alternative compounds have emerged that could compete either for a more practical and accessible synthesis or for greater control of steric and electronic <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/5962/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> For decades, ligands such as phosphanes or cyclopentadienyl ring derivatives have dominated Coordination and Organometallic Chemistry. At the same time, alternative compounds have emerged that could compete either for a more practical and accessible synthesis or for greater control of steric and electronic properties. Guanidines, nitrogen-rich compounds, appear as one such potential alternatives as ligands or proligands. In addition to occurring in a plethora of natural compounds, and thus in compounds of pharmacological use, guanidines allow a wide variety of coordination modes to different metal centers along the periodic table, with their monoanionic chelate derivatives being the most common. In this review, we focused on the organometallic chemistry of guanidinato compounds, discussing selected examples of coordination modes, reactivity and uses in catalysis or materials science. We believe that these amazing ligands offer a new promise in Organometallic Chemistry. <a href="/1420-3049/27/18/5962">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Organometallics ">Organometallic Complexes: Fundamentals and Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/5962/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev913998"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next913998"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next913998" data-cycle-prev="#prev913998" data-cycle-progressive="#images913998" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-913998-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g001-550.jpg?1663718754" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images913998" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g002-550.jpg?1663718777'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g003-550.jpg?1663718761'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g004-550.jpg?1663718761'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g005-550.jpg?1663718747'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g006-550.jpg?1663718743'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g007-550.jpg?1663718744'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g008-550.jpg?1663718764'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g009-550.jpg?1663718760'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g010-550.jpg?1663718745'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g011-550.jpg?1663718771'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g012-550.jpg?1663718773'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g013-550.jpg?1663718756'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g014-550.jpg?1663718776'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g015-550.jpg?1663718758'><p>Figure 15</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g016-550.jpg?1663718765'><p>Figure 16</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g017-550.jpg?1663718763'><p>Figure 17</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g018-550.jpg?1663718762'><p>Figure 18</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g019-550.jpg?1663718769'><p>Figure 19</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g020-550.jpg?1663718759'><p>Figure 20</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g021-550.jpg?1663718751'><p>Figure 21</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g022-550.jpg?1663718767'><p>Figure 22</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g023-550.jpg?1663718752'><p>Figure 23</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g024-550.jpg?1663718773'><p>Figure 24</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g025-550.jpg?1663718745'><p>Figure 25</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g026-550.jpg?1663718754'><p>Figure 26</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g027-550.jpg?1663718746'><p>Figure 27</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g028-550.jpg?1663718775'><p>Figure 28</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g029-550.jpg?1663718754'><p>Figure 29</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g030-550.jpg?1663718743'><p>Figure 30</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g031-550.jpg?1663718770'><p>Figure 31</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g032-550.jpg?1663718744'><p>Figure 32</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g033-550.jpg?1663718768'><p>Figure 33</p></div> --- <div class='openpopupgallery' data-imgindex='33' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g034-550.jpg?1663718750'><p>Figure 34</p></div> --- <div class='openpopupgallery' data-imgindex='34' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g035-550.jpg?1663718748'><p>Figure 35</p></div> --- <div class='openpopupgallery' data-imgindex='35' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g036-550.jpg?1663718771'><p>Figure 36</p></div> --- <div class='openpopupgallery' data-imgindex='36' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g037-550.jpg?1663718778'><p>Figure 37</p></div> --- <div class='openpopupgallery' data-imgindex='37' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g038-550.jpg?1663718766'><p>Figure 38</p></div> --- <div class='openpopupgallery' data-imgindex='38' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g039-550.jpg?1663718767'><p>Figure 39</p></div> --- <div class='openpopupgallery' data-imgindex='39' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g040-550.jpg?1663718770'><p>Figure 40</p></div> --- <div class='openpopupgallery' data-imgindex='40' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g041-550.jpg?1663718764'><p>Figure 41</p></div> --- <div class='openpopupgallery' data-imgindex='41' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g042-550.jpg?1663718741'><p>Figure 42</p></div> --- <div class='openpopupgallery' data-imgindex='42' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g043-550.jpg?1663718742'><p>Figure 43</p></div> --- <div class='openpopupgallery' data-imgindex='43' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g044-550.jpg?1663718748'><p>Figure 44</p></div> --- <div class='openpopupgallery' data-imgindex='44' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g045-550.jpg?1663718777'><p>Figure 45</p></div> --- <div class='openpopupgallery' data-imgindex='45' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g046-550.jpg?1663718769'><p>Figure 46</p></div> --- <div class='openpopupgallery' data-imgindex='46' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g047-550.jpg?1663718766'><p>Figure 47</p></div> --- <div class='openpopupgallery' data-imgindex='47' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g048-550.jpg?1663718740'><p>Figure 48</p></div> --- <div class='openpopupgallery' data-imgindex='48' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g049-550.jpg?1663718757'><p>Figure 49</p></div> --- <div class='openpopupgallery' data-imgindex='49' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g050-550.jpg?1663718769'><p>Figure 50</p></div> --- <div class='openpopupgallery' data-imgindex='50' data-target='article-913998-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g051-550.jpg?1663718755'><p>Figure 51</p></div></script></div></div><div id="article-913998-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g001-550.jpg?1663718754" title=" <strong>Figure 1</strong><br/> <p>General structures of guanidines, guanidinates and guanidinium cations.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g002-550.jpg?1663718777" title=" <strong>Figure 2</strong><br/> <p>Electronic delocalization in guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g003-550.jpg?1663718761" title=" <strong>Figure 3</strong><br/> <p>Lithium and potassium compounds with η<sup>6</sup>-arene coordination.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g004-550.jpg?1663718761" title=" <strong>Figure 4</strong><br/> <p>Polymeric potassium compound through η<sup>6</sup>-arene interactions.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g005-550.jpg?1663718747" title=" <strong>Figure 5</strong><br/> <p>Alkali metal complexes exhibiting bond interactions with the aromatic substituents of the guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g006-550.jpg?1663718743" title=" <strong>Figure 6</strong><br/> <p>Alkali metal complexes exhibiting bond interactions with the aromatic substituents of the guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g007-550.jpg?1663718744" title=" <strong>Figure 7</strong><br/> <p>Monomeric chromium (0) bimetallic complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g008-550.jpg?1663718764" title=" <strong>Figure 8</strong><br/> <p>Magnesium magnesioamidinato complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g009-550.jpg?1663718760" title=" <strong>Figure 9</strong><br/> <p>Heteroleptic benzylcalcium complex as the product of Schlenk equilibrium.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g010-550.jpg?1663718745" title=" <strong>Figure 10</strong><br/> <p>Dinuclear strontium and barium compounds with guanidinato chelate and bridging ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g011-550.jpg?1663718771" title=" <strong>Figure 11</strong><br/> <p>Electronic and steric stabilization of barium by aryl substituents in guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g012-550.jpg?1663718773" title=" <strong>Figure 12</strong><br/> <p>Bis-guanidianato alkyl zinc dimeric complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g013-550.jpg?1663718756" title=" <strong>Figure 13</strong><br/> <p>Bicyclic guanidinato complex acting as bridges in alkyl zinc complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g014-550.jpg?1663718776" title=" <strong>Figure 14</strong><br/> <p>Guanidinato ligands acting both as chelate ligands and as a bridge between two zinc nuclei with boat and chair conformations.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g015-550.jpg?1663718758" title=" <strong>Figure 15</strong><br/> <p>Catalytic guanylation of amines using ZnEt<sub>2</sub> as a precatalyst.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g016-550.jpg?1663718765" title=" <strong>Figure 16</strong><br/> <p>Synthesis of organoaluminum guanidinato complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g017-550.jpg?1663718763" title=" <strong>Figure 17</strong><br/> <p>Bicyclic guanidinates acting as bridging ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g018-550.jpg?1663718762" title=" <strong>Figure 18</strong><br/> <p>Insertion of carbodiimides into Al–N bonds of amido compounds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g019-550.jpg?1663718769" title=" <strong>Figure 19</strong><br/> <p>Bimetallic iron–aluminum compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g020-550.jpg?1663718759" title=" <strong>Figure 20</strong><br/> <p>Double insertion of carbodiimides.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g021-550.jpg?1663718751" title=" <strong>Figure 21</strong><br/> <p>Hydroboration and hydrosilylation of ketones by aluminum hydride compounds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g022-550.jpg?1663718767" title=" <strong>Figure 22</strong><br/> <p>Dinuclear aluminum compounds, catalyst for ring-opening polymerization (<span class="html-italic">n</span> = 2, 3, 4).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g023-550.jpg?1663718752" title=" <strong>Figure 23</strong><br/> <p>Mononuclear and dinuclear aluminum compounds with different coordination numbers.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g024-550.jpg?1663718773" title=" <strong>Figure 24</strong><br/> <p>Rearrangement in phosphanoguanidinato derivatives.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g025-550.jpg?1663718745" title=" <strong>Figure 25</strong><br/> <p>Zirconium complex with a η<sup>2</sup>-type bond interaction of a benzyl ligand.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g026-550.jpg?1663718754" title=" <strong>Figure 26</strong><br/> <p>Dianionic zirconium guanidinato complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g027-550.jpg?1663718746" title=" <strong>Figure 27</strong><br/> <p>Cationic derivatives of a bis-guanidinato zirconium compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g028-550.jpg?1663718775" title=" <strong>Figure 28</strong><br/> <p>Aryl isonitriles insertion and the consecutive evolution of the iminoacyl groups.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g029-550.jpg?1663718754" title=" <strong>Figure 29</strong><br/> <p>Metallocarborane complexes of titanium.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g030-550.jpg?1663718743" title=" <strong>Figure 30</strong><br/> <p>Chiral half-sandwich complexes with an oxazolinato group.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g031-550.jpg?1663718770" title=" <strong>Figure 31</strong><br/> <p>Coordination and activation of dinitrogen with group 4 guanidinato complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g032-550.jpg?1663718744" title=" <strong>Figure 32</strong><br/> <p>Arene–metal bond interaction in a titanium complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g033-550.jpg?1663718768" title=" <strong>Figure 33</strong><br/> <p>Asymmetric coordination of a guanidinato ligand in niobium complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g034-550.jpg?1663718750" title=" <strong>Figure 34</strong><br/> <p>C–N activation mediated by a guanidine in an iminocarbamoyl compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g035-550.jpg?1663718748" title=" <strong>Figure 35</strong><br/> <p>Iron dianionic guanidinato compounds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g036-550.jpg?1663718771" title=" <strong>Figure 36</strong><br/> <p>First example of a chelate guanidinato compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g037-550.jpg?1663718778" title=" <strong>Figure 37</strong><br/> <p>Ruthenium guanidinato complex acting as catalyst for allylic alcohol isomerization.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g038-550.jpg?1663718766" title=" <strong>Figure 38</strong><br/> <p>Ruthenium (IV) guanidinato complex [RuCl{κ<sup>2</sup>-C(NR)(NiPr)NHiPr}(η<sup>3</sup>:η<sup>3</sup>-C<sub>10</sub>H<sub>16</sub>)].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g039-550.jpg?1663718767" title=" <strong>Figure 39</strong><br/> <p>Osmium guanidinato complexes acting as aldoxime dehydration catalysts.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g040-550.jpg?1663718770" title=" <strong>Figure 40</strong><br/> <p>Phosphane-modified guanidine as ligand in a ruthenium complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g041-550.jpg?1663718764" title=" <strong>Figure 41</strong><br/> <p>Frustrated Lewis pair based in rhodium phosphanoguanidinato complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g042-550.jpg?1663718741" title=" <strong>Figure 42</strong><br/> <p>Bridging and arene coordination of guanidinato ligands in rhodium complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g043-550.jpg?1663718742" title=" <strong>Figure 43</strong><br/> <p>Dioxygen iridium complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g044-550.jpg?1663718748" title=" <strong>Figure 44</strong><br/> <p>Luminescent iridium guanidinato compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g045-550.jpg?1663718777" title=" <strong>Figure 45</strong><br/> <p>Cyclometalated guanidinato palladium and platinum complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g046-550.jpg?1663718769" title=" <strong>Figure 46</strong><br/> <p>Phosphorescent carbene copper guanidinato compound.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g047-550.jpg?1663718766" title=" <strong>Figure 47</strong><br/> <p>First reported organolanthanide complex with guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g048-550.jpg?1663718740" title=" <strong>Figure 48</strong><br/> <p>NH-assisted insertion of carbodiimides in amido ytterbium compounds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g049-550.jpg?1663718757" title=" <strong>Figure 49</strong><br/> <p>Nitrile insertion in alkyl samarium complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g050-550.jpg?1663718769" title=" <strong>Figure 50</strong><br/> <p>Alkene hydrosilylation with an yttrium guanidinato compound as catalyst.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05962/article_deploy/html/images/molecules-27-05962-g051-550.jpg?1663718755" title=" <strong>Figure 51</strong><br/> <p>Synthesis of an yttrium hydride stabilized by guanidinato ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5962'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="912974" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-912974" aria-controls="drop-supplementary-912974" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-912974" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/18/5929/s1?version=1663063154"> Supplementary File 1 (ZIP, 2050 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 2175 KiB </span> <a href="/1420-3049/27/18/5929/pdf?version=1663063153" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C2H2 Separation from CO2 and C2H4" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/18/5929">Customizing Pore System in a Microporous Metal–Organic Framework for Efficient C<sub>2</sub>H<sub>2</sub> Separation from CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub></a> <div class="authors"> by <span class="inlineblock "><strong>Qiang Zhang</strong>, </span><span class="inlineblock "><strong>Guan-Nan Han</strong>, </span><span class="inlineblock "><strong>Xin Lian</strong>, </span><span class="inlineblock "><strong>Shan-Qing Yang</strong> and </span><span class="inlineblock "><strong>Tong-Liang Hu</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(18), 5929; <a href="https://doi.org/10.3390/molecules27185929">https://doi.org/10.3390/molecules27185929</a> - 12 Sep 2022 </div> <a href="/1420-3049/27/18/5929#metrics">Cited by 8</a> | Viewed by 4442 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C<sub>2</sub>H<sub>2</sub>) from carbon dioxide (CO<sub>2</sub>) and ethylene (C<sub>2</sub>H<sub>4</sub>). However, it remains a critical challenge to effectively recognize C<sub>2</sub>H<sub>2</sub> among <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/5929/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Selective-adsorption separation is an energy-efficient technology for the capture of acetylene (C<sub>2</sub>H<sub>2</sub>) from carbon dioxide (CO<sub>2</sub>) and ethylene (C<sub>2</sub>H<sub>4</sub>). However, it remains a critical challenge to effectively recognize C<sub>2</sub>H<sub>2</sub> among CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>, owing to their analogous molecule sizes and physical properties. Herein, we report a new microporous metal–organic framework (<b>NUM-14</b>) possessing a carefully tailored pore system containing moderate pore size and nitro-functionalized channel surface for efficient separation of C<sub>2</sub>H<sub>2</sub> from CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>. The activated <b>NUM-14</b> (namely <b>NUM-14a</b>) exhibits sufficient pore space to acquire excellent C<sub>2</sub>H<sub>2</sub> loading capacity (4.44 mmol g<sup>−1</sup>) under ambient conditions. In addition, it possesses dense nitro groups, acting as hydrogen bond acceptors, to selectively identify C<sub>2</sub>H<sub>2</sub> molecules rather than CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub>. The breakthrough experiments demonstrate the good actual separation ability of <b>NUM-14a</b> for C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> and C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> mixtures. Furthermore, Grand Canonical Monte Carlo simulations indicate that the pore surface of the <b>NUM-14a</b> has a stronger affinity to preferentially bind C<sub>2</sub>H<sub>2</sub> over CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub> via stronger C-H···O hydrogen bond interactions. This article provides some insights into customizing pore systems with desirable pore sizes and modifying groups in terms of MOF materials toward the capture of C<sub>2</sub>H<sub>2</sub> from CO<sub>2</sub> and C<sub>2</sub>H<sub>4</sub> to promote the development of more MOF materials with excellent properties for gas adsorption and separation. <a href="/1420-3049/27/18/5929">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Separation_Catalysis ">Advanced Crystalline Porous Material and Engineering for Separation and Catalysis Application</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/18/5929/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev912974"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next912974"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next912974" data-cycle-prev="#prev912974" data-cycle-progressive="#images912974" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-912974-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g001-550.jpg?1663063513" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images912974" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-912974-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g002-550.jpg?1663063518'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-912974-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g003-550.jpg?1663063516'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-912974-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g004-550.jpg?1663063515'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-912974-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g005-550.jpg?1663063514'><p>Figure 5</p></div></script></div></div><div id="article-912974-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g001-550.jpg?1663063513" title=" <strong>Figure 1</strong><br/> <p>(<b>a</b>) Topology simplification of NiN<sub>3</sub>O<sub>3</sub> octahedron and the ligands. (<b>b</b>) The triangular channel structure and topology simplification of 3D framework in <b>NUM-14</b> along the c axis. (<b>c</b>) The Connolly surface void spaces of <b>NUM-14</b>. (<b>d</b>) The side view of channel structure in <b>NUM-14</b> along the a-axis. Color code: Ni, sky blue; O, red; N, blue; C, light orange. Guest molecules and H atoms have been omitted for clarity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5929'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g002-550.jpg?1663063518" title=" <strong>Figure 2</strong><br/> <p>(<b>a</b>) N<sub>2</sub> sorption isotherm and pore size distribution of <b>NUM-14a</b> at 77 K. Single-component gas isotherms of C<sub>2</sub>H<sub>2</sub>, CO<sub>2</sub>, and C<sub>2</sub>H<sub>4</sub> for <b>NUM-14a</b> at (<b>b</b>) 273 K and (<b>c</b>) 298 K (filled and open symbols represent adsorption and desorption curves, respectively). (<b>d</b>) Isosteric enthalpy of adsorption of C<sub>2</sub>H<sub>2</sub>, CO<sub>2</sub>, and C<sub>2</sub>H in <b>NUM-14a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5929'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g003-550.jpg?1663063516" title=" <strong>Figure 3</strong><br/> <p>(<b>a</b>) The adsorption selectivities of <b>NUM-14a</b>, predicted from IAST for C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> (50:50, <span class="html-italic">v</span>/<span class="html-italic">v</span>), C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> (1:99, <span class="html-italic">v</span>/<span class="html-italic">v</span>) and C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> (50:50, <span class="html-italic">v</span>/<span class="html-italic">v</span>) at 273 K (<b>a</b>) and 298 K (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5929'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g004-550.jpg?1663063515" title=" <strong>Figure 4</strong><br/> <p>The column breakthrough curves for mixture gases of (<b>a</b>) C<sub>2</sub>H<sub>2</sub>/CO<sub>2</sub> (50:50, <span class="html-italic">v</span>/<span class="html-italic">v</span>), and (<b>b</b>) C<sub>2</sub>H<sub>2</sub>/C<sub>2</sub>H<sub>4</sub> (50:50, <span class="html-italic">v</span>/<span class="html-italic">v</span>). The experiments were conducted at 298 K and the inlet gas flow rate was maintained at 2 mL min<sup>−1</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5929'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05929/article_deploy/html/images/molecules-27-05929-g005-550.jpg?1663063514" title=" <strong>Figure 5</strong><br/> <p>The GCMC calculated adsorption sites of C<sub>2</sub>H<sub>2</sub> (<b>a</b>), CO<sub>2</sub> (<b>b</b>), and C<sub>2</sub>H<sub>4</sub> (<b>c</b>) in <b>NUM-14a</b> at 298 K and 1 bar.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/18/5929'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="904441" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-904441" aria-controls="drop-supplementary-904441" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-904441" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/17/5643/s1?version=1662039303"> Supplementary File 1 (ZIP, 327 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 30 pages, 11934 KiB </span> <a href="/1420-3049/27/17/5643/pdf?version=1662453406" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Azobenzene as Antimicrobial Molecules" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/17/5643">Azobenzene as Antimicrobial Molecules</a> <div class="authors"> by <span class="inlineblock "><strong>Miriam Di Martino</strong>, </span><span class="inlineblock "><strong>Lucia Sessa</strong>, </span><span class="inlineblock "><strong>Martina Di Matteo</strong>, </span><span class="inlineblock "><strong>Barbara Panunzi</strong>, </span><span class="inlineblock "><strong>Stefano Piotto</strong> and </span><span class="inlineblock "><strong>Simona Concilio</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(17), 5643; <a href="https://doi.org/10.3390/molecules27175643">https://doi.org/10.3390/molecules27175643</a> - 1 Sep 2022 </div> <a href="/1420-3049/27/17/5643#metrics">Cited by 29</a> | Viewed by 5258 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/17/5643/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Azo molecules, characterized by the presence of a -N=N- double bond, are widely used in various fields due to their sensitivity to external stimuli, ch as light. The emergence of bacterial resistance has pushed research towards designing new antimicrobial molecules that are more efficient than those currently in use. Many authors have attempted to exploit the antimicrobial activity of azobenzene and to utilize their photoisomerization for selective control of the bioactivities of antimicrobial molecules, which is necessary for antibacterial therapy. This review will provide a systematic and consequential approach to coupling azobenzene moiety with active antimicrobial molecules and drugs, including small and large organic molecules, such as peptides. A selection of significant cutting-edge articles collected in recent years has been discussed, based on the structural pattern and antimicrobial performance, focusing especially on the photoactivity of azobenzene and the design of smart materials as the most targeted and desirable application. <a href="/1420-3049/27/17/5643">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Antimicrob_Mater ">Recent Advances in Antimicrobial Materials</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/17/5643/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev904441"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next904441"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next904441" data-cycle-prev="#prev904441" data-cycle-progressive="#images904441" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-904441-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g001-550.jpg?1662453493" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images904441" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g002-550.jpg?1662453479'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g003-550.jpg?1662453489'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g004-550.jpg?1662453486'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g005-550.jpg?1662453494'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g006-550.jpg?1662453483'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g007-550.jpg?1662453504'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g008-550.jpg?1662453487'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g009-550.jpg?1662453477'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g010-550.jpg?1662453494'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g011-550.jpg?1662453478'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g012-550.jpg?1662453483'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g013-550.jpg?1662453485'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g014-550.jpg?1662453501'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g015-550.jpg?1662453484'><p>Figure 15</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g016-550.jpg?1662453490'><p>Figure 16</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g017-550.jpg?1662453505'><p>Figure 17</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g018-550.jpg?1662453481'><p>Figure 18</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g019-550.jpg?1662453486'><p>Figure 19</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g020-550.jpg?1662453498'><p>Figure 20</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g021-550.jpg?1662453488'><p>Figure 21</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g022-550.jpg?1662453496'><p>Figure 22</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g023-550.jpg?1662453480'><p>Figure 23</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g024-550.jpg?1662453481'><p>Figure 24</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g025-550.jpg?1662453499'><p>Figure 25</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g026-550.jpg?1662453488'><p>Figure 26</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g027-550.jpg?1662453501'><p>Figure 27</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g028-550.jpg?1662453505'><p>Figure 28</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g029-550.jpg?1662453497'><p>Figure 29</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g030-550.jpg?1662453503'><p>Figure 30</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g031-550.jpg?1662453491'><p>Figure 31</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g032-550.jpg?1662453489'><p>Figure 32</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g033-550.jpg?1662453485'><p>Figure 33</p></div> --- <div class='openpopupgallery' data-imgindex='33' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g034-550.jpg?1662453479'><p>Figure 34</p></div> --- <div class='openpopupgallery' data-imgindex='34' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g035-550.jpg?1662453499'><p>Figure 35</p></div> --- <div class='openpopupgallery' data-imgindex='35' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g036-550.jpg?1662453487'><p>Figure 36</p></div> --- <div class='openpopupgallery' data-imgindex='36' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g037-550.jpg?1662453488'><p>Figure 37</p></div> --- <div class='openpopupgallery' data-imgindex='37' data-target='article-904441-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g038-550.jpg?1662453493'><p>Figure 38</p></div></script></div></div><div id="article-904441-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g001-550.jpg?1662453493" title=" <strong>Figure 1</strong><br/> <p>Isomerization by (<b>a</b>) inversion and (<b>b</b>) rotation mechanism.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g002-550.jpg?1662453479" title=" <strong>Figure 2</strong><br/> <p>General scheme of the azo coupling reaction.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g003-550.jpg?1662453489" title=" <strong>Figure 3</strong><br/> <p>Structure of antimicrobial azo compounds [<a href="#B34-molecules-27-05643" class="html-bibr">34</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g004-550.jpg?1662453486" title=" <strong>Figure 4</strong><br/> <p>Nitro-substituted azobenzenes by Ali et al. [<a href="#B41-molecules-27-05643" class="html-bibr">41</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g005-550.jpg?1662453494" title=" <strong>Figure 5</strong><br/> <p>Azobenzene differently substituted by Erişkin et al. [<a href="#B42-molecules-27-05643" class="html-bibr">42</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g006-550.jpg?1662453483" title=" <strong>Figure 6</strong><br/> <p>Fluorinated and non-fluorinated azobenzene derivatives and azo imidazole molecules [<a href="#B47-molecules-27-05643" class="html-bibr">47</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g007-550.jpg?1662453504" title=" <strong>Figure 7</strong><br/> <p>Azobenzene compounds with ammonium and tobramycin polar heads (in red) from Salta et al. [<a href="#B48-molecules-27-05643" class="html-bibr">48</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g008-550.jpg?1662453487" title=" <strong>Figure 8</strong><br/> <p>Chemical structure of azoquinolones from Velema [<a href="#B49-molecules-27-05643" class="html-bibr">49</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g009-550.jpg?1662453477" title=" <strong>Figure 9</strong><br/> <p>Photoreactive carbohydrate-based surfactants [<a href="#B50-molecules-27-05643" class="html-bibr">50</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g010-550.jpg?1662453494" title=" <strong>Figure 10</strong><br/> <p>Chemical structure of Schiff-base diazenyl compounds [<a href="#B25-molecules-27-05643" class="html-bibr">25</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g011-550.jpg?1662453478" title=" <strong>Figure 11</strong><br/> <p>Chemical structure of azo Schiff bases [<a href="#B51-molecules-27-05643" class="html-bibr">51</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g012-550.jpg?1662453483" title=" <strong>Figure 12</strong><br/> <p>Chemical structure of azobenzothiazole compounds with different antioxidant molecules [<a href="#B21-molecules-27-05643" class="html-bibr">21</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g013-550.jpg?1662453485" title=" <strong>Figure 13</strong><br/> <p>Chemical structure of novel (aryldiazenyl)-2-(2,3-dihydro-1H-perimidin-2-yl)phenol derivatives [<a href="#B57-molecules-27-05643" class="html-bibr">57</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g014-550.jpg?1662453501" title=" <strong>Figure 14</strong><br/> <p>Chemical structures of <span class="html-italic">N</span>,<span class="html-italic">N</span>-dimethyl aniline derivates based azo dyes [<a href="#B58-molecules-27-05643" class="html-bibr">58</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g015-550.jpg?1662453484" title=" <strong>Figure 15</strong><br/> <p>Sulfa drug containing azo-azomethine group [<a href="#B28-molecules-27-05643" class="html-bibr">28</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g016-550.jpg?1662453490" title=" <strong>Figure 16</strong><br/> <p>Chemical structures of halogenated azo aspirin analogues [<a href="#B60-molecules-27-05643" class="html-bibr">60</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g017-550.jpg?1662453505" title=" <strong>Figure 17</strong><br/> <p>Structures of phenolic azo dyes and their Ni(II) and Cu(II) complexes [<a href="#B63-molecules-27-05643" class="html-bibr">63</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g018-550.jpg?1662453481" title=" <strong>Figure 18</strong><br/> <p>Structure of 7-((1H-benzo [d]imidazol-2-il) diazenil)-5-nitrochinolina-8-olo [<a href="#B64-molecules-27-05643" class="html-bibr">64</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g019-550.jpg?1662453486" title=" <strong>Figure 19</strong><br/> <p>Structure of the sulfathiazolyl azo-resorcinol ligand and its metal complexes [<a href="#B71-molecules-27-05643" class="html-bibr">71</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g020-550.jpg?1662453498" title=" <strong>Figure 20</strong><br/> <p>Pyrazole-based azo-metal (II) complexes [<a href="#B72-molecules-27-05643" class="html-bibr">72</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g021-550.jpg?1662453488" title=" <strong>Figure 21</strong><br/> <p>Chemical structures of tellurated and mercurated azo compounds [<a href="#B73-molecules-27-05643" class="html-bibr">73</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g022-550.jpg?1662453496" title=" <strong>Figure 22</strong><br/> <p>Chemical structures of azo-oxime ligands and their complexes [<a href="#B65-molecules-27-05643" class="html-bibr">65</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g023-550.jpg?1662453480" title=" <strong>Figure 23</strong><br/> <p>Chemical structures of azomethine complexes [<a href="#B62-molecules-27-05643" class="html-bibr">62</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g024-550.jpg?1662453481" title=" <strong>Figure 24</strong><br/> <p>Scheme of photoswitching α-helical structure [<a href="#B77-molecules-27-05643" class="html-bibr">77</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g025-550.jpg?1662453499" title=" <strong>Figure 25</strong><br/> <p>Structure of 2b mimetic peptide of gramicidin [<a href="#B78-molecules-27-05643" class="html-bibr">78</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g026-550.jpg?1662453488" title=" <strong>Figure 26</strong><br/> <p>(<b>a</b>) chemical structures of peptides P1-P5, and tri-β-CD; (<b>b</b>) scheme of photoresponsive dynamic self-assembly [<a href="#B14-molecules-27-05643" class="html-bibr">14</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g027-550.jpg?1662453501" title=" <strong>Figure 27</strong><br/> <p>Structures of short photoswitchable tetrapeptides [<a href="#B84-molecules-27-05643" class="html-bibr">84</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g028-550.jpg?1662453505" title=" <strong>Figure 28</strong><br/> <p>Structures of: (<b>a</b>) tyrocidine A; and (<b>b</b>) linear photoswitchable analogue of tyrocidine A [<a href="#B85-molecules-27-05643" class="html-bibr">85</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g029-550.jpg?1662453497" title=" <strong>Figure 29</strong><br/> <p>Structure of the azobenzene-linked bile acid dimers [<a href="#B86-molecules-27-05643" class="html-bibr">86</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g030-550.jpg?1662453503" title=" <strong>Figure 30</strong><br/> <p>Structures of photoswitchable glycopeptide mimetics [<a href="#B87-molecules-27-05643" class="html-bibr">87</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g031-550.jpg?1662453491" title=" <strong>Figure 31</strong><br/> <p>Structures of tripeptide amphiphiles [<a href="#B88-molecules-27-05643" class="html-bibr">88</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g032-550.jpg?1662453489" title=" <strong>Figure 32</strong><br/> <p>(<b>a</b>) structures of <span class="html-italic">trans</span>-AzoTAB and <span class="html-italic">cis</span>-AzoTAB; (<b>b</b>) effect of AzoTAB isomerization on phospholipid membrane [<a href="#B89-molecules-27-05643" class="html-bibr">89</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g033-550.jpg?1662453485" title=" <strong>Figure 33</strong><br/> <p>Chemical structures of active azo compounds inserted in PLA films [<a href="#B94-molecules-27-05643" class="html-bibr">94</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g034-550.jpg?1662453479" title=" <strong>Figure 34</strong><br/> <p>(<b>a</b>) chemical structures of components in photoswitchable supramolecular polymer brush; and (<b>b</b>) the process of antibacterial surfaces [<a href="#B100-molecules-27-05643" class="html-bibr">100</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g035-550.jpg?1662453499" title=" <strong>Figure 35</strong><br/> <p>(<b>a</b>) chemical structure of OH-AAZO monomer; (<b>b</b>) biofilm grown on OH-AAZO coatings and inhibition of Streptococcus biofilms [<a href="#B101-molecules-27-05643" class="html-bibr">101</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g036-550.jpg?1662453487" title=" <strong>Figure 36</strong><br/> <p>(<b>a</b>) chemical structures; (<b>b</b>) UV light exposure and biofilm disruption [<a href="#B102-molecules-27-05643" class="html-bibr">102</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g037-550.jpg?1662453488" title=" <strong>Figure 37</strong><br/> <p>(<b>a</b>) chemical structures of nanogels components; (<b>b</b>) azobenzene nanogels [<a href="#B103-molecules-27-05643" class="html-bibr">103</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05643/article_deploy/html/images/molecules-27-05643-g038-550.jpg?1662453493" title=" <strong>Figure 38</strong><br/> <p>Release mechanism of EO nanocapsules [<a href="#B104-molecules-27-05643" class="html-bibr">104</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/17/5643'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="891963" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 2083 KiB </span> <a href="/1420-3049/27/16/5283/pdf?version=1660878277" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Rhenium Radioisotopes for Medicine, a Focus on Production and Applications" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/16/5283">Rhenium Radioisotopes for Medicine, a Focus on Production and Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Licia Uccelli</strong>, </span><span class="inlineblock "><strong>Petra Martini</strong>, </span><span class="inlineblock "><strong>Luca Urso</strong>, </span><span class="inlineblock "><strong>Teresa Ghirardi</strong>, </span><span class="inlineblock "><strong>Lorenza Marvelli</strong>, </span><span class="inlineblock "><strong>Corrado Cittanti</strong>, </span><span class="inlineblock "><strong>Aldo Carnevale</strong>, </span><span class="inlineblock "><strong>Melchiore Giganti</strong>, </span><span class="inlineblock "><strong>Mirco Bartolomei</strong> and </span><span class="inlineblock "><strong>Alessandra Boschi</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(16), 5283; <a href="https://doi.org/10.3390/molecules27165283">https://doi.org/10.3390/molecules27165283</a> - 18 Aug 2022 </div> <a href="/1420-3049/27/16/5283#metrics">Cited by 12</a> | Viewed by 3724 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/16/5283/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In recent decades, the use of alpha; pure beta; or beta/gamma emitters in oncology, endocrinology, and interventional cardiology rheumatology, has proved to be an important alternative to the most common therapeutic regimens. Among radionuclides used for therapy in nuclear medicine, two rhenium radioisotopes are of particular relevance: rhenium-186 and rhenium-188. The first is routinely produced in nuclear reactors by direct neutron activation of rhenium-186 via <sup>185</sup>Re(n,γ)<sup>186</sup>Re nuclear reaction. Rhenium-188 is produced by the decay of the parent tungsten-188. Separation of rhenium-188 is mainly performed using a chromatographic <sup>188</sup>W/<sup>188</sup>Re generator in which tungsten-188 is adsorbed on the alumina column, similar to the <sup>99</sup>Mo/<sup>99m</sup>Tc generator system, and the radionuclide eluted in saline solution. The application of rhenium-186 and rhenium-188 depends on their specific activity. Rhenium-186 is produced in low specific activity and is mainly used for labeling particles or diphosphonates for bone pain palliation. Whereas, rhenium-188 of high specific activity can be used for labeling peptides or bioactive molecules. One of the advantages of rhenium is its chemical similarity with technetium. So, diagnostic technetium analogs labeled with radiorhenium can be developed for therapeutic applications. Clinical trials promoting the use of <sup>186/188</sup>Re-radiopharmaceuticals is, in particular, are discussed. <a href="/1420-3049/27/16/5283">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Inorganic_EBMs ">Exclusive Contributions by the Editorial Board Members (EBMs) of the Inorganic Chemistry Section of Molecules</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/16/5283/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev891963"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next891963"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next891963" data-cycle-prev="#prev891963" data-cycle-progressive="#images891963" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-891963-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g001-550.jpg?1660878340" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images891963" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-891963-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g002-550.jpg?1660878341'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-891963-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g003-550.jpg?1660878344'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-891963-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g004-550.jpg?1660878344'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-891963-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g005-550.jpg?1660878343'><p>Figure 5</p></div></script></div></div><div id="article-891963-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g001-550.jpg?1660878340" title=" <strong>Figure 1</strong><br/> <p><sup>186</sup>Re simplified decay scheme.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5283'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g002-550.jpg?1660878341" title=" <strong>Figure 2</strong><br/> <p><sup>186</sup>Re processing scheme.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5283'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g003-550.jpg?1660878344" title=" <strong>Figure 3</strong><br/> <p><sup>188</sup>Re simplified production and decay scheme.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5283'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g004-550.jpg?1660878344" title=" <strong>Figure 4</strong><br/> <p><sup>188</sup>Re post-elution concentration system.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5283'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05283/article_deploy/html/images/molecules-27-05283-g005-550.jpg?1660878343" title=" <strong>Figure 5</strong><br/> <p>Chemical structure of <sup>188</sup>Re-P2045, <sup>188</sup>Re-SSS, and <sup>186</sup>Re-BMEDA radiopharmaceuticals.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5283'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="887199" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-887199" aria-controls="drop-supplementary-887199" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-887199" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/16/5156/s1?version=1660317917"> Supplementary File 1 (ZIP, 5293 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 20 pages, 2079 KiB </span> <a href="/1420-3049/27/16/5156/pdf?version=1660719149" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/16/5156">Design, Synthesis and Preliminary Evaluation of the Cytotoxicity and Antibacterial Activity of Novel Triphenylphosphonium Derivatives of Betulin</a> <div class="authors"> by <span class="inlineblock "><strong>Mirosława Grymel</strong>, </span><span class="inlineblock "><strong>Anna Lalik</strong>, </span><span class="inlineblock "><strong>Alicja Kazek-Kęsik</strong>, </span><span class="inlineblock "><strong>Marietta Szewczyk</strong>, </span><span class="inlineblock "><strong>Patrycja Grabiec</strong> and </span><span class="inlineblock "><strong>Karol Erfurt</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(16), 5156; <a href="https://doi.org/10.3390/molecules27165156">https://doi.org/10.3390/molecules27165156</a> - 12 Aug 2022 </div> <a href="/1420-3049/27/16/5156#metrics">Cited by 10</a> | Viewed by 2121 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/16/5156/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> For several decades, natural products have been widely researched and their native scaffolds are the basis for the design and synthesis of new potential therapeutic agents. Betulin is an interesting biologically attractive natural parent molecule with a high safety profile and can easily undergo a variety of structural modifications. Herein, we describe the synthesis of new molecular hybrids of betulin via covalent linkage with an alkyltriphenylphosphonium moiety. The proposed strategy enables the preparation of semi-synthetic derivatives (28-TPP<sup>⊕</sup> BN and 3,28-<i>bis</i>TPP<sup>⊕</sup> BN) from betulin through simple transformations in high yields. The obtained results showed that the presence of a lipophilic cation improved the solubility of the tested analogs compared to betulin, and increased their cytotoxicity. Among the triphenylphosphonium derivatives tested, analogs <b>7a</b> (IC<sub>50</sub> of 5.56 µM) and <b>7b</b> (IC<sub>50</sub> of 5.77 µM) demonstrated the highest cytotoxicity against the colorectal carcinoma cell line (HCT 116). TPP<sup>⊕</sup>-conjugates with betulin showed antimicrobial properties against Gram-positive reference <i>Staphylococcus aureus ATCC 25923</i> and <i>Staphylococcus epidermidis ATCC 12228</i> bacteria, at a 200 µM concentration in water. Hence, the conjugation of betulin’s parent backbone with a triphenylphosphonium moiety promotes transport through the hydrophobic barriers of the mitochondrial membrane, making it a promising strategy to improve the bioavailability of natural substances. <a href="/1420-3049/27/16/5156">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/organophosphorus_chemistry_perspective ">Organophosphorus Chemistry: A New Perspective</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/16/5156/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev887199"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next887199"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next887199" data-cycle-prev="#prev887199" data-cycle-progressive="#images887199" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-887199-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-ag-550.jpg?1660719236" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images887199" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g001-550.jpg?1660719233'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g002-550.jpg?1660719218'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g003-550.jpg?1660719220'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g004-550.jpg?1660719224'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g005-550.jpg?1660719232'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch001-550.jpg?1660719231'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch002-550.jpg?1660719222'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch003-550.jpg?1660719228'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-887199-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch004-550.jpg?1660719226'><p>Scheme 4</p></div></script></div></div><div id="article-887199-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-ag-550.jpg?1660719236" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g001-550.jpg?1660719233" title=" <strong>Figure 1</strong><br/> <p>The selected modifications of the <span class="html-italic">BN</span> skeleton at positions C-3 and C-28 [<a href="#B3-molecules-27-05156" class="html-bibr">3</a>,<a href="#B4-molecules-27-05156" class="html-bibr">4</a>,<a href="#B5-molecules-27-05156" class="html-bibr">5</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g002-550.jpg?1660719218" title=" <strong>Figure 2</strong><br/> <p>Examples of the TPP<sup>⊕</sup>-conjugated compounds [<a href="#B24-molecules-27-05156" class="html-bibr">24</a>,<a href="#B26-molecules-27-05156" class="html-bibr">26</a>,<a href="#B29-molecules-27-05156" class="html-bibr">29</a>,<a href="#B30-molecules-27-05156" class="html-bibr">30</a>,<a href="#B31-molecules-27-05156" class="html-bibr">31</a>,<a href="#B32-molecules-27-05156" class="html-bibr">32</a>,<a href="#B33-molecules-27-05156" class="html-bibr">33</a>,<a href="#B34-molecules-27-05156" class="html-bibr">34</a>,<a href="#B35-molecules-27-05156" class="html-bibr">35</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g003-550.jpg?1660719220" title=" <strong>Figure 3</strong><br/> <p>The chemical structures of the TPP<sup>⊕</sup>-conjugated with <span class="html-italic">BA</span>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g004-550.jpg?1660719224" title=" <strong>Figure 4</strong><br/> <p>The chemical structures of the TPP<sup>⊕</sup>-conjugated with <span class="html-italic">BN</span>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-g005-550.jpg?1660719232" title=" <strong>Figure 5</strong><br/> <p>The dependence of cell viability on the concentration of <span class="html-italic">BN</span> and 28-TPP<sup>⊕</sup> BN (<b>7</b>) and the 3,28-<span class="html-italic">bis</span>TPP<sup>⊕</sup> BN analog (<b>9</b>) after 24 h of incubation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch001-550.jpg?1660719231" title=" <strong>Scheme 1</strong><br/> <p>The synthetic route for the preparation of 28-TPP<sup>⊕</sup> ΒΝ and 3,28-<span class="html-italic">bis</span>TPP<sup>⊕</sup> ΒΝ.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch002-550.jpg?1660719222" title=" <strong>Scheme 2</strong><br/> <p>The synthesis of the <span class="html-italic">BN</span> analogs (<b>2</b>–<b>5</b>). Reagents and conditions: (<b>i</b>) Ac<sub>2</sub>O, DMAP, Py, r.t., 24 h; (<b>ii</b>) (<span class="html-italic">i</span>-PrO)<sub>3</sub>Al, <span class="html-italic">i</span>-PrOH, 80 °C, 2 h; (<b>iii</b>) SA or DMSA, DMAP, Py, reflux, 18–20 h; (<b>iv</b>) SA, Py, reflux, 9 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch003-550.jpg?1660719228" title=" <strong>Scheme 3</strong><br/> <p>The synthesis of the 28-TPP<sup>⊕</sup> BN derivative <b>7</b>. Reagents and conditions: (<b>i</b>) Br(CH<sub>2</sub>)<sub>n</sub>Br, DMF/MeCN (10/1, <span class="html-italic">v</span>/<span class="html-italic">v</span>), K<sub>2</sub>CO<sub>3</sub>, 50 °C, 18–20 h; (<b>ii</b>) Ph<sub>3</sub>P, argon, 120 °C, 6–12 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-05156/article_deploy/html/images/molecules-27-05156-sch004-550.jpg?1660719226" title=" <strong>Scheme 4</strong><br/> <p>The synthesis of 3,28-<span class="html-italic">bis</span>TPP<sup>⊕</sup> BN <b>9</b>. Reagents and conditions: (<b>i</b>) Br(CH<sub>2</sub>)<sub>n</sub>Br, DMF/MeCN (10/1, <span class="html-italic">v</span>/<span class="html-italic">v</span>), K<sub>2</sub>CO<sub>3</sub>, 50 °C, 18–20 h; (<b>ii</b>) triphenylphosphine, Ar, 120 °C, 12–24 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/16/5156'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="869765" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 31 pages, 9627 KiB </span> <a href="/1420-3049/27/15/4703/pdf?version=1658913049" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Bidentate Donor-Functionalized N-Heterocyclic Carbenes: Valuable Ligands for Ruthenium-Catalyzed Transfer Hydrogenation" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/15/4703">Bidentate Donor-Functionalized <i>N</i>-Heterocyclic Carbenes: Valuable Ligands for Ruthenium-Catalyzed Transfer Hydrogenation</a> <div class="authors"> by <span class="inlineblock "><strong>Vincent Ritleng</strong> and </span><span class="inlineblock "><strong>Christophe Michon</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(15), 4703; <a href="https://doi.org/10.3390/molecules27154703">https://doi.org/10.3390/molecules27154703</a> - 23 Jul 2022 </div> <a href="/1420-3049/27/15/4703#metrics">Cited by 9</a> | Viewed by 2299 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Ruthenium complexes are by far the most studied compounds that catalyze hydrogen transfer reactions. In this review, we describe the use in this field of ruthenium complexes bearing bidentate donor-functionalized <i>N</i>-heterocyclic carbene ligands. The review specifically covers the application in transfer hydrogenations <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/15/4703/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Ruthenium complexes are by far the most studied compounds that catalyze hydrogen transfer reactions. In this review, we describe the use in this field of ruthenium complexes bearing bidentate donor-functionalized <i>N</i>-heterocyclic carbene ligands. The review specifically covers the application in transfer hydrogenations of (<i>κ</i><sup>2</sup>-<i>C<sub>NHC</sub></i>,<i>Y</i>)-ruthenacyclic compounds where the Y donor atom is a N, P, O, or S atom, and where the <i>N</i>-heterocyclic carbene ligand is a classical imidazol-2-ylidene, a benzimidazol-2-ylidene, a mesoionic 1,2,3-triazolylidene, or an imidazol-4-ylidene ligand. Tridentate donor-functionalized <i>N</i>-heterocyclic carbene complexes thus fall outside the scope of the review. Applications in (asymmetric) transfer hydrogenation of ketones, aldehydes, imines, alkenes, and nitrobenzene are discussed. <a href="/1420-3049/27/15/4703">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/organometallic_molecules ">Featured Reviews in Organometallic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/15/4703/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev869765"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next869765"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next869765" data-cycle-prev="#prev869765" data-cycle-progressive="#images869765" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-869765-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-ag-550.jpg?1663572316" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images869765" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g001-550.jpg?1658913145'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g002-550.jpg?1658913131'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g003-550.jpg?1658913125'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g004-550.jpg?1658913132'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g005-550.jpg?1658913147'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g006-550.jpg?1658913139'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch001-550.jpg?1658913130'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch002-550.jpg?1658913161'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch003-550.jpg?1658913143'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch004-550.jpg?1658913129'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch005-550.jpg?1658913145'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch006-550.jpg?1658913171'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch007-550.jpg?1658913134'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch008-550.jpg?1658913144'><p>Scheme 8</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch009-550.jpg?1658913160'><p>Scheme 9</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch010-550.jpg?1658913152'><p>Scheme 10</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch011-550.jpg?1658913142'><p>Scheme 11</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch012-550.jpg?1658913126'><p>Scheme 12</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch013-550.jpg?1658913172'><p>Scheme 13</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch014-550.jpg?1658913153'><p>Scheme 14</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch015-550.jpg?1658913157'><p>Scheme 15</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch016-550.jpg?1658913169'><p>Scheme 16</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch017-550.jpg?1658913157'><p>Scheme 17</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch018-550.jpg?1658913141'><p>Scheme 18</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch019-550.jpg?1658913150'><p>Scheme 19</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch020-550.jpg?1658913138'><p>Scheme 20</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch021-550.jpg?1658913156'><p>Scheme 21</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch022-550.jpg?1658913127'><p>Scheme 22</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch023-550.jpg?1658913159'><p>Scheme 23</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch024-550.jpg?1658913136'><p>Scheme 24</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch025-550.jpg?1658913173'><p>Scheme 25</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch026-550.jpg?1658913174'><p>Scheme 26</p></div> --- <div class='openpopupgallery' data-imgindex='33' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch027-550.jpg?1658913167'><p>Scheme 27</p></div> --- <div class='openpopupgallery' data-imgindex='34' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch028-550.jpg?1658913168'><p>Scheme 28</p></div> --- <div class='openpopupgallery' data-imgindex='35' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch029-550.jpg?1658913133'><p>Scheme 29</p></div> --- <div class='openpopupgallery' data-imgindex='36' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch030-550.jpg?1658913173'><p>Scheme 30</p></div> --- <div class='openpopupgallery' data-imgindex='37' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch031-550.jpg?1658913123'><p>Scheme 31</p></div> --- <div class='openpopupgallery' data-imgindex='38' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch032-550.jpg?1658913154'><p>Scheme 32</p></div> --- <div class='openpopupgallery' data-imgindex='39' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch033-550.jpg?1658913122'><p>Scheme 33</p></div> --- <div class='openpopupgallery' data-imgindex='40' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch034-550.jpg?1658913148'><p>Scheme 34</p></div> --- <div class='openpopupgallery' data-imgindex='41' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch035-550.jpg?1658913162'><p>Scheme 35</p></div> --- <div class='openpopupgallery' data-imgindex='42' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch036-550.jpg?1658913123'><p>Scheme 36</p></div> --- <div class='openpopupgallery' data-imgindex='43' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch037-550.jpg?1658913164'><p>Scheme 37</p></div> --- <div class='openpopupgallery' data-imgindex='44' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch038-550.jpg?1658913162'><p>Scheme 38</p></div> --- <div class='openpopupgallery' data-imgindex='45' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch039-550.jpg?1658913154'><p>Scheme 39</p></div> --- <div class='openpopupgallery' data-imgindex='46' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch040-550.jpg?1658913163'><p>Scheme 40</p></div> --- <div class='openpopupgallery' data-imgindex='47' data-target='article-869765-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch041-550.jpg?1658913166'><p>Scheme 41</p></div></script></div></div><div id="article-869765-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-ag-550.jpg?1663572316" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g001-550.jpg?1658913145" title=" <strong>Figure 1</strong><br/> <p>(η<sup>6</sup>-<span class="html-italic">p</span>-cymene)Ru(II) complexes <b>7a</b>–<b>e</b> bearing picolyl-NHC ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g002-550.jpg?1658913131" title=" <strong>Figure 2</strong><br/> <p>Pyridyl-functionalized triazolylidene complexes <b>14a</b>–<b>c</b> and <b>16</b> bearing a pendant carboxylic group and unfunctionalized complex <b>15</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g003-550.jpg?1658913125" title=" <strong>Figure 3</strong><br/> <p>Pyridyl-functionalized imidazol-2-ylidene complexes <b>17</b>–<b>20</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g004-550.jpg?1658913132" title=" <strong>Figure 4</strong><br/> <p>Triazole- and pyrazole-functionalized imidazole-2-ylidene complexes <b>22</b>–<b>27</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g005-550.jpg?1658913147" title=" <strong>Figure 5</strong><br/> <p>Pyridyl- or picolyl-functionalized imidazol-, benzimidazol- or triazol-2-ylidene octahedral Ru(II) complexes <b>33</b>–<b>39</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-g006-550.jpg?1658913139" title=" <strong>Figure 6</strong><br/> <p>Carboxylate-functionalized NHC-Ru(II) complexes <b>51b</b>–<b>d</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch001-550.jpg?1658913130" title=" <strong>Scheme 1</strong><br/> <p>TH of acetophenone and 2-octanone catalyzed by the oxazolinyl-functionalized complex <b>1a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch002-550.jpg?1658913161" title=" <strong>Scheme 2</strong><br/> <p>TH of acetophenone and cyclohexanone catalyzed by the pyrimidine-functionalized complex <b>2</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch003-550.jpg?1658913143" title=" <strong>Scheme 3</strong><br/> <p>TH of acetophenone by the amino-functionalized NHC-Ru(II) complex <b>3</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch004-550.jpg?1658913129" title=" <strong>Scheme 4</strong><br/> <p>TH of ketones by the amino-functionalized imidazol-2-ylidene complex <b>4a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch005-550.jpg?1658913145" title=" <strong>Scheme 5</strong><br/> <p>TH of acetophenone catalyzed by the amino-functionalized NHC-Ru(II) complex <b>5</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch006-550.jpg?1658913171" title=" <strong>Scheme 6</strong><br/> <p>TH of ketones catalyzed by the picolyl-functionalized NHC-Ru(II) complex <b>6a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch007-550.jpg?1658913134" title=" <strong>Scheme 7</strong><br/> <p>Deuterium labeling experiment with <b>7a</b> establishing a monohydride mechanism.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch008-550.jpg?1658913144" title=" <strong>Scheme 8</strong><br/> <p>TH of acetophenone catalyzed by the imino-functionalized imidazol-2-ylidene-Ru(II) complexes <b>8a</b>–<b>c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch009-550.jpg?1658913160" title=" <strong>Scheme 9</strong><br/> <p>TH of benzophenone catalyzed by the pyridyl-functionalized mesoionic triazolylidene complexes <b>9a</b>,<b>b</b> and <b>10</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch010-550.jpg?1658913152" title=" <strong>Scheme 10</strong><br/> <p>TH of various ketones catalyzed by the pyridyl- or pyrimidyl-functionalized mesoionic triazolylidene complexes <b>11a</b>–<b>g</b> and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch011-550.jpg?1658913142" title=" <strong>Scheme 11</strong><br/> <p>TH of benzophenone catalyzed by the picolyl-triazolylidene complexes <b>13a</b>–<b>c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch012-550.jpg?1658913126" title=" <strong>Scheme 12</strong><br/> <p>TH of acetophenone in aqueous solution catalyzed by the water soluble complex <b>17f</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch013-550.jpg?1658913172" title=" <strong>Scheme 13</strong><br/> <p>TH of acetophenone from glycerol catalyzed by the bis-sulfonated complex <b>21</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch014-550.jpg?1658913153" title=" <strong>Scheme 14</strong><br/> <p>Low-temperature TH of ketones catalyzed by the anion-mixed pyrazole-imidazol-2-ylidene complex <b>22b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch015-550.jpg?1658913157" title=" <strong>Scheme 15</strong><br/> <p>Solvent-dependent resonance forms of the pyridylideneamide-imidazol-2-ylidene-Ru(II) complexes <b>28a</b>,<b>b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch016-550.jpg?1658913169" title=" <strong>Scheme 16</strong><br/> <p>Solvent dependence of the TH of benzophenone catalyzed by the adaptive pyridylideneamide-triazolylidene complex <b>29</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch017-550.jpg?1658913157" title=" <strong>Scheme 17</strong><br/> <p>TH of benzophenone catalyzed by the pycolyl-functionalized imidazol-4-ylidene complexes <b>30</b> and <b>31</b>/<b>32</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch018-550.jpg?1658913141" title=" <strong>Scheme 18</strong><br/> <p>Low-temperature TH of aromatic ketones catalyzed by the aqua-Ru(II) complex <b>40</b> bearing a 1,8-naphtyrid-2-yl-imidazol-2-ylidene chelate.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch019-550.jpg?1658913150" title=" <strong>Scheme 19</strong><br/> <p>TH of ketones catalyzed by the pyrimidin-2-yl-functionalized imidazol-2-ylidene complexes <b>41</b> and <b>42</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch020-550.jpg?1658913138" title=" <strong>Scheme 20</strong><br/> <p>Synthesis of the hydride complex <b>44</b> from the protic NHC complex <b>43</b> (<b>A</b>); TH of acetophenone catalyzed by <b>43</b> and <b>44</b> (<b>B</b>); Proposed TH mechanism (<b>C</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch021-550.jpg?1658913156" title=" <strong>Scheme 21</strong><br/> <p>TH of ketones catalyzed by the <span class="html-italic">ortho</span>-(diphenylphosphino)benzyl-functionalized imidazol-2-ylidene complex <b>45</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch022-550.jpg?1658913127" title=" <strong>Scheme 22</strong><br/> <p>TH of acetophenone catalyzed by the (diphenylphosphino)ethylene-functionalized imidazol-4-ylidene complexes <b>46</b> and <b>47</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch023-550.jpg?1658913159" title=" <strong>Scheme 23</strong><br/> <p>TH of ketones catalyzed by the (diphenylphosphino)methylene-functionalized imidazol-2-ylidene and imidazol-4-ylidene complex <b>48</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch024-550.jpg?1658913136" title=" <strong>Scheme 24</strong><br/> <p>TH of ketones catalyzed by the (diphenylphosphino)methylene-functionalized bis-imidazol-4-ylidene complex <b>49</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch025-550.jpg?1658913173" title=" <strong>Scheme 25</strong><br/> <p>Formation of the dihydride bis-imidazol-2-ylidene complex <b>50</b> from <b>49</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch026-550.jpg?1658913174" title=" <strong>Scheme 26</strong><br/> <p>TH of benzophenone catalyzed by the carboxylate-functionalized imidazol-2-ylidene and 1,2,3-triazolylidene complexes <b>51a</b>, <b>52</b> and <b>53</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch027-550.jpg?1658913167" title=" <strong>Scheme 27</strong><br/> <p>TH of ketones catalyzed by the carboxylate-functionalized benzimidazolylidene complex <b>51d</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch028-550.jpg?1658913168" title=" <strong>Scheme 28</strong><br/> <p>TH of benzophenone catalyzed by the hydroxy-functionalized 1,2,3-triazolylidene complexes <b>54</b> and <b>55</b> and the 1,4-dibutyl-triazolylidene complex <b>56</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch029-550.jpg?1658913133" title=" <strong>Scheme 29</strong><br/> <p>ATH attempt of acetophenone with the (<span class="html-italic">S</span>,<span class="html-italic">S</span>)-1,2-diphenylethylamine-functionalized imidazol-2-ylidene complex <b>57</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch030-550.jpg?1658913173" title=" <strong>Scheme 30</strong><br/> <p>ATH of acetophenone with the hydroxy-amide-functionalized benzimidazol-2-ylidene (η<sup>6</sup>-arene)Ru(II) complexes <b>58a</b>–<b>c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch031-550.jpg?1658913123" title=" <strong>Scheme 31</strong><br/> <p>Synthesis of the catalytically inactive dianionic alkoxy-amidate-NHC-Ru complex <b>59</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch032-550.jpg?1658913154" title=" <strong>Scheme 32</strong><br/> <p>TH of benzaldehyde catalyzed by the pyridine- or pyrimidine-functionalized triazolylidene complexes <b>11c</b> and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch033-550.jpg?1658913122" title=" <strong>Scheme 33</strong><br/> <p>TH of benzaldehyde from glycerol catalyzed by the bis-sulfonated complex <b>21</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch034-550.jpg?1658913148" title=" <strong>Scheme 34</strong><br/> <p>TH of <span class="html-italic">N</span>-benzylidineaniline catalyzed by complexes <b>2</b>, <b>6a</b>, <b>7a</b>, <b>8a</b>, <b>11c</b>, <b>12</b> and <b>27</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch035-550.jpg?1658913162" title=" <strong>Scheme 35</strong><br/> <p>TH of <span class="html-italic">N</span>-benzylidineaniline from glycerol catalyzed by the bis-sulfonated complex <b>21</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch036-550.jpg?1658913123" title=" <strong>Scheme 36</strong><br/> <p>TH of <span class="html-italic">N</span>-benzylidineaniline catalyzed by the carboxylate-functionalized benzimidazol-2-ylidene complex <b>51c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch037-550.jpg?1658913164" title=" <strong>Scheme 37</strong><br/> <p>TH of alkenes by the pyridyl- and pyrimidyl-functionalized triazolylidene complexes <b>11c</b> and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch038-550.jpg?1658913162" title=" <strong>Scheme 38</strong><br/> <p>TH of chalcone catalyzed by the carboxylate-functionalized benzimidazol-2-ylidene complex <b>51c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch039-550.jpg?1658913154" title=" <strong>Scheme 39</strong><br/> <p>TH of 1-dodecene catalyzed by the thioether-functionalized imidazol-2-ylidene complex <b>60</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch040-550.jpg?1658913163" title=" <strong>Scheme 40</strong><br/> <p>TH of nitrobenzene to aniline catalyzed by the pyridyl- and pyrimidyl-functionalized triazolylidene complexes <b>11c</b> and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04703/article_deploy/html/images/molecules-27-04703-sch041-550.jpg?1658913166" title=" <strong>Scheme 41</strong><br/> <p>Proposed mechanism for the TH of nitrobenzene to aniline catalyzed by <b>11</b>c and <b>12</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/15/4703'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="859266" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 14047 KiB </span> <a href="/1420-3049/27/14/4413/pdf?version=1657455797" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Recent Advances in Self-Assembly and Application of Para-Aramids" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/14/4413">Recent Advances in Self-Assembly and Application of <i>Para</i>-Aramids</a> <div class="authors"> by <span class="inlineblock "><strong>Chunjie Xie</strong>, </span><span class="inlineblock "><strong>Shixuan Yang</strong>, </span><span class="inlineblock "><strong>Ran He</strong>, </span><span class="inlineblock "><strong>Jianning Liu</strong>, </span><span class="inlineblock "><strong>Yuexi Chen</strong>, </span><span class="inlineblock "><strong>Yongyi Guo</strong>, </span><span class="inlineblock "><strong>Zhaoxia Guo</strong>, </span><span class="inlineblock "><strong>Teng Qiu</strong> and </span><span class="inlineblock "><strong>Xinlin Tuo</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(14), 4413; <a href="https://doi.org/10.3390/molecules27144413">https://doi.org/10.3390/molecules27144413</a> - 9 Jul 2022 </div> <a href="/1420-3049/27/14/4413#metrics">Cited by 10</a> | Viewed by 3716 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Poly(<i>p</i>-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers performed from PPTA are widely used in many fields due to their superior mechanical properties resulting from their highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/14/4413/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Poly(<i>p</i>-phenylene terephthalamide) (PPTA) is one kind of lyotropic liquid crystal polymer. Kevlar fibers performed from PPTA are widely used in many fields due to their superior mechanical properties resulting from their highly oriented macromolecular structure. However, the “infusible and insoluble” characteristic of PPTA gives rise to its poor processability, which limits its scope of application. The strong interactions and orientation characteristic of aromatic amide segments make PPTA attractive in the field of self-assembly. Chemical derivation has proved an effective way to modify the molecular structure of PPTA to improve its solubility and amphiphilicity, which resulted in different liquid crystal behaviors or supramolecular aggregates, but the modification of PPTA is usually complex and difficult. Alternatively, higher-order all-PPTA structures have also been realized through the controllable hierarchical self-assembly of PPTA from the polymerization process to the formation of macroscopic products. This review briefly summarizes the self-assembly methods of PPTA-based materials in recent years, and focuses on the polymerization-induced PPTA nanofibers which can be further fabricated into different macroscopic architectures when other self-assembly methods are combined. This monomer-started hierarchical self-assembly strategy evokes the feasible processing of PPTA, and enriches the diversity of product, which is expected to be expanded to other liquid crystal polymers. <a href="/1420-3049/27/14/4413">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/liquid_crystal_materials ">Hierarchical Assembly and Micro-/Nano-Structured Liquid Crystal Soft Materials toward Novel Applications beyond Display</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/14/4413/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev859266"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next859266"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next859266" data-cycle-prev="#prev859266" data-cycle-progressive="#images859266" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-859266-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g001-550.jpg?1657455899" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images859266" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g002-550.jpg?1657455883'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g003-550.jpg?1657455889'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g004-550.jpg?1657455880'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g005-550.jpg?1657455890'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g006-550.jpg?1657455885'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g007-550.jpg?1657455898'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g008-550.jpg?1657455884'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g009-550.jpg?1657455893'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g010-550.jpg?1657455895'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g011-550.jpg?1657455888'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-859266-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g012-550.jpg?1657455897'><p>Figure 12</p></div></script></div></div><div id="article-859266-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g001-550.jpg?1657455899" title=" <strong>Figure 1</strong><br/> <p>The microfibril and pleated appearance of periodical structure arrangements of aramid fiber [<a href="#B12-molecules-27-04413" class="html-bibr">12</a>]. Copyright 1999 Elsevier B.V (Amsterdam, The Netherlands).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g002-550.jpg?1657455883" title=" <strong>Figure 2</strong><br/> <p>The chemical structures of modified aramids containing the side groups or graft chains and the effect of side groups or graft chains on the self-assembly behaviors of modified aramids. (<b>A</b>) Aramid containing an <span class="html-italic">m</span>-triphenyl pendant group; (<b>a</b>) TPH1-100 (<b>b</b>) TPH2-100. [<a href="#B23-molecules-27-04413" class="html-bibr">23</a>]. Copyright 2017 Elsevier B.V. (<b>B</b>) The TEMPO-macroinitiator for aramid with grafted polystyrene [<a href="#B24-molecules-27-04413" class="html-bibr">24</a>]. Copyright 2014 CSIRO Publishing. (<b>C</b>) Sulfonated aramid [<a href="#B27-molecules-27-04413" class="html-bibr">27</a>]. Copyright 2004 Royal Society of Chemistry (London, UK). (<b>D</b>) Aramid containing a phthalazinone moiety and ether linkages; (<b>a</b>–<b>d</b>) photomicrographs of copolyamides solution with various compositions [<a href="#B29-molecules-27-04413" class="html-bibr">29</a>]. Copyright 2005 Elsevier B.V.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g003-550.jpg?1657455889" title=" <strong>Figure 3</strong><br/> <p>(<b>A</b>) Chemical structure and schematic self-assembly behavior of aramid-<span class="html-italic">b</span>-PEG [<a href="#B32-molecules-27-04413" class="html-bibr">32</a>]. Copyright 2010 American Chemical Society (Washington, DC, USA). (<b>B</b>) TEM pictures and schematic self-assembly behavior of amphiphilic aramid–ROMP block copolymer [<a href="#B34-molecules-27-04413" class="html-bibr">34</a>]. Copyright 2017 American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g004-550.jpg?1657455880" title=" <strong>Figure 4</strong><br/> <p>(<b>A</b>) The self-assembly behavior of discotic aromatic aramid molecule [<a href="#B37-molecules-27-04413" class="html-bibr">37</a>]. Copyright 2017 Elsevier B.V.; (<b>B</b>) The aramid molecule containing a charged head group and an aliphatic tail spontaneously self-assemble into nanoribbons in water [<a href="#B38-molecules-27-04413" class="html-bibr">38</a>]. Copyright 2021 Springer Nature (Berlin/Heidelberg, Germany).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g005-550.jpg?1657455890" title=" <strong>Figure 5</strong><br/> <p>Growth-packed micron-sized PPTA fibers [<a href="#B40-molecules-27-04413" class="html-bibr">40</a>]. Copyright 1987 Springer Nature.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g006-550.jpg?1657455885" title=" <strong>Figure 6</strong><br/> <p>Fabrication of PANF via polymerization-induced self-assembly strategy.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g007-550.jpg?1657455898" title=" <strong>Figure 7</strong><br/> <p>(<b>A</b>) Schematic self-assembly of copolymerized aramid nanofiber [<a href="#B44-molecules-27-04413" class="html-bibr">44</a>]. Copyright 2020 John Wiley and Sons (Hoboken, NJ, USA). (<b>B</b>) The synthesis of a heterocyclic aramid and the morphology of the heterocyclic aramid nanofiber [<a href="#B45-molecules-27-04413" class="html-bibr">45</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g008-550.jpg?1657455884" title=" <strong>Figure 8</strong><br/> <p>(<b>A</b>) Photograph of PANF paper. The Chinese words in subfigure is “Tsinghua University” [<a href="#B59-molecules-27-04413" class="html-bibr">59</a>]. (<b>B</b>) SEM image of PANF paper [<a href="#B59-molecules-27-04413" class="html-bibr">59</a>]. Copyright 2017 Elsevier B.V. (<b>C</b>) Photograph of PP separator and PANF separator after heated at 200 °C for 0.5 h [<a href="#B64-molecules-27-04413" class="html-bibr">64</a>]. Copyright 2016 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g009-550.jpg?1657455893" title=" <strong>Figure 9</strong><br/> <p>(<b>A</b>) PANF hydrogel in the shape of a mooncake; scale bar: 10 mm [<a href="#B43-molecules-27-04413" class="html-bibr">43</a>]. (<b>B</b>) PANF bulk in the shape of a mooncake; scale bar: 10 mm [<a href="#B43-molecules-27-04413" class="html-bibr">43</a>]. (<b>C</b>) Typical postprocessing approaches (polishing, cutting and punching) of PANF bulk; scale bar: 4 mm [<a href="#B43-molecules-27-04413" class="html-bibr">43</a>]. Copyright 2021 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g010-550.jpg?1657455895" title=" <strong>Figure 10</strong><br/> <p>(<b>A</b>) The preparation process of PANF honeycomb (HC); scale bars: 10 mm [<a href="#B43-molecules-27-04413" class="html-bibr">43</a>]; (<b>B</b>–<b>E</b>) PANF HCs with different round, square, triangular and irregular cells, respectively; scale bars: 10 mm [<a href="#B43-molecules-27-04413" class="html-bibr">43</a>]. Copyright 2021 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g011-550.jpg?1657455888" title=" <strong>Figure 11</strong><br/> <p>(<b>A</b>) Photograph of the laminated PANF aerogel [<a href="#B42-molecules-27-04413" class="html-bibr">42</a>]. (<b>B</b>) The inner structure of the laminated PANF aerogel [<a href="#B42-molecules-27-04413" class="html-bibr">42</a>]. Copyright 2019 American Chemical Society. (<b>C</b>) Large cuboid PANF aerogel (220 mm × 150 mm × 40 mm) [<a href="#B79-molecules-27-04413" class="html-bibr">79</a>]. (<b>D</b>) PANF aerogels with sophisticated shapes: left, Eiffel Tower; right, Chinese stone [<a href="#B79-molecules-27-04413" class="html-bibr">79</a>]. (<b>E</b>) Different materials coated with PANF aerogel. From left to right: polystyrene tube, metal tube and quartz tube [<a href="#B79-molecules-27-04413" class="html-bibr">79</a>]. Copyright 2021 American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04413/article_deploy/html/images/molecules-27-04413-g012-550.jpg?1657455897" title=" <strong>Figure 12</strong><br/> <p>SEM images of PANF/polymer composites: (<b>A</b>) The vertical view of the entire PPTA@PPs separator. (<b>B</b>) PP substrate being peeled from the PPTA nanofiber coating layer. The inset is the original PP substrate. (<b>C</b>) Surface morphology of PPTA nanofiber coating layer. (<b>D</b>) Internal morphology of the PPTA nanofiber coating layer [<a href="#B80-molecules-27-04413" class="html-bibr">80</a>]. Copyright 2018 John Wiley and Sons. (<b>E</b>) SEM image of the PANF@PS composite microspheres. (<b>F</b>) The PANFs on the surfaces of the PANF@PS composite microspheres [<a href="#B81-molecules-27-04413" class="html-bibr">81</a>]. Copyright 2017 American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/14/4413'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="853519" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 38 pages, 4530 KiB </span> <a href="/1420-3049/27/13/4249/pdf?version=1656915166" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method?" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class="label feature" data-dropdown="drop-article-label-feature" aria-expanded="false">Feature Paper</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/13/4249">Microwave-Assisted Synthesis: Can Transition Metal Complexes Take Advantage of This “Green” Method?</a> <div class="authors"> by <span class="inlineblock "><strong>Elisabetta Gabano</strong> and </span><span class="inlineblock "><strong>Mauro Ravera</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(13), 4249; <a href="https://doi.org/10.3390/molecules27134249">https://doi.org/10.3390/molecules27134249</a> - 30 Jun 2022 </div> <a href="/1420-3049/27/13/4249#metrics">Cited by 19</a> | Viewed by 8243 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4249/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Microwave-assisted synthesis is considered environmental-friendly and, therefore, in agreement with the principles of green chemistry. This form of energy has been employed extensively and successfully in organic synthesis also in the case of metal-catalyzed synthetic procedures. However, it has been less widely exploited in the synthesis of metal complexes. As microwave irradiation has been proving its utility as both a time-saving procedure and an alternative way to carry on tricky transformations, its use can help inorganic chemists, too. This review focuses on the use of microwave irradiation in the preparation of transition metal complexes and organometallic compounds and also includes new, unpublished results. The syntheses of the compounds are described following the group of the periodic table to which the contained metal belongs. A general overview of the results from over 150 papers points out that microwaves can be a useful synthetic tool for inorganic chemists, reducing dramatically the reaction times with respect to traditional heating. This is often accompanied by a more limited risk of decomposition of reagents or products by an increase in yield, purity, and (sometimes) selectivity. In any case, thermal control is operative, whereas nonthermal or specific microwave effects seem to be absent. <a href="/1420-3049/27/13/4249">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Inorganic_EBMs ">Exclusive Contributions by the Editorial Board Members (EBMs) of the Inorganic Chemistry Section of Molecules</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4249/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev853519"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next853519"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next853519" data-cycle-prev="#prev853519" data-cycle-progressive="#images853519" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-853519-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g001-550.jpg?1656922062" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images853519" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g002-550.jpg?1656922040'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g003-550.jpg?1656922040'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g004-550.jpg?1656922044'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g005-550.jpg?1656922056'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g006-550.jpg?1656922049'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g007-550.jpg?1656922047'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g008-550.jpg?1656922052'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g009-550.jpg?1656922058'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g010-550.jpg?1656922057'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g011-550.jpg?1656922045'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g012-550.jpg?1656922056'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g013-550.jpg?1656922061'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g0A1-550.jpg?1656922058'><p>Figure A1</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-853519-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g0A2-550.jpg?1656922046'><p>Figure A2</p></div></script></div></div><div id="article-853519-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g001-550.jpg?1656922062" title=" <strong>Figure 1</strong><br/> <p>Schematic difference between conventional and microwave heating.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g002-550.jpg?1656922040" title=" <strong>Figure 2</strong><br/> <p>General scheme for the formation of Schiff bases.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g003-550.jpg?1656922040" title=" <strong>Figure 3</strong><br/> <p>A selection of complexes containing V, Cr, Mo, W, and Mn cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g004-550.jpg?1656922044" title=" <strong>Figure 4</strong><br/> <p>A selection of complexes containing Tc, Re, and Fe cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g005-550.jpg?1656922056" title=" <strong>Figure 5</strong><br/> <p>A selection of Ru complexes cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g006-550.jpg?1656922049" title=" <strong>Figure 6</strong><br/> <p>Scheme of the reaction to obtain ruthenium bis(α-diimine) sulfoxide complexes adapted from [<a href="#B127-molecules-27-04249" class="html-bibr">127</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g007-550.jpg?1656922047" title=" <strong>Figure 7</strong><br/> <p>Scheme of the reaction to obtain the activated [Os<sub>3</sub>(CO)<sub>11</sub>(NCCH<sub>3</sub>)] intermediate.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g008-550.jpg?1656922052" title=" <strong>Figure 8</strong><br/> <p>A selection of complexes containing transition metals of group 9 cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g009-550.jpg?1656922058" title=" <strong>Figure 9</strong><br/> <p>A selection of Ni complexes cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g010-550.jpg?1656922057" title=" <strong>Figure 10</strong><br/> <p>(<b>A</b>) The traditional copper-catalyzed azide–alkyne cycloaddition and (<b>B</b>) the general scheme of synthesis of nickel tetrazolato complexes adapted from [<a href="#B170-molecules-27-04249" class="html-bibr">170</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g011-550.jpg?1656922045" title=" <strong>Figure 11</strong><br/> <p>A selection of Pd and Pt complexes cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g012-550.jpg?1656922056" title=" <strong>Figure 12</strong><br/> <p>Scheme of the oxidation reaction of [PtCl(terpy)]<sup>+</sup> (terpy = 2,2′:6′,2″-terpyridine).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g013-550.jpg?1656922061" title=" <strong>Figure 13</strong><br/> <p>A selection of complexes containing coinage metals cited in the text.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g0A1-550.jpg?1656922058" title=" <strong>Figure A1</strong><br/> <p>Reaction scheme of the synthesis of (<span class="html-italic">OC</span>-6-44)-diamminedichloridoethanolatohydroxidoplatinum(IV).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04249/article_deploy/html/images/molecules-27-04249-g0A2-550.jpg?1656922046" title=" <strong>Figure A2</strong><br/> <p>The matrices show the mean values of the yields obtained at the different levels of the factors, considered two by two. The “−“ and “+” symbols represent the lowest and the highest values of the factors (A = H<sub>2</sub>O<sub>2</sub>/Pt mole ratio, B = temperature, D = reaction time), respectively. The arrows point towards the higher yields, indicating the best level for the factors.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4249'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="849439" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 23 pages, 6089 KiB </span> <a href="/1420-3049/27/13/4135/pdf?version=1656400143" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/13/4135">Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review</a> <div class="authors"> by <span class="inlineblock "><strong>Jean Coudane</strong>, </span><span class="inlineblock "><strong>Hélène Van Den Berghe</strong>, </span><span class="inlineblock "><strong>Julia Mouton</strong>, </span><span class="inlineblock "><strong>Xavier Garric</strong> and </span><span class="inlineblock "><strong>Benjamin Nottelet</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(13), 4135; <a href="https://doi.org/10.3390/molecules27134135">https://doi.org/10.3390/molecules27134135</a> - 28 Jun 2022 </div> <a href="/1420-3049/27/13/4135#metrics">Cited by 23</a> | Viewed by 5664 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4135/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> As a potential replacement for petroleum-based plastics, biodegradable bio-based polymers such as poly(lactic acid) (PLA) have received much attention in recent years. PLA is a biodegradable polymer with major applications in packaging and medicine. Unfortunately, PLA is less flexible and has less impact resistance than petroleum-based plastics. To improve the mechanical properties of PLA, PLA-based blends are very often used, but the outcome does not meet expectations because of the non-compatibility of the polymer blends. From a chemical point of view, the use of graft copolymers as a compatibilizer with a PLA backbone bearing side chains is an interesting option for improving the compatibility of these blends, which remains challenging. This review article reports on the various graft copolymers based on a PLA backbone and their syntheses following two chemical strategies: the synthesis and polymerization of modified lactide or direct chemical post-polymerization modification of PLA. The main applications of these PLA graft copolymers in the environmental and biomedical fields are presented. <a href="/1420-3049/27/13/4135">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/polylactide_material ">Polylactide-Based Materials: Synthesis and Biomedical Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4135/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev849439"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next849439"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next849439" data-cycle-prev="#prev849439" data-cycle-progressive="#images849439" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-849439-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g001-550.jpg?1656400218" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images849439" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g002-550.jpg?1656400210'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g003-550.jpg?1656400235'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g004-550.jpg?1656400207'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g005-550.jpg?1656400237'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g006-550.jpg?1656400219'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g007-550.jpg?1656400228'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g008-550.jpg?1656400213'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g009-550.jpg?1656400217'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g010-550.jpg?1656400222'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g011-550.jpg?1656400233'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g012-550.jpg?1656400239'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g013-550.jpg?1656400232'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g014-550.jpg?1656400223'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g015-550.jpg?1656400215'><p>Figure 15</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g016-550.jpg?1656400211'><p>Figure 16</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g017-550.jpg?1656400225'><p>Figure 17</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g018-550.jpg?1656400214'><p>Figure 18</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g019-550.jpg?1656400234'><p>Figure 19</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g020-550.jpg?1656400217'><p>Figure 20</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-849439-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g021-550.jpg?1656400221'><p>Figure 21</p></div></script></div></div><div id="article-849439-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g001-550.jpg?1656400218" title=" <strong>Figure 1</strong><br/> <p>Illustration of “classic” and “reverse” structures of PLA-based graft copolymers.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g002-550.jpg?1656400210" title=" <strong>Figure 2</strong><br/> <p>Reaction scheme for the synthesis of PLA-<span class="html-italic">g</span>-Paclitaxel-PEG (adapted from Yu et al. [<a href="#B16-molecules-27-04135" class="html-bibr">16</a>], Copyright American Chemical Society, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g003-550.jpg?1656400235" title=" <strong>Figure 3</strong><br/> <p>Reaction scheme for the synthesis of dipropargyloxymethyl PLA and the grafting of PEG via click a reaction (adapted from Zhang et al. [<a href="#B17-molecules-27-04135" class="html-bibr">17</a>], Copyright Royal Society of Chemistry, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g004-550.jpg?1656400207" title=" <strong>Figure 4</strong><br/> <p>Reaction scheme for the preparation of PLA-<span class="html-italic">g</span>-PEG (from Castillo et al. [<a href="#B18-molecules-27-04135" class="html-bibr">18</a>], copyright American Chemical Society, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g005-550.jpg?1656400237" title=" <strong>Figure 5</strong><br/> <p>Reaction scheme for the grafting of MA on PLA (from González-López et al. [<a href="#B21-molecules-27-04135" class="html-bibr">21</a>], copyright Taylor and Francis, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g006-550.jpg?1656400219" title=" <strong>Figure 6</strong><br/> <p>Reaction scheme for the grafting of a cellulosic fiber on PLA-<span class="html-italic">g</span>-MA (from González-López et al. [<a href="#B21-molecules-27-04135" class="html-bibr">21</a>], copyright Taylor and Francis, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g007-550.jpg?1656400228" title=" <strong>Figure 7</strong><br/> <p>SEM micrographs of PLA/TPS blends (70/30 <span class="html-italic">w</span>/<span class="html-italic">w</span>) (<b>a</b>) without and (<b>b</b>) with 2 phr PLA-<span class="html-italic">g</span>-MA (adapted from Moghaddam et al. [<a href="#B39-molecules-27-04135" class="html-bibr">39</a>], copyright Springer Science, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g008-550.jpg?1656400213" title=" <strong>Figure 8</strong><br/> <p>Reaction scheme of the MTPS formation and coupling to PLA (from Wootthikanokkhan et al. [<a href="#B42-molecules-27-04135" class="html-bibr">42</a>], copyright Wiley-VCH GmbH. Reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g009-550.jpg?1656400217" title=" <strong>Figure 9</strong><br/> <p>Reaction scheme for the synthesis of PLA-<span class="html-italic">g</span>-CNC (from Dhar et al. [<a href="#B43-molecules-27-04135" class="html-bibr">43</a>], copyright Elsevier, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g010-550.jpg?1656400222" title=" <strong>Figure 10</strong><br/> <p>Proposed mechanism for the grafting of NR-MA on PLA (from Thepthawat et al. [<a href="#B47-molecules-27-04135" class="html-bibr">47</a>], copyright Wiley-VCH GmbH. Reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g011-550.jpg?1656400233" title=" <strong>Figure 11</strong><br/> <p>Possible reaction between PLA-<span class="html-italic">g</span>-MA and PBAT (from Rigolin et al. [<a href="#B50-molecules-27-04135" class="html-bibr">50</a>], copyright Elsevier, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g012-550.jpg?1656400239" title=" <strong>Figure 12</strong><br/> <p>(<b>A</b>) Proposed reaction scheme between PLA-<span class="html-italic">g</span>-MA and PCL (<b>B</b>) SEM micrographs of PLA/PCL blends (<b>a</b>) without and (<b>b</b>) with 10% PLA-<span class="html-italic">g</span>-MA (adapted from Gardella et al. [<a href="#B55-molecules-27-04135" class="html-bibr">55</a>], copyright Springer, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g013-550.jpg?1656400232" title=" <strong>Figure 13</strong><br/> <p>SEM micrographs of PLA/novatein 90/10 blends (<b>a</b>) uncompatibilized, (<b>b</b>) compatibilized (adapted from Walallavita et al. [<a href="#B61-molecules-27-04135" class="html-bibr">61</a>], copyright Wiley-VCH GmbH. Reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g014-550.jpg?1656400223" title=" <strong>Figure 14</strong><br/> <p>Reaction scheme for the grafting of GMA on PLA backbone (from Gu et al. [<a href="#B69-molecules-27-04135" class="html-bibr">69</a>], copyright Springer Nature, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g015-550.jpg?1656400215" title=" <strong>Figure 15</strong><br/> <p>Mechanism of the reaction between PLA-<span class="html-italic">g</span>-GPA and PBAT (from Lyu et al. [<a href="#B78-molecules-27-04135" class="html-bibr">78</a>], copyright Elsevier, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g016-550.jpg?1656400211" title=" <strong>Figure 16</strong><br/> <p>Reaction scheme for the grafting of acrylic acid on PLA and reaction with starch (from Wu, [<a href="#B82-molecules-27-04135" class="html-bibr">82</a>], copyright Wiley-VCH GmbH. Reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g017-550.jpg?1656400225" title=" <strong>Figure 17</strong><br/> <p>Formation of PLA-<span class="html-italic">g</span>-PMMA and PLA-<span class="html-italic">g</span>-POEGMA by ATRP (from Kalelkar et al. [<a href="#B92-molecules-27-04135" class="html-bibr">92</a>], copyright American Chemical Society, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g018-550.jpg?1656400214" title=" <strong>Figure 18</strong><br/> <p>Surface-initiated ATRP of methacrylate monomers (from Kalelkar et al. [<a href="#B93-molecules-27-04135" class="html-bibr">93</a>], copyright Elsevier, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g019-550.jpg?1656400234" title=" <strong>Figure 19</strong><br/> <p>Reaction scheme for the grafting of NTA on PLA (from Herskovitz et al. [<a href="#B96-molecules-27-04135" class="html-bibr">96</a>], copyright American Chemical Society, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g020-550.jpg?1656400217" title=" <strong>Figure 20</strong><br/> <p>Synthesis scheme of PLA-<span class="html-italic">g</span>-VTMS, hydrolysis of methoxysilane, and crosslinking of PLA chains (adapted from Rahmat et al. [<a href="#B97-molecules-27-04135" class="html-bibr">97</a>], copyright Elsevier, reproduced with permission).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04135/article_deploy/html/images/molecules-27-04135-g021-550.jpg?1656400221" title=" <strong>Figure 21</strong><br/> <p>General synthesis scheme of PLA-<span class="html-italic">g</span>-antibacterial polymers from propargylated PLA surface (adapted from Sardo et al. [<a href="#B102-molecules-27-04135" class="html-bibr">102</a>] and El Habnouni et al. [<a href="#B101-molecules-27-04135" class="html-bibr">101</a>]).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4135'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="848323" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-848323" aria-controls="drop-supplementary-848323" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-848323" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/13/4111/s1?version=1656241803"> Supplementary File 1 (ZIP, 6604 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 22 pages, 5227 KiB </span> <a href="/1420-3049/27/13/4111/pdf?version=1656410491" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Supramolecular cis-“Bis(Chelation)” of [M(CN)6]3− (M = CrIII, FeIII, CoIII) by Phloroglucinol (H3PG)" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/13/4111">Supramolecular <i>cis</i>-“Bis(Chelation)” of [M(CN)<sub>6</sub>]<sup>3−</sup> (M = Cr<sup>III</sup>, Fe<sup>III</sup>, Co<sup>III</sup>) by Phloroglucinol (H<sub>3</sub>PG)</a> <div class="authors"> by <span class="inlineblock "><strong>Katarzyna Jędrzejowska</strong>, </span><span class="inlineblock "><strong>Jedrzej Kobylarczyk</strong>, </span><span class="inlineblock "><strong>Dorota Glosz</strong>, </span><span class="inlineblock "><strong>Emilia Kuzniak-Glanowska</strong>, </span><span class="inlineblock "><strong>Dominika Tabor</strong>, </span><span class="inlineblock "><strong>Monika Srebro-Hooper</strong>, </span><span class="inlineblock "><strong>Jakub J. Zakrzewski</strong>, </span><span class="inlineblock "><strong>Katarzyna Dziedzic-Kocurek</strong>, </span><span class="inlineblock "><strong>Tadeusz M. Muzioł</strong> and </span><span class="inlineblock "><strong>Robert Podgajny</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(13), 4111; <a href="https://doi.org/10.3390/molecules27134111">https://doi.org/10.3390/molecules27134111</a> - 26 Jun 2022 </div> <a href="/1420-3049/27/13/4111#metrics">Cited by 3</a> | Viewed by 4820 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4111/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure–properties–application schemes. Co-crystal salts involving anionic <i>d</i>-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh<sub>4</sub>)<sub>3</sub>[M(CN)<sub>6</sub>](H<sub>3</sub>PG)<sub>2</sub>·2MeCN (M = Cr, <b>1</b>; Fe, <b>2</b>; Co <b>3</b>; H<sub>3</sub>PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, <b>1</b>–<b>3</b> were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, <sup>57</sup>Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)<sub>6</sub>]<sup>3−</sup>;(H<sub>3</sub>PG)<sub>2</sub>}<sub>∞</sub> network features original {[M(CN)<sub>6</sub>]<sup>3−</sup>;(H<sub>3</sub>PG)<sub>4</sub>} supramolecular <i>cis</i>-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CN⋅⋅⋅HO-)<sub>2</sub>Ar, {[M(CN)<sub>6</sub>]<sup>3−</sup>;<b>H<sub>2</sub></b>PGH}, between <i>cis</i>-oriented cyanido ligands of [M(CN)<sub>6</sub>]<sup>3−</sup> and resorcinol-like face of H<sub>3</sub>PG, and (ii) two single hydrogen bonds M-CN⋅⋅⋅HO-Ar, {[M(CN)<sub>6</sub>]<sup>3−</sup>;<b>H</b>PGH<sub>2</sub>}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)<sub>6</sub>]<sup>3−</sup> by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network. <a href="/1420-3049/27/13/4111">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Inorganic_EBMs ">Exclusive Contributions by the Editorial Board Members (EBMs) of the Inorganic Chemistry Section of Molecules</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/13/4111/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev848323"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next848323"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next848323" data-cycle-prev="#prev848323" data-cycle-progressive="#images848323" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-848323-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-ag-550.jpg?1656410575" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images848323" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g001-550.jpg?1656410566'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g002-550.jpg?1656410573'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g003-550.jpg?1656410571'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g004-550.jpg?1656410568'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g005-550.jpg?1656410567'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g006-550.jpg?1656410574'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g007-550.jpg?1656410568'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-848323-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g008-550.jpg?1656410569'><p>Figure 8</p></div></script></div></div><div id="article-848323-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-ag-550.jpg?1656410575" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g001-550.jpg?1656410566" title=" <strong>Figure 1</strong><br/> <p>Crystal structure of <b>1–3:</b> (<b>a</b>) hydrogen-bonded {[M(CN)<sub>6</sub>]<sup>3−</sup>;{(H<sub>3</sub>PG)<sub>2</sub>} layers spread along the <span class="html-italic">ab</span> crystallographic plane; (<b>b</b>) perpendicular view of hydrogen-bonded {[M(CN)<sub>6</sub>]<sup>3−</sup>;(H<sub>3</sub>PG)<sub>2</sub>} layers along <span class="html-italic">c</span> crystallographic direction (PPh<sub>4</sub><sup>+</sup> cations and MeCN solvent molecules omitted for clarity); (<b>c</b>) supramolecular hydrogen-bonded <b><span class="html-italic">cis</span>-“bis(chelate)”</b> {[M(CN)<sub>6</sub>]<sup>3−</sup>(<b>H<sub>2</sub></b>PGH)<sub>2</sub>(<b>H</b>PGH<sub>2</sub>)<sub>2</sub>} as a part of the hydrogen-bonded single layer (for metric parameters see <a href="#molecules-27-04111-t001" class="html-table">Table 1</a>). Legend: green—Cr, Fe or Co, grey—C, blue—N, red—O, orange—P, white—H; protons involved in hydrogen bonds with one [M(CN)<sub>6</sub>]<sup>3−</sup> are indicated in bold.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g002-550.jpg?1656410573" title=" <strong>Figure 2</strong><br/> <p>Hirshfeld surfaces (<b>left column</b>) of the molecular building blocks in <b>2</b> and corresponding fingerprints (<b>right column</b>) for all interactions: (<b>a</b>,<b>b</b>)–[Fe(CN)<sub>6</sub>]<sup>3−</sup>; (<b>c</b>,<b>d</b>)–H<sub>3</sub>PG; (<b>e</b>,<b>f</b>)–P(1)Ph<sub>4</sub><sup>+</sup>; (<b>g</b>,<b>h</b>)–P(2)Ph<sub>4</sub><sup>+</sup>. The detailed images for all individual interactions are given in the <a href="#app1-molecules-27-04111" class="html-app">Supplementary Materials (Figures S6, S7, S9 and S10)</a>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g003-550.jpg?1656410571" title=" <strong>Figure 3</strong><br/> <p>Hirshfeld surface presenting contacts formed by the anion subnetwork grid.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g004-550.jpg?1656410568" title=" <strong>Figure 4</strong><br/> <p>The ESI–MS spectra in the negative ionization mode for <b>2</b> (blue) and for (PPh<sub>4</sub>)<sub>3</sub>[Fe(CN)<sub>6</sub>]·6H<sub>2</sub>O (cyan) as a reference: (<b>a</b>) the <span class="html-italic">m</span>/<span class="html-italic">z</span> range of 750<sup>–</sup>–1250<sup>–</sup> showing the peak-sets assigned to {(PPh<sub>4</sub>)<sub>2</sub>[M(CN)<sub>6</sub>]}<sup>–</sup>, {(PPh<sub>4</sub>)<sub>2</sub>[M(CN)<sub>6</sub>](H<sub>3</sub>PG)}<sup>–</sup>, and {(PPh<sub>4</sub>)<sub>2</sub>[Fe(CN)<sub>6</sub>](H<sub>3</sub>PG)<sub>2</sub>}<sup>–</sup> aggregates; (<b>b</b>) the details of the relevant isotopic patterns. The spectra are fully representative for the whole series <b>1</b>–<b>3</b>, based on the perfect fit of the individual isotopic patterns.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g005-550.jpg?1656410567" title=" <strong>Figure 5</strong><br/> <p>Results of ETS-NOCV analysis of the interaction between [M(CN)<sub>6</sub>]<sup>3−</sup> anion and H<sub>3</sub>PG molecule in {[Co(CN)<sub>6</sub>]<sup>3−</sup>;<b>H<sub>2</sub></b>PGH} and {[Co(CN)<sub>6</sub>]<sup>3−</sup>;<b>H</b>PGH<sub>2</sub>} molecular clusters extracted from the crystal structure of <b>3</b> and between 4,4′-bipyridyl (4,4′bpy) and H<sub>3</sub>PG in {4,4′bpy;<b>H</b>PGH<sub>2</sub>} molecular cluster extracted from the crystal structure reported in Ref. [<a href="#B64-molecules-27-04111" class="html-bibr">64</a>] used here as a reference. Isosurfaces (±0.0005 au) of dominant NOCV contributions to the differential electron density Δρ describing hydrogen bonding along with their charge (q in e) and orbital energy (ΔE in kcal mol<sup>−1</sup>) assessment. Two values of q and ΔE provided for the {[Co(CN)<sub>6</sub>]<sup>3−</sup>;<b>H<sub>2</sub></b>PGH} motif correspond to the total assessment for both hydrogen bonds and to the shortest one only (given in parentheses). Numbers listed close to the O–H···N contacts are the hydrogen-bond distances, in Å. In the table: The corresponding interaction energy components (in kcal mol<sup>−1</sup>) as obtained using the ETS energy decomposition scheme are presented. Based on BLYP + D4//TZP calculations.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g006-550.jpg?1656410574" title=" <strong>Figure 6</strong><br/> <p>(<b>a</b>) Infrared spectra of <b>1</b>-<b>3</b> in the absorption mode compared with the spectra of H<sub>3</sub>PG and (PPh<sub>4</sub>)<sub>3</sub>[M(CN)<sub>6</sub>]·<span class="html-italic">n</span>H<sub>2</sub>O precursor salts with enlargement of including the <span class="html-italic">ν</span>(C≡N) stretching vibration range shown on the right. (<b>b</b>) <sup>57</sup>Fe Mössbauer spectra of <b>2</b> (<b>top</b>) and of the (PPh<sub>4</sub>)<sub>3</sub>[Fe(CN)<sub>6</sub>]·7H<sub>2</sub>O precursor (<b>bottom</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g007-550.jpg?1656410568" title=" <strong>Figure 7</strong><br/> <p>Electronic absorption UV-Vis spectra of <b>1</b>–<b>3</b> in the solid-state compared to H<sub>3</sub>PG and respective (PPh<sub>4</sub>)<sub>3</sub>[M(CN)<sub>8</sub>]⋅nH<sub>2</sub>O precursors. The reflectance spectra were recalculated into the Kubelka-Munk finction. Colors: <b>1</b>—green, <b>2</b>—blue, and <b>3</b>—pink.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-04111/article_deploy/html/images/molecules-27-04111-g008-550.jpg?1656410569" title=" <strong>Figure 8</strong><br/> <p><sup>2</sup>E<sub>g</sub> → <sup>4</sup>A<sub>2g</sub> emission spectra of <b>1</b> (<b>a</b>) and (PPh<sub>4</sub>)<sub>3</sub>[Cr(CN)<sub>6</sub>]⋅2H<sub>2</sub>O reference (<b>b</b>) at various excitation wavelengths in <span class="html-italic">T</span> = 77 K. The insets show the excitation spectra at <span class="html-italic">λ</span><sub>em</sub> related to the highest emission intensity in emission spectra.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/13/4111'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="831785" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 16 pages, 3389 KiB </span> <a href="/1420-3049/27/11/3617/pdf?version=1654590062" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/11/3617">Characterization of CM-398, a Novel Selective Sigma-2 Receptor Ligand, as a Potential Therapeutic for Neuropathic Pain</a> <div class="authors"> by <span class="inlineblock "><strong>Lisa L. Wilson</strong>, </span><span class="inlineblock "><strong>Amy R. Alleyne</strong>, </span><span class="inlineblock "><strong>Shainnel O. Eans</strong>, </span><span class="inlineblock "><strong>Thomas J. Cirino</strong>, </span><span class="inlineblock "><strong>Heather M. Stacy</strong>, </span><span class="inlineblock "><strong>Marco Mottinelli</strong>, </span><span class="inlineblock "><strong>Sebastiano Intagliata</strong>, </span><span class="inlineblock "><strong>Christopher R. McCurdy</strong> and </span><span class="inlineblock "><strong>Jay P. McLaughlin</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(11), 3617; <a href="https://doi.org/10.3390/molecules27113617">https://doi.org/10.3390/molecules27113617</a> - 4 Jun 2022 </div> <a href="/1420-3049/27/11/3617#metrics">Cited by 13</a> | Viewed by 3034 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/11/3617/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Sigma receptors modulate nociception, offering a potential therapeutic target to treat pain, but relatively little is known regarding the role of sigma-2 receptors (S2R) in nociception. The purpose of this study was to investigate the in vivo analgesic and anti-allodynic activity and liabilities of a novel S2R selective ligand, 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398). The inhibition of thermal, induced chemical, or inflammatory pain as well as the allodynia resulting from chronic nerve constriction injury (CCI) model of neuropathic pain were assessed in male mice. CM-398 dose-dependently (10–45 mg/kg i.p.) reduced mechanical allodynia in the CCI neuropathic pain model, equivalent at the higher dose to the effect of the control analgesic gabapentin (50 mg/kg i.p.). Likewise, pretreatment (i.p.) with CM-398 dose-dependently produced antinociception in the acetic acid writhing test (ED<sub>50</sub> (and 95% C.I.) = 14.7 (10.6–20) mg/kg, i.p.) and the formalin assay (ED<sub>50</sub> (and 95% C.I.) = 0.86 (0.44–1.81) mg/kg, i.p.) but was without effect in the 55 °C warm-water tail-withdrawal assay. A high dose of CM-398 (45 mg/kg, i.p.) exhibited modest locomotor impairment in a rotarod assay and conditioned place aversion, potentially complicating the interpretation of nociceptive testing. However, in an operant pain model resistant to these confounds, mice experiencing CCI and treated with CM-398 demonstrated robust conditioned place preference. Overall, these results demonstrate the S2R selective antagonist CM-398 produces antinociception and anti-allodynia with fewer liabilities than established therapeutics, adding to emerging data suggesting possible mediation of nociception by S2R, and the development of S2R ligands as potential treatments for chronic pain. <a href="/1420-3049/27/11/3617">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Featured_Papers_Medicinal_Chemistry ">Featured Papers in Medicinal Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/11/3617/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev831785"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next831785"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next831785" data-cycle-prev="#prev831785" data-cycle-progressive="#images831785" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-831785-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g001-550.jpg?1654590634" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images831785" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g002-550.jpg?1654590633'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g003-550.jpg?1654590627'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g004-550.jpg?1654590628'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g005-550.jpg?1654590627'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g006-550.jpg?1654590634'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g007-550.jpg?1654590631'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g008-550.jpg?1654590629'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-831785-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g009-550.jpg?1654590632'><p>Figure 9</p></div></script></div></div><div id="article-831785-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g001-550.jpg?1654590634" title=" <strong>Figure 1</strong><br/> <p>Chemical structure of 1-[4-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-2-yl)butyl]-3-methyl-1,3-dihydro-1,3-benzimidazol-2-one (CM-398).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g002-550.jpg?1654590633" title=" <strong>Figure 2</strong><br/> <p>Dose-dependent antinociception of sigma-2 receptor ligand CM-398 following i.p. administration in the mouse acetic acid writhing test. Opioid agonist morphine is shown as a positive control. All points represent average response ± SEM at peak effect, 30 min after admin in 8–10 mice. ED<sub>50</sub> values analyzed using linear regression.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g003-550.jpg?1654590627" title=" <strong>Figure 3</strong><br/> <p>Evaluation of CM-398 for antinociceptive effects in the mouse formalin-induced inflammation assay. Dose-dependent antinociception of sigma-2 receptor ligand CM-398 followed i.p. administration. Control mice were treated with saline (0.9%, i.p.) or morphine (10 mg/kg, i.p.). All points represent summed time spent licking ± SEM administered to 5–10 mice for all points.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g004-550.jpg?1654590628" title=" <strong>Figure 4</strong><br/> <p>Evaluation of CM-398 for acute thermal antinociception in the 55 °C warm water tail-withdrawal assay. Mean ± SEM of latency to withdraw the tail from warm water after treatment with morphine (10 mg/kg, i.p.; red circles), CM-398 (30 mg/kg, i.p.; cyan triangles), or vehicle (0.9% saline, i.p.; gray diamonds) was examined every 10 min up to 110 min.; n = 7–8 for all points, * <span class="html-italic">p</span> &lt; 0.05; two-way RM ANOVA with Tukey’s post hoc test.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g005-550.jpg?1654590627" title=" <strong>Figure 5</strong><br/> <p>Dose- and time-dependent anti-allodynic activity of CM-398 (squares) in the mouse chronic constriction injury (CCI) model of neuropathic pain. Mechanical allodynia produced from sciatic nerve ligation was reduced from 40–80 min post-CM-398 (30 mg/kg, i.p., pink squares, and 45 mg/kg, i.p., cyan squares) in a manner similar to the positive control, gabapentin (50 mg/kg, i.p., green hexagons). CM-398 produced effects that were longer lasting than the parent compound CM-304 (45 mg/kg, i.p., dark-purple diamonds). N = 10 for all groups; * = significantly different from vehicle controls; <span class="html-italic">p</span> &lt; 0.05; two-way ANOVA with Tukey post hoc test. (Note: CM-304 data were previously published in Cirino et al., 2019 [<a href="#B9-molecules-27-03617" class="html-bibr">9</a>]).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g006-550.jpg?1654590634" title=" <strong>Figure 6</strong><br/> <p>Assessment of CM-398 for dose- and time-dependent changes in evoked locomotor activity in the mouse rotarod assay. CM-398 (squares) was administered at 10, 30, or 45 mg/kg, i.p. doses prior to testing. U50,488 (10 mg/kg, i.p; orange circles) served as a positive control; * = significantly different from vehicle response (5% DMSO, i.p.; gray diamonds), <span class="html-italic">p</span> &lt; 0.05; two-way ANOVA with Dunnett’s post hoc test; n = 8–12 mice/treatment.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g007-550.jpg?1654590631" title=" <strong>Figure 7</strong><br/> <p>Evaluation of potential effects of CM-398 on (<b>A</b>) spontaneous ambulation and (<b>B</b>) respiration in C57BL/6J mice. Ambulation and respiration were monitored after i.p. administration of CM-398 (10, 30, or 45 mg/kg; squares), saline (grey diamonds), or morphine (30 mg/kg, red circles) using the CLAMS/Oxymax system. Data are presented as % vehicle response ± SEM for ambulation (XAMB, (<b>A</b>)), or breaths per minute (BPM, (<b>B</b>)); * = significantly different from baseline response (<span class="html-italic">p</span> &lt; 0.05); n = 12 mice/treatment.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g008-550.jpg?1654590629" title=" <strong>Figure 8</strong><br/> <p>Evaluation of CM-398 in the conditioned place preference assay. While mice showed preference for the chamber paired with morphine treatment (10 mg/kg, i.p.), and aversion for the kappa agonist, U50,488 (30 mg/kg, i.p.), no preference or aversion was seen for CM-398 at 10 and 30 mg/kg, i.p. However, CM-398 at 45 mg/kg, i.p. showed significant conditioned place aversion. For each group, n = 14–24; * = postconditioning response (striped bars) significantly different from matching pre-CPP response (matching open bars), <span class="html-italic">p</span> &lt; 0.05; two-way ANOVA with Sidak’s post hoc test.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03617/article_deploy/html/images/molecules-27-03617-g009-550.jpg?1654590632" title=" <strong>Figure 9</strong><br/> <p>Evaluation of CM-398 in an operant model of antinociception using constrictive nerve injury (CCI)-conditioned place preference (CPP). (<b>A</b>) Schematic representation of the CCI/CPP operant model of pain protocol; (<b>B</b>) Dose-dependent antinociception of CM-398 following i.p. administration in the mouse CCI/CPP operant pain model. Negative control mice were treated with vehicle (5% DMSO, i.p.; second pair of bars from left) and positive control mice were treated with the kappa opioid agonist U50,488 (leftmost pair of bars). All points represent differences in time spent on the drug-paired side ± SEM tested in 15–20 mice/drug. * = postconditioning response (striped bars) significantly different from matching pre-CPP response (matching open bars), <span class="html-italic">p</span> &lt; 0.05; two-way ANOVA with Sidak’s post hoc test.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/11/3617'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="817921" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 3240 KiB </span> <a href="/1420-3049/27/10/3218/pdf?version=1652838917" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Synthesis, Crystal Structure and Magnetic Properties of a Trinuclear Copper(II) Complex Based on P-Cresol-Substituted Bis(α-Nitronyl Nitroxide) Biradical" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/10/3218">Synthesis, Crystal Structure and Magnetic Properties of a Trinuclear Copper(II) Complex Based on P-Cresol-Substituted Bis(α-Nitronyl Nitroxide) Biradical</a> <div class="authors"> by <span class="inlineblock "><strong>Sabrina Grenda</strong>, </span><span class="inlineblock "><strong>Maxime Beau</strong> and </span><span class="inlineblock "><strong>Dominique Luneau</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(10), 3218; <a href="https://doi.org/10.3390/molecules27103218">https://doi.org/10.3390/molecules27103218</a> - 18 May 2022 </div> <a href="/1420-3049/27/10/3218#metrics">Cited by 1</a> | Viewed by 2702 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Trinuclear copper(II) complex [Cu<sup>II</sup><sub>3</sub>(NIT<sub>2</sub>PhO)<sub>2</sub>Cl<sub>4</sub>] was synthesized with p-cresol-substituted bis(α-nitronyl nitroxide) biradical: 4-methyl-2,6-bis(1-oxyl-3-oxido-4,4,5,5-tetramethyl-2-imidazolin-2-yl)phenol (NIT<sub>2</sub>PhOH). The crystal structure of this heterospin complex was determined using single-crystal X-ray diffraction analysis and exhibits four unusual seven-membered <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3218/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Trinuclear copper(II) complex [Cu<sup>II</sup><sub>3</sub>(NIT<sub>2</sub>PhO)<sub>2</sub>Cl<sub>4</sub>] was synthesized with p-cresol-substituted bis(α-nitronyl nitroxide) biradical: 4-methyl-2,6-bis(1-oxyl-3-oxido-4,4,5,5-tetramethyl-2-imidazolin-2-yl)phenol (NIT<sub>2</sub>PhOH). The crystal structure of this heterospin complex was determined using single-crystal X-ray diffraction analysis and exhibits four unusual seven-membered metallocycles formed from the coordination of oxygen atoms of the N-O groups and of bridging phenoxo (µ-PhO<sup>−</sup>) moieties with copper(II) ions. The crystal structure analysis reveals an incipient agostic interaction between a square planar copper center and a hydrogen-carbon bond from one methyl group carried on the coordinated nitronyl-nitroxide radical. The intramolecular Cu∙∙∙H-C interaction involves a six-membered metallocycle and may stabilize the copper center in square planar coordination mode. From the magnetic susceptibility measurements, the complex, which totals seven S = 1/2 spin carriers, has almost a ground state spin S = 1/2 at room temperature ascribed to strong antiferromagnetic interaction between the nitronyl nitroxide moieties and the copper(II) centers and in between the copper(II) centers through the bridging phenoxo oxygen atom. <a href="/1420-3049/27/10/3218">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/crystal_structure ">Crystal Structures of Metal Complexes</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3218/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev817921"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next817921"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next817921" data-cycle-prev="#prev817921" data-cycle-progressive="#images817921" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-817921-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-ag-550.jpg?1654576276" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images817921" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g001-550.jpg?1654576254'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g002-550.jpg?1654576264'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g003-550.jpg?1654576261'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g004-550.jpg?1654576255'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g005-550.jpg?1654576260'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g006-550.jpg?1654576263'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-sch001-550.jpg?1654576256'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-817921-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-sch002-550.jpg?1654576257'><p>Scheme 2</p></div></script></div></div><div id="article-817921-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-ag-550.jpg?1654576276" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g001-550.jpg?1654576254" title=" <strong>Figure 1</strong><br/> <p>Crystal structure of the asymmetric unit of the complex [Cu<sup>II</sup><sub>3</sub>(NIT<sub>2</sub>PhO)<sub>2</sub>Cl<sub>4</sub>]. Atoms coordinated to copper are only labeled. Hydrogen atoms are omitted for clarity. Atoms are colored as follows: Cu orange; O red; Cl green; N blue; C grey.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g002-550.jpg?1654576264" title=" <strong>Figure 2</strong><br/> <p>View focusing on the coordination mode involving copper(II) ions Cu1 and Cu2 with nitronyl nitroxide A. Atoms coordinated to copper and N-O groups are only labeled. Hydrogen atoms are omitted for clarity. Atoms are colored as follows: Cu orange; O red; Cl green; N blue; C grey.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g003-550.jpg?1654576261" title=" <strong>Figure 3</strong><br/> <p>Intermolecular H∙∙∙Cu2 interaction, represented by a dotted orange line, between the hydrogen atom carried by C18 and copper Cu2. Only atoms coordinated to Cu2 and the involved hydrogen are shown for clarity. Atoms are colored as follows: Cu orange; O red; Cl green; N blue; C grey.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g004-550.jpg?1654576255" title=" <strong>Figure 4</strong><br/> <p>View focusing on the coordination mode involving copper(II) ion Cu3 with nitronyl nitroxide B. Atoms coordinated to copper and N-O groups are only labeled. Hydrogen atoms are omitted for clarity. Atoms are colored as follows: Cu orange; O red; Cl green; N blue; C grey.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g005-550.jpg?1654576260" title=" <strong>Figure 5</strong><br/> <p>Temperature dependence of the product of magnetic susceptibility with temperature (χ<sub>M</sub>T) for [Cu<sup>II</sup><sub>3</sub>(NIT<sub>2</sub>PhO)<sub>2</sub>Cl<sub>4</sub>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-g006-550.jpg?1654576263" title=" <strong>Figure 6</strong><br/> <p>Schematization of the magnetic exchange couplings in [Cu<sup>II</sup><sub>3</sub>(NIT<sub>2</sub>PhO)<sub>2</sub>Cl<sub>4</sub>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-sch001-550.jpg?1654576256" title=" <strong>Scheme 1</strong><br/> <p>Chemical structure of the biradical NIT<sub>2</sub>PhOH.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03218/article_deploy/html/images/molecules-27-03218-sch002-550.jpg?1654576257" title=" <strong>Scheme 2</strong><br/> <p>Schematization of the coordination mode of the two diradicals.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3218'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="817831" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-817831" aria-controls="drop-supplementary-817831" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-817831" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/10/3212/s1?version=1652796921"> Supplementary File 1 (ZIP, 251 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 13 pages, 2073 KiB </span> <a href="/1420-3049/27/10/3212/pdf?version=1652796920" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Conditions to Control Furan Ring Opening during Furfuryl Alcohol Polymerization" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/10/3212">Conditions to Control Furan Ring Opening during Furfuryl Alcohol Polymerization</a> <div class="authors"> by <span class="inlineblock "><strong>Lucie Quinquet</strong>, </span><span class="inlineblock "><strong>Pierre Delliere</strong> and </span><span class="inlineblock "><strong>Nathanael Guigo</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(10), 3212; <a href="https://doi.org/10.3390/molecules27103212">https://doi.org/10.3390/molecules27103212</a> - 17 May 2022 </div> <a href="/1420-3049/27/10/3212#metrics">Cited by 12</a> | Viewed by 3444 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The chemistry of biomass-derived furans is particularly sensitive to ring openings. These side reactions occur during furfuryl alcohol polymerization. In this work, the furan ring-opening was controlled by changing polymerization conditions, such as varying the type of acidic initiator or the water content. <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3212/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The chemistry of biomass-derived furans is particularly sensitive to ring openings. These side reactions occur during furfuryl alcohol polymerization. In this work, the furan ring-opening was controlled by changing polymerization conditions, such as varying the type of acidic initiator or the water content. The degree of open structures (DOS) was determined by quantifying the formed carbonyl species by means of quantitative <sup>19</sup>F NMR and potentiometric titration. The progress of polymerization and ring opening were monitored by DSC and FT-IR spectroscopy. The presence of additional water is more determining on ring opening than the nature of the acidic initiator. Qualitative structural assessment by means of <sup>13</sup>C NMR and FT-IR shows that, depending on the employed conditions, poly(furfuryl alcohol) samples can be classified in two groups. Indeed, either more ester or more ketone side groups are formed as a result of side ring opening reactions. The absence of additional water during FA polymerization preferentially leads to opened structures in the PFA bearing more ester moieties. <a href="/1420-3049/27/10/3212">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/biopolymer_III ">Natural Polymers and Biopolymers III</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3212/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev817831"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next817831"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next817831" data-cycle-prev="#prev817831" data-cycle-progressive="#images817831" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-817831-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g001-550.jpg?1652796990" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images817831" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-817831-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g002-550.jpg?1652796993'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-817831-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g003-550.jpg?1652797002'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-817831-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g004-550.jpg?1652796998'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-817831-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g005-550.jpg?1652796996'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-817831-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-sch001-550.jpg?1652797000'><p>Scheme 1</p></div></script></div></div><div id="article-817831-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g001-550.jpg?1652796990" title=" <strong>Figure 1</strong><br/> <p>Comparison of the degree of open structures obtained from titration method synthesized with different initiators in function of the conversion degree.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g002-550.jpg?1652796993" title=" <strong>Figure 2</strong><br/> <p>Comparison of the degree of open structures obtained by titration method and synthesized with different initiators with and without additional water (50/50 <span class="html-italic">w</span>/<span class="html-italic">w</span>) as function of the conversion degree.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g003-550.jpg?1652797002" title=" <strong>Figure 3</strong><br/> <p>Comparison of the degree of open structures obtained with titration method and synthesized with different FA/Additional water ratios within function of the conversion degree.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g004-550.jpg?1652796998" title=" <strong>Figure 4</strong><br/> <p>(<b>A</b>) Normalized FTIR spectra of PFA 50/50 water and neat PFA neat at α ≈ 0.5 and α ≈ 0.8. (<b>B</b>) <sup>13</sup>C NMR spectra of PFA 50/50 water and neat PFA at α ≈ 0.5 and α ≈ 0.8 with an accumulation of 6000 scans.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-g005-550.jpg?1652796996" title=" <strong>Figure 5</strong><br/> <p>Degree of open structures obtained with titration method against FTIR C=O area for PFA synthetized in neat, aqueous and 50/50 IPA systems. PFA have been synthetized with aforementioned catalysts.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03212/article_deploy/html/images/molecules-27-03212-sch001-550.jpg?1652797000" title=" <strong>Scheme 1</strong><br/> <p>Chain of biobased PFA’s creation and highlight of the open structures.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3212'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="814157" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-814157" aria-controls="drop-supplementary-814157" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-814157" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/10/3108/s1?version=1652352249"> Supplementary File 1 (ZIP, 1320 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 26 pages, 6258 KiB </span> <a href="/1420-3049/27/10/3108/pdf?version=1652352248" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/10/3108">Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1</a> <div class="authors"> by <span class="inlineblock "><strong>Barbara Knapp</strong>, </span><span class="inlineblock "><strong>Jens Roedig</strong>, </span><span class="inlineblock "><strong>Heiko Roedig</strong>, </span><span class="inlineblock "><strong>Jacek Krzysko</strong>, </span><span class="inlineblock "><strong>Nicola Horn</strong>, </span><span class="inlineblock "><strong>Baran E. Güler</strong>, </span><span class="inlineblock "><strong>Deva Krupakar Kusuluri</strong>, </span><span class="inlineblock "><strong>Adem Yildirim</strong>, </span><span class="inlineblock "><strong>Karsten Boldt</strong>, </span><span class="inlineblock "><strong>Marius Ueffing</strong>, </span><span class="inlineblock "><strong>Ines Liebscher</strong> and </span><span class="inlineblock "><strong>Uwe Wolfrum</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(10), 3108; <a href="https://doi.org/10.3390/molecules27103108">https://doi.org/10.3390/molecules27103108</a> - 12 May 2022 </div> <a href="/1420-3049/27/10/3108#metrics">Cited by 10</a> | Viewed by 4173 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3108/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease. <a href="/1420-3049/27/10/3108">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/GPCR_Ligands ">Molecular Modeling, Synthesis, and Functional Characterization of GPCR (G-Protein Coupled Receptor) Ligands</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/10/3108/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev814157"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next814157"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next814157" data-cycle-prev="#prev814157" data-cycle-progressive="#images814157" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-814157-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g001-550.jpg?1652352333" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images814157" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g002-550.jpg?1652352354'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g003-550.jpg?1652352339'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g004-550.jpg?1652352347'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g005-550.jpg?1652352343'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g006-550.jpg?1652352337'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g007-550.jpg?1652352350'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g008-550.jpg?1652352351'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-814157-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g009-550.jpg?1652352352'><p>Figure 9</p></div></script></div></div><div id="article-814157-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g001-550.jpg?1652352333" title=" <strong>Figure 1</strong><br/> <p><b>VLGR1 domain structures and VLGR1-associated protein networks.</b> (<b>a</b>) The two long isoforms of VLGR1, the full-length protein VLGR1b, and the shorter isoform VLGR1a can be autocleaved at the GPS (G-protein-coupled receptor proteolytic site) into the following fragments: N-terminal fragment (NTF) and the C-terminal fragment (CTF), which are composed of a short intracellular domain (ICD), the seven transmembrane domain (TM), and the long extracellular domain (ECD). (<b>b</b>) N- or C-terminally Strep II- FLAG (SF)-tagged VLGR1 constructs were used as baits. (<b>c</b>) Protein networks of prey identified with SF-N-VLGR1a (863 out of 925 prey proteins are interconnected, based on the STRING database (<a href="https://string-db.org/" target="_blank">https://string-db.org/</a>, accessed on 10 September 2017), SF-N-VLGR1_CTF (1054 out of 1135 prey proteins are interconnected), SF-C-VLGR1_CTF (939 of 1025 prey proteins are interconnected), and SF-N-VLGR1_ICD (29 out of 40 prey proteins are interconnected). (<b>d</b>,<b>e</b>) Venn diagrams of VLGR1 prey revealing overlaps between the interactomes found for the VLGR1 constructs.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g002-550.jpg?1652352354" title=" <strong>Figure 2</strong><br/> <p><b>Signal transduction and activation of VLGR1.</b> (<b>a</b>) HEK293T cells were transfected with increasing amounts (100–600 ng/well) of plasmids encoding either human VLGR1 or human P2Y12. VLGR1, but not P2Y12, a known Gi coupling receptor, caused a dose-dependent increase of cAMP. Statistics displayed significant linear regression for VLGR1. (<b>b</b>) Coupling analysis of VLGR1a using chimeric G proteins in cAMP accumulation assay revealed significant 2nd messenger accumulation with a chimera that couples to a Gq-binding receptor. (<b>c</b>) Comparison of basal 2nd messenger production of full length and CTF, where the NTF was replaced with the N-terminus of P2Y12 to ensure proper surface expression of the mutant. Constitutive activity of the CTF is observed in IP accumulation assay with and without a Gqi chimeric protein, indicating coupling to Gq and Gi. (<b>d</b>) Cell surface (SE) and total cell expression (TE) of full length and CTF mutant constructs of VLGR1 in relation to P2Y12 (100%), which served as positive control. (<b>e</b>) Screening for VLGR1 <span class="html-italic">Stachel</span>-mimicking peptides. A <span class="html-italic">Stachel</span>-derived peptide library of VLGR1 was tested in cAMP with and without the addition of a Gsq chimeric G protein. Peptides 10 and 11 amino acids long were found to significantly activate VLGR1 in comparison to pcDps when the Gsq chimera was added. (<b>a</b>–<b>e</b>): Data are given as means ± S.D. of three independent experiments each performed in triplicate. (<b>b</b>,<b>c</b>): Statistics was performed using one-way ANOVA with Bonferroni as post-hoc test and (<b>d</b>) utilized one-way ANOVA with Sidak’s multiple comparison test. p-values in b, c and e: * <span class="html-italic">p</span> ≤ 0.05, ** <span class="html-italic">p</span> ≤ 0.01, *** <span class="html-italic">p</span> ≤ 0.001.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g003-550.jpg?1652352339" title=" <strong>Figure 3</strong><br/> <p><b>Association of VLGR1 with focal adhesions.</b> (<b>a</b>) Venn diagram of VLGR1 prey assigned to the GO term <span class="html-italic">focal adhesion</span> in the category <span class="html-italic">Cellular Component</span>. Black font: CRAPome value ≤20; Grey font: CRAPome value &gt; 20. (<b>b</b>) VLGR1 is expressed at focal adhesions (FA) in primary astrocytes derived from murine brain, where it co-localizes with the FA marker Vinculin and actin stress fibers. Scale bar: 10 µm.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g004-550.jpg?1652352347" title=" <strong>Figure 4</strong><br/> <p><b>Association of VLGR1 with cell cycle regulators, mitotic spindle components, and primary cilia.</b> (<b>a</b>) Venn diagrams of VLGR1 prey involved in cell cycle regulation. Interactions between these regulators are visualized in a STRING (<a href="https://string-db.org/" target="_blank">https://string-db.org/</a>, accessed on 10 September 2017) network. (<b>b</b>) VLGR1 prey that are assigned to the GO terms spindle and spindle pole in the category Cellular Component. Black font: CRAPome value ≤ 20; Grey font: CRAPome value &gt; 20. (<b>c</b>) Triple immunofluorescence staining of VLGR1 (green), the spindle microtubules by α-tubulin (α-Tub, red), and the centriole/spindle pole marker protein pericentrin-2 (PCTN, white) in RPE1 cells reveals the localization of VLGR1 at spindle poles. Chromosomal DNA is stained by DAPI (blue). (<b>d</b>) Triple immunofluorescence staining revealed VLGR1 (red) co-localization with PCTN2 at the base of primary cilia in RPE1 cells. (<b>e</b>) siRNA-mediated knock-down of VLGR1 in RPE1 cells results in decrease of the ciliary length. Scale bars: 10 µm and 2 µm (magnified primary cilium). siCon, control siRNA (non-targeting); siVlgr1, siRNA directed against VLGR1; * <span class="html-italic">p</span> &lt; 0.05.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g005-550.jpg?1652352343" title=" <strong>Figure 5</strong><br/> <p><b>VLGR1 nuclear localization and its interaction with transcriptional regulators and components of the spliceosome.</b> (<b>a</b>) Indirect immunofluorescence of VLGR1 counter stained for the nucleus by DAPI (blue) in astrocytes derived from mouse brains. VLGR1 (green) is localized in the plasma membrane (<span class="html-italic">arrowhead</span>) in the cytoplasm, in focal adhesions (<span class="html-italic">arrow</span>), and in the nucleoplasm of the nucleus (<span class="html-italic">asterisk</span>). (<b>b</b>) Double immunofluorescence of VLGR1 (green) and the ER marker CLIMP63 (red), counter stained for nuclear DNA by DAPI (blue) in HeLa cells demonstrating prominent VLGR1 localization in the ER. (<b>c</b>) Venn diagram of VLGR1 prey with a function in transcriptional regulation (CRAPome value ≤ 20). (<b>d</b>) STRING network of VLGR1 TAP prey assigned to the GO term <span class="html-italic">mRNA splicing,</span> via <span class="html-italic">spliceosome</span>. (<b>e</b>) Validation of the interaction of VLGR1 with the spliceosome component PRPF6. GFP-PRPF6 pulled down VLGR1_CTF in a GFP-Trap<sup>®</sup> assay. TCL: total cell lysate, CTF: C-terminal fragment, ICD; intracellular domain, SF: Strep II-FLAG. Scale bars in (<b>a</b>,<b>b</b>): 10 µm.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g006-550.jpg?1652352337" title=" <strong>Figure 6</strong><br/> <p><b>VLGR1 associates with neurogenesis.</b> (<b>a</b>) Venn diagrams of VLGR1 prey that are assigned to the GO term neurogenesis in the category Biological Process. (<b>b</b>) Overexpression of VLGR1_CTF-SF and myristoyl-palmitoyl-(mp) VLGR1_ICD induces “axon-like outgrowth” (arrowheads) which are not found in myristoyl-palmitoyl-CFP transfected HEK293T cells. Note that VLGR1_CTF-SF is also localized at the plasma membrane (<span class="html-italic">arrows</span>). Scale bars: 10 µm.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g007-550.jpg?1652352350" title=" <strong>Figure 7</strong><br/> <p><b>VLGR1 prey associates with molecules related to photoreceptors and retinal functions.</b> (<b>a</b>) Scheme of a rod photoreceptor cell, (<b>b</b>) VLGR1 prey assigned with GO terms in the Cellular Component category that are related to photoreceptor cells and cell synapses. OS, outer segment; CC, connecting cilium; IS, inner segment; OLM, outer limiting membrane; PSD, postsynaptic density; Ax, axoneme. Black font: CRAPome value ≤ 20; Grey font: CRAPome value &gt; 20. (<b>c</b>) Relation of VLGR1 prey to retinal function. Venn diagrams of VLGR1 prey that are assigned to retina-related GO terms in the Biological Process category. Black font: CRAPome value ≤ 20; Grey font: CRAPome value &gt; 20.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g008-550.jpg?1652352351" title=" <strong>Figure 8</strong><br/> <p><b>VLGR1 associates with neuron death.</b> VLGR1 prey are associated with neuron integrity. Venn diagram of VLGR1 prey assigned with the GO term <span class="html-italic">neuron death</span>. Some of these proteins are related to neurodegenerative diseases such as Alzheimer’s disease, Amyotrophic lateral sclerosis, and Wolfram syndrome.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-03108/article_deploy/html/images/molecules-27-03108-g009-550.jpg?1652352352" title=" <strong>Figure 9</strong><br/> <p>Summary and conclusions from the present affinity capture approach to VLGR1 function and for VLGR1 signaling pathways. (<b>a</b>) TAP prey related to ciliary and retinal function were mainly found with full-length VLGR1a. VLGR1_CTF was sufficient for focal adhesion and synaptic protein binding. Both full-length and VLGR1_CTF interact with proteins involved in neuron projection formation, cellular homeostasis, transcription regulation, cell cycle regulation, and pre-mRNA splicing. VLGR1_ICD binds to PDZ domain-containing scaffold proteins. (<b>b</b>) COL18A1 and SLIT2 are potential extracellular ligands for VLGR1, interacting with its NTF. VLGR1 full-length was linked to HIF-1 signaling coupled to Gαi and Gαs. VLGR1_CTF is coupled to Gαi and linked to Wnt, Notch, and Ephrin signaling; VLGR1_ICD seems to be linked to MAPK signaling.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/10/3108'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="799763" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 25 pages, 13682 KiB </span> <a href="/1420-3049/27/9/2700/pdf?version=1650620406" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/9/2700">Synthesis and Applications of Nitrogen-Containing Heterocycles as Antiviral Agents</a> <div class="authors"> by <span class="inlineblock "><strong>Tuyen N. Tran</strong> and </span><span class="inlineblock "><strong>Maged Henary</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(9), 2700; <a href="https://doi.org/10.3390/molecules27092700">https://doi.org/10.3390/molecules27092700</a> - 22 Apr 2022 </div> <a href="/1420-3049/27/9/2700#metrics">Cited by 42</a> | Viewed by 6136 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/9/2700/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses. <a href="/1420-3049/27/9/2700">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Synthesis_Heteroaromatic_Compounds ">Synthesis of Heteroaromatic Compounds</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/9/2700/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev799763"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next799763"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next799763" data-cycle-prev="#prev799763" data-cycle-progressive="#images799763" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-799763-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-ag-550.jpg?1650620511" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images799763" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g001-550.jpg?1650620486'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g002-550.jpg?1650620491'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g003-550.jpg?1650620499'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g004-550.jpg?1650620508'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g005-550.jpg?1650620479'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g006-550.jpg?1650620510'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g007-550.jpg?1650620476'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g008-550.jpg?1650620488'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g009-550.jpg?1650620503'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g010-550.jpg?1650620509'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g011-550.jpg?1650620495'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g012-550.jpg?1650620489'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g013-550.jpg?1650620493'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g014-550.jpg?1650620503'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g015-550.jpg?1650620476'><p>Figure 15</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g016-550.jpg?1650620484'><p>Figure 16</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g017-550.jpg?1650620508'><p>Figure 17</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g018-550.jpg?1650620498'><p>Figure 18</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch001-550.jpg?1650620507'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch002-550.jpg?1650620496'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch003-550.jpg?1650620478'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch004-550.jpg?1650620480'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch005-550.jpg?1650620499'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch006-550.jpg?1650620481'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch007-550.jpg?1650620492'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch008-550.jpg?1650620504'><p>Scheme 8</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch009-550.jpg?1650620501'><p>Scheme 9</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch010-550.jpg?1650620490'><p>Scheme 10</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch011-550.jpg?1650620486'><p>Scheme 11</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch012-550.jpg?1650620484'><p>Scheme 12</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch013-550.jpg?1650620494'><p>Scheme 13</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch014-550.jpg?1650620482'><p>Scheme 14</p></div> --- <div class='openpopupgallery' data-imgindex='33' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch015-550.jpg?1650620502'><p>Scheme 15</p></div> --- <div class='openpopupgallery' data-imgindex='34' data-target='article-799763-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch016-550.jpg?1650620505'><p>Scheme 16</p></div></script></div></div><div id="article-799763-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-ag-550.jpg?1650620511" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g001-550.jpg?1650620486" title=" <strong>Figure 1</strong><br/> <p>In vitro phenotypic assay values and corresponding cytotoxicity values against HIV. The molecular docking study of <b>5a</b> in the binding site of HIV reverse transcriptase [<a href="#B18-molecules-27-02700" class="html-bibr">18</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g002-550.jpg?1650620491" title=" <strong>Figure 2</strong><br/> <p>Molecular docking poses and binding interaction of <b>17</b> bound to SARS-CoV 3CL<sup>pro</sup> [<a href="#B24-molecules-27-02700" class="html-bibr">24</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g003-550.jpg?1650620499" title=" <strong>Figure 3</strong><br/> <p>(<b>A</b>) Inhibition assay of tested compounds <b>(R) 21a</b> and <b>(S) 21b</b> with the controls NBD-556 and NBD-11021. (<b>B</b>) Infectivity assay of the compounds and controls with CD4-dependent HIV-1<sub>ADA</sub> [<a href="#B29-molecules-27-02700" class="html-bibr">29</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g004-550.jpg?1650620508" title=" <strong>Figure 4</strong><br/> <p>Docking study of <b>23a</b> and <b>23d</b> in the binding site of HSV-1 thymidine kinase [<a href="#B33-molecules-27-02700" class="html-bibr">33</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g005-550.jpg?1650620479" title=" <strong>Figure 5</strong><br/> <p>(<b>a</b>) Chemical structure of nucleozin 3061. (<b>b</b>) The molecular docking study of compound <b>29</b> in the influenza A NP [<a href="#B34-molecules-27-02700" class="html-bibr">34</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g006-550.jpg?1650620510" title=" <strong>Figure 6</strong><br/> <p>The molecular interaction of <b>33c</b> in the HIV nucleocapsid [<a href="#B38-molecules-27-02700" class="html-bibr">38</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g007-550.jpg?1650620476" title=" <strong>Figure 7</strong><br/> <p>Molecular interaction of compound <b>39</b> in the binding site of HCV polymerase [<a href="#B40-molecules-27-02700" class="html-bibr">40</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g008-550.jpg?1650620488" title=" <strong>Figure 8</strong><br/> <p>Comparison of effective percentages of inhibition against HSV infection among compounds <b>44</b>, <b>45</b>, and Acyclovir [<a href="#B42-molecules-27-02700" class="html-bibr">42</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g009-550.jpg?1650620503" title=" <strong>Figure 9</strong><br/> <p>The molecular structure of Remdesivir<sup>®</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g010-550.jpg?1650620509" title=" <strong>Figure 10</strong><br/> <p>(<b>A</b>) Percentage of inhibition measured by qRT-PCR and cytotoxicity of Remdesivir<sup>®</sup> when used to treat SARS-CoV-2-infected Vero E6 cells. (<b>B</b>) Immunofluorescence assay of viral infection with Remdesivir<sup>®</sup> treatment [<a href="#B43-molecules-27-02700" class="html-bibr">43</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g011-550.jpg?1650620495" title=" <strong>Figure 11</strong><br/> <p>(<b>A</b>) The binding interaction of ATP with COVID-19 NSP12. (<b>B</b>) The binding interaction of RemTP with COVID-19 NSP12. The green sphere represents the Mg<sup>2+</sup> ion [<a href="#B44-molecules-27-02700" class="html-bibr">44</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g012-550.jpg?1650620489" title=" <strong>Figure 12</strong><br/> <p>The molecular docking study of compound <b>50</b> in the HIV-1 RNase H [<a href="#B49-molecules-27-02700" class="html-bibr">49</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g013-550.jpg?1650620493" title=" <strong>Figure 13</strong><br/> <p>Molecular interaction of compound <b>55</b> in the binding site of H1N1 neuraminidase [<a href="#B52-molecules-27-02700" class="html-bibr">52</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g014-550.jpg?1650620503" title=" <strong>Figure 14</strong><br/> <p>UV absorbance spectra of compound <b>64</b> with different concentrations of Mg<sup>2+</sup> ion [<a href="#B55-molecules-27-02700" class="html-bibr">55</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g015-550.jpg?1650620476" title=" <strong>Figure 15</strong><br/> <p>Visualization of <b>66</b> in the HCV NS3 gt-1b protease active site for interaction with subsites [<a href="#B56-molecules-27-02700" class="html-bibr">56</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g016-550.jpg?1650620484" title=" <strong>Figure 16</strong><br/> <p>(<b>A</b>) Plaque reduction assay at different concentrations of <b>69</b> with PR8, Cal09, Minnesota influenza strains in MDCK cells. (<b>B</b>) Corresponding plaque number from the assay with three viruses at different concentrations [<a href="#B58-molecules-27-02700" class="html-bibr">58</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g017-550.jpg?1650620508" title=" <strong>Figure 17</strong><br/> <p>The molecular structure of Chloroquine<sup>®</sup> [<a href="#B43-molecules-27-02700" class="html-bibr">43</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-g018-550.jpg?1650620498" title=" <strong>Figure 18</strong><br/> <p>(<b>A</b>) Percentage of inhibition measured by qRT-PCR and cytotoxicity of Chloroquine<sup>®</sup> when treating 2019 n-CoV infected Vero E6 cells. (<b>B</b>) Immunofluorescence assay of viral infection with Chloroquine<sup>®</sup> treatment [<a href="#B43-molecules-27-02700" class="html-bibr">43</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch001-550.jpg?1650620507" title=" <strong>Scheme 1</strong><br/> <p>The synthesis of non-nucleoside scaffolds as HIV reverse transcriptase inhibitors.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch002-550.jpg?1650620496" title=" <strong>Scheme 2</strong><br/> <p>The synthesis of NINS for anti-HVC activity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch003-550.jpg?1650620478" title=" <strong>Scheme 3</strong><br/> <p>Synthesis of tryptamine derivative for targeting TK against VZV.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch004-550.jpg?1650620480" title=" <strong>Scheme 4</strong><br/> <p>The synthesis of dipeptide inhibitor against SAR-CoV 3CL<sup>pro</sup> [<a href="#B24-molecules-27-02700" class="html-bibr">24</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch005-550.jpg?1650620499" title=" <strong>Scheme 5</strong><br/> <p>The synthesis of pyrrole derivatives as glycoprotein inhibitors of HIV-1.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch006-550.jpg?1650620481" title=" <strong>Scheme 6</strong><br/> <p>Synthesis of thymidine kinase inhibitors to target HSV.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch007-550.jpg?1650620492" title=" <strong>Scheme 7</strong><br/> <p>The synthesis of pyrimido-pyrrolo-quinoxalinedione for inhibiting nucleoprotein of influenza A H1N1 virus.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch008-550.jpg?1650620504" title=" <strong>Scheme 8</strong><br/> <p>Synthesis of nucleocapsid inhibitors as anti-HIV/AIDS activity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch009-550.jpg?1650620501" title=" <strong>Scheme 9</strong><br/> <p>Synthesis of anti-HCV agents targeting HCV polymerase (NS5B).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch010-550.jpg?1650620490" title=" <strong>Scheme 10</strong><br/> <p>Synthesis of pyrimidine derivatives as anti-HSV agents.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch011-550.jpg?1650620486" title=" <strong>Scheme 11</strong><br/> <p>Synthesis of inhibitors against HIV-1 RNase H.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch012-550.jpg?1650620484" title=" <strong>Scheme 12</strong><br/> <p>One-pot synthesis of influenza neuraminidase inhibitor.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch013-550.jpg?1650620494" title=" <strong>Scheme 13</strong><br/> <p>Synthesis of pyrazole derivatives as anti-HBV agents.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch014-550.jpg?1650620482" title=" <strong>Scheme 14</strong><br/> <p>Synthesis of quinoline derivative <b>64</b> as HIV RNase H inhibitor.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch015-550.jpg?1650620502" title=" <strong>Scheme 15</strong><br/> <p>Synthesis of the inhibitor to target HCV NS3/4a protease.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02700/article_deploy/html/images/molecules-27-02700-sch016-550.jpg?1650620505" title=" <strong>Scheme 16</strong><br/> <p>Synthesis of quindoline derivative <b>69</b> as anti-influenza A agent.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/9/2700'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="798872" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 23 pages, 393 KiB </span> <a href="/1420-3049/27/9/2678/pdf?version=1650538713" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Use of Cerium Compounds as Antimicrobials for Biomedical Applications" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/9/2678">The Use of Cerium Compounds as Antimicrobials for Biomedical Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Emilia Barker</strong>, </span><span class="inlineblock "><strong>Joanna Shepherd</strong> and </span><span class="inlineblock "><strong>Ilida Ortega Asencio</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(9), 2678; <a href="https://doi.org/10.3390/molecules27092678">https://doi.org/10.3390/molecules27092678</a> - 21 Apr 2022 </div> <a href="/1420-3049/27/9/2678#metrics">Cited by 47</a> | Viewed by 4332 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Cerium and its derivatives have been used as remedies for wounds since the early 20th century. Cerium nitrate has attracted most attention in the treatment of deep burns, followed later by reports of its antimicrobial properties. Its ability to mimic and replace calcium <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/9/2678/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Cerium and its derivatives have been used as remedies for wounds since the early 20th century. Cerium nitrate has attracted most attention in the treatment of deep burns, followed later by reports of its antimicrobial properties. Its ability to mimic and replace calcium is presumed to be a major mechanism of its beneficial action. However, despite some encouraging results, the overall data are somewhat confusing with seemingly the same compounds yielding opposing results. Despite this, cerium nitrate is currently used in wound treatment in combination with silver sulfadiazine as Flammacérium. Cerium oxide, especially in nanoparticle form (Nanoceria), has lately captured much interest due to its antibacterial properties mediated via oxidative stress, leading to an increase of published reports. The properties of Nanoceria depend on the synthesis method, their shape and size. Recently, the green synthesis route has gained a lot of interest as an alternative environmentally friendly method, resulting in production of effective antimicrobial and antifungal nanoparticles. Unfortunately, as is the case with antibiotics, emerging bacterial resistance against cerium-derived nanoparticles is a growing concern, especially in the case of bacterial biofilm. However, diverse strategies resulting from better understanding of the biology of cerium are promising. The aim of this paper is to present the progress to date in the use of cerium compounds as antimicrobials in clinical applications (in particular wound healing) and to provide an overview of the mechanisms of action of cerium at both the cellular and molecular level. <a href="/1420-3049/27/9/2678">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Antimicrob_Mater ">Recent Advances in Antimicrobial Materials</a>)<br/> </div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="794721" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 3940 KiB </span> <a href="/1420-3049/27/8/2561/pdf?version=1650014876" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/8/2561">Covalent Reversible Inhibitors of Cysteine Proteases Containing the Nitrile Warhead: Recent Advancement in the Field of Viral and Parasitic Diseases</a> <div class="authors"> by <span class="inlineblock "><strong>Simone Brogi</strong>, </span><span class="inlineblock "><strong>Roberta Ibba</strong>, </span><span class="inlineblock "><strong>Sara Rossi</strong>, </span><span class="inlineblock "><strong>Stefania Butini</strong>, </span><span class="inlineblock "><strong>Vincenzo Calderone</strong>, </span><span class="inlineblock "><strong>Sandra Gemma</strong> and </span><span class="inlineblock "><strong>Giuseppe Campiani</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(8), 2561; <a href="https://doi.org/10.3390/molecules27082561">https://doi.org/10.3390/molecules27082561</a> - 15 Apr 2022 </div> <a href="/1420-3049/27/8/2561#metrics">Cited by 25</a> | Viewed by 5445 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In the field of drug discovery, the nitrile group is well represented among drugs and biologically active compounds. It can form both non-covalent and covalent interactions with diverse biological targets, and it is amenable as an electrophilic warhead for covalent inhibition. The main <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2561/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In the field of drug discovery, the nitrile group is well represented among drugs and biologically active compounds. It can form both non-covalent and covalent interactions with diverse biological targets, and it is amenable as an electrophilic warhead for covalent inhibition. The main advantage of the nitrile group as a warhead is mainly due to its milder electrophilic character relative to other more reactive groups (e.g., -CHO), reducing the possibility of unwanted reactions that would hinder the development of safe drugs, coupled to the ease of installation through different synthetic approaches. The covalent inhibition is a well-assessed design approach for serine, threonine, and cysteine protease inhibitors. The mechanism of hydrolysis of these enzymes involves the formation of a covalent acyl intermediate, and this mechanism can be exploited by introducing electrophilic warheads in order to mimic this covalent intermediate. Due to the relevant role played by the cysteine protease in the survival and replication of infective agents, spanning from viruses to protozoan parasites, we will review the most relevant and recent examples of protease inhibitors presenting a nitrile group that have been introduced to form or to facilitate the formation of a covalent bond with the catalytic cysteine active site residue. <a href="/1420-3049/27/8/2561">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/covalent_inhibitor ">Covalent Inhibitors in Drug Discovery and Chemical Biology</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2561/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev794721"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next794721"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next794721" data-cycle-prev="#prev794721" data-cycle-progressive="#images794721" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-794721-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g001-550.jpg?1650014967" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images794721" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g002-550.jpg?1650014967'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g003-550.jpg?1650014967'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g004-550.jpg?1650014967'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g005-550.jpg?1650014967'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g006-550.jpg?1650014967'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g007-550.jpg?1650014967'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g008-550.jpg?1650014967'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g009-550.jpg?1650014967'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g010-550.jpg?1650014967'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-794721-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g011-550.jpg?1650014967'><p>Figure 11</p></div></script></div></div><div id="article-794721-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g001-550.jpg?1650014967" title=" <strong>Figure 1</strong><br/> <p>Structures of nitrile-containing drugs (<b>1</b>,<b>3</b>) and clinical candidate (<b>2</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g002-550.jpg?1650014967" title=" <strong>Figure 2</strong><br/> <p>Chemical structures of viral cysteine proteases inhibitors <b>4</b>–<b>6</b> (EV71 3Cpro) and <b>7</b>–<b>9</b> (SARS-CoV-2 Mpro).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g003-550.jpg?1650014967" title=" <strong>Figure 3</strong><br/> <p>(<b>A</b>) Crystal structure of SARS-CoV-2 Mpro (green cartoon) in complex with the approved drug nirmatrelvir (<b>3</b>) (orange sticks) (PDB ID 7VH8). Interacting residues within the binding site are represented by lines, and the covalent bond established by Cys145 is represented by sticks. H bonds are illustrated by grey dotted lines. For the sake of clarity, water molecules are removed, and the complex was treated by the protein preparation wizard module available in Maestro (Maestro, Schrödinger LLC, release 2020-3). The picture was generated by PyMOL (The PyMOL Molecular Graphics System, v1.8; Schrödinger, LLC, New York, NY, USA, 2015). (<b>B</b>) Detailed interaction diagram of nirmatrelvir within the Mpro binding site, as provided by the ligand interaction diagram available in Maestro (Maestro, Schrödinger LLC, release 2020-3).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g004-550.jpg?1650014967" title=" <strong>Figure 4</strong><br/> <p>Exploration of different warheads in dipeptidic Cz inhibitors <b>10</b>–<b>15</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g005-550.jpg?1650014967" title=" <strong>Figure 5</strong><br/> <p>P2/P3-optimized dipeptidic inhibitors (<b>16</b>–<b>20</b>) of Cz.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g006-550.jpg?1650014967" title=" <strong>Figure 6</strong><br/> <p>Structure of P2-trifluoroethylamine inhibitors (<b>21–24</b>) and the peptoid derivative (<b>25</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g007-550.jpg?1650014967" title=" <strong>Figure 7</strong><br/> <p>Structures of RD inhibitors (<b>26</b>–<b>30</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g008-550.jpg?1650014967" title=" <strong>Figure 8</strong><br/> <p>Structures of cysteine protease B inhibitors (<b>31</b>–<b>33</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g009-550.jpg?1650014967" title=" <strong>Figure 9</strong><br/> <p>(<b>A</b>) Crystal structure of <span class="html-italic">Lm</span>CPB (cyan cartoon) in complex with <b>32</b> (yellow sticks) (PDB ID 6P4E). Interacting residues within the binding site are represented by lines, and the covalent bond established by Cys26 is represented by a stick. H bonds are illustrated by grey dotted lines. For the sake of clarity, water molecules are removed, and the complex was treated by the protein preparation wizard module available in Maestro (Maestro, Schrödinger LLC, release 2020-3). The picture was generated by PyMOL (The PyMOL Molecular Graphics System, v1.8; Schrödinger, LLC, New York, NY, USA, 2015). (<b>B</b>) Detailed interaction diagram of compound <b>32</b> within the <span class="html-italic">Lm</span>CPB binding site, as provided by the ligand interaction diagram available in Maestro (Maestro, Schrödinger LLC, release 2020-3).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g010-550.jpg?1650014967" title=" <strong>Figure 10</strong><br/> <p>(<b>A</b>) Crystal structure of <span class="html-italic">Sm</span>CB1 (magenta cartoon) in complex with an azanitrile covalent inhibitor (light green sticks) (PDB ID 6YI7). Interacting residues within the binding site are represented by lines, and the covalent bond established by Cys100 is represented by a stick. H bonds are illustrated by grey dotted lines. For the sake of clarity, water molecules are removed, and the complex was treated by the protein preparation wizard module available in Maestro (Maestro, Schrödinger LLC, release 2020-3). The picture was generated by PyMOL (The PyMOL Molecular Graphics System, v1.8; Schrödinger, LLC, New York, NY, USA, 2015). (<b>B</b>) Detailed interaction diagram of a covalent inhibitor within the <span class="html-italic">Sm</span>CB1 binding site, as provided by the ligand interaction diagram available in Maestro (Maestro, Schrödinger LLC, release 2016).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02561/article_deploy/html/images/molecules-27-02561-g011-550.jpg?1650014967" title=" <strong>Figure 11</strong><br/> <p>Structures of <span class="html-italic">Tg</span>CPL and FP2 inhibitors (<b>34</b>–<b>37</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2561'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="790639" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 2836 KiB </span> <a href="/1420-3049/27/8/2443/pdf?version=1649909754" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/8/2443">Excited-State Intramolecular Proton Transfer Dyes with Dual-State Emission Properties: Concept, Examples and Applications</a> <div class="authors"> by <span class="inlineblock "><strong>Timothée Stoerkler</strong>, </span><span class="inlineblock "><strong>Thibault Pariat</strong>, </span><span class="inlineblock "><strong>Adèle D. Laurent</strong>, </span><span class="inlineblock "><strong>Denis Jacquemin</strong>, </span><span class="inlineblock "><strong>Gilles Ulrich</strong> and </span><span class="inlineblock "><strong>Julien Massue</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(8), 2443; <a href="https://doi.org/10.3390/molecules27082443">https://doi.org/10.3390/molecules27082443</a> - 10 Apr 2022 </div> <a href="/1420-3049/27/8/2443#metrics">Cited by 72</a> | Viewed by 5161 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2443/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Dual-state emissive (DSE) fluorophores are organic dyes displaying fluorescence emission both in dilute and concentrated solution and in the solid-state, as amorphous, single crystal, polycrystalline samples or thin films. This comes in contrast to the vast majority of organic fluorescent dyes which typically show intense fluorescence in solution but are quenched in concentrated media and in the solid-state owing to π-stacking interactions; a well-known phenomenon called aggregation-caused quenching (ACQ). On the contrary, molecular rotors with a significant number of free rotations have been engineered to show quenched emission in solution but strong fluorescence in the aggregated-state thanks to restriction of the intramolecular motions. This is the concept of aggregation-induced emission (AIE). DSE fluorophores have been far less explored despite the fact that they are at the crossroad of ACQ and AIE phenomena and allow targeting applications both in solution (bio-conjugation, sensing, imaging) and solid-state (organic electronics, data encryption, lasing, luminescent displays). Excited-State Intramolecular Proton Transfer (ESIPT) fluorescence is particularly suitable to engineer DSE dyes. Indeed, ESIPT fluorescence, which relies on a phototautomerism between normal and tautomeric species, is characterized by a strong emission in the solid-state along with a large Stokes’ shift, an enhanced photostability and a strong sensitivity to the close environment, a feature prone to be used in bio-sensing. A drawback that needs to be overcome is their weak emission intensity in solution, owing to detrimental molecular motions in the excited-state. Several strategies have been proposed in that regard. In the past few years, a growing number of examples of DSE-ESIPT dyes have indeed emerged in the literature, enriching the database of such attractive dyes. This review aims at a brief but concise overview on the exploitation of ESIPT luminescence for the optimization of DSE dyes properties. In that perspective, a synergistic approach between organic synthesis, fluorescence spectroscopy and ab initio calculations has proven to be an efficient tool for the construction and optimization of DSE-ESIPT fluorophores. <a href="/1420-3049/27/8/2443">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Proton_Tranfer_Process ">Photoinduced Proton Transfer Processes Within Heterocyclic Structures</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2443/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev790639"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next790639"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next790639" data-cycle-prev="#prev790639" data-cycle-progressive="#images790639" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-790639-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-ag-550.jpg?1649909856" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images790639" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g001-550.jpg?1649909856'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g002-550.jpg?1649909856'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g003-550.jpg?1649909856'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g004-550.jpg?1649909856'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g005-550.jpg?1649909856'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g006-550.jpg?1649909856'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g007-550.jpg?1649909856'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-790639-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g008-550.jpg?1649909856'><p>Figure 8</p></div></script></div></div><div id="article-790639-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-ag-550.jpg?1649909856" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g001-550.jpg?1649909856" title=" <strong>Figure 1</strong><br/> <p>Schematic representations of the concepts of aggregation-caused quenching (ACQ), aggregation-induced emission (AIE) and dual-state emission (DSE).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g002-550.jpg?1649909856" title=" <strong>Figure 2</strong><br/> <p>Schematic representation of the four-level phototautomerization process of ESIPT. * represents the excited species.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g003-550.jpg?1649909856" title=" <strong>Figure 3</strong><br/> <p>(<b>a</b>) Examples of HBI dyes showing DSE properties [<a href="#B61-molecules-27-02443" class="html-bibr">61</a>,<a href="#B62-molecules-27-02443" class="html-bibr">62</a>,<a href="#B63-molecules-27-02443" class="html-bibr">63</a>,<a href="#B64-molecules-27-02443" class="html-bibr">64</a>,<a href="#B65-molecules-27-02443" class="html-bibr">65</a>] and (<b>b</b>) Photographs of 3,5-tri(isopropyl)silyl ethynyl-extended HBI dye <b>2d</b> under irradiation in solution (toluene, ethanol, THF, acetonitrile and DMF) and as powders (λ<sub>exc</sub> = 365 nm) [<a href="#B62-molecules-27-02443" class="html-bibr">62</a>]. Adapted from ref [<a href="#B62-molecules-27-02443" class="html-bibr">62</a>] Copyright 2021 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g004-550.jpg?1649909856" title=" <strong>Figure 4</strong><br/> <p>(<b>a</b>) Examples of HBO dyes showing DSE properties [<a href="#B67-molecules-27-02443" class="html-bibr">67</a>,<a href="#B68-molecules-27-02443" class="html-bibr">68</a>,<a href="#B69-molecules-27-02443" class="html-bibr">69</a>,<a href="#B70-molecules-27-02443" class="html-bibr">70</a>,<a href="#B71-molecules-27-02443" class="html-bibr">71</a>,<a href="#B72-molecules-27-02443" class="html-bibr">72</a>] and (<b>b</b>) Photographs of HBO dyes <b>7a–d</b> and <b>8a–c</b>/<b>9</b> under irradiation in solution (toluene or dichloromethane) and as powders (λ<sub>exc</sub> = 365 nm) [<a href="#B69-molecules-27-02443" class="html-bibr">69</a>,<a href="#B71-molecules-27-02443" class="html-bibr">71</a>]. Adapted from Ref. [<a href="#B69-molecules-27-02443" class="html-bibr">69</a>] Copyright 2019 Elsevier. Adapted from Ref. [<a href="#B71-molecules-27-02443" class="html-bibr">71</a>] Copyright 2021 American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g005-550.jpg?1649909856" title=" <strong>Figure 5</strong><br/> <p>(<b>a</b>) Examples of HBT dyes showing DSE properties [<a href="#B62-molecules-27-02443" class="html-bibr">62</a>,<a href="#B69-molecules-27-02443" class="html-bibr">69</a>,<a href="#B73-molecules-27-02443" class="html-bibr">73</a>,<a href="#B74-molecules-27-02443" class="html-bibr">74</a>,<a href="#B75-molecules-27-02443" class="html-bibr">75</a>,<a href="#B76-molecules-27-02443" class="html-bibr">76</a>,<a href="#B77-molecules-27-02443" class="html-bibr">77</a>,<a href="#B78-molecules-27-02443" class="html-bibr">78</a>]. and (<b>b</b>) Photographs of HBT dye <b>11b</b> under irradiation in solution (toluene, ethanol, THF, acetonitrile and DMF) and as powders (λ<sub>exc</sub> = 365 nm) [<a href="#B62-molecules-27-02443" class="html-bibr">62</a>]. Adapted from ref [<a href="#B62-molecules-27-02443" class="html-bibr">62</a>] Copyright 2021 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g006-550.jpg?1649909856" title=" <strong>Figure 6</strong><br/> <p>DSE/ESIPT fluorophores based on an oxazole scaffold [<a href="#B72-molecules-27-02443" class="html-bibr">72</a>,<a href="#B79-molecules-27-02443" class="html-bibr">79</a>,<a href="#B80-molecules-27-02443" class="html-bibr">80</a>,<a href="#B81-molecules-27-02443" class="html-bibr">81</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g007-550.jpg?1649909856" title=" <strong>Figure 7</strong><br/> <p>(<b>a</b>) DSE/ESIPT fluorophores based on a salicylaldehyde scaffold and photographs of dyes <b>23a–d</b> under irradiation (λ<sub>exc</sub> = 365 nm) in (<b>b</b>) solution (from left to right: cyclohexane, toluene, diethylether, THF, dichloromethane, protonated dichloromethane, acetone, acetonitrile, ethanol, DMSO and DMF) and (<b>c</b>) in the solid-state as powders [<a href="#B82-molecules-27-02443" class="html-bibr">82</a>]. Adapted from ref [<a href="#B82-molecules-27-02443" class="html-bibr">82</a>] Copyright 2021 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02443/article_deploy/html/images/molecules-27-02443-g008-550.jpg?1649909856" title=" <strong>Figure 8</strong><br/> <p>Examples of DSE/ESIPT fluorophores based on miscellaneous scaffolds [<a href="#B83-molecules-27-02443" class="html-bibr">83</a>,<a href="#B84-molecules-27-02443" class="html-bibr">84</a>,<a href="#B85-molecules-27-02443" class="html-bibr">85</a>,<a href="#B86-molecules-27-02443" class="html-bibr">86</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2443'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="789561" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-789561" aria-controls="drop-supplementary-789561" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-789561" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/8/2407/s1?version=1649413390"> Supplementary File 1 (ZIP, 62861 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 12 pages, 2337 KiB </span> <a href="/1420-3049/27/8/2407/pdf?version=1649413388" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Interaction Structure and Affinity of Zwitterionic Amino Acids with Important Metal Cations (Cd2+, Cu2+, Fe3+, Hg2+, Mn2+, Ni2+ and Zn2+) in Aqueous Solution: A Theoretical Study" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/8/2407">Interaction Structure and Affinity of Zwitterionic Amino Acids with Important Metal Cations (Cd<sup>2+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup>, Hg<sup>2+</sup>, Mn<sup>2+</sup>, Ni<sup>2+</sup> and Zn<sup>2+</sup>) in Aqueous Solution: A Theoretical Study</a> <div class="authors"> by <span class="inlineblock "><strong>Xinning Liu</strong>, </span><span class="inlineblock "><strong>Menghan Wu</strong>, </span><span class="inlineblock "><strong>Chenchen Li</strong>, </span><span class="inlineblock "><strong>Peng Yu</strong>, </span><span class="inlineblock "><strong>Shanshan Feng</strong>, </span><span class="inlineblock "><strong>Yanwei Li</strong> and </span><span class="inlineblock "><strong>Qingzhu Zhang</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(8), 2407; <a href="https://doi.org/10.3390/molecules27082407">https://doi.org/10.3390/molecules27082407</a> - 8 Apr 2022 </div> <a href="/1420-3049/27/8/2407#metrics">Cited by 19</a> | Viewed by 2884 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2407/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Heavy metals are non-biodegradable and carcinogenic pollutants with great bio-accumulation potential. Their ubiquitous occurrence in water and soils has caused serious environmental concerns. Effective strategies that can eliminate the heavy metal pollution are urgently needed. Here the adsorption potential of seven heavy metal cations (Cd<sup>2+</sup>, Cu<sup>2+</sup>, Fe<sup>3+</sup>, Hg<sup>2+</sup>, Mn<sup>2+</sup>, Ni<sup>2+</sup> and Zn<sup>2+</sup>) with 20 amino acids was systematically investigated with Density Functional Theory method. The binding energies calculated at B3LYP-D3/def2TZVP level showed that the contribution order of amino acid side chains to the binding affinity was carboxyl > benzene ring > hydroxyl > sulfhydryl > amino group. The affinity order was inversely proportional to the radius and charge transfer of heavy metal cations, approximately following the order of: Ni<sup>2+</sup> > Fe<sup>3+</sup> > Cu<sup>2+</sup> > Hg<sup>2+</sup> > Zn<sup>2+</sup> > Cd<sup>2+</sup> > Mn<sup>2+</sup>. Compared to the gas-phase in other researches, the water environment has a significant influence on structures and binding energies of the heavy metal and amino acid binary complexes. Collectively, the present results will provide a basis for the design of a chelating agent (e.g., adding carboxyl or a benzene ring) to effectively remove heavy metals from the environment. <a href="/1420-3049/27/8/2407">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Section <a href="/journal/molecules/sections/computational_theoretical_chemistry">Computational and Theoretical Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/8/2407/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev789561"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next789561"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next789561" data-cycle-prev="#prev789561" data-cycle-progressive="#images789561" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-789561-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-ag-550.jpg?1649413471" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images789561" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-789561-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g001-550.jpg?1649413471'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-789561-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g002-550.jpg?1649413471'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-789561-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g003-550.jpg?1649413471'><p>Figure 3</p></div></script></div></div><div id="article-789561-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-ag-550.jpg?1649413471" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2407'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g001-550.jpg?1649413471" title=" <strong>Figure 1</strong><br/> <p>The stable configurations of 20 amino acids in a zwitterionic state (<b>a</b>) and the relative free energies (∆<span class="html-italic">G</span>) of 20 amino acids (<b>b</b>), including zwitterionic states (ZW-AA), left-handed natural AA (L-AA) and right -handed natural AA (D-AA).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2407'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g002-550.jpg?1649413471" title=" <strong>Figure 2</strong><br/> <p>The optimized structures of [acidic/sulfhydryl/hydroxy AA-metal cation] complexes. AA = Asp (<b>a</b>), Glu (<b>b</b>), Cys (<b>c</b>), Ser (<b>d</b>); the numbers in the figure indicated the hydrogen bond length in a complex molecule, and the distance between the metal cation and the interacting atom; the length in Å.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2407'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02407/article_deploy/html/images/molecules-27-02407-g003-550.jpg?1649413471" title=" <strong>Figure 3</strong><br/> <p>The comparison of the most stable complex binding energies during 20 AAs and seven kinds of metal cation interactions.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/8/2407'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="788172" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 10968 KiB </span> <a href="/1420-3049/27/7/2373/pdf?version=1649320005" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/7/2373">Synthesis and Reactivity of Manganese Complexes Bearing Anionic PNP- and PCP-Type Pincer Ligands toward Nitrogen Fixation</a> <div class="authors"> by <span class="inlineblock "><strong>Shogo Kuriyama</strong>, </span><span class="inlineblock "><strong>Shenglan Wei</strong>, </span><span class="inlineblock "><strong>Takeru Kato</strong> and </span><span class="inlineblock "><strong>Yoshiaki Nishibayashi</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(7), 2373; <a href="https://doi.org/10.3390/molecules27072373">https://doi.org/10.3390/molecules27072373</a> - 6 Apr 2022 </div> <a href="/1420-3049/27/7/2373#metrics">Cited by 5</a> | Viewed by 3230 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/7/2373/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> A series of manganese complexes bearing an anionic pyrrole-based PNP-type pincer ligand and an anionic benzene-based PCP-type pincer ligand is synthesized and characterized. The reactivity of these complexes toward ammonia formation and silylamine formation from dinitrogen under mild conditions is evaluated to produce only stoichiometric amounts of ammonia and silylamine, probably because the manganese pincer complexes are unstable under reducing conditions. <a href="/1420-3049/27/7/2373">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/metal_complex_small_mol ">Design Strategies for Metal Complexes that Activate Bio-Related Small Molecules</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/7/2373/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev788172"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next788172"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next788172" data-cycle-prev="#prev788172" data-cycle-progressive="#images788172" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-788172-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-g001-550.jpg?1649320100" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images788172" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-788172-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch001-550.jpg?1649320100'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-788172-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch002-550.jpg?1649320100'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-788172-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch003-550.jpg?1649320100'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-788172-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch004-550.jpg?1649320100'><p>Scheme 4</p></div></script></div></div><div id="article-788172-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-g001-550.jpg?1649320100" title=" <strong>Figure 1</strong><br/> <p>ORTEP drawings of <b>1</b> (<b>left</b>), <b>2</b> (<b>middle</b>), and <b>3</b> (<b>right</b>). Thermal ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2373'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch001-550.jpg?1649320100" title=" <strong>Scheme 1</strong><br/> <p>Synthesis of <b>1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2373'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch002-550.jpg?1649320100" title=" <strong>Scheme 2</strong><br/> <p>Reduction of <b>1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2373'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch003-550.jpg?1649320100" title=" <strong>Scheme 3</strong><br/> <p>Synthesis of <b>2</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2373'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02373/article_deploy/html/images/molecules-27-02373-sch004-550.jpg?1649320100" title=" <strong>Scheme 4</strong><br/> <p>Synthesis of <b>3</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2373'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="784177" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-784177" aria-controls="drop-supplementary-784177" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-784177" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/7/2267/s1?version=1648717796"> Supplementary File 1 (ZIP, 11212 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 20 pages, 5892 KiB </span> <a href="/1420-3049/27/7/2267/pdf?version=1648860492" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="An Expeditious Approach towards the Synthesis and Application of Water-Soluble and Photostable Fluorogenic Chromones for DNA Detection" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/7/2267">An Expeditious Approach towards the Synthesis and Application of Water-Soluble and Photostable Fluorogenic Chromones for DNA Detection</a> <div class="authors"> by <span class="inlineblock "><strong>Steve Vincent</strong>, </span><span class="inlineblock "><strong>Suman Mallick</strong>, </span><span class="inlineblock "><strong>Guillaume Barnoin</strong>, </span><span class="inlineblock "><strong>Hoang-Ngoan Le</strong>, </span><span class="inlineblock "><strong>Benoît Y. Michel</strong> and </span><span class="inlineblock "><strong>Alain Burger</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(7), 2267; <a href="https://doi.org/10.3390/molecules27072267">https://doi.org/10.3390/molecules27072267</a> - 31 Mar 2022 </div> <a href="/1420-3049/27/7/2267#metrics">Cited by 3</a> | Viewed by 2188 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The intensive research for hybridization probes based on organic molecules with fluorogenic properties is currently attracting particular attention due to their potential to efficiently recognize different DNA conformations and the local environment. However, most established organic chromophores do not meet the requirements of <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/7/2267/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The intensive research for hybridization probes based on organic molecules with fluorogenic properties is currently attracting particular attention due to their potential to efficiently recognize different DNA conformations and the local environment. However, most established organic chromophores do not meet the requirements of this task, as they do not exhibit good brightness in aqueous buffer media, develop aggregation and/or are not easily conjugated to oligodeoxynucleotides (ODNs) while keeping their photophysics intact. Herein, an important modification strategy was employed for a well-known fluorophore, 2-(4-(diethylamino)phenyl)-3-hydroxychromone (<b>dEAF</b>). Although this push–pull dye absorbs intensively in the visible range and shows emission with large Stokes shifts in all organic solvents, it is strongly quenched in water. This Achilles’ heel prompted us to implement a new strategy to obtain a series of dyes that retain all the photophysical features of <b>dEAF</b> in water, conjugate readily with oligonucleotides, and furthermore demonstrate sensitivity to hydration, thus paving the way for a high-performance fluorogenic DNA hybridization probe. <a href="/1420-3049/27/7/2267">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/fluorescent_probe ">Fluorescent Probes in Pharmaceutical and Drug Design Applications: Quantum Chemistry-Based Design, Synthesis, Photophysical and Chemical Properties, Biological Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/7/2267/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev784177"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next784177"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next784177" data-cycle-prev="#prev784177" data-cycle-progressive="#images784177" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-784177-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-ag-550.jpg?1649227046" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images784177" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g001-550.jpg?1648860603'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g002-550.jpg?1648860604'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g003-550.jpg?1648860603'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g004-550.jpg?1648860604'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g005-550.jpg?1648860603'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g006-550.jpg?1648860603'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch001-550.jpg?1648860603'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch002-550.jpg?1648860603'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch003-550.jpg?1648860603'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch004-550.jpg?1648860604'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-784177-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch005-550.jpg?1648860604'><p>Scheme 5</p></div></script></div></div><div id="article-784177-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-ag-550.jpg?1649227046" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g001-550.jpg?1648860603" title=" <strong>Figure 1</strong><br/> <p>Schematic representation of the three ways to fluorescently label ODNs (<b>ss-DNA 1–3</b>) and turn on their emission upon hybridization (<b>ds-DNA 1–3</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g002-550.jpg?1648860604" title=" <strong>Figure 2</strong><br/> <p>Absorption (<b>a</b>) and fluorescence (<b>b</b>) spectra of <b>AlMF-Nu</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g003-550.jpg?1648860603" title=" <strong>Figure 3</strong><br/> <p>Absorption (<b>a</b>) and fluorescence (<b>b</b>) responses of <b>AlMF</b> to hydration. Data were recorded in gradual mixtures of water in THF.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g004-550.jpg?1648860604" title=" <strong>Figure 4</strong><br/> <p>Photobleaching evolution of <b>AzMF</b>, <b>AlMF</b>, <b>AlHF</b>, and push–pull references <b>dMAF</b> and <b>Prodan</b> over the course of a one-hour experiment in toluene and EtOH.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g005-550.jpg?1648860603" title=" <strong>Figure 5</strong><br/> <p>Photophysical comparison of neutral and charged dyes in THF. Dashed and solid lines refer to absorbance and fluorescence observables, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-g006-550.jpg?1648860603" title=" <strong>Figure 6</strong><br/> <p>Absorbance (dashed) and fluorescence (solid) observables of <b>TXT</b> and <b>TXT•</b><span class="html-italic">AAA</span> (488-nm excitation).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch001-550.jpg?1648860603" title=" <strong>Scheme 1</strong><br/> <p>Chemical structures of the parent chromone (<b>dEAF</b>) as well as the azido (<b>AzMF</b>) and alkynyl (<b>AlMF</b>) derivatives developed for click-type post-synthetic DNA labeling. Systematic flavonoid numbering was displayed on the original core.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch002-550.jpg?1648860603" title=" <strong>Scheme 2</strong><br/> <p>Synthetic routes to <b>AlMF</b> and <b>AzMF</b>: (a) Me<sub>2</sub>SO<sub>4</sub> (4 eq.), 18-crown-6 (7 mol%), KOH, H<sub>2</sub>O/DCM, rt, 88%. (b) TMS-acetylene (3 eq.), TEA (10 eq.), CuI (20 mol%), PdCl<sub>2</sub>(PPh<sub>3</sub>)<sub>3</sub> (20 mol%), DMF, 70 °C. (c) K<sub>2</sub>CO<sub>3</sub>, MeOH, rt, 64% over 2 steps. (d) <span class="html-italic">p</span>-Diethylaminobenzaldehyde (1.05 eq.), NaOH (1.05 eq.), H<sub>2</sub>O<sub>2</sub>, MeOH, rt, 97%. (e) HBr (47% in H<sub>2</sub>O), reflux, quant. (f) NaN<sub>3</sub> (1.5 eq.), Acetone/DMF. (g) Me<sub>2</sub>SO<sub>4</sub> (4 eq.), 18-crown-6 (7 mol%), KOH, H<sub>2</sub>O/DCM, rt, 70% over 2 steps.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch003-550.jpg?1648860603" title=" <strong>Scheme 3</strong><br/> <p>Synthetic routes to <b>AlMF−</b>, <b>AlMF+−</b>, and <b>AzMF+</b>: (a) Me<sub>2</sub>SO<sub>4</sub> (4 eq.), 18-crown-6 (7 mol%), KOH, H<sub>2</sub>O/DCM, 80%. (b) K<sub>2</sub>CO<sub>3</sub> (2.5 eq.), H<sub>2</sub>O/DMF, [AlMF−, 95%], [AlMF+−, 36%]. (c) THF, 63%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch004-550.jpg?1648860604" title=" <strong>Scheme 4</strong><br/> <p>Synthetic pathways for the linkers <b>PYAPS</b>, <b>Me-PYAPS</b>, and <b>DMAZ</b>: (a) CH<sub>3</sub>CN, 72%. (b) Formol, formic acid, quant. (c) NaN<sub>3</sub> (3 eq.), H<sub>2</sub>O, quant.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-02267/article_deploy/html/images/molecules-27-02267-sch005-550.jpg?1648860604" title=" <strong>Scheme 5</strong><br/> <p>Synthetic access to the <b>AIMF</b>-derived model nucleoside <b>AlMF-Nu</b>: (a) NaN<sub>3</sub> (5 eq.), Acetone, 0 °C, 80%. (b) DIPEA (12 eq.), AcOH (6 eq.), CuI (2.8 eq.), DCE, 40 °C, 98%. (c) K<sub>2</sub>CO<sub>3</sub>, MeOH/DCM, 35 °C, 56%.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/7/2267'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="773311" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 29 pages, 2169 KiB </span> <a href="/1420-3049/27/6/1943/pdf?version=1647512139" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/6/1943">Modification of Lipid-Based Nanoparticles: An Efficient Delivery System for Nucleic Acid-Based Immunotherapy</a> <div class="authors"> by <span class="inlineblock "><strong>Chi Zhang</strong>, </span><span class="inlineblock "><strong>Yifan Ma</strong>, </span><span class="inlineblock "><strong>Jingjing Zhang</strong>, </span><span class="inlineblock "><strong>Jimmy Chun-Tien Kuo</strong>, </span><span class="inlineblock "><strong>Zhongkun Zhang</strong>, </span><span class="inlineblock "><strong>Haotian Xie</strong>, </span><span class="inlineblock "><strong>Jing Zhu</strong> and </span><span class="inlineblock "><strong>Tongzheng Liu</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(6), 1943; <a href="https://doi.org/10.3390/molecules27061943">https://doi.org/10.3390/molecules27061943</a> - 17 Mar 2022 </div> <a href="/1420-3049/27/6/1943#metrics">Cited by 38</a> | Viewed by 8726 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1943/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Lipid-based nanoparticles (LBNPs) are biocompatible and biodegradable vesicles that are considered to be one of the most efficient drug delivery platforms. Due to the prominent advantages, such as long circulation time, slow drug release, reduced toxicity, high transfection efficiency, and endosomal escape capacity, such synthetic nanoparticles have been widely used for carrying genetic therapeutics, particularly nucleic acids that can be applied in the treatment for various diseases, including congenital diseases, cancers, virus infections, and chronic inflammations. Despite great merits and multiple successful applications, many extracellular and intracellular barriers remain and greatly impair delivery efficacy and therapeutic outcomes. As such, the current state of knowledge and pitfalls regarding the gene delivery and construction of LBNPs will be initially summarized. In order to develop a new generation of LBNPs for improved delivery profiles and therapeutic effects, the modification strategies of LBNPs will be reviewed. On the basis of these developed modifications, the performance of LBNPs as therapeutic nanoplatforms have been greatly improved and extensively applied in immunotherapies, including infectious diseases and cancers. However, the therapeutic applications of LBNPs systems are still limited due to the undesirable endosomal escape, potential aggregation, and the inefficient encapsulation of therapeutics. Herein, we will review and discuss recent advances and remaining challenges in the development of LBNPs for nucleic acid-based immunotherapy. <a href="/1420-3049/27/6/1943">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Method_pharm2 ">Application of Novel Method in Pharmaceutical Study II</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1943/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev773311"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next773311"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next773311" data-cycle-prev="#prev773311" data-cycle-progressive="#images773311" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-773311-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g001-550.jpg?1647512236" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images773311" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-773311-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g002-550.jpg?1647512236'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-773311-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g003-550.jpg?1647512236'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-773311-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g004-550.jpg?1647512236'><p>Figure 4</p></div></script></div></div><div id="article-773311-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g001-550.jpg?1647512236" title=" <strong>Figure 1</strong><br/> <p>Schematic demonstration of extracellular and intracellular barriers during the process of nucleic acids delivery to the cytosol. Once nucleic acids are injected into the vein, the LBNP will protect them from being degraded by RNase in plasma and eliminated by macrophage. LBNP can carry nucleic acids go through the cell membrane via receptor-mediated endocytosis. The components such as cationic lipids and ionizable lipids can fuse with endosomal membrane and help nucleic acids release from endosome and deliver to target site.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1943'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g002-550.jpg?1647512236" title=" <strong>Figure 2</strong><br/> <p>Schematic illumination of the two-dimensional structure of different types of LBNPs. (<b>a</b>) Liposome, (<b>b</b>) lipid nanoemulsion (LNE), (<b>c</b>) lipid nanoparticle (LNP), (<b>d</b>) solid lipid nanoparticle (SLN), (<b>e</b>) nanostructured lipid carrier (NLC).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1943'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g003-550.jpg?1647512236" title=" <strong>Figure 3</strong><br/> <p>The schematic demonstrates different structural phases under different conditions [<a href="#B3-molecules-27-01943" class="html-bibr">3</a>]. <span class="html-italic">p</span> = v/a*l<sub>c</sub>. If <span class="html-italic">p</span> &lt; ½, lipids with conical shape are more likely to adopt hexagonal phase. If ½ &lt; <span class="html-italic">p</span> &lt; 1, lipids with cylindrical shape tend to adopt a lamellar phase. If <span class="html-italic">p</span> &gt; 1, inverted conical-shaped lipids will adopt an inverted hexagonal phase [<a href="#B3-molecules-27-01943" class="html-bibr">3</a>,<a href="#B155-molecules-27-01943" class="html-bibr">155</a>]. Copyright 2022 American Chemical Society.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1943'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01943/article_deploy/html/images/molecules-27-01943-g004-550.jpg?1647512236" title=" <strong>Figure 4</strong><br/> <p>Structure and pK<sub>a</sub> value of DLin-MC3-DMA (<b>A</b>), SM-102 (<b>B</b>), and Alc-0315 (<b>C</b>). Copyright is reserved by 1996–2022 MDPI (Basel, Switzerland).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1943'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="772283" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-772283" aria-controls="drop-supplementary-772283" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-772283" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/6/1923/s1?version=1647479556"> Supplementary File 1 (ZIP, 4463 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 11 pages, 3708 KiB </span> <a href="/1420-3049/27/6/1923/pdf?version=1648021259" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/6/1923">Iridium(I)-Catalyzed Isoindolinone-Directed Branched-Selective Aromatic C–H Alkylation with Simple Alkenes</a> <div class="authors"> by <span class="inlineblock "><strong>Maoqian Xiong</strong>, </span><span class="inlineblock "><strong>Yuhang Shu</strong>, </span><span class="inlineblock "><strong>Jie Tang</strong>, </span><span class="inlineblock "><strong>Fan Yang</strong> and </span><span class="inlineblock "><strong>Dong Xing</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(6), 1923; <a href="https://doi.org/10.3390/molecules27061923">https://doi.org/10.3390/molecules27061923</a> - 16 Mar 2022 </div> <a href="/1420-3049/27/6/1923#metrics">Cited by 5</a> | Viewed by 2456 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> We report an iridium(I)-catalyzed branched-selective C–H alkylation of <i>N</i>-arylisoindolinones with simple alkenes as the alkylating agents. The amide carbonyl group of the isoindolinone motif acts as the directing group to assist the ortho C–H activation of the <i>N</i>-aryl ring. With this <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1923/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> We report an iridium(I)-catalyzed branched-selective C–H alkylation of <i>N</i>-arylisoindolinones with simple alkenes as the alkylating agents. The amide carbonyl group of the isoindolinone motif acts as the directing group to assist the ortho C–H activation of the <i>N</i>-aryl ring. With this atom-economic and highly branched-selective protocol, an array of biologically relevant <i>N</i>-arylisoindolinones were obtained in good yields. Asymmetric control was achieved with up to 87:13 er when a BiPhePhos-like chiral ligand was employed. <a href="/1420-3049/27/6/1923">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Section <a href="/journal/molecules/sections/organic_chemistry">Organic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1923/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev772283"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next772283"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next772283" data-cycle-prev="#prev772283" data-cycle-progressive="#images772283" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-772283-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-g001-550.jpg?1648021351" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images772283" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-772283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch001-550.jpg?1648021351'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-772283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch002-550.jpg?1648021351'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-772283-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch003-550.jpg?1648021351'><p>Scheme 3</p></div></script></div></div><div id="article-772283-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-g001-550.jpg?1648021351" title=" <strong>Figure 1</strong><br/> <p>Representative examples of biologically active <span class="html-italic">N</span>-arylisoindolinones.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1923'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch001-550.jpg?1648021351" title=" <strong>Scheme 1</strong><br/> <p>Isoindolinone-directed site-selective C–H activation. (<b>A</b>) Previous work; (<b>B</b>) This work.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1923'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch002-550.jpg?1648021351" title=" <strong>Scheme 2</strong><br/> <p>Plausible mechanism.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1923'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01923/article_deploy/html/images/molecules-27-01923-sch003-550.jpg?1648021351" title=" <strong>Scheme 3</strong><br/> <p>Asymmetric alkylation with chiral ligand.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1923'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="767147" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 14 pages, 1014 KiB </span> <a href="/1420-3049/27/6/1784/pdf?version=1646813904" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The (Bio)Chemistry of Non-Transferrin-Bound Iron" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/6/1784">The (Bio)Chemistry of Non-Transferrin-Bound Iron</a> <div class="authors"> by <span class="inlineblock "><strong>André M. N. Silva</strong> and </span><span class="inlineblock "><strong>Maria Rangel</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(6), 1784; <a href="https://doi.org/10.3390/molecules27061784">https://doi.org/10.3390/molecules27061784</a> - 9 Mar 2022 </div> <a href="/1420-3049/27/6/1784#metrics">Cited by 23</a> | Viewed by 4819 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1784/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> In healthy individuals, virtually all blood plasma iron is bound by transferrin. However, in several diseases and clinical conditions, hazardous non-transferrin-bound iron (NTBI) species occur. NTBI represents a potentially toxic iron form, being a direct cause of oxidative stress in the circulating compartment and tissue iron loading. The accumulation of these species can cause cellular damage in several organs, namely, the liver, spleen, and heart. Despite its pathophysiological relevance, the chemical nature of NTBI remains elusive. This has precluded its use as a clinical biochemical marker and the development of targeted therapies. Herein, we make a critical assessment of the current knowledge of NTBI speciation. The currently accepted hypotheses suggest that NTBI is mostly iron bound to citric acid and iron bound to serum albumin, but the chemistry of this system remains fuzzy. We explore the complex chemistry of iron complexation by citric acid and its implications towards NTBI reactivity. Further, the ability of albumin to bind iron is revised and the role of protein post-translational modifications on iron binding is discussed. The characterization of the NTBI species structure may be the starting point for the development of a standardized analytical assay, the better understanding of these species’ reactivity or the identification of NTBI uptake mechanisms by different cell types, and finally, to the development of new therapies. <a href="/1420-3049/27/6/1784">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Spectroscopic_Insights ">Molecular and Spectroscopic Insights into Metal Ions Speciation in Extracellular Fluids</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/6/1784/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev767147"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next767147"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next767147" data-cycle-prev="#prev767147" data-cycle-progressive="#images767147" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-767147-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01784/article_deploy/html/images/molecules-27-01784-g001-550.jpg?1646813993" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images767147" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-767147-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01784/article_deploy/html/images/molecules-27-01784-g002-550.jpg?1646813993'><p>Figure 2</p></div></script></div></div><div id="article-767147-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01784/article_deploy/html/images/molecules-27-01784-g001-550.jpg?1646813993" title=" <strong>Figure 1</strong><br/> <p>Schematic representation of the structure of citrate and ferric citrate complexes in aqueous solution. (<b>A</b>) Citrate anion. (<b>B</b>) [FeCit<sub>2</sub>]<sup>5−</sup>. (<b>C</b>) [Fe<sub>2</sub>Cit<sub>2</sub>]<sup>2−</sup>. (<b>D</b>) [Fe<sub>3</sub>Cit<sub>3</sub>]<sup>3−</sup>. (<b>E</b>) alternative structure for [Fe<sub>3</sub>Cit<sub>3</sub>]<sup>3−</sup>. Structures C, D and E are adapted from Gautier-Luneau et al. [<a href="#B71-molecules-27-01784" class="html-bibr">71</a>], structure E has been proposed by Fukushima et al. [<a href="#B75-molecules-27-01784" class="html-bibr">75</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1784'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01784/article_deploy/html/images/molecules-27-01784-g002-550.jpg?1646813993" title=" <strong>Figure 2</strong><br/> <p>Human serum albumin structure (PDB: 1BM0 [<a href="#B94-molecules-27-01784" class="html-bibr">94</a>]). (<b>A</b>) Known metal ion binding sites in HSA: NTS (N-terminal site), MBS (Metal Binding Site A) and Cys34 (reduced cysteine at position 34). (<b>B</b>) Surface map from HSA, highlighting sidechain oxygen atoms from aspartate and glutamate residues (red) and sidechain nitrogen atoms from arginine and lysine residues (blue). The 4 N-terminal amino acid residues in the protein sequence were absent from the crystallographic structure and were manually modelled for this representation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/6/1784'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="766028" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-766028" aria-controls="drop-supplementary-766028" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-766028" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/5/1747/s1?version=1646709614"> Supplementary File 1 (ZIP, 112 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 13 pages, 2711 KiB </span> <a href="/1420-3049/27/5/1747/pdf?version=1646876971" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Investigating the Effects of Amino Acid Variations in Human Menin" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/5/1747">Investigating the Effects of Amino Acid Variations in Human Menin</a> <div class="authors"> by <span class="inlineblock "><strong>Carmen Biancaniello</strong>, </span><span class="inlineblock "><strong>Antonia D’Argenio</strong>, </span><span class="inlineblock "><strong>Deborah Giordano</strong>, </span><span class="inlineblock "><strong>Serena Dotolo</strong>, </span><span class="inlineblock "><strong>Bernardina Scafuri</strong>, </span><span class="inlineblock "><strong>Anna Marabotti</strong>, </span><span class="inlineblock "><strong>Antonio d’Acierno</strong>, </span><span class="inlineblock "><strong>Roberto Tagliaferri</strong> and </span><span class="inlineblock "><strong>Angelo Facchiano</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(5), 1747; <a href="https://doi.org/10.3390/molecules27051747">https://doi.org/10.3390/molecules27051747</a> - 7 Mar 2022 </div> <a href="/1420-3049/27/5/1747#metrics">Cited by 9</a> | Viewed by 3664 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Human menin is a nuclear protein that participates in many cellular processes, as transcriptional regulation, DNA damage repair, cell signaling, cell division, proliferation, and migration, by interacting with many other proteins. Mutations of the gene encoding menin cause multiple endocrine neoplasia type 1 <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1747/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Human menin is a nuclear protein that participates in many cellular processes, as transcriptional regulation, DNA damage repair, cell signaling, cell division, proliferation, and migration, by interacting with many other proteins. Mutations of the gene encoding menin cause multiple endocrine neoplasia type 1 (MEN1), a rare autosomal dominant disorder associated with tumors of the endocrine glands. In order to characterize the structural and functional effects at protein level of the hundreds of missense variations, we investigated by computational methods the wild-type menin and more than 200 variants, predicting the amino acid variations that change secondary structure, solvent accessibility, salt-bridge and H-bond interactions, protein thermostability, and altering the capability to bind known protein interactors. The structural analyses are freely accessible online by means of a web interface that integrates also a 3D visualization of the structure of the wild-type and variant proteins. The results of the study offer insight into the effects of the amino acid variations in view of a more complete understanding of their pathological role. <a href="/1420-3049/27/5/1747">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Molecular_Simulat ">Molecular Simulations Applications in Biochemistry and Molecular Biology</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1747/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev766028"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next766028"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next766028" data-cycle-prev="#prev766028" data-cycle-progressive="#images766028" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-766028-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g001-550.jpg?1646877073" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images766028" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-766028-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g002-550.jpg?1646877073'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-766028-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g003-550.jpg?1646877073'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-766028-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g004-550.jpg?1646877073'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-766028-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g005-550.jpg?1646877073'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-766028-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g006-550.jpg?1646877073'><p>Figure 6</p></div></script></div></div><div id="article-766028-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g001-550.jpg?1646877073" title=" <strong>Figure 1</strong><br/> <p>3D structure of menin model shown as cartoon colored according to the different menin domains. The N-terminal domain (NTD) is colored in orange, the thumb domain in green, the palm domain in blue, the fingers domain (C-terminal domain) in cyan.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g002-550.jpg?1646877073" title=" <strong>Figure 2</strong><br/> <p>Mutations affecting salt-bridge interactions. (<b>A</b>) menin wild-type; (<b>B</b>) menin affected by three mutations (H186R, R355P, K562E). Menin backbone is represented in green with residues involved in the interactions being or not subjected to mutation are highlighted in blue and orange sticks, respectively. Salt bridges are displayed by a red dotted line, H-bonds by yellow dashed lines.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g003-550.jpg?1646877073" title=" <strong>Figure 3</strong><br/> <p>Structural position in the menin model of wild-type buried residues affected by mutations predicted as destabilizing. Affected residues are shown as red stick models: L22R, L39W, A49V, I86F, L89R, L157W, A165T, V167F, L180R, A181S, W188S, W188C, V189E, V201G, L261F, L264R, L278P, P282H, A289Q, A289E, A289V, A342D, I353N, Y358D, A373D, I377M, F415L, L418R, L419Q, I425N, W428R, and I580N. The enlarged view shows the investigated residues in the two α/β motifs colored in pale cyan and teal, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g004-550.jpg?1646877073" title=" <strong>Figure 4</strong><br/> <p>Effect of E260K variation on the interaction of menin (green) with MLL1 peptide (cyan). Labeled residues are shown in stick mode. (<b>A</b>) The H-bond between wild-type menin-E260 and MLL1-A37 is shown as a dashed yellow line. (<b>B</b>) The variation of E260 to K loses the interaction.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g005-550.jpg?1646877073" title=" <strong>Figure 5</strong><br/> <p>Interactions of menin (green) with MLL1 (cyan). Yellow dashed lines correspond to the H-bond. (<b>A</b>) The H-bonds between wt menin D158 and T148 (yellow sticks) with MML1 W7 and A115 (orange sticks), respectively. (<b>B</b>) Menin variations T148P and D158Y cause the loss of the two H-bonds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01747/article_deploy/html/images/molecules-27-01747-g006-550.jpg?1646877073" title=" <strong>Figure 6</strong><br/> <p>Detail of menin-MLL1 and menin-JunD interactions related to residue E371 and its mutation. (<b>A</b>) interactions between menin wild type E371 and MLL1 R24; (<b>B</b>) interaction between menin E371D variant and MLL1. (<b>C</b>) interactions between menin wild type and JunD; (<b>D</b>) interactions between menin mutated in E371D and JunD. Menin is represented in green cartons with residues E/D371 involved in the interactions highlighted in green balls and sticks. MLL1 and JunD are represented in orange and cyan cartons, respectively, with residues involved in the interactions highlighted in orange/cyan balls and sticks. Green dashed lines correspond to the H-bond, violet dashed lines to salt-bridges, orange dashed lines to electrostatic interaction, white dashed line to Carbon H-bond.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1747'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="766053" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 55 pages, 83405 KiB </span> <a href="/1420-3049/27/5/1750/pdf?version=1646796229" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/5/1750">Sulforaphane and Its Bifunctional Analogs: Synthesis and Biological Activity</a> <div class="authors"> by <span class="inlineblock "><strong>Łukasz Janczewski</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(5), 1750; <a href="https://doi.org/10.3390/molecules27051750">https://doi.org/10.3390/molecules27051750</a> - 7 Mar 2022 </div> <a href="/1420-3049/27/5/1750#metrics">Cited by 36</a> | Viewed by 6242 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> For decades, various plants have been studied as sources of biologically active compounds. Compounds with anticancer and antimicrobial properties are the most frequently desired. Cruciferous plants, including Brussels sprouts, broccoli, and wasabi, have a special role in the research studies. Studies have shown <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1750/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> For decades, various plants have been studied as sources of biologically active compounds. Compounds with anticancer and antimicrobial properties are the most frequently desired. Cruciferous plants, including Brussels sprouts, broccoli, and wasabi, have a special role in the research studies. Studies have shown that consumption of these plants reduce the risk of lung, breast, and prostate cancers. The high chemopreventive and anticancer potential of cruciferous plants results from the presence of a large amount of glucosinolates, which, under the influence of myrosinase, undergo an enzymatic transformation to biologically active isothiocyanates (ITCs). Natural isothiocyanates, such as benzyl isothiocyanate, phenethyl isothiocyanate, or the best-tested sulforaphane, possess anticancer activity at all stages of the carcinogenesis process, show antibacterial activity, and are used in organic synthesis. Methods of synthesis of sulforaphane, as well as its natural or synthetic bifunctional analogues with sulfinyl, sulfanyl, sulfonyl, phosphonate, phosphinate, phosphine oxide, carbonyl, ester, carboxamide, ether, or additional isothiocyanate functional groups, and with the unbranched alkyl chain containing 2–6 carbon atoms, are discussed in this review. The biological activity of these compounds are also reported. In the first section, glucosinolates, isothiocyanates, and mercapturic acids (their metabolites) are briefly characterized. Additionally, the most studied anticancer and antibacterial mechanisms of ITC actions are discussed. <a href="/1420-3049/27/5/1750">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/chemistry_molecules ">Featured Reviews in Organic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1750/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev766053"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next766053"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next766053" data-cycle-prev="#prev766053" data-cycle-progressive="#images766053" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-766053-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g001-550.jpg?1646796406" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images766053" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g002-550.jpg?1646796406'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g003-550.jpg?1646796406'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g004-550.jpg?1646796406'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g005-550.jpg?1646796406'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g006-550.jpg?1646796406'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g007-550.jpg?1646796406'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g008-550.jpg?1646796406'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g009-550.jpg?1646796406'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g010-550.jpg?1646796406'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g011-550.jpg?1646796406'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g012-550.jpg?1646796406'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g013-550.jpg?1646796406'><p>Figure 13</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g014-550.jpg?1646796406'><p>Figure 14</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g015-550.jpg?1646796406'><p>Figure 15</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g016-550.jpg?1646796406'><p>Figure 16</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g017-550.jpg?1646796406'><p>Figure 17</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g018-550.jpg?1646796406'><p>Figure 18</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g019-550.jpg?1646796406'><p>Figure 19</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g020-550.jpg?1646796406'><p>Figure 20</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g021-550.jpg?1646796406'><p>Figure 21</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g022-550.jpg?1646796406'><p>Figure 22</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g023-550.jpg?1646796406'><p>Figure 23</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g024-550.jpg?1646796406'><p>Figure 24</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g025-550.jpg?1646796406'><p>Figure 25</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g026-550.jpg?1646796406'><p>Figure 26</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g027-550.jpg?1646796406'><p>Figure 27</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g028-550.jpg?1646796406'><p>Figure 28</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g029-550.jpg?1646796406'><p>Figure 29</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g030-550.jpg?1646796406'><p>Figure 30</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g031-550.jpg?1646796406'><p>Figure 31</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g032-550.jpg?1646796406'><p>Figure 32</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g033-550.jpg?1646796406'><p>Figure 33</p></div> --- <div class='openpopupgallery' data-imgindex='33' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g034-550.jpg?1646796406'><p>Figure 34</p></div> --- <div class='openpopupgallery' data-imgindex='34' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g035-550.jpg?1646796406'><p>Figure 35</p></div> --- <div class='openpopupgallery' data-imgindex='35' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g036-550.jpg?1646796406'><p>Figure 36</p></div> --- <div class='openpopupgallery' data-imgindex='36' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g037-550.jpg?1646796406'><p>Figure 37</p></div> --- <div class='openpopupgallery' data-imgindex='37' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g038-550.jpg?1646796406'><p>Figure 38</p></div> --- <div class='openpopupgallery' data-imgindex='38' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g039-550.jpg?1646796406'><p>Figure 39</p></div> --- <div class='openpopupgallery' data-imgindex='39' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g040-550.jpg?1646796406'><p>Figure 40</p></div> --- <div class='openpopupgallery' data-imgindex='40' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g041-550.jpg?1646796406'><p>Figure 41</p></div> --- <div class='openpopupgallery' data-imgindex='41' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g042-550.jpg?1646796406'><p>Figure 42</p></div> --- <div class='openpopupgallery' data-imgindex='42' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g043-550.jpg?1646796406'><p>Figure 43</p></div> --- <div class='openpopupgallery' data-imgindex='43' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g044-550.jpg?1646796406'><p>Figure 44</p></div> --- <div class='openpopupgallery' data-imgindex='44' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g045-550.jpg?1646796406'><p>Figure 45</p></div> --- <div class='openpopupgallery' data-imgindex='45' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g046-550.jpg?1646796406'><p>Figure 46</p></div> --- <div class='openpopupgallery' data-imgindex='46' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g047-550.jpg?1646796406'><p>Figure 47</p></div> --- <div class='openpopupgallery' data-imgindex='47' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g048-550.jpg?1646796406'><p>Figure 48</p></div> --- <div class='openpopupgallery' data-imgindex='48' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g049-550.jpg?1646796406'><p>Figure 49</p></div> --- <div class='openpopupgallery' data-imgindex='49' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g050-550.jpg?1646796406'><p>Figure 50</p></div> --- <div class='openpopupgallery' data-imgindex='50' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g051-550.jpg?1646796406'><p>Figure 51</p></div> --- <div class='openpopupgallery' data-imgindex='51' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g052-550.jpg?1646796406'><p>Figure 52</p></div> --- <div class='openpopupgallery' data-imgindex='52' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g053-550.jpg?1646796406'><p>Figure 53</p></div> --- <div class='openpopupgallery' data-imgindex='53' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g054-550.jpg?1646796406'><p>Figure 54</p></div> --- <div class='openpopupgallery' data-imgindex='54' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g055-550.jpg?1646796406'><p>Figure 55</p></div> --- <div class='openpopupgallery' data-imgindex='55' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g056-550.jpg?1646796406'><p>Figure 56</p></div> --- <div class='openpopupgallery' data-imgindex='56' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g057-550.jpg?1646796406'><p>Figure 57</p></div> --- <div class='openpopupgallery' data-imgindex='57' data-target='article-766053-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g058-550.jpg?1646796406'><p>Figure 58</p></div></script></div></div><div id="article-766053-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g001-550.jpg?1646796406" title=" <strong>Figure 1</strong><br/> <p>Structures of the main groups of glucosinolates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g002-550.jpg?1646796406" title=" <strong>Figure 2</strong><br/> <p>Enzymatic degradation of glucosinolates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g003-550.jpg?1646796406" title=" <strong>Figure 3</strong><br/> <p>Reactions of isothiocyanates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g004-550.jpg?1646796406" title=" <strong>Figure 4</strong><br/> <p>Structures of selected natural isothiocyanates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g005-550.jpg?1646796406" title=" <strong>Figure 5</strong><br/> <p>Structures of natural analogs of SFN.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g006-550.jpg?1646796406" title=" <strong>Figure 6</strong><br/> <p>Metabolism of ITCs via the mercapturic acid pathway. R, an aliphatic or aromatic substituent.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g007-550.jpg?1646796406" title=" <strong>Figure 7</strong><br/> <p>Accumulation of ITCs in the cell.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g008-550.jpg?1646796406" title=" <strong>Figure 8</strong><br/> <p>Synthesis of ITCs using amines (<span class="html-italic">Path a and b</span>) or azides (<span class="html-italic">Path c</span>) as substrates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g009-550.jpg?1646796406" title=" <strong>Figure 9</strong><br/> <p>Synthesis of ITCs with thiophosgene.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g010-550.jpg?1646796406" title=" <strong>Figure 10</strong><br/> <p>Thiophosgene surrogates.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g011-550.jpg?1646796406" title=" <strong>Figure 11</strong><br/> <p>Synthesis of isothiocyanates using a desulfurizing agent.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g012-550.jpg?1646796406" title=" <strong>Figure 12</strong><br/> <p>Selected desulfurizing agents.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g013-550.jpg?1646796406" title=" <strong>Figure 13</strong><br/> <p>ITCs synthesis via Staudinger/aza-Wittig reaction.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g014-550.jpg?1646796406" title=" <strong>Figure 14</strong><br/> <p>Synthesis of ITCs using fluorine-containing reagents.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g015-550.jpg?1646796406" title=" <strong>Figure 15</strong><br/> <p>Synthesis of SFN (<b>24</b>) and its mercapturic acid <b>62</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g016-550.jpg?1646796406" title=" <strong>Figure 16</strong><br/> <p>Synthesis of erucin (<b>28</b>), SFN (<b>24</b>), and erysolin (<b>31</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g017-550.jpg?1646796406" title=" <strong>Figure 17</strong><br/> <p>Synthesis of SFN using 1,1′-thiocarbonyldi-2,2′-pyridone (<b>37</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g018-550.jpg?1646796406" title=" <strong>Figure 18</strong><br/> <p>Synthesis SFN (<b>24</b>), erucin (<b>28</b>), and their analogs using thiophosgene.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g019-550.jpg?1646796406" title=" <strong>Figure 19</strong><br/> <p>Synthesis of iberverin (<b>27</b>), iberin (<b>25</b>), and cheirolin (<b>30</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g020-550.jpg?1646796406" title=" <strong>Figure 20</strong><br/> <p>Synthesis of trifluoromethyl (<b>73</b>) and trifluoroethyl (<b>75</b>–<b>76</b>) analogs of SFN.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g021-550.jpg?1646796406" title=" <strong>Figure 21</strong><br/> <p>Synthesis of fluoroaryl and fluoroarylmethyl analogs <b>80a</b>–<b>h</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g022-550.jpg?1646796406" title=" <strong>Figure 22</strong><br/> <p>Synthesis of heterocyclic analogues <b>84d</b>–<b>e</b> of SFN.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g023-550.jpg?1646796406" title=" <strong>Figure 23</strong><br/> <p>Synthesis of sulfoxide <b>84a</b>–<b>c</b> and sulfone <b>89a</b>–<b>c</b> analogues of SFN.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g024-550.jpg?1646796406" title=" <strong>Figure 24</strong><br/> <p>Synthesis of sulfone analogues of SFN <b>89d</b>–<b>e</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g025-550.jpg?1646796406" title=" <strong>Figure 25</strong><br/> <p>Synthesis of erucin and SFN-rivastigmine hybrids <b>99</b>–<b>104</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g026-550.jpg?1646796406" title=" <strong>Figure 26</strong><br/> <p>Synthesis of SFN (<b>24</b>) and its derivatives <b>148</b>–<b>167</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g027-550.jpg?1646796406" title=" <strong>Figure 27</strong><br/> <p>Synthesis of SFN and erucin via Staudinger/aza-Wittig reaction.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g028-550.jpg?1646796406" title=" <strong>Figure 28</strong><br/> <p>Synthesis of enantiopure (<span class="html-italic">R</span>)-SFN ((<span class="html-italic">R</span>)-<b>24</b>) and its enantiopure <b>175</b>–<b>178</b> analogues.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g029-550.jpg?1646796406" title=" <strong>Figure 29</strong><br/> <p>Enantiodivergent synthesis of (<span class="html-italic">S</span>)- and (<span class="html-italic">R</span>)-sulfinate esters <b>173</b>, <b>180</b>, and <b>181</b> using the DAG-methodology.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g030-550.jpg?1646796406" title=" <strong>Figure 30</strong><br/> <p>Synthesis of enantiopure (<span class="html-italic">R</span>)-SFN ((<span class="html-italic">R</span>)-<b>24</b>), (<span class="html-italic">R</span>)-alyssin ((<span class="html-italic">R</span>)-<b>26</b>), and their homologue <span class="html-italic">(R</span>)-<b>184</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g031-550.jpg?1646796406" title=" <strong>Figure 31</strong><br/> <p>Synthesis of enantiopure (<span class="html-italic">S</span>)-SFN ((S)-<b>24</b>), (<span class="html-italic">S</span>)-alyssin ((<span class="html-italic">S</span>)-<b>26</b>), and their homologue <span class="html-italic">(S</span>)-<b>184</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g032-550.jpg?1646796406" title=" <strong>Figure 32</strong><br/> <p>Synthesis of enantiopure analogues of (<span class="html-italic">R</span>)-SFN-(<span class="html-italic">R</span>)-<b>187</b> and (<span class="html-italic">R</span>)-<b>188</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g033-550.jpg?1646796406" title=" <strong>Figure 33</strong><br/> <p>Synthesis of (4-isothiocyanatobutyl)dimethylphosphine oxide (<b>191</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g034-550.jpg?1646796406" title=" <strong>Figure 34</strong><br/> <p>Synthesis of α- and β-dialkoxyphosphoryl isothiocyanates <b>204</b>–<b>218</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g035-550.jpg?1646796406" title=" <strong>Figure 35</strong><br/> <p>Synthesis of α- and β-dialkoxyphosphoryl isothiocyanates <b>223</b>–<b>226</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g036-550.jpg?1646796406" title=" <strong>Figure 36</strong><br/> <p>Synthesis of diaryl (1-isothiocyanoalkyl)phosphonates <b>237</b>–<b>246</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g037-550.jpg?1646796406" title=" <strong>Figure 37</strong><br/> <p>Synthesis of dialkyl and diphenyl ω-(isothiocyanato)alkylphosphonates <b>282</b>–<b>316</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g038-550.jpg?1646796406" title=" <strong>Figure 38</strong><br/> <p>Conversion of diethyl ω-(isothiocyanato)alkylphosphonates <b>287</b>–<b>291</b> into dialkyl or diphenyl ω-(isothiocyanato)alkylphosphonates <b>282</b>–<b>286</b>, <b>297</b>, <b>302</b>, <b>316</b>–<b>325</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g039-550.jpg?1646796406" title=" <strong>Figure 39</strong><br/> <p>Synthesis of (ω-isothiocyanatoalkyl)dimethylphosphine oxides <b>191</b> and <b>328</b>–<b>330</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g040-550.jpg?1646796406" title=" <strong>Figure 40</strong><br/> <p>Synthesis of (ω-isothiocyanatoalkyl)diphenylphosphine oxides <b>349</b>–<b>353</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g041-550.jpg?1646796406" title=" <strong>Figure 41</strong><br/> <p>Synthesis of (ω-isothiocyanatoalkyl)(diethoxymethyl)phosphinates <b>358</b>–<b>361</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g042-550.jpg?1646796406" title=" <strong>Figure 42</strong><br/> <p>Synthesis of methyl and ethyl (ω-isothiocyanatoalkyl)(phenyl)phosphinates <b>370</b>–<b>377</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g043-550.jpg?1646796406" title=" <strong>Figure 43</strong><br/> <p>Synthesis of diaryl ω-(isothiocyanato)alkylphosphonates <b>378</b>–<b>411</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g044-550.jpg?1646796406" title=" <strong>Figure 44</strong><br/> <p>Preparation of phosphonates isothiocyanate-derived mercapturic acids <b>412</b>–<b>415</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g045-550.jpg?1646796406" title=" <strong>Figure 45</strong><br/> <p>Synthesis of 2-oxohexyl isothiocyanate (<b>419</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g046-550.jpg?1646796406" title=" <strong>Figure 46</strong><br/> <p>Synthesis of ITCs <b>424</b>–<b>426</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g047-550.jpg?1646796406" title=" <strong>Figure 47</strong><br/> <p>Synthesis of β-halo-ITCs <b>430</b>–<b>432</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g048-550.jpg?1646796406" title=" <strong>Figure 48</strong><br/> <p>Synthesis of analogues of 6-MITC: ITCs <b>436</b>–<b>440</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g049-550.jpg?1646796406" title=" <strong>Figure 49</strong><br/> <p>Synthesis of 1-isothiocyanato-6-methoxyhexane (<b>443</b>) and 1-isothiocyanato-6-(methylthio)hexane (<b>444</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g050-550.jpg?1646796406" title=" <strong>Figure 50</strong><br/> <p>Synthesis of ITCs <b>451</b>–<b>455</b> and <b>457</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g051-550.jpg?1646796406" title=" <strong>Figure 51</strong><br/> <p>Synthesis of SFN analogues <b>459</b> and <b>461</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g052-550.jpg?1646796406" title=" <strong>Figure 52</strong><br/> <p>Synthesis of ITCs <b>464a</b>–<b>e</b> and <b>465aa</b>–<b>de</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g053-550.jpg?1646796406" title=" <strong>Figure 53</strong><br/> <p>Synthesis of ITCs <b>469</b>, <b>470a</b>–<b>g</b>, and <b>471</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g054-550.jpg?1646796406" title=" <strong>Figure 54</strong><br/> <p>Synthesis of ether-linked isothiocyanate analogues <b>473</b> and <b>474</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g055-550.jpg?1646796406" title=" <strong>Figure 55</strong><br/> <p>Synthesis of the target ITCs derivatives <b>478a</b>–<b>b</b> and <b>479a</b>–<b>b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g056-550.jpg?1646796406" title=" <strong>Figure 56</strong><br/> <p>Synthesis of artemisinin–isothiocyanate derivatives <b>481a</b>–<b>c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g057-550.jpg?1646796406" title=" <strong>Figure 57</strong><br/> <p>Synthesis of diisothiocyanates <b>484</b> and <b>485</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01750/article_deploy/html/images/molecules-27-01750-g058-550.jpg?1646796406" title=" <strong>Figure 58</strong><br/> <p>Synthesis of diisothiocyanates <b>485</b>, <b>490</b>–<b>493</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1750'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="762391" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-762391" aria-controls="drop-supplementary-762391" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-762391" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/5/1643/s1?version=1646212051"> Supplementary File 1 (ZIP, 301 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 23 pages, 3936 KiB </span> <a href="/1420-3049/27/5/1643/pdf?version=1646212050" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/5/1643">New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use</a> <div class="authors"> by <span class="inlineblock "><strong>Davide Benedetto Tiz</strong>, </span><span class="inlineblock "><strong>Luana Bagnoli</strong>, </span><span class="inlineblock "><strong>Ornelio Rosati</strong>, </span><span class="inlineblock "><strong>Francesca Marini</strong>, </span><span class="inlineblock "><strong>Luca Sancineto</strong> and </span><span class="inlineblock "><strong>Claudio Santi</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(5), 1643; <a href="https://doi.org/10.3390/molecules27051643">https://doi.org/10.3390/molecules27051643</a> - 2 Mar 2022 </div> <a href="/1420-3049/27/5/1643#metrics">Cited by 76</a> | Viewed by 12904 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1643/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> This review describes the recent Food and Drug Administration (FDA)-approved drugs (in the year 2021) containing at least one halogen atom (covalently bound). The structures proposed throughout this work are grouped according to their therapeutical use. Their synthesis is presented as well. The number of halogenated molecules that are reaching the market is regularly preserved, and 14 of the 50 molecules approved by the FDA in the last year contain halogens. This underlines the emergent role of halogens and, in particular, of fluorine and chlorine in the preparation of drugs for the treatment of several diseases such as viral infections, several types of cancer, cardiovascular disease, multiple sclerosis, migraine and inflammatory diseases such as vasculitis. <a href="/1420-3049/27/5/1643">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/chemistry_molecules ">Featured Reviews in Organic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/5/1643/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev762391"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next762391"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next762391" data-cycle-prev="#prev762391" data-cycle-progressive="#images762391" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-762391-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g001-550.jpg?1646213436" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images762391" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g002-550.jpg?1646213436'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g003-550.jpg?1646213436'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch001-550.jpg?1646213436'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch002-550.jpg?1646213436'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch003-550.jpg?1646213436'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch004-550.jpg?1646213436'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch005-550.jpg?1646213436'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch006-550.jpg?1646213436'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch007-550.jpg?1646213436'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch008-550.jpg?1646213436'><p>Scheme 8</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch009-550.jpg?1646213436'><p>Scheme 9</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch010-550.jpg?1646213436'><p>Scheme 10</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch011-550.jpg?1646213436'><p>Scheme 11</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch012-550.jpg?1646213436'><p>Scheme 12</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch013-550.jpg?1646213436'><p>Scheme 13</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch014-550.jpg?1646213436'><p>Scheme 14</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch015-550.jpg?1646213436'><p>Scheme 15</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch016-550.jpg?1646213436'><p>Scheme 16</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch017-550.jpg?1646213436'><p>Scheme 17</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-762391-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch018-550.jpg?1646213436'><p>Scheme 18</p></div></script></div></div><div id="article-762391-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g001-550.jpg?1646213436" title=" <strong>Figure 1</strong><br/> <p>Structure of vancomycin, a natural antibacterial compound with activity against methicillin-resistant <span class="html-italic">Staphylococcus aureus</span> (MRSA).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g002-550.jpg?1646213436" title=" <strong>Figure 2</strong><br/> <p>Structure of Selectfluor<sup>®</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-g003-550.jpg?1646213436" title=" <strong>Figure 3</strong><br/> <p>Chemical structure of nirmatrelvir (<b>151</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch001-550.jpg?1646213436" title=" <strong>Scheme 1</strong><br/> <p>Synthesis of tivozanib (<b>10</b>) [<a href="#B27-molecules-27-01643" class="html-bibr">27</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch002-550.jpg?1646213436" title=" <strong>Scheme 2</strong><br/> <p>Synthesis of sotorasib (<b>21</b>) [<a href="#B30-molecules-27-01643" class="html-bibr">30</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch003-550.jpg?1646213436" title=" <strong>Scheme 3</strong><br/> <p>Synthesis of melphalan flufenamide hydrochloric salt (<b>34</b>) [<a href="#B33-molecules-27-01643" class="html-bibr">33</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch004-550.jpg?1646213436" title=" <strong>Scheme 4</strong><br/> <p>Synthesis of asciminib (<b>42</b>) [<a href="#B37-molecules-27-01643" class="html-bibr">37</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch005-550.jpg?1646213436" title=" <strong>Scheme 5</strong><br/> <p>Possible methods for the preparation of synthon <b>36 [<a href="#B39-molecules-27-01643" class="html-bibr">39</a>]</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch006-550.jpg?1646213436" title=" <strong>Scheme 6</strong><br/> <p>Synthesis of infigratinib (<b>50</b>) [<a href="#B42-molecules-27-01643" class="html-bibr">42</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch007-550.jpg?1646213436" title=" <strong>Scheme 7</strong><br/> <p>Preparation of the isocyanate <b>49</b> used for the synthesis of infigratinib.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch008-550.jpg?1646213436" title=" <strong>Scheme 8</strong><br/> <p>Synthetic scheme for the preparation of the racemic form of umbralisib (<b>67</b>) [<a href="#B46-molecules-27-01643" class="html-bibr">46</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch009-550.jpg?1646213436" title=" <strong>Scheme 9</strong><br/> <p>Synthetic scheme for the preparation of umbralisib (<b>69</b>) [<a href="#B46-molecules-27-01643" class="html-bibr">46</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch010-550.jpg?1646213436" title=" <strong>Scheme 10</strong><br/> <p>Synthetic scheme for the preparation of piflufolastat F-18 (<b>77</b>) [<a href="#B48-molecules-27-01643" class="html-bibr">48</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch011-550.jpg?1646213436" title=" <strong>Scheme 11</strong><br/> <p>One-step pathway for the preparation of piflufolastat F-18 (<b>77</b>) [<a href="#B49-molecules-27-01643" class="html-bibr">49</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch012-550.jpg?1646213436" title=" <strong>Scheme 12</strong><br/> <p>Synthetic pathway for belzutifan (<b>92</b>) [<a href="#B52-molecules-27-01643" class="html-bibr">52</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch013-550.jpg?1646213436" title=" <strong>Scheme 13</strong><br/> <p>Synthetic pathway for cabotegravir (<b>105</b>) [<a href="#B61-molecules-27-01643" class="html-bibr">61</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch014-550.jpg?1646213436" title=" <strong>Scheme 14</strong><br/> <p>Synthetic pathway for maribavir (<b>110</b>) [<a href="#B65-molecules-27-01643" class="html-bibr">65</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch015-550.jpg?1646213436" title=" <strong>Scheme 15</strong><br/> <p>Synthetic pathway for ponesimod (<b>118</b>) [<a href="#B70-molecules-27-01643" class="html-bibr">70</a>,<a href="#B71-molecules-27-01643" class="html-bibr">71</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch016-550.jpg?1646213436" title=" <strong>Scheme 16</strong><br/> <p>Synthetic pathway for atogepant (<b>130</b>) [<a href="#B76-molecules-27-01643" class="html-bibr">76</a>,<a href="#B77-molecules-27-01643" class="html-bibr">77</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch017-550.jpg?1646213436" title=" <strong>Scheme 17</strong><br/> <p>Synthetic pathway for avacopan (<b>140</b>) [<a href="#B81-molecules-27-01643" class="html-bibr">81</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01643/article_deploy/html/images/molecules-27-01643-sch018-550.jpg?1646213436" title=" <strong>Scheme 18</strong><br/> <p>Synthetic pathway for vericiguat (<b>150</b>) [<a href="#B85-molecules-27-01643" class="html-bibr">85</a>].</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/5/1643'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="752033" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-752033" aria-controls="drop-supplementary-752033" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-752033" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/4/1365/s1?version=1645107270"> Supplementary File 1 (ZIP, 6461 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 29 pages, 6922 KiB </span> <a href="/1420-3049/27/4/1365/pdf?version=1645682040" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Tuning Photophysical Properties by p-Functional Groups in Zn(II) and Cd(II) Complexes with Piperonylic Acid" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/4/1365">Tuning Photophysical Properties by <i>p</i>-Functional Groups in Zn(II) and Cd(II) Complexes with Piperonylic Acid</a> <div class="authors"> by <span class="inlineblock "><strong>Francisco Sánchez-Férez</strong>, </span><span class="inlineblock "><strong>Joaquim Mª Rius-Bartra</strong>, </span><span class="inlineblock "><strong>José A. Ayllón</strong>, </span><span class="inlineblock "><strong>Teresa Calvet</strong>, </span><span class="inlineblock "><strong>Mercè Font-Bardia</strong> and </span><span class="inlineblock "><strong>Josefina Pons</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(4), 1365; <a href="https://doi.org/10.3390/molecules27041365">https://doi.org/10.3390/molecules27041365</a> - 17 Feb 2022 </div> <a href="/1420-3049/27/4/1365#metrics">Cited by 15</a> | Viewed by 2692 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> Aggregation between discrete molecules is an essential factor to prevent aggregation-caused quenching (ACQ). Indeed, functional groups capable of generating strong hydrogen bonds are likely to assemble and cause ACQ and photoinduced electron transfer processes. Thus, it is possible to compare absorption and emission <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1365/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> Aggregation between discrete molecules is an essential factor to prevent aggregation-caused quenching (ACQ). Indeed, functional groups capable of generating strong hydrogen bonds are likely to assemble and cause ACQ and photoinduced electron transfer processes. Thus, it is possible to compare absorption and emission properties by incorporating two ligands with a different <i>bias</i> toward intra- and intermolecular interactions that can induce a specific structural arrangement. In parallel, the π electron-donor or electron-withdrawing character of the functional groups could modify the Highest Ocuppied Molecular Orbital (HOMO)–Lowest Unocuppied Molecular Orbital (LUMO) energy gap. Reactions of M(OAc)<sub>2</sub>·2H<sub>2</sub>O (M = Zn(II) and Cd(II); OAc = acetate) with 1,3-benzodioxole-5-carboxylic acid (Piperonylic acid, HPip) and 4-acetylpyridine (4-Acpy) or isonicotinamide (Isn) resulted in the formation of four complexes. The elucidation of their crystal structure showed the formation of one paddle-wheel [Zn(μ-Pip)<sub>2</sub>(4-Acpy)]<sub>2</sub> (<b>1</b>); a mixture of one dimer and two monomers [Zn(µ-Pip)(Pip)(Isn)<sub>2</sub>]<sub>2</sub>·2[Zn(Pip)<sub>2</sub>(HPip)(Isn)]·2MeOH (<b>2</b>); and two dimers [Cd(μ-Pip)(Pip)(4-Acpy)<sub>2</sub>]<sub>2</sub> (<b>3</b>) and [Cd(μ-Pip)(Pip)(Isn)<sub>2</sub>]<sub>2</sub>·MeOH (<b>4</b>). They exhibit bridged (<b>1</b>, µ<sub>2</sub>-η<sup>1</sup>:η<sup>1</sup>), bridged, chelated and monodentated (<b>2</b>, µ<sub>2</sub>-η<sup>1</sup>:η<sup>1</sup>, µ<sub>1</sub>-η<sup>1</sup>:η<sup>1</sup> and µ<sub>1</sub>-η<sup>1</sup>), or simultaneously bridged and chelated (<b>3</b> and <b>4</b>, µ<sub>2</sub>-η<sup>2</sup>:η<sup>1</sup>) coordination modes. Zn(II) centers accommodate coordination numbers 5 and 6, whereas Cd(II) presents coordination number 7. We have related their photophysical properties and fluorescence quantum yields with their geometric variations and interactions supported by TD-DFT calculations. <a href="/1420-3049/27/4/1365">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/nitrogen_ligands ">Nitrogen Ligands</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1365/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev752033"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next752033"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next752033" data-cycle-prev="#prev752033" data-cycle-progressive="#images752033" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-752033-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-ag-550.jpg?1645682147" alt="" style="border: 0;"><p>Graphical abstract</p></div><script id="images752033" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g001-550.jpg?1645682147'><p>Figure 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g002-550.jpg?1645682146'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g003-550.jpg?1645682146'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g004-550.jpg?1645682146'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g005-550.jpg?1645682146'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g006-550.jpg?1645682146'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g007-550.jpg?1645682146'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g008-550.jpg?1645682147'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g009-550.jpg?1645682146'><p>Figure 9</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g010-550.jpg?1645682146'><p>Figure 10</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g011-550.jpg?1645682146'><p>Figure 11</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g012-550.jpg?1645682146'><p>Figure 12</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-752033-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-sch001-550.jpg?1645682146'><p>Scheme 1</p></div></script></div></div><div id="article-752033-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-ag-550.jpg?1645682147" title=" <strong>Graphical abstract</strong><br/><strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g001-550.jpg?1645682147" title=" <strong>Figure 1</strong><br/> <p>(<b>a</b>) Molecular paddle-wheel like structure of complex <b>1</b> and (<b>b</b>) Zn(II) metal core. (<b>c</b>) Supramolecular assembly forming 2D sheets promoted by π⋯π supported by C-H⋯π and C-H··O interactions. In detail, π⋯π (light orange) and C-H⋯π/C-H⋯O (light green) associations between Pip and 4-Acpy ligands.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g002-550.jpg?1645682146" title=" <strong>Figure 2</strong><br/> <p>(<b>a</b>) Molecular structure of the dimeric and monomeric units in complex <b>2</b>. (<b>b</b>) Representation of the dimeric and monomeric Zn (II) cores. Inset of the intra- and intermolecular interactions between HPip and MeOH with µ<sub>1</sub>-η<sup>1</sup>-Pip ligand.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g003-550.jpg?1645682146" title=" <strong>Figure 3</strong><br/> <p>Supramolecular interactions in <b>2</b> (<b>a</b>) promoted by Isn, Pip and HPip ligands. In detail, reciprocal N-H⋯O and N-H<sub>anti</sub>/C-H⋯O interactions. (<b>b</b>) π⋯π interactions between Pip aromatic rings highlighted in violet (Cg(4)), pink (Cg(3)), black (Cg(7)), blue (Cg(6)), and red (Cg(5)).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g004-550.jpg?1645682146" title=" <strong>Figure 4</strong><br/> <p>Molecular structure of the crystallographically independent dimeric units in complex <b>3</b>. Units A and B (<b>a</b>) with their corresponding Cd(II) cores (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g005-550.jpg?1645682146" title=" <strong>Figure 5</strong><br/> <p>Molecular structure of the crystallographically independent dimeric units in complex <b>4</b>. Units A and B (<b>a</b>) with their corresponding Cd(II) cores (<b>b</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g006-550.jpg?1645682146" title=" <strong>Figure 6</strong><br/> <p>Intermolecular (<b>a</b>) π⋯π and (<b>b</b>) C-H⋯O interactions between <b>A</b> and <b>B</b> dimers present in <b>3</b>. Color codes: Cg(1) black; Cg(2) orange, Cg(5) dark blue; Cg(6) dark green; Cg(7) violet.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g007-550.jpg?1645682146" title=" <strong>Figure 7</strong><br/> <p>Intermolecular (<b>a</b>) N-H⋯O interactions of <b>4</b>. In detail, (<b>b</b>) amide⋯amide interactions between A dimers or (<b>c</b>) between B dimers; (<b>d</b>) MeOH⋯amide, (<b>e</b>) amide(A)⋯Pip(B) or (<b>f</b>) MeOH⋯Pip association; and (<b>g</b>) amide(B)⋯Pip(A) interactions. (<b>h</b>) π⋯π interactions between Pip rings.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g008-550.jpg?1645682147" title=" <strong>Figure 8</strong><br/> <p>Additive UV-Vis spectra of complexes (<b>a</b>) <b>1</b>; (<b>b</b>) <b>2</b>; (<b>c</b>) <b>3</b> and (<b>d</b>) <b>4</b> performed in a concentration range from 1 × 10<sup>−9</sup> M to 1 × 10<sup>−4</sup> M in MeOH as the solvent at 298 K. The arrows indicate the spectral changes upon increasing concentration.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g009-550.jpg?1645682146" title=" <strong>Figure 9</strong><br/> <p>Representation of the emission color of complexes <b>1</b>–<b>4</b> within the CIE 1931 chromaticity diagram.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g010-550.jpg?1645682146" title=" <strong>Figure 10</strong><br/> <p>Emission spectra in MeOH at 298 K of the samples at concentrations of 1.70 × 10<sup>−9</sup> M (<b>1</b>); (<b>a</b>) 1.07 × 10<sup>−7</sup> M and (<b>b</b>) 1.08 × 10<sup>−8</sup> M (<b>2</b>); 1.04 × 10<sup>−7</sup> M (<b>3</b>); and 1.01 × 10<sup>−7</sup> M (<b>4</b>). Color codes: red (<b>1</b>); light green and turquoise (<b>2</b>); orange (<b>3</b>); blue (<b>4</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g011-550.jpg?1645682146" title=" <strong>Figure 11</strong><br/> <p>Emission spectra of complex <b>2</b>. (<b>a</b>) Sample of concentration 1.07 × 10<sup>−7</sup> M irradiated from 210 to 270 nm. (<b>b</b>) Sample of concentration 1.08 × 10<sup>−8</sup> M irradiated from 210 to 270 nm.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-g012-550.jpg?1645682146" title=" <strong>Figure 12</strong><br/> <p>Experimental (black and green lines), calculated (dashed black and green lines) UV-Vis spectra and oscillator strengths of [Zn(µ-Pip)(Pip)(Isn)<sub>2</sub>]<sub>2</sub>·2[Zn(Pip)<sub>2</sub>(HPip)(Isn)]·2MeOH (<b>2</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01365/article_deploy/html/images/molecules-27-01365-sch001-550.jpg?1645682146" title=" <strong>Scheme 1</strong><br/> <p>Reactions for synthesis of metal complexes <b>1</b>, <b>2</b> and <b>4</b> were performed by adding a methanolic solution of HPip over a mixture of M(OAc)<sub>2</sub> and 4-Acpy or Isn<sup>a</sup>. The synthesis of complex <b>3</b> was achieved by adding a mixture of 4-Acpy and HPip to a methanolic solution of Cd(OAc)<sub>2</sub>·2H<sub>2</sub>O<sup>b</sup>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1365'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="750795" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 29 pages, 26357 KiB </span> <a href="/1420-3049/27/4/1332/pdf?version=1645412831" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="The Choice of Rhodium Catalysts in [2+2+2] Cycloaddition Reaction: A Personal Account" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/4/1332">The Choice of Rhodium Catalysts in [2+2+2] Cycloaddition Reaction: A Personal Account</a> <div class="authors"> by <span class="inlineblock "><strong>Anna Pla-Quintana</strong> and </span><span class="inlineblock "><strong>Anna Roglans</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(4), 1332; <a href="https://doi.org/10.3390/molecules27041332">https://doi.org/10.3390/molecules27041332</a> - 16 Feb 2022 </div> <a href="/1420-3049/27/4/1332#metrics">Cited by 16</a> | Viewed by 2756 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> [2+2+2] Cycloaddition reaction is a captivating process that assembles six-membered rings from three unsaturations with complete atom economy. Of the multiple transition metals that can be used to catalyze this reaction, rhodium offers many advantages. These include high activity and versatility, but especially <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1332/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> [2+2+2] Cycloaddition reaction is a captivating process that assembles six-membered rings from three unsaturations with complete atom economy. Of the multiple transition metals that can be used to catalyze this reaction, rhodium offers many advantages. These include high activity and versatility, but especially the ability to easily tune the reactivity and selectivity by the modification of the ligands around the metal. In this personal account, we summarize our endeavours in the development of efficient and sustainable [2+2+2] cycloaddition reactions to prepare products of interest, develop conditions in which the catalyst can be recovered and reused, and understand the mechanistic details that govern the selectivity of the processes. <a href="/1420-3049/27/4/1332">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Memory_Professor_Victor_Snieckus ">Organic Chemistry, Synthesis, and Catalysis: Special Issue in Memory of Professor Victor Snieckus for His Outstanding Contributions to Organic Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1332/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev750795"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next750795"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next750795" data-cycle-prev="#prev750795" data-cycle-progressive="#images750795" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-750795-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g001-550.jpg?1645412932" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images750795" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g002-550.jpg?1645412932'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g003-550.jpg?1645412932'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g004-550.jpg?1645412932'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g005-550.jpg?1645412932'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch001-550.jpg?1645412932'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch002-550.jpg?1645412932'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch003-550.jpg?1645412932'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch004-550.jpg?1645412932'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch005-550.jpg?1645412932'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch006-550.jpg?1645412932'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch007-550.jpg?1645412932'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch008-550.jpg?1645412932'><p>Scheme 8</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch009-550.jpg?1645412932'><p>Scheme 9</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch010-550.jpg?1645412932'><p>Scheme 10</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch011-550.jpg?1645412932'><p>Scheme 11</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch012-550.jpg?1645412932'><p>Scheme 12</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch013-550.jpg?1645412932'><p>Scheme 13</p></div> --- <div class='openpopupgallery' data-imgindex='18' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch014-550.jpg?1645412932'><p>Scheme 14</p></div> --- <div class='openpopupgallery' data-imgindex='19' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch015-550.jpg?1645412932'><p>Scheme 15</p></div> --- <div class='openpopupgallery' data-imgindex='20' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch016-550.jpg?1645412932'><p>Scheme 16</p></div> --- <div class='openpopupgallery' data-imgindex='21' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch017-550.jpg?1645412932'><p>Scheme 17</p></div> --- <div class='openpopupgallery' data-imgindex='22' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch018-550.jpg?1645412932'><p>Scheme 18</p></div> --- <div class='openpopupgallery' data-imgindex='23' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch019-550.jpg?1645412932'><p>Scheme 19</p></div> --- <div class='openpopupgallery' data-imgindex='24' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch020-550.jpg?1645412932'><p>Scheme 20</p></div> --- <div class='openpopupgallery' data-imgindex='25' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch021-550.jpg?1645412932'><p>Scheme 21</p></div> --- <div class='openpopupgallery' data-imgindex='26' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch022-550.jpg?1645412932'><p>Scheme 22</p></div> --- <div class='openpopupgallery' data-imgindex='27' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch023-550.jpg?1645412932'><p>Scheme 23</p></div> --- <div class='openpopupgallery' data-imgindex='28' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch024-550.jpg?1645412932'><p>Scheme 24</p></div> --- <div class='openpopupgallery' data-imgindex='29' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch025-550.jpg?1645412932'><p>Scheme 25</p></div> --- <div class='openpopupgallery' data-imgindex='30' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch026-550.jpg?1645412932'><p>Scheme 26</p></div> --- <div class='openpopupgallery' data-imgindex='31' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch027-550.jpg?1645412932'><p>Scheme 27</p></div> --- <div class='openpopupgallery' data-imgindex='32' data-target='article-750795-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch028-550.jpg?1645412932'><p>Scheme 28</p></div></script></div></div><div id="article-750795-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g001-550.jpg?1645412932" title=" <strong>Figure 1</strong><br/> <p>The mechanistic proposal for [2+2+2] cycloaddition reactions of three alkynes. Reprinted with permission from [<a href="#B3-molecules-27-01332" class="html-bibr">3</a>]. Copyright 2012 John Wiley and Sons.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g002-550.jpg?1645412932" title=" <strong>Figure 2</strong><br/> <p>The fused tetracycles with a benzene or cyclohexadiene core obtained by the [2+2+2] cycloaddition reaction catalyzed using Wilkinson’s complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g003-550.jpg?1645412932" title=" <strong>Figure 3</strong><br/> <p>Enediynes <b>18</b> studied by DFT calculations.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g004-550.jpg?1645412932" title=" <strong>Figure 4</strong><br/> <p>Stereopure allene–yne/ene–allene derivatives <b>56<span class="html-italic">–</span>60</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-g005-550.jpg?1645412932" title=" <strong>Figure 5</strong><br/> <p>The structure of the secondary iminophosphoranes and its Rh(I) complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch001-550.jpg?1645412932" title=" <strong>Scheme 1</strong><br/> <p>The reaction of triacetylenic azamacrocycles <b>1</b> with Pd(0) complexes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch002-550.jpg?1645412932" title=" <strong>Scheme 2</strong><br/> <p>[2+2+2] The cycloaddition reactions of cyclic enediynes <b>4</b> and <b>5</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch003-550.jpg?1645412932" title=" <strong>Scheme 3</strong><br/> <p>Studies on cycloaddition reactions of 15-, 20-, and 25-membered polyacetylenic azamacrocycles <b>1</b>, <b>15</b> and <b>16</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch004-550.jpg?1645412932" title=" <strong>Scheme 4</strong><br/> <p>The RhCl(PPh<sub>3</sub>)<sub>3</sub>-catalyzed cycloaddition reactions of compounds <b>18</b> and <b>19</b> and the key intermediates that explain the divergent reactivity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch005-550.jpg?1645412932" title=" <strong>Scheme 5</strong><br/> <p>[2+2+2] Cycloadditions of diynes <b>23</b> and monoalkyne <b>25</b> studied by CV.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch006-550.jpg?1645412932" title=" <strong>Scheme 6</strong><br/> <p>The Rh-catalyzed [2+2+2] cycloadditions of L,D-<b>27</b> and L-<b>27</b> with diynes <b>28</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch007-550.jpg?1645412932" title=" <strong>Scheme 7</strong><br/> <p>The Rh-catalyzed [2+2+2] cycloadditions of cyanodiynes <b>30</b>–<b>36</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch008-550.jpg?1645412932" title=" <strong>Scheme 8</strong><br/> <p>The Rh-catalyzed [2+2+2] cycloadditions of cyanodiyne <b>44</b> and dicyanotetrayne <b>45</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch009-550.jpg?1645412932" title=" <strong>Scheme 9</strong><br/> <p>The [2+2+2] cycloadditions of the allene–yne–allene derivatives <b>48<span class="html-italic">–</span>49</b> and the allene–ene–allene derivatives <b>50<span class="html-italic">–</span>51</b> catalyzed by the RhCl(PPh<sub>3</sub>)<sub>3</sub> catalyst.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch010-550.jpg?1645412932" title=" <strong>Scheme 10</strong><br/> <p>The RhCl(PPh<sub>3</sub>)<sub>3</sub>-catalyzed [2+2+2] cycloaddition of allene–ene–allene (S,S)-<b>57</b> and possible stereoisomers that could be formed upon cycloaddition.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch011-550.jpg?1645412932" title=" <strong>Scheme 11</strong><br/> <p>Allene–ene–yne <b>62</b> treated with RhCl(PPh<sub>3</sub>)<sub>3</sub> at different solvents and temperatures.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch012-550.jpg?1645412932" title=" <strong>Scheme 12</strong><br/> <p>The failed attempts at the RhCl(PPh<sub>3</sub>)<sub>3</sub>-catalyzed [2+2+2] cycloaddition of C<sub>60</sub> with diyne <b>28a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch013-550.jpg?1645412932" title=" <strong>Scheme 13</strong><br/> <p>The enantioselective [2+2+2] cycloadditions of enediyne azamacrocycle <b>5</b>. L* = chiral ligand.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch014-550.jpg?1645412932" title=" <strong>Scheme 14</strong><br/> <p>The rhodium-catalyzed [2+2+2] cycloadditions of diynes <b>28</b> with MBH adducts <b>64</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch015-550.jpg?1645412932" title=" <strong>Scheme 15</strong><br/> <p>The scope of the rhodium-catalyzed [2+2+2] cycloaddition of open-chain yne–ene–allene derivatives.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch016-550.jpg?1645412932" title=" <strong>Scheme 16</strong><br/> <p>The rhodium-catalyzed [2+2+2] cycloadditions of diynes with C<sub>60</sub>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch017-550.jpg?1645412932" title=" <strong>Scheme 17</strong><br/> <p>The catalytic cycle proposed for the Rh<sup>+</sup>/BIPHEP-catalyzed [2+2+2] cycloaddition of diyne <b>28b</b> and monoalkyne with detected ESI-MS species.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch018-550.jpg?1645412932" title=" <strong>Scheme 18</strong><br/> <p>The enantioselective [2+2+2] cycloaddition of enediyne macrocycle <b>5</b> and enediyne <b>18c</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch019-550.jpg?1645412932" title=" <strong>Scheme 19</strong><br/> <p>The Rh(I)-PNSO catalyzed [2+2+2] cycloaddition of diynes <b>28</b> and alkynes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch020-550.jpg?1645412932" title=" <strong>Scheme 20</strong><br/> <p>[2+2+2] The intramolecular cycloaddition of enediynes <b>18c</b>–<b>e</b> catalyzed by the SIP-Rh complex.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch021-550.jpg?1645412932" title=" <strong>Scheme 21</strong><br/> <p>Dendrimers <b>G1</b>, <b>G2</b> and <b>G3</b>, monomer <b>M</b>, and branch <b>B</b> models synthesized.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch022-550.jpg?1645412932" title=" <strong>Scheme 22</strong><br/> <p>[2+2+2] The cycloaddition of three alkynes catalyzed by dendrimeric ligands and monomer and branch models.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch023-550.jpg?1645412932" title=" <strong>Scheme 23</strong><br/> <p>[2+2+2] The intramolecular cycloadditions with Rh-NHC complexes <b>74a,b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch024-550.jpg?1645412932" title=" <strong>Scheme 24</strong><br/> <p>[2+2+2] The intermolecular cycloadditions with the Rh-NHC complex <b>74b</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch025-550.jpg?1645412932" title=" <strong>Scheme 25</strong><br/> <p>The synthesis of Rh-NHC complex <b>78</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch026-550.jpg?1645412932" title=" <strong>Scheme 26</strong><br/> <p>The synthesis of the hybrid silica material <b>M1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch027-550.jpg?1645412932" title=" <strong>Scheme 27</strong><br/> <p>The catalytic performance of the hybrid-silica material <b>M1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01332/article_deploy/html/images/molecules-27-01332-sch028-550.jpg?1645412932" title=" <strong>Scheme 28</strong><br/> <p>The catalytic performance of the hybrid-silica material <b>M1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1332'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="749240" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-749240" aria-controls="drop-supplementary-749240" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-749240" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/4/1284/s1?version=1645508191"> Supplementary File 1 (ZIP, 1304 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 15 pages, 12257 KiB </span> <a href="/1420-3049/27/4/1284/pdf?version=1644915005" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Photoinduced Bisphosphination of Alkynes with Phosphorus Interelement Compounds and Its Application to Double-Bond Isomerization" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/4/1284">Photoinduced Bisphosphination of Alkynes with Phosphorus Interelement Compounds and Its Application to Double-Bond Isomerization</a> <div class="authors"> by <span class="inlineblock "><strong>Yuki Yamamoto</strong>, </span><span class="inlineblock "><strong>Ryo Tanaka</strong>, </span><span class="inlineblock "><strong>Shintaro Kodama</strong>, </span><span class="inlineblock "><strong>Akihiro Nomoto</strong> and </span><span class="inlineblock "><strong>Akiya Ogawa</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(4), 1284; <a href="https://doi.org/10.3390/molecules27041284">https://doi.org/10.3390/molecules27041284</a> - 14 Feb 2022 </div> <a href="/1420-3049/27/4/1284#metrics">Cited by 7</a> | Viewed by 2506 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds under light irradiation is believed to be an atomically efficient method to procure materials with carbon-heteroatom bonds. In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorus <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1284/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The addition of interelement compounds with heteroatom-heteroatom single bonds to carbon-carbon unsaturated bonds under light irradiation is believed to be an atomically efficient method to procure materials with carbon-heteroatom bonds. In this study, we achieved the photoinduced bisphosphination of alkynes using the phosphorus interelement compound, tetraphenyldiphosphine monosulfide (<b>1</b>), to stereoselectively obtain the corresponding (<i>E</i>)-<i>vic</i>-1,2-bisphosphinoalkenes, which are important transition-metal ligands. The bisphosphination reaction was performed by mixing <b>1</b> and various alkynes and then exposing the mixture to light irradiation. Optimization of the conditions for the bisphosphination reaction resulted in a wide substrate range and excellent <i>trans</i>-selectivity. Moreover, the completely regioselective introduction of pentavalent and trivalent phosphorus groups to the terminal and internal positions of the alkynes, respectively, was achieved. We also found that the novel double-bond isomerization reaction of the synthesized bisphosphinated products occurred with a catalytic amount of a base under mild conditions. Our method for the photoinduced bisphosphination of carbon-carbon unsaturated compounds may have strong implications for both organic synthesis and organometallic and catalyst chemistry. <a href="/1420-3049/27/4/1284">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/modern_organophosphorus_chemistry ">Modern Organophosphorus Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1284/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev749240"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next749240"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next749240" data-cycle-prev="#prev749240" data-cycle-progressive="#images749240" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-749240-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-g001-550.jpg?1645498708" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images749240" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch001-550.jpg?1645498709'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch002-550.jpg?1645498709'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch003-550.jpg?1645498708'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch004-550.jpg?1645498708'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch005-550.jpg?1645498709'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch006-550.jpg?1645498709'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-749240-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch007-550.jpg?1645498708'><p>Scheme 7</p></div></script></div></div><div id="article-749240-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-g001-550.jpg?1645498708" title=" <strong>Figure 1</strong><br/> <p>Crystal structure of <b>6b</b> with numbered atoms. Ellipsoids are shown at the 50% probability level. Selected interatomic distances (Å) and angles (deg): P1–S1, 1.9577(4); P1–C11, 1.8171(12); P1–C17, 1.8123(12); P1–C1, 1.8420(12); P2–O1, 1.4905(9); C2–C1, 1.5494(15); P2–C29, 1.8130(12); P2–C23, 1.8035(12); P2–C2, 1.8084(12); C4–C3, 1.3326(17); C3–C1, 1.5066(16); C5–C4, 1.4727(17); C11–P1–S1, 113.27(4); C11–P1–C1, 106.17(5); C17–P1–S1, 112.79(4); C17–P1–C11, 104.27(5); C17–P1–C1, 107.85(5); C1–C2–P2, 114.40(8); C1–P1–S1, 111.95(4); O1–P2–C29, 111.02(5); O1–P2–C23, 112.90(5); O1–P2–C2, 113.53(5); C23–P2–C29, 106.72(5); C23–P2–C2, 107.09(6); C2–P2–C29, 105.04(5); C30–C29–P2, 123.46(9); C3–C4–C5, 127.10(12); C34–C29–P2, 117.36(9); C4–C3–C1, 121.29(11); C12–C11–P1, 118.14(9); C2–C1–P1, 106.85(7); C3–C1–P1, 110.00(8); C16–C11–P1, 122.12(9); C3–C1–C2, 114.34(9); C24–C23–P2, 117.07(9); C9–C10–C5, 120.76(15); C28–C23–P2, 123.42(10); C22–C17–P1, 119.52(9); C18–C17–P1, 120.30(9); C6–C5–C4, 122.56(12); C10–C5–C4, 118.81(13).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch001-550.jpg?1645498709" title=" <strong>Scheme 1</strong><br/> <p>Photoinduced radical addition of phosphorus–phosphorus interelement compounds to alkenes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch002-550.jpg?1645498709" title=" <strong>Scheme 2</strong><br/> <p>(<b>a</b>) Photoinduced bisphosphination of alkynes with phosphorus-based interelement compounds; (<b>b</b>) applications of <span class="html-italic">vic</span>-1,2-bisphosphinoalkenes to double-bond isomerization.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch003-550.jpg?1645498708" title=" <strong>Scheme 3</strong><br/> <p>A plausible pathway for the photoinduced bisphosphination of alkyne with <b>1</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch004-550.jpg?1645498708" title=" <strong>Scheme 4</strong><br/> <p>Regio-complementary synthesis of <span class="html-italic">vic</span>-1,2-bisphosphinoalkenes.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch005-550.jpg?1645498709" title=" <strong>Scheme 5</strong><br/> <p>Base-promoted double-bond isomerization of <span class="html-italic">vic</span>-1,2-bisphosphinoalkene <b>5a</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch006-550.jpg?1645498709" title=" <strong>Scheme 6</strong><br/> <p>Base-catalyzed double-bond isomerization of <b>4f</b>.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01284/article_deploy/html/images/molecules-27-01284-sch007-550.jpg?1645498708" title=" <strong>Scheme 7</strong><br/> <p>Possible metal ligands from <span class="html-italic">vic</span>-diphosphine compounds.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1284'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="748188" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-748188" aria-controls="drop-supplementary-748188" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-748188" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/4/1249/s1?version=1644679514"> Supplementary File 1 (ZIP, 2074 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 19 pages, 8596 KiB </span> <a href="/1420-3049/27/4/1249/pdf?version=1644679513" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Identification of a Common Pharmacophore for Binding to MMP2 and RGD Integrin: Towards a Multitarget Approach to Inhibit Cancer Angiogenesis and Metastasis" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/4/1249">Identification of a Common Pharmacophore for Binding to MMP2 and RGD Integrin: Towards a Multitarget Approach to Inhibit Cancer Angiogenesis and Metastasis</a> <div class="authors"> by <span class="inlineblock "><strong>Lorenzo Baldini</strong>, </span><span class="inlineblock "><strong>Elena Lenci</strong>, </span><span class="inlineblock "><strong>Francesca Bianchini</strong> and </span><span class="inlineblock "><strong>Andrea Trabocchi</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(4), 1249; <a href="https://doi.org/10.3390/molecules27041249">https://doi.org/10.3390/molecules27041249</a> - 12 Feb 2022 </div> <a href="/1420-3049/27/4/1249#metrics">Cited by 4</a> | Viewed by 3297 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1249/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> During tumor angiogenesis different growth factors, cytokines and other molecules interact closely with each other to facilitate tumor cell invasion and metastatic diffusion. The most intensively studied as molecular targets in anti-angiogenic therapies are vascular endothelial growth factor (VEGF) and related receptors, integrin receptors and matrix metalloproteinases (MMPs). Considering the poor efficacy of cancer angiogenesis monotherapies, we reasoned combining the inhibition of α<sub>v</sub>β<sub>3</sub> and MMP2 as a multitarget approach to deliver a synergistic blockade of tumor cell migration, invasion and metastasis. Accordingly, we identified a common pharmacophore in the binding cavity of MMP2 and α<sub>v</sub>β<sub>3</sub>, demonstrating such approach with the design, synthesis and bioassays of tyrosine-derived peptidomimetics carrying the necessary functional groups to bind to key pharmacophoric elements of MMP2 and α<sub>v</sub>β<sub>3</sub> RGD integrin. <a href="/1420-3049/27/4/1249">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Featured_Papers_Medicinal_Chemistry ">Featured Papers in Medicinal Chemistry</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/4/1249/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev748188"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next748188"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next748188" data-cycle-prev="#prev748188" data-cycle-progressive="#images748188" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-748188-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g001-550.jpg?1644679588" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images748188" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g002-550.jpg?1644679588'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g003-550.jpg?1644679588'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g004-550.jpg?1644679588'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch001-550.jpg?1644679588'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch002-550.jpg?1644679588'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch003-550.jpg?1644679588'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-748188-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch004-550.jpg?1644679588'><p>Scheme 4</p></div></script></div></div><div id="article-748188-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g001-550.jpg?1644679588" title=" <strong>Figure 1</strong><br/> <p>Schematic representation of the signalling cascade, initiated by the interaction between proMMP2 and integrin α<sub>v</sub>β<sub>3</sub> on the cell surface of A549 epithelial cells (lung cancer tumour cells), leading to the expression of the major pro-angiogenic growth factor of vascular endothelium VEGF-A, which drives cellular processes such as vascularization, endothelial cell differentiation and microtubule formation.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g002-550.jpg?1644679588" title=" <strong>Figure 2</strong><br/> <p>Design of multitarget α<sub>v</sub>β<sub>3</sub>-MMP2 tyrosine-derived peptidomimetics; (<b>left</b>) binding mode of Kessler’s peptidomimetic within α<sub>v</sub>β<sub>3</sub>; (<b>right</b>) hypothesized binding mode of designed sulfonamido tyrosine peptidomimetics within MMP2 catalytic site; R<sup>1</sup> = H, C(NH)NH<sub>2</sub>, R<sup>2</sup> = H, Ph, NO<sub>2</sub>, X = OH, NHOH.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g003-550.jpg?1644679588" title=" <strong>Figure 3</strong><br/> <p>Dose-response assay curves for compound <b>19</b> vs. MMP2 ((<b>a</b>), IC<sub>50</sub> = 55 nM) and α<sub>v</sub>β<sub>3</sub> ((<b>b</b>) IC<sub>50</sub> = 370 nM). IC<sub>50</sub> values were calculated as the concentration of compound required for 50% inhibition of biotinylated vitronectin binding, as estimated by the GraphPad Prism software.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-g004-550.jpg?1644679588" title=" <strong>Figure 4</strong><br/> <p>Lowest energy conformation resulting from molecular docking of compound 19 within α<sub>v</sub>β<sub>3</sub> integrin (<b>a</b>) and MMP2 (right) binding site. Key residues of the integrin binding site are in magenta (<b>a</b>), those of MMP2 in cyan (<b>b</b>). Non polar hydrogen atoms are omitted for clarity.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch001-550.jpg?1644679588" title=" <strong>Scheme 1</strong><br/> <p>Synthesis of peptidomimetics <b>9</b> and <b>10.</b> <span class="html-italic">Reagents and conditions</span>: (a) CbzCl (1.5 eq.), NaHCO<sub>3</sub> (2.5 eq.), H<sub>2</sub>O/EtOAc, 0 °C to 25 °C, 16 h; (b) PPh<sub>3</sub> (1.2 eq.), DIAD (1.2 eq.), propanediol (1.2 eq.), an. THF, μW, −10 °C to 65 °C, 1 h; (c) PPh<sub>3</sub> (1.1 eq.), DIAD (1.1 eq.), 1,3-bis(<span class="html-italic">tert</span>-butoxycarbonyl)guanidine (1.1 eq.), an. THF, μW, −10 °C to 110 °C, 30 min; (d) H<sub>2</sub>, Pd/C (50 mg/mmol), AcOH (cat.), MeOH, 25 °C, 16 h; (e) PhSO<sub>2</sub>Cl (1 eq.), DMAP (0.2 eq.), TEA (2 eq.), an. DCM, 0 °C to 25 °C, 16 h; (f) BiphSO<sub>2</sub>Cl (1.9 eq.), DMAP (0.2 eq.), TEA (2.9 eq.), an. DCM, 0 °C to 25 °C, 16 h; (g) 1M LiOH (2.5 mL/mmol), MeOH, 25 °C, 16 h; (h) 3M HCl (5 mL/mmol), 25 °C, 16 h; (i) 95% TFA, 5% water, 5% TES, 25 °C, 2 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch002-550.jpg?1644679588" title=" <strong>Scheme 2</strong><br/> <p>Synthesis of carboxylic acids <b>16</b> and <b>17.</b> <span class="html-italic">Reagents and conditions</span>: (a) PPh<sub>3</sub> (1.1 eq.), DIAD (1.1 eq.), <span class="html-italic">tert</span>-butyl (3-hydroxypropyl)carbamate (1.1 eq.), an. THF, μW, −10 °C to 110 °C, 30 min; (b) H<sub>2</sub>, Pd/C (50 mg/mmol), AcOH (cat.), MeOH, 25 °C, 16 h; (c) BiphSO<sub>2</sub>Cl (1.1 eq.), DMAP (0.2 eq.), TEA (2.9 eq.), an. DCM, 0 °C to 25 °C, 16 h; (d) <span class="html-italic">p</span>NO<sub>2</sub>PhSO<sub>2</sub>Cl (1.1 eq.), DMAP (0.2 eq.), TEA (3 eq.), an. DCM, 0 °C to 25 °C, 16 h; (e) 1M LiOH (4.5 mL/mmol), MeOH, 25 °C, 16 h; (f) 3M HCl (5 mL/mmol), 25 °C, 16 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch003-550.jpg?1644679588" title=" <strong>Scheme 3</strong><br/> <p>Synthesis of hydroxamic acids <b>18</b> and <b>19.</b> <span class="html-italic">Reagents and conditions</span>: (a) NH<sub>2</sub>OH<sup>.</sup>HCl (10 eq.) in MeOH, KOH (15 eq.) in MeOH, 25 °C, 16 h; column chromatography, then, 3M HCl, 25 °C, 16 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01249/article_deploy/html/images/molecules-27-01249-sch004-550.jpg?1644679588" title=" <strong>Scheme 4</strong><br/> <p>Synthesis of hydroxamic acid <b>21.</b> <span class="html-italic">Reagents and conditions</span>: (a) BiphSO<sub>2</sub>Cl (1 eq.), Na<sub>2</sub>CO<sub>3</sub> (1 eq.), an. THF-DMF, 0 °C to 25 °C, 1 h; (b) NH<sub>2</sub>OH<sup>.</sup>HCl (10 eq.) in MeOH, KOH (15 eq.) in MeOH, 25 °C, 16 h; column chromatography, then, 3M HCl, 25 °C, 16 h.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/4/1249'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="743933" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 24 pages, 3323 KiB </span> <a href="/1420-3049/27/3/1112/pdf?version=1644313702" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Pyrazine and Phenazine Heterocycles: Platforms for Total Synthesis and Drug Discovery" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Review</span></div> <a class="title-link" href="/1420-3049/27/3/1112">Pyrazine and Phenazine Heterocycles: Platforms for Total Synthesis and Drug Discovery</a> <div class="authors"> by <span class="inlineblock "><strong>Robert W. Huigens III</strong>, </span><span class="inlineblock "><strong>Beau R. Brummel</strong>, </span><span class="inlineblock "><strong>Srinivasarao Tenneti</strong>, </span><span class="inlineblock "><strong>Aaron T. Garrison</strong> and </span><span class="inlineblock "><strong>Tao Xiao</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(3), 1112; <a href="https://doi.org/10.3390/molecules27031112">https://doi.org/10.3390/molecules27031112</a> - 7 Feb 2022 </div> <a href="/1420-3049/27/3/1112#metrics">Cited by 37</a> | Viewed by 6866 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> There are numerous pyrazine and phenazine compounds that demonstrate biological activities relevant to the treatment of disease. In this review, we discuss pyrazine and phenazine agents that have shown potential therapeutic value, including several clinically used agents. In addition, we cover some basic <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/3/1112/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> There are numerous pyrazine and phenazine compounds that demonstrate biological activities relevant to the treatment of disease. In this review, we discuss pyrazine and phenazine agents that have shown potential therapeutic value, including several clinically used agents. In addition, we cover some basic science related to pyrazine and phenazine heterocycles, which possess interesting reactivity profiles that have been on display in numerous cases of innovative total synthesis approaches, synthetic methodologies, drug discovery efforts, and medicinal chemistry programs. The majority of this review is focused on presenting instructive total synthesis and medicinal chemistry efforts of select pyrazine and phenazine compounds, and we believe these incredible heterocycles offer promise in medicine. <a href="/1420-3049/27/3/1112">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/heterocyclicorganometallic_chemistry ">Heterocyclic and Organometallic Chemistry: Theme Issue in Honor of Prof. Daniel Comins’ Great Contribution</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/3/1112/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev743933"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next743933"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next743933" data-cycle-prev="#prev743933" data-cycle-progressive="#images743933" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-743933-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g001-550.jpg?1644313848" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images743933" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g002-550.jpg?1644313847'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g003-550.jpg?1644313847'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch001-550.jpg?1644313847'><p>Scheme 1</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch002-550.jpg?1644313847'><p>Scheme 2</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch003-550.jpg?1644313847'><p>Scheme 3</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch004-550.jpg?1644313848'><p>Scheme 4</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch005-550.jpg?1644313847'><p>Scheme 5</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch006-550.jpg?1644313848'><p>Scheme 6</p></div> --- <div class='openpopupgallery' data-imgindex='9' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch007-550.jpg?1644313848'><p>Scheme 7</p></div> --- <div class='openpopupgallery' data-imgindex='10' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch008-550.jpg?1644313847'><p>Scheme 8</p></div> --- <div class='openpopupgallery' data-imgindex='11' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch009-550.jpg?1644313847'><p>Scheme 9</p></div> --- <div class='openpopupgallery' data-imgindex='12' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch010-550.jpg?1644313847'><p>Scheme 10</p></div> --- <div class='openpopupgallery' data-imgindex='13' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch011-550.jpg?1644313847'><p>Scheme 11</p></div> --- <div class='openpopupgallery' data-imgindex='14' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch012-550.jpg?1644313848'><p>Scheme 12</p></div> --- <div class='openpopupgallery' data-imgindex='15' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch013-550.jpg?1644313847'><p>Scheme 13</p></div> --- <div class='openpopupgallery' data-imgindex='16' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch014-550.jpg?1644313848'><p>Scheme 14</p></div> --- <div class='openpopupgallery' data-imgindex='17' data-target='article-743933-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch015-550.jpg?1644313848'><p>Scheme 15</p></div></script></div></div><div id="article-743933-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g001-550.jpg?1644313848" title=" <strong>Figure 1</strong><br/> <p>The chemical structures of pyrazine (<b>1</b>) and phenazine (<b>2</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g002-550.jpg?1644313847" title=" <strong>Figure 2</strong><br/> <p>Pyrazine heterocycles that possess a diversity of biological activities, including multiple therapeutic agents used in human medicine.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-g003-550.jpg?1644313847" title=" <strong>Figure 3</strong><br/> <p>Phenazine heterocycles that demonstrate biological activities, including FDA-approved clofazimine.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch001-550.jpg?1644313847" title=" <strong>Scheme 1</strong><br/> <p>Reisman’s retrosynthetic analysis of ritterazine B (<b>32</b>) from <span class="html-italic">trans</span>-dehydroandrosterone (<b>37</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch002-550.jpg?1644313847" title=" <strong>Scheme 2</strong><br/> <p>Key steps in Reisman’s total synthesis of ritterazine B (<b>32</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch003-550.jpg?1644313847" title=" <strong>Scheme 3</strong><br/> <p>Overview of Shair’s total synthesis of cephalostatin 1 (<b>8</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch004-550.jpg?1644313848" title=" <strong>Scheme 4</strong><br/> <p>Sestelo’s retrosynthetic plan and asymmetric synthesis of (-)-barrenazines A (<b>10</b>) and B (<b>11</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch005-550.jpg?1644313847" title=" <strong>Scheme 5</strong><br/> <p>Itami and Yamaguchi’s total synthesis of dragmacidin D (<b>12</b>) using an innovative C-H/C-H coupling methodology.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch006-550.jpg?1644313848" title=" <strong>Scheme 6</strong><br/> <p>Singh’s synthesis of botryllazine A (<b>15</b>) utilizing an iron-catalyzed C-H coupling method of pyrazines.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch007-550.jpg?1644313848" title=" <strong>Scheme 7</strong><br/> <p>Sperry and Kim’s total synthesis of alocasin A (<b>13</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch008-550.jpg?1644313847" title=" <strong>Scheme 8</strong><br/> <p>Barrow’s synthesis of 2-hydroxymethyl-3-(3-methylbutyl)-5-methylpyrazine (<b>91</b>) via the use of <span class="html-italic">N</span>-oxide intermediates and a nickel-catalyzed Kumada–Corriu cross-coupling reaction.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch009-550.jpg?1644313847" title=" <strong>Scheme 9</strong><br/> <p>Knochel’s total synthesis of coelenterazine (<b>106</b>) by use of regio- and chemoselective metalation reactions.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch010-550.jpg?1644313847" title=" <strong>Scheme 10</strong><br/> <p>Biomimetically inspired synthesis of 2,5-disubstituted pyrazine alkaloids.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch011-550.jpg?1644313847" title=" <strong>Scheme 11</strong><br/> <p>Guo’s chemical synthesis of the antiviral agent favipiravir (<b>9</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch012-550.jpg?1644313848" title=" <strong>Scheme 12</strong><br/> <p>Kuromachi’s total synthesis of <span class="html-italic">N</span>-alkyl-2-halophenazin-1-one natural products.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch013-550.jpg?1644313847" title=" <strong>Scheme 13</strong><br/> <p>Rongved’s total synthesis of iodinin (<b>29</b>), myxin (<b>30</b>), and related analogues for evaluation against leukemia cancer cells.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch014-550.jpg?1644313848" title=" <strong>Scheme 14</strong><br/> <p>Yang’s asymmetric synthesis of (-)-streptophenazines A (<b>144</b>) and G (<b>154</b>).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01112/article_deploy/html/images/molecules-27-01112-sch015-550.jpg?1644313848" title=" <strong>Scheme 15</strong><br/> <p>Huigens lab’s key synthesis efforts related to halogenated phenazines that demonstrate potent antibacterial and biofilm-eradicating activities.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1112'>Full article</a></strong> "></a></div> </div> </div> <div class="generic-item article-item"> <input class="article-list-checkbox export-element" type="checkbox" name="articles_ids[]" value="742771" data-select-all-name="article-listing"> <div class="article-content"> <div class="label right label__btn"> <a data-dropdown="drop-supplementary-742771" aria-controls="drop-supplementary-742771" aria-expanded="false" title="Supplementary Material"> <i class="material-icons">attachment</i> </a> <div id="drop-supplementary-742771" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide" data-dropdown-content aria-hidden="true" tabindex="-1"> Supplementary material: <br/> <a href="/1420-3049/27/3/1071/s1?version=1644059025"> Supplementary File 1 (ZIP, 910 KiB) </a><br/> </div> </div> <div class="label right label__btn"> <span style="font-size: 12px; color: #1a1a1a;"> 17 pages, 6023 KiB </span> <a href="/1420-3049/27/3/1071/pdf?version=1644059024" class="UD_Listings_ArticlePDF" title="Article PDF" data-name="Investigating the Broad Matrix-Gate Network in the Mitochondrial ADP/ATP Carrier through Molecular Dynamics Simulations" data-journal="molecules"> <i class="material-icons custom-download"></i> </a> </div> <div class="article-icons"><span class="label openaccess" data-dropdown="drop-article-label-openaccess" aria-expanded="false">Open Access</span><span class='label choice' data-dropdown='drop-article-label-choice' aria-expanded='false' data-editorschoiceaddition='<a href="/journal/molecules/editors_choice">More Editor’s choice articles in journal <em>Molecules</em>.</a>'>Editor’s Choice</span><span class="label articletype">Article</span></div> <a class="title-link" href="/1420-3049/27/3/1071">Investigating the Broad Matrix-Gate Network in the Mitochondrial ADP/ATP Carrier through Molecular Dynamics Simulations</a> <div class="authors"> by <span class="inlineblock "><strong>Shihao Yao</strong>, </span><span class="inlineblock "><strong>Boyuan Ma</strong>, </span><span class="inlineblock "><strong>Qiuzi Yi</strong>, </span><span class="inlineblock "><strong>Min-Xin Guan</strong> and </span><span class="inlineblock "><strong>Xiaohui Cang</strong></span> </div> <div class="color-grey-dark"> <em>Molecules</em> <b>2022</b>, <em>27</em>(3), 1071; <a href="https://doi.org/10.3390/molecules27031071">https://doi.org/10.3390/molecules27031071</a> - 5 Feb 2022 </div> <a href="/1420-3049/27/3/1071#metrics">Cited by 6</a> | Viewed by 2665 <div class="abstract-div"> <a href="#" onclick="$(this).next('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> <strong>Abstract </strong> </a> <div class="abstract-cropped inline"> The mitochondrial ADP/ATP carrier (AAC) exports ATP and imports ADP through alternating between cytosol-open (c-) and matrix-open (m-) states. The salt bridge networks near the matrix side (m-gate) and cytosol side (c-gate) are thought to be crucial for state transitions, yet our knowledge <a href="#" data-counterslink = "https://www.mdpi.com/1420-3049/27/3/1071/more" onclick="$(this).parents('.abstract-cropped').toggleClass('inline').next('.abstract-full').toggleClass('inline'); return false;"> [...] Read more.</a> </div> <div class="abstract-full "> The mitochondrial ADP/ATP carrier (AAC) exports ATP and imports ADP through alternating between cytosol-open (c-) and matrix-open (m-) states. The salt bridge networks near the matrix side (m-gate) and cytosol side (c-gate) are thought to be crucial for state transitions, yet our knowledge on these networks is still limited. In the current work, we focus on more conserved m-gate network in the c-state AAC. All-atom molecular dynamics (MD) simulations on a variety of mutants and the CATR-AAC complex have revealed that: (1) without involvement of other positive residues, the charged residues from the three Px[DE]xx[KR] motifs only are prone to form symmetrical inter-helical network; (2) R235 plays a determinant role for the asymmetry in m-gate network of AAC; (3) R235 significantly strengthens the interactions between H3 and H5; (4) R79 exhibits more significant impact on m-gate than R279; (5) CATR promotes symmetry in m-gate mainly through separating R234 from D231 and fixing R79; (6) vulnerability of the H2-H3 interface near matrix side could be functionally important. Our results provide new insights into the highly conserved yet variable m-gate network in the big mitochondrial carrier family. <a href="/1420-3049/27/3/1071">Full article</a> </div> </div> <div class="belongsTo" style="margin-bottom: 10px;"> (This article belongs to the Special Issue <a href=" /journal/molecules/special_issues/Dynamics_Simulation ">Molecular Dynamics Simulations: Advances and Applications</a>)<br/> </div> <a href="#" class="abstract-figures-show" data-counterslink = "https://www.mdpi.com/1420-3049/27/3/1071/show" ><span >►</span><span style=" display: none;">▼</span> Show Figures </a><div class="abstract-image-preview "><div class="arrow left-arrow" id="prev742771"><i class="fa fa-caret-left"></i></div><div class="arrow right-arrow" id="next742771"><i class="fa fa-caret-right"></i></div><div class="absgraph cycle-slideshow manual" data-cycle-fx="scrollHorz" data-cycle-timeout="0" data-cycle-next="#next742771" data-cycle-prev="#prev742771" data-cycle-progressive="#images742771" data-cycle-slides=">div" data-cycle-log="false"><div class='openpopupgallery cycle-slide' data-imgindex='0' data-target='article-742771-popup'><span class="helper"></span><img src="" data-src="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g001-550.jpg?1644059135" alt="" style="border: 0;"><p>Figure 1</p></div><script id="images742771" type="text/cycle" data-cycle-split="---"><div class='openpopupgallery' data-imgindex='1' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g002-550.jpg?1644059135'><p>Figure 2</p></div> --- <div class='openpopupgallery' data-imgindex='2' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g003-550.jpg?1644059135'><p>Figure 3</p></div> --- <div class='openpopupgallery' data-imgindex='3' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g004-550.jpg?1644059135'><p>Figure 4</p></div> --- <div class='openpopupgallery' data-imgindex='4' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g005-550.jpg?1644059135'><p>Figure 5</p></div> --- <div class='openpopupgallery' data-imgindex='5' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g006-550.jpg?1644059135'><p>Figure 6</p></div> --- <div class='openpopupgallery' data-imgindex='6' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g007-550.jpg?1644059135'><p>Figure 7</p></div> --- <div class='openpopupgallery' data-imgindex='7' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g008-550.jpg?1644059135'><p>Figure 8</p></div> --- <div class='openpopupgallery' data-imgindex='8' data-target='article-742771-popup'><span class="helper"></span><img src='https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g009-550.jpg?1644059135'><p>Figure 9</p></div></script></div></div><div id="article-742771-popup" class="popupgallery" style="display: inline; line-height: 200%"><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g001-550.jpg?1644059135" title=" <strong>Figure 1</strong><br/> <p>The schematic diagram of AAC’s tripartite structure and function. (<b>a</b>) AAC’s tripartite structure. Three domains of AAC are colored in grey, yellow and blue, respectively. (<b>b</b>) The schematic diagram of AAC’s function. The c-state (PDB: 1OKC [<a href="#B8-molecules-27-01071" class="html-bibr">8</a>]) and m-state (PDB: 6GCI [<a href="#B15-molecules-27-01071" class="html-bibr">15</a>]) AAC are shown in cartoon. ADP and ATP are shown in spheres. (<b>c</b>) The broad matrix gate in the c-state AAC. The charged residues from the Px[DE]xx[KR] motifs are shown as light pink spheres, and the non-motif charged residues are colored as magenta.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g002-550.jpg?1644059135" title=" <strong>Figure 2</strong><br/> <p>The m-gate electrostatic network in the various mutants (<b>a</b>,<b>c</b>–<b>f</b>) and wild-type (<b>b</b>) of apo AAC. Yellow dash lines are added manually to indicate the salt bridges and H-bonds that do not appear in the shown snapshots. Salt bridges or H-bonds with the occupancies lower than 5% are not shown. For mutants, occupancies of salt bridges and H-bonds are calculated on each trajectory from 200 ns to 1 μs. The occupancies in the <span class="html-italic">wild-type AAC</span> were averaged over last 2 μs of the three 3-μs trajectories.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g003-550.jpg?1644059135" title=" <strong>Figure 3</strong><br/> <p>The m-gate electrostatic network in the AAC-CATR complex. Top view (<b>a</b>) and side view (<b>b</b>) of the AAC-CATR interactions in the last simulation snapshot (1 μs). CATR is shown in yellow think sticks. In the side-view figure, protein backbones are shown in transparent cartoon. Yellow dash lines are added manually to indicate the H-bonds that do not appear in the shown snapshot. Q36 forms H-bond with both D231 (occupancy: 71%) and K32 (occupancy: 94%), and these values are not labeled in the figure because of limited space. The H-bonds with the occupancies lower than 5% are not shown. The occupancies are calculated on the trajectory from 200 ns to 1 μs. (<b>c</b>) A schematic representation of the CATR-AAC interactions. The electrostatic interactions between CATR and AAC are shown in cyan lines, and the interactions within the m-gate network are shown in blue lines.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g004-550.jpg?1644059135" title=" <strong>Figure 4</strong><br/> <p>Conformations of R137 are quite different with and without presence of CATR. In the crystal structure (<b>a</b>) and the MD simulation structure (<b>b</b>) of CATR-AAC complex, the guanidine group of R137 binds with backbone carbonyl of R71 and fills the gap between the [YWF][KR]G motif and A26. (<b>c</b>) The gap between the [YWF][KR]G motif and A26 is filled with water molecules in the simulations on apo AAC (<span class="html-italic">wild-type AAC</span>). (<b>d</b>) Sequence logo of A26 and residues involved in the interaction between the [YWF][KR]G motif and Pro kink region in orthologs of AAC, SLC25A42, GDC (graves disease carrier), SCaMC (calcium-binding mitochondrial carrier protein), SLC25A41 and SLC25A43, respectively. Equivalent positions among these paralogs are aligned in the same column. The multiple sequence alignment of SLC25A43 was calculated based on 171 sequences from the UniProt database. The results of other carriers were obtained from our recent work [<a href="#B17-molecules-27-01071" class="html-bibr">17</a>]. The residues are numbered based on hAAC1 (human ADP/ATP carrier), SLC25A42, SLC25A16, SCaMC1, SLC25A41 and SLC25A43, respectively.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g005-550.jpg?1644059135" title=" <strong>Figure 5</strong><br/> <p>Structures and dynamics of AAC were not significantly affected in the <span class="html-italic">all3A-AAC</span>, <span class="html-italic">R235A-AAC</span> and <span class="html-italic">R279A-AAC</span> mutants. (<b>a</b>–<b>c</b>) RMSF of three mutants compared to that of <span class="html-italic">wild-type AAC</span>. The RMSF were calculated on each trajectory from 200 ns to 1 μs. (<b>d</b>–<b>f</b>) Superposition of the structures at the end of the simulation (1 μs) to the crystal structure (PDB:1OKC).</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g006-550.jpg?1644059135" title=" <strong>Figure 6</strong><br/> <p>The R79A mutation causes drastic conformational change around C1 loop. (<b>a</b>) RMSF of the mutant compared to that of <span class="html-italic">wild-type AAC</span>. The RMSF were calculated on each trajectory from 200 ns to 1 μs. (<b>b</b>) Superposition of the structures at the end of the simulations of <span class="html-italic">R79A-AAC</span> and <span class="html-italic">wild-type AAC</span> (1.5 μs). (<b>c</b>) Time evolution of the minimum distance between R104 and D195 heavy atoms during the simulations. (<b>d</b>) A big crevice formed between the cytoplasmic halves of H3 and H4.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g007-550.jpg?1644059135" title=" <strong>Figure 7</strong><br/> <p>Changes in the structure and dynamics in <span class="html-italic">all4A-AAC</span>. (<b>a</b>) Superposition of the structures at the end of the simulation (1 μs) to the crystal structure (PDB: 1OKC). The H2, C1 loop, H3 and M2 loop of the simulated structure are present in cartoon mode and highlighted in orange. (<b>b</b>) RMSF of <span class="html-italic">all4A-AAC</span> compared to that of <span class="html-italic">wild-type AAC</span>. The RMSF were calculated on each trajectory from 200 ns to 1 μs. (<b>c</b>) A crevice formed between the matrix end of H3 and the β-turn structure of the [YWF][KR]G motif which allows for the passing through of the solvent. (<b>d</b>) The crevice between H2 and H3 interface became closed after transient opening.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g008-550.jpg?1644059135" title=" <strong>Figure 8</strong><br/> <p>Geometrical symmetry around the m-gate level in c-state AAC. (<b>a</b>) The model used to calculate deviations from the C<sub>3</sub>-symmetry score. The triplets used for calculation are shown in spheres. (<b>b</b>) The average ψ values of the <span class="html-italic">wild-type</span> simulation structure and crystal structure of c-state AAC (PDB: 1OKC). (<b>c</b>–<b>h</b>) Time evolution of the geometric symmetry analysis in <span class="html-italic">wild-type AAC</span> and the five mutants. Gradient colors are used to indicate the extent to which each plane deviates from C<sub>3</sub>-symmetry.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a><a href="https://pub.mdpi-res.com/molecules/molecules-27-01071/article_deploy/html/images/molecules-27-01071-g009-550.jpg?1644059135" title=" <strong>Figure 9</strong><br/> <p>Sequence logo presentation of 53 human mitochondria carriers. Only residues around the m-gate level in odd-numbered helices (<b>left</b>) and even-numbered helices (<b>right</b>) are shown. Triplet positions at least with one charged residue in AAC are highlighted with red arrows.</p> <strong style='display: block; margin-top: 10px; font-size: 18px;'><a style='color: #fff' href='/1420-3049/27/3/1071'>Full article</a></strong> "></a></div> </div> </div> <div class="row footer"> <div class="listing-select-options"> <div class="columns small-12"> <div class="select generic-item"> <a href="#" class="export-options-show export-element export-expanded"> Show export options <i class="material-icons">expand_more</i> </a> <a href="#" class="export-options-show export-element"> Show export options <i class="material-icons">expand_less</i> </a> </div> <div class="listing-export-options export-element"> <div class="export-element" style="margin-top: 10px; margin-bottom: 10px;"> <input type="checkbox" class="selector selectUnselectAll bb-checkbox" id="selectUnselectAll" data-select-all="article-listing"> <div class="indented bb-indented"> Select all </div> </div> <div class="indented1"> <span style="display: inline-block; margin-right: 15px; margin-bottom: 10px;">Export citation of selected articles as:</span> <br class="show-for-medium-down" /> <div class="listing-export"> <select class="chosen-select inline" name="format_bottom"> <option value="plaintext"> Plain Text </option> <option value="bibtex"> BibTeX </option> <option value="bibtex_no_abstract"> BibTeX (without abstracts) </option> <option value="endnote"> Endnote </option> <option value="endnote_no_abstract"> Endnote (without abstracts) </option> <option value="tab_delimited"> Tab-delimited </option> <option value="ris"> RIS </option> </select> </div> <input type="submit" value="Export" class="articleBrowserSubmit button button--color-inversed" id="articleBrowserExport_bottom"> </div> <div style="border-top: 1px solid #ededed; height: 5px; margin-top: 15px;"> </div> </div> <a id="link-export-modal-nothing-selected" data-reveal-id="export-modal-nothing-selected" style="display: none;"></a> <div id="export-modal-nothing-selected" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2>Error</h2> Oops... you haven't selected anything for export. </div> <div class="small-12 columns"> <a class="button button--color" onclick="$(this).closest('.reveal-modal-new').foundation('reveal', 'close'); return false;">Ok</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> </div> <div> <div class="columns large-6 medium-6 small-12"> Displaying article 1-50 on page 1 of 3. </div> <div class="columns large-6 medium-6 small-12 text-right small-text-left pages"> <br class="show-for-medium-down" /> <span class="pageSelect" style="float: right;"> Go to page <a href="#" onclick="return false;" class="active">1</a> <a href="/journal/molecules/editors_choice?listby=date&page_no=2&page_count=50">2</a> <a href="/journal/molecules/editors_choice?listby=date&page_no=3&page_count=50">3</a> <a href="/journal/molecules/editors_choice?listby=date&page_no=2&page_count=50"><i class="material-icons">chevron_right</i></a> </span> </div> <div style="clear: both"></div> </div> </div> </div> </div> </form> </div> </div> </div> </div> </div> </section> <div id="footer"> <div class="journal-info"> <span> <em><a class="Var_JournalInfo" href="/journal/molecules">Molecules</a></em>, EISSN 1420-3049, Published by MDPI </span> <div class="large-right"> <span> <a href="/rss/journal/molecules" class="rss-link">RSS</a> </span> <span> <a href="/journal/molecules/toc-alert">Content Alert</a> </span> </div> </div> <div class="row full-width footer-links" data-equalizer="footer" data-equalizer-mq="small"> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Further Information </h3> <a href="/apc"> Article Processing Charges </a> <a href="/about/payment"> Pay an Invoice </a> <a href="/openaccess"> Open Access Policy </a> <a href="/about/contact"> Contact MDPI </a> <a href="https://careers.mdpi.com" target="_blank" rel="noopener noreferrer"> Jobs at MDPI </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns" data-equalizer-watch="footer"> <h3> Guidelines </h3> <a href="/authors"> For Authors </a> <a href="/reviewers"> For Reviewers </a> <a href="/editors"> For Editors </a> <a href="/librarians"> For Librarians </a> <a href="/publishing_services"> For Publishers </a> <a href="/societies"> For Societies </a> <a href="/conference_organizers"> For Conference Organizers </a> </div> <div class="large-2 large-push-4 medium-3 small-6 columns"> <h3> MDPI Initiatives </h3> <a href="https://sciforum.net" target="_blank" rel="noopener noreferrer"> Sciforum </a> <a href="https://www.mdpi.com/books" target="_blank" rel="noopener noreferrer"> MDPI Books </a> <a href="https://www.preprints.org" target="_blank" rel="noopener noreferrer"> Preprints.org </a> <a href="https://www.scilit.net" target="_blank" rel="noopener noreferrer"> Scilit </a> <a href="https://sciprofiles.com?utm_source=mpdi.com&utm_medium=bottom_menu&utm_campaign=initiative" target="_blank" rel="noopener noreferrer"> SciProfiles </a> <a href="https://encyclopedia.pub" target="_blank" rel="noopener noreferrer"> Encyclopedia </a> <a href="https://jams.pub" target="_blank" rel="noopener noreferrer"> JAMS </a> <a href="/about/proceedings"> Proceedings Series </a> </div> <div class="large-2 large-push-4 medium-3 small-6 right-border-large-without columns UA_FooterFollowMDPI"> <h3> Follow MDPI </h3> <a href="https://www.linkedin.com/company/mdpi" target="_blank" rel="noopener noreferrer"> LinkedIn </a> <a href="https://www.facebook.com/MDPIOpenAccessPublishing" target="_blank" rel="noopener noreferrer"> Facebook </a> <a href="https://twitter.com/MDPIOpenAccess" target="_blank" rel="noopener noreferrer"> Twitter </a> </div> <div id="footer-subscribe" class="large-4 large-pull-8 medium-12 small-12 left-border-large columns"> <div class="footer-subscribe__container"> <img class="show-for-large-up" src="https://pub.mdpi-res.com/img/design/mdpi-pub-logo-white-small.png?71d18e5f805839ab?1732286508" alt="MDPI" title="MDPI Open Access Journals" style="height: 50px; margin-bottom: 10px;"> <form id="newsletter" method="POST" action="/subscribe"> <p> Subscribe to receive issue release notifications and newsletters from MDPI journals </p> <select multiple id="newsletter-journal" class="foundation-select" name="journals[]"> <option value="acoustics">Acoustics</option> <option value="amh">Acta Microbiologica Hellenica</option> <option value="actuators">Actuators</option> <option value="admsci">Administrative Sciences</option> <option value="adolescents">Adolescents</option> <option value="arm">Advances in Respiratory Medicine</option> <option value="aerobiology">Aerobiology</option> <option value="aerospace">Aerospace</option> <option value="agriculture">Agriculture</option> <option value="agriengineering">AgriEngineering</option> <option value="agrochemicals">Agrochemicals</option> <option value="agronomy">Agronomy</option> <option value="ai">AI</option> <option value="air">Air</option> <option value="algorithms">Algorithms</option> <option value="allergies">Allergies</option> <option value="alloys">Alloys</option> <option value="analytica">Analytica</option> <option value="analytics">Analytics</option> <option value="anatomia">Anatomia</option> <option value="anesthres">Anesthesia Research</option> <option value="animals">Animals</option> <option value="antibiotics">Antibiotics</option> <option value="antibodies">Antibodies</option> <option value="antioxidants">Antioxidants</option> <option value="applbiosci">Applied Biosciences</option> <option value="applmech">Applied Mechanics</option> <option value="applmicrobiol">Applied Microbiology</option> <option value="applnano">Applied Nano</option> <option value="applsci">Applied Sciences</option> <option value="asi">Applied System Innovation</option> <option value="appliedchem">AppliedChem</option> <option value="appliedmath">AppliedMath</option> <option value="aquacj">Aquaculture Journal</option> <option value="architecture">Architecture</option> <option value="arthropoda">Arthropoda</option> <option value="arts">Arts</option> <option value="astronomy">Astronomy</option> <option value="atmosphere">Atmosphere</option> <option value="atoms">Atoms</option> <option value="audiolres">Audiology Research</option> <option value="automation">Automation</option> <option value="axioms">Axioms</option> <option value="bacteria">Bacteria</option> <option value="batteries">Batteries</option> <option value="behavsci">Behavioral Sciences</option> <option value="beverages">Beverages</option> <option value="BDCC">Big Data and Cognitive Computing</option> <option value="biochem">BioChem</option> <option value="bioengineering">Bioengineering</option> <option value="biologics">Biologics</option> <option value="biology">Biology</option> <option value="blsf">Biology and Life Sciences Forum</option> <option value="biomass">Biomass</option> <option value="biomechanics">Biomechanics</option> <option value="biomed">BioMed</option> <option value="biomedicines">Biomedicines</option> <option value="biomedinformatics">BioMedInformatics</option> <option value="biomimetics">Biomimetics</option> <option value="biomolecules">Biomolecules</option> <option value="biophysica">Biophysica</option> <option value="biosensors">Biosensors</option> <option value="biotech">BioTech</option> <option value="birds">Birds</option> <option value="blockchains">Blockchains</option> <option value="brainsci">Brain Sciences</option> <option value="buildings">Buildings</option> <option value="businesses">Businesses</option> <option value="carbon">C</option> <option value="cancers">Cancers</option> <option value="cardiogenetics">Cardiogenetics</option> <option value="catalysts">Catalysts</option> <option value="cells">Cells</option> <option value="ceramics">Ceramics</option> <option value="challenges">Challenges</option> <option value="ChemEngineering">ChemEngineering</option> <option value="chemistry">Chemistry</option> <option value="chemproc">Chemistry Proceedings</option> <option value="chemosensors">Chemosensors</option> <option value="children">Children</option> <option value="chips">Chips</option> <option value="civileng">CivilEng</option> <option value="cleantechnol">Clean Technologies</option> <option value="climate">Climate</option> <option value="ctn">Clinical and Translational Neuroscience</option> <option value="clinbioenerg">Clinical Bioenergetics</option> <option value="clinpract">Clinics and Practice</option> <option value="clockssleep">Clocks & Sleep</option> <option value="coasts">Coasts</option> <option value="coatings">Coatings</option> <option value="colloids">Colloids and Interfaces</option> <option value="colorants">Colorants</option> <option value="commodities">Commodities</option> <option value="complications">Complications</option> <option value="compounds">Compounds</option> <option value="computation">Computation</option> <option value="csmf">Computer Sciences & Mathematics Forum</option> <option value="computers">Computers</option> <option value="condensedmatter">Condensed Matter</option> <option value="conservation">Conservation</option> <option value="constrmater">Construction Materials</option> <option value="cmd">Corrosion and Materials Degradation</option> <option value="cosmetics">Cosmetics</option> <option value="covid">COVID</option> <option value="crops">Crops</option> <option value="cryo">Cryo</option> <option value="cryptography">Cryptography</option> <option value="crystals">Crystals</option> <option value="cimb">Current Issues in Molecular Biology</option> <option value="curroncol">Current Oncology</option> <option value="dairy">Dairy</option> <option value="data">Data</option> <option value="dentistry">Dentistry Journal</option> <option value="dermato">Dermato</option> <option value="dermatopathology">Dermatopathology</option> <option value="designs">Designs</option> <option value="diabetology">Diabetology</option> <option value="diagnostics">Diagnostics</option> <option value="dietetics">Dietetics</option> <option value="digital">Digital</option> <option value="disabilities">Disabilities</option> <option value="diseases">Diseases</option> <option value="diversity">Diversity</option> <option value="dna">DNA</option> <option value="drones">Drones</option> <option value="ddc">Drugs and Drug Candidates</option> <option value="dynamics">Dynamics</option> <option value="earth">Earth</option> <option value="ecologies">Ecologies</option> <option value="econometrics">Econometrics</option> <option value="economies">Economies</option> <option value="education">Education Sciences</option> <option value="electricity">Electricity</option> <option value="electrochem">Electrochem</option> <option value="electronicmat">Electronic Materials</option> <option value="electronics">Electronics</option> <option value="ecm">Emergency Care and Medicine</option> <option value="encyclopedia">Encyclopedia</option> <option value="endocrines">Endocrines</option> <option value="energies">Energies</option> <option value="esa">Energy Storage and Applications</option> <option value="eng">Eng</option> <option value="engproc">Engineering Proceedings</option> <option value="entropy">Entropy</option> <option value="environsciproc">Environmental Sciences Proceedings</option> <option value="environments">Environments</option> <option value="epidemiologia">Epidemiologia</option> <option value="epigenomes">Epigenomes</option> <option value="ebj">European Burn Journal</option> <option value="ejihpe">European Journal of Investigation in Health, Psychology and Education</option> <option value="fermentation">Fermentation</option> <option value="fibers">Fibers</option> <option value="fintech">FinTech</option> <option value="fire">Fire</option> <option value="fishes">Fishes</option> <option value="fluids">Fluids</option> <option value="foods">Foods</option> <option value="forecasting">Forecasting</option> <option value="forensicsci">Forensic Sciences</option> <option value="forests">Forests</option> <option value="fossstud">Fossil Studies</option> <option value="foundations">Foundations</option> <option value="fractalfract">Fractal and Fractional</option> <option value="fuels">Fuels</option> <option value="future">Future</option> <option value="futureinternet">Future Internet</option> <option value="futurepharmacol">Future Pharmacology</option> <option value="futuretransp">Future Transportation</option> <option value="galaxies">Galaxies</option> <option value="games">Games</option> <option value="gases">Gases</option> <option value="gastroent">Gastroenterology Insights</option> <option value="gastrointestdisord">Gastrointestinal Disorders</option> <option value="gastronomy">Gastronomy</option> <option value="gels">Gels</option> <option value="genealogy">Genealogy</option> <option value="genes">Genes</option> <option value="geographies">Geographies</option> <option value="geohazards">GeoHazards</option> <option value="geomatics">Geomatics</option> <option value="geometry">Geometry</option> <option value="geosciences">Geosciences</option> <option value="geotechnics">Geotechnics</option> <option value="geriatrics">Geriatrics</option> <option value="glacies">Glacies</option> <option value="gucdd">Gout, Urate, and Crystal Deposition Disease</option> <option value="grasses">Grasses</option> <option value="hardware">Hardware</option> <option value="healthcare">Healthcare</option> <option value="hearts">Hearts</option> <option value="hemato">Hemato</option> <option value="hematolrep">Hematology Reports</option> <option value="heritage">Heritage</option> <option value="histories">Histories</option> <option value="horticulturae">Horticulturae</option> <option value="hospitals">Hospitals</option> <option value="humanities">Humanities</option> <option value="humans">Humans</option> <option value="hydrobiology">Hydrobiology</option> <option value="hydrogen">Hydrogen</option> <option value="hydrology">Hydrology</option> <option value="hygiene">Hygiene</option> <option value="immuno">Immuno</option> <option value="idr">Infectious Disease Reports</option> <option value="informatics">Informatics</option> <option value="information">Information</option> <option value="infrastructures">Infrastructures</option> <option value="inorganics">Inorganics</option> <option value="insects">Insects</option> <option value="instruments">Instruments</option> <option value="iic">Intelligent Infrastructure and Construction</option> <option value="ijerph">International Journal of Environmental Research and Public Health</option> <option value="ijfs">International Journal of Financial Studies</option> <option value="ijms">International Journal of Molecular Sciences</option> <option value="IJNS">International Journal of Neonatal Screening</option> <option value="ijpb">International Journal of Plant Biology</option> <option value="ijt">International Journal of Topology</option> <option value="ijtm">International Journal of Translational Medicine</option> <option value="ijtpp">International Journal of Turbomachinery, Propulsion and Power</option> <option value="ime">International Medical Education</option> <option value="inventions">Inventions</option> <option value="IoT">IoT</option> <option value="ijgi">ISPRS International Journal of Geo-Information</option> <option value="J">J</option> <option value="jal">Journal of Ageing and Longevity</option> <option value="jcdd">Journal of Cardiovascular Development and Disease</option> <option value="jcto">Journal of Clinical & Translational Ophthalmology</option> <option value="jcm">Journal of Clinical Medicine</option> <option value="jcs">Journal of Composites Science</option> <option value="jcp">Journal of Cybersecurity and Privacy</option> <option value="jdad">Journal of Dementia and Alzheimer's Disease</option> <option value="jdb">Journal of Developmental Biology</option> <option value="jeta">Journal of Experimental and Theoretical Analyses</option> <option value="jfb">Journal of Functional Biomaterials</option> <option value="jfmk">Journal of Functional Morphology and Kinesiology</option> <option value="jof">Journal of Fungi</option> <option value="jimaging">Journal of Imaging</option> <option value="jintelligence">Journal of Intelligence</option> <option value="jlpea">Journal of Low Power Electronics and Applications</option> <option value="jmmp">Journal of Manufacturing and Materials Processing</option> <option value="jmse">Journal of Marine Science and Engineering</option> <option value="jmahp">Journal of Market Access & Health Policy</option> <option value="jmp">Journal of Molecular Pathology</option> <option value="jnt">Journal of Nanotheranostics</option> <option value="jne">Journal of Nuclear Engineering</option> <option value="ohbm">Journal of Otorhinolaryngology, Hearing and Balance Medicine</option> <option value="jop">Journal of Parks</option> <option value="jpm">Journal of Personalized Medicine</option> <option value="jpbi">Journal of Pharmaceutical and BioTech Industry</option> <option value="jor">Journal of Respiration</option> <option value="jrfm">Journal of Risk and Financial Management</option> <option value="jsan">Journal of Sensor and Actuator Networks</option> <option value="joma">Journal of the Oman Medical Association</option> <option value="jtaer">Journal of Theoretical and Applied Electronic Commerce Research</option> <option value="jvd">Journal of Vascular Diseases</option> <option value="jox">Journal of Xenobiotics</option> <option value="jzbg">Journal of Zoological and Botanical Gardens</option> <option value="journalmedia">Journalism and Media</option> <option value="kidneydial">Kidney and Dialysis</option> <option value="kinasesphosphatases">Kinases and Phosphatases</option> <option value="knowledge">Knowledge</option> <option value="labmed">LabMed</option> <option value="laboratories">Laboratories</option> <option value="land">Land</option> <option value="languages">Languages</option> <option value="laws">Laws</option> <option value="life">Life</option> <option value="limnolrev">Limnological Review</option> <option value="lipidology">Lipidology</option> <option value="liquids">Liquids</option> <option value="literature">Literature</option> <option value="livers">Livers</option> <option value="logics">Logics</option> <option value="logistics">Logistics</option> <option value="lubricants">Lubricants</option> <option value="lymphatics">Lymphatics</option> <option value="make">Machine Learning and Knowledge Extraction</option> <option value="machines">Machines</option> <option value="macromol">Macromol</option> <option value="magnetism">Magnetism</option> <option value="magnetochemistry">Magnetochemistry</option> <option value="marinedrugs">Marine Drugs</option> <option value="materials">Materials</option> <option value="materproc">Materials Proceedings</option> <option value="mca">Mathematical and Computational Applications</option> <option value="mathematics">Mathematics</option> <option value="medsci">Medical Sciences</option> <option value="msf">Medical Sciences Forum</option> <option value="medicina">Medicina</option> <option value="medicines">Medicines</option> <option value="membranes">Membranes</option> <option value="merits">Merits</option> <option value="metabolites">Metabolites</option> <option value="metals">Metals</option> <option value="meteorology">Meteorology</option> <option value="methane">Methane</option> <option value="mps">Methods and Protocols</option> <option value="metrics">Metrics</option> <option value="metrology">Metrology</option> <option value="micro">Micro</option> <option value="microbiolres">Microbiology Research</option> <option value="micromachines">Micromachines</option> <option value="microorganisms">Microorganisms</option> <option value="microplastics">Microplastics</option> <option value="minerals">Minerals</option> <option value="mining">Mining</option> <option value="modelling">Modelling</option> <option value="mmphys">Modern Mathematical Physics</option> <option value="molbank">Molbank</option> <option value="molecules">Molecules</option> <option value="mti">Multimodal Technologies and Interaction</option> <option value="muscles">Muscles</option> <option value="nanoenergyadv">Nanoenergy Advances</option> <option value="nanomanufacturing">Nanomanufacturing</option> <option value="nanomaterials">Nanomaterials</option> <option value="ndt">NDT</option> <option value="network">Network</option> <option value="neuroglia">Neuroglia</option> <option value="neurolint">Neurology International</option> <option value="neurosci">NeuroSci</option> <option value="nitrogen">Nitrogen</option> <option value="ncrna">Non-Coding RNA</option> <option value="nursrep">Nursing Reports</option> <option value="nutraceuticals">Nutraceuticals</option> <option value="nutrients">Nutrients</option> <option value="obesities">Obesities</option> <option value="oceans">Oceans</option> <option value="onco">Onco</option> <option value="optics">Optics</option> <option value="oral">Oral</option> <option value="organics">Organics</option> <option value="organoids">Organoids</option> <option value="osteology">Osteology</option> <option value="oxygen">Oxygen</option> <option value="parasitologia">Parasitologia</option> <option value="particles">Particles</option> <option value="pathogens">Pathogens</option> <option value="pathophysiology">Pathophysiology</option> <option value="pediatrrep">Pediatric Reports</option> <option value="pets">Pets</option> <option value="pharmaceuticals">Pharmaceuticals</option> <option value="pharmaceutics">Pharmaceutics</option> <option value="pharmacoepidemiology">Pharmacoepidemiology</option> <option value="pharmacy">Pharmacy</option> <option value="philosophies">Philosophies</option> <option value="photochem">Photochem</option> <option value="photonics">Photonics</option> <option value="phycology">Phycology</option> <option value="physchem">Physchem</option> <option value="psf">Physical Sciences Forum</option> <option value="physics">Physics</option> <option value="physiologia">Physiologia</option> <option value="plants">Plants</option> <option value="plasma">Plasma</option> <option value="platforms">Platforms</option> <option value="pollutants">Pollutants</option> <option value="polymers">Polymers</option> <option value="polysaccharides">Polysaccharides</option> <option value="populations">Populations</option> <option value="poultry">Poultry</option> <option value="powders">Powders</option> <option value="proceedings">Proceedings</option> <option value="processes">Processes</option> <option value="prosthesis">Prosthesis</option> <option value="proteomes">Proteomes</option> <option value="psychiatryint">Psychiatry International</option> <option value="psychoactives">Psychoactives</option> <option value="psycholint">Psychology International</option> <option value="publications">Publications</option> <option value="qubs">Quantum Beam Science</option> <option value="quantumrep">Quantum Reports</option> <option value="quaternary">Quaternary</option> <option value="radiation">Radiation</option> <option value="reactions">Reactions</option> <option value="realestate">Real Estate</option> <option value="receptors">Receptors</option> <option value="recycling">Recycling</option> <option value="rsee">Regional Science and Environmental Economics</option> <option value="religions">Religions</option> <option value="remotesensing">Remote Sensing</option> <option value="reports">Reports</option> <option value="reprodmed">Reproductive Medicine</option> <option value="resources">Resources</option> <option value="rheumato">Rheumato</option> <option value="risks">Risks</option> <option value="robotics">Robotics</option> <option value="ruminants">Ruminants</option> <option value="safety">Safety</option> <option value="sci">Sci</option> <option value="scipharm">Scientia Pharmaceutica</option> <option value="sclerosis">Sclerosis</option> <option value="seeds">Seeds</option> <option value="sensors">Sensors</option> <option value="separations">Separations</option> <option value="sexes">Sexes</option> <option value="signals">Signals</option> <option value="sinusitis">Sinusitis</option> <option value="smartcities">Smart Cities</option> <option value="socsci">Social Sciences</option> <option value="siuj">Société Internationale d’Urologie Journal</option> <option value="societies">Societies</option> <option value="software">Software</option> <option value="soilsystems">Soil Systems</option> <option value="solar">Solar</option> <option value="solids">Solids</option> <option value="spectroscj">Spectroscopy Journal</option> <option value="sports">Sports</option> <option value="standards">Standards</option> <option value="stats">Stats</option> <option value="stresses">Stresses</option> <option value="surfaces">Surfaces</option> <option value="surgeries">Surgeries</option> <option value="std">Surgical Techniques Development</option> <option value="sustainability">Sustainability</option> <option value="suschem">Sustainable Chemistry</option> <option value="symmetry">Symmetry</option> <option value="synbio">SynBio</option> <option value="systems">Systems</option> <option value="targets">Targets</option> <option value="taxonomy">Taxonomy</option> <option value="technologies">Technologies</option> <option value="telecom">Telecom</option> <option value="textiles">Textiles</option> <option value="thalassrep">Thalassemia Reports</option> <option value="therapeutics">Therapeutics</option> <option value="thermo">Thermo</option> <option value="timespace">Time and Space</option> <option value="tomography">Tomography</option> <option value="tourismhosp">Tourism and Hospitality</option> <option value="toxics">Toxics</option> <option value="toxins">Toxins</option> <option value="transplantology">Transplantology</option> <option value="traumacare">Trauma Care</option> <option value="higheredu">Trends in Higher Education</option> <option value="tropicalmed">Tropical Medicine and Infectious Disease</option> <option value="universe">Universe</option> <option value="urbansci">Urban Science</option> <option value="uro">Uro</option> <option value="vaccines">Vaccines</option> <option value="vehicles">Vehicles</option> <option value="venereology">Venereology</option> <option value="vetsci">Veterinary Sciences</option> <option value="vibration">Vibration</option> <option value="virtualworlds">Virtual Worlds</option> <option value="viruses">Viruses</option> <option value="vision">Vision</option> <option value="waste">Waste</option> <option value="water">Water</option> <option value="wild">Wild</option> <option value="wind">Wind</option> <option value="women">Women</option> <option value="world">World</option> <option value="wevj">World Electric Vehicle Journal</option> <option value="youth">Youth</option> <option value="zoonoticdis">Zoonotic Diseases</option> </select> <input name="email" type="email" placeholder="Enter your email address..." required="required" /> <button class="genericCaptcha button button--dark UA_FooterNewsletterSubscribeButton" type="submit">Subscribe</button> </form> </div> </div> </div> <div id="footer-copyright"> <div class="row"> <div class="columns large-6 medium-6 small-12 text-left"> © 1996-2024 MDPI (Basel, Switzerland) unless otherwise stated </div> <div class="columns large-6 medium-6 small-12 small-text-left medium-text-right large-text-right"> <a data-dropdown="drop-view-disclaimer" aria-controls="drop-view-disclaimer" aria-expanded="false" data-options="align:top; is_hover:true; hover_timeout:2000;"> Disclaimer </a> <div id="drop-view-disclaimer" class="f-dropdown label__btn__dropdown label__btn__dropdown--wide text-left" data-dropdown-content aria-hidden="true" tabindex="-1"> Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. </div> <a href="/about/terms-and-conditions"> Terms and Conditions </a> <a href="/about/privacy"> Privacy Policy </a> </div> </div> </div> </div> <div id="cookie-notification" class="js-allow-cookies" style="display: none;"> <div class="columns large-10 medium-10 small-12"> We use cookies on our website to ensure you get the best experience.<br class="show-for-medium-up"/> Read more about our cookies <a href="/about/privacy">here</a>. </div> <div class="columns large-2 medium-2 small-12 small-only-text-left text-right"> <a class="button button--default" href="/accept_cookies">Accept</a> </div> </div> </div> <div id="main-share-modal" class="reveal-modal reveal-modal-new reveal-modal-new--small" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 style="margin: 0;">Share Link</h2> </div> <div class="small-12 columns"> <div class="social-media-links UA_ShareModalLinks" style="text-align: left;"> <a href="/cdn-cgi/l/email-protection#556a733438256e2620373f3036216813273a387067651811051c7066147067657067677324203a216e733438256e373a312c683d212125266f7a7a2222227b3831253c7b363a387a3f3a20273b34397a383a393036203930267a30313c213a27260a363d3a3c36307066147065147065145f5f" title="Email"> <i class="fa fa-envelope-square" style="font-size: 30px;"></i> </a> <a href="https://twitter.com/intent/tweet?text=&hashtags=mdpimolecules&url=https%3A%2F%2Fwww.mdpi.com%2Fjournal%2Fmolecules%2Feditors_choice&via=Molecules_MDPI" onclick="windowOpen(this.href,600,800); return false" title="Twitter" target="_blank" rel="noopener noreferrer"> <i class="fa fa-twitter-x-square" style="font-size: 30px;"></i> </a> <a href=" http://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fwww.mdpi.com%2Fjournal%2Fmolecules%2Feditors_choice&title=%26source%3Dhttps%3A%2F%2Fwww.mdpi.com" onclick="windowOpen(this.href,600,800); return false" title="LinkedIn" target="_blank" rel="noopener noreferrer"> <i class="fa fa-linkedin-square" style="font-size: 30px;"></i> </a> <a href="https://www.facebook.com/sharer.php?u=https://www.mdpi.com/journal/molecules/editors_choice" title="facebook" target="_blank" rel="noopener noreferrer"> <i class="fa fa-facebook-square" style="font-size: 30px;"></i> </a> <a href="javascript:void(0);" title="Wechat" data-reveal-id="weixin-share-modal"> <i class="fa fa-weixin-square" style="font-size: 26px;"></i> </a> <a href="http://www.reddit.com/submit?url=https://www.mdpi.com/journal/molecules/editors_choice" title="Reddit" target="_blank" rel="noopener noreferrer"> <i class="fa fa-reddit-square" style="font-size: 30px;"></i> </a> <a href="http://www.mendeley.com/import/?url=https://www.mdpi.com/journal/molecules/editors_choice" title="Mendeley" target="_blank" rel="noopener noreferrer"> <i class="fa fa-mendeley-square" style="font-size: 30px;"></i> </a> <a href="http://www.citeulike.org/posturl?url=https://www.mdpi.com/journal/molecules/editors_choice" title="CiteULike" target="_blank" rel="noopener noreferrer"> <i class="fa fa-citeulike-square" style="font-size: 30px;"></i> </a> </div> </div> <div class="small-9 columns"> <input id="js-clipboard-text" type="text" readonly value="https://www.mdpi.com/journal/molecules/editors_choice" /> </div> <div class="small-3 columns text-left"> <a class="button button--color js-clipboard-copy" data-clipboard-target="#js-clipboard-text">Copy</a> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <div id="weixin-share-modal" class="reveal-modal reveal-modal-new" data-reveal aria-labelledby="weixin-share-modal-title" aria-hidden="true" role="dialog"> <div class="row"> <div class="small-12 columns"> <h2 id="weixin-share-modal-title" style="margin: 0;">Share</h2> </div> <div class="small-12 columns"> <div class="weixin-qr-code-section"> <?xml version="1.0" standalone="no"?> <!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"> <svg width="348" height="348" version="1.1" xmlns="http://www.w3.org/2000/svg"> <desc>https://www.mdpi.com/journal/molecules/editors_choice</desc> <g id="elements" fill="black" stroke="none"> <rect x="0" y="0" width="12" height="12" /> <rect x="12" y="0" width="12" height="12" /> <rect x="24" y="0" width="12" height="12" /> <rect x="36" y="0" width="12" height="12" /> <rect x="48" y="0" width="12" height="12" /> <rect x="60" y="0" width="12" height="12" /> <rect x="72" y="0" width="12" height="12" /> <rect x="96" y="0" width="12" height="12" /> <rect x="120" y="0" width="12" height="12" /> <rect x="156" y="0" width="12" height="12" /> <rect x="168" y="0" width="12" height="12" /> <rect x="216" y="0" width="12" height="12" /> <rect x="264" y="0" width="12" height="12" /> <rect x="276" y="0" width="12" height="12" /> <rect x="288" y="0" width="12" height="12" /> <rect x="300" y="0" width="12" height="12" /> <rect x="312" y="0" width="12" height="12" /> <rect x="324" y="0" width="12" height="12" /> <rect x="336" y="0" width="12" height="12" /> <rect x="0" y="12" width="12" height="12" /> <rect x="72" y="12" width="12" height="12" /> <rect x="156" y="12" width="12" height="12" /> <rect x="204" y="12" width="12" height="12" /> <rect x="228" y="12" width="12" height="12" /> <rect x="240" y="12" width="12" height="12" /> <rect x="264" y="12" width="12" height="12" /> <rect x="336" y="12" width="12" height="12" /> <rect x="0" y="24" width="12" height="12" /> <rect x="24" y="24" width="12" height="12" /> <rect x="36" y="24" width="12" height="12" /> <rect x="48" y="24" width="12" height="12" /> <rect x="72" y="24" width="12" height="12" /> <rect x="108" y="24" width="12" height="12" /> <rect x="132" y="24" width="12" height="12" /> <rect x="156" y="24" width="12" height="12" /> <rect x="168" y="24" width="12" height="12" /> <rect x="180" y="24" width="12" height="12" /> <rect x="264" y="24" width="12" height="12" /> <rect x="288" y="24" width="12" height="12" /> <rect x="300" y="24" width="12" height="12" /> <rect x="312" y="24" width="12" height="12" /> <rect x="336" y="24" width="12" height="12" /> <rect x="0" y="36" width="12" height="12" /> <rect x="24" y="36" width="12" height="12" /> <rect x="36" y="36" width="12" height="12" /> <rect x="48" y="36" width="12" height="12" /> <rect x="72" y="36" width="12" height="12" /> <rect x="108" y="36" width="12" height="12" /> <rect x="132" y="36" width="12" height="12" /> <rect x="144" y="36" width="12" height="12" /> <rect x="156" y="36" width="12" height="12" /> <rect x="180" y="36" width="12" height="12" /> <rect x="192" y="36" width="12" height="12" /> <rect x="204" y="36" width="12" height="12" /> <rect x="228" y="36" width="12" height="12" /> <rect x="240" y="36" width="12" height="12" /> <rect x="264" y="36" width="12" height="12" /> <rect x="288" y="36" width="12" height="12" /> <rect x="300" y="36" width="12" height="12" /> <rect x="312" y="36" width="12" height="12" /> <rect x="336" y="36" width="12" height="12" /> <rect x="0" y="48" width="12" height="12" /> <rect x="24" y="48" width="12" height="12" /> <rect x="36" y="48" width="12" height="12" /> <rect x="48" y="48" width="12" height="12" /> <rect x="72" y="48" width="12" height="12" /> <rect x="108" y="48" width="12" height="12" /> <rect x="192" y="48" width="12" height="12" /> <rect x="204" y="48" width="12" height="12" /> <rect x="228" y="48" width="12" height="12" /> <rect x="264" y="48" width="12" height="12" /> <rect x="288" y="48" width="12" height="12" /> <rect x="300" y="48" width="12" height="12" /> <rect x="312" y="48" width="12" height="12" /> <rect x="336" y="48" width="12" height="12" /> <rect x="0" y="60" width="12" height="12" /> <rect x="72" y="60" width="12" height="12" /> <rect x="108" y="60" width="12" height="12" /> <rect x="120" y="60" width="12" height="12" /> <rect x="132" y="60" width="12" height="12" /> <rect x="144" y="60" width="12" height="12" /> <rect x="156" y="60" width="12" height="12" /> <rect x="204" y="60" width="12" height="12" /> <rect x="240" y="60" width="12" height="12" /> <rect x="264" y="60" width="12" height="12" /> <rect x="336" y="60" width="12" height="12" /> <rect x="0" y="72" width="12" height="12" /> <rect x="12" y="72" width="12" height="12" /> <rect x="24" y="72" width="12" height="12" /> <rect x="36" y="72" width="12" height="12" /> <rect x="48" y="72" width="12" height="12" /> <rect x="60" y="72" width="12" height="12" /> <rect x="72" y="72" width="12" height="12" /> <rect x="96" y="72" width="12" height="12" /> <rect x="120" y="72" width="12" height="12" /> <rect x="144" y="72" width="12" height="12" /> <rect x="168" y="72" width="12" height="12" /> <rect x="192" y="72" width="12" height="12" /> <rect x="216" y="72" width="12" height="12" /> <rect x="240" y="72" width="12" height="12" /> <rect x="264" y="72" width="12" height="12" /> <rect x="276" y="72" width="12" height="12" /> <rect x="288" y="72" width="12" height="12" /> <rect x="300" y="72" width="12" height="12" /> <rect x="312" y="72" width="12" height="12" /> <rect x="324" y="72" width="12" height="12" /> <rect x="336" y="72" width="12" height="12" /> <rect x="96" y="84" width="12" height="12" /> <rect x="120" y="84" width="12" height="12" /> <rect x="144" y="84" width="12" height="12" /> <rect x="156" y="84" width="12" height="12" /> <rect x="192" y="84" width="12" height="12" /> <rect x="0" y="96" width="12" height="12" /> <rect x="12" y="96" width="12" height="12" /> <rect x="36" y="96" width="12" height="12" /> <rect x="48" y="96" width="12" height="12" /> <rect x="72" y="96" width="12" height="12" /> <rect x="132" y="96" width="12" height="12" /> <rect x="144" y="96" width="12" height="12" /> <rect x="180" y="96" width="12" height="12" /> <rect x="204" y="96" width="12" height="12" /> <rect x="264" y="96" width="12" height="12" /> <rect x="336" y="96" width="12" height="12" /> <rect x="12" y="108" width="12" height="12" /> <rect x="24" y="108" width="12" height="12" /> <rect x="48" y="108" width="12" height="12" /> <rect x="60" y="108" width="12" height="12" /> <rect x="96" y="108" width="12" height="12" /> <rect x="120" y="108" width="12" height="12" /> <rect x="132" y="108" width="12" height="12" /> <rect x="156" y="108" width="12" height="12" /> <rect x="168" y="108" width="12" height="12" /> <rect x="180" y="108" width="12" height="12" /> <rect x="228" y="108" width="12" height="12" /> <rect x="240" y="108" width="12" height="12" /> <rect x="276" y="108" width="12" height="12" /> <rect x="288" y="108" width="12" height="12" /> <rect x="312" y="108" width="12" height="12" /> <rect x="324" y="108" width="12" height="12" /> <rect x="0" y="120" width="12" height="12" /> <rect x="72" y="120" width="12" height="12" /> <rect x="108" y="120" width="12" height="12" /> <rect x="120" y="120" width="12" height="12" /> <rect x="132" y="120" width="12" height="12" /> <rect x="156" y="120" width="12" height="12" /> <rect x="180" y="120" width="12" height="12" /> <rect x="192" y="120" width="12" height="12" /> <rect x="216" y="120" width="12" height="12" /> <rect x="264" y="120" width="12" height="12" /> <rect x="276" y="120" width="12" height="12" /> <rect x="312" y="120" width="12" height="12" /> <rect x="12" y="132" width="12" height="12" /> <rect x="36" y="132" width="12" height="12" /> <rect x="144" y="132" width="12" height="12" /> <rect x="168" y="132" width="12" height="12" /> <rect x="180" y="132" width="12" height="12" /> <rect x="192" y="132" width="12" height="12" /> <rect x="204" y="132" width="12" height="12" /> <rect x="216" y="132" width="12" height="12" /> <rect x="240" y="132" width="12" height="12" /> <rect x="252" y="132" width="12" height="12" /> <rect x="264" y="132" width="12" height="12" /> <rect x="300" y="132" width="12" height="12" /> <rect x="336" y="132" width="12" height="12" /> <rect x="36" y="144" width="12" height="12" /> <rect x="48" y="144" width="12" height="12" /> <rect x="72" y="144" width="12" height="12" /> <rect x="84" y="144" width="12" height="12" /> <rect x="96" y="144" width="12" height="12" /> <rect x="108" y="144" width="12" height="12" /> <rect x="120" y="144" width="12" height="12" /> <rect x="132" y="144" width="12" height="12" /> <rect x="144" y="144" width="12" height="12" /> <rect x="180" y="144" width="12" height="12" /> <rect x="192" y="144" width="12" height="12" /> <rect x="240" y="144" width="12" height="12" /> <rect x="264" y="144" width="12" height="12" /> <rect x="276" y="144" width="12" height="12" /> <rect x="336" y="144" width="12" height="12" /> <rect x="0" y="156" width="12" height="12" /> <rect x="24" y="156" width="12" height="12" /> <rect x="36" y="156" width="12" height="12" /> <rect x="132" y="156" width="12" height="12" /> <rect x="156" y="156" width="12" height="12" /> <rect x="168" y="156" width="12" height="12" /> <rect x="180" y="156" width="12" height="12" /> <rect x="192" y="156" width="12" height="12" /> <rect x="204" y="156" width="12" height="12" /> <rect x="216" y="156" width="12" height="12" /> <rect x="264" y="156" width="12" height="12" /> <rect x="288" y="156" width="12" height="12" /> <rect x="300" y="156" width="12" height="12" /> <rect x="312" y="156" width="12" height="12" /> <rect x="324" y="156" width="12" height="12" /> <rect x="336" y="156" width="12" height="12" /> <rect x="0" y="168" width="12" height="12" /> <rect x="48" y="168" width="12" height="12" /> <rect x="72" y="168" width="12" height="12" /> <rect x="108" y="168" width="12" height="12" /> <rect x="156" y="168" width="12" height="12" /> <rect x="168" y="168" width="12" height="12" /> <rect x="180" y="168" width="12" height="12" /> <rect x="204" y="168" width="12" height="12" /> <rect x="228" y="168" width="12" height="12" /> <rect x="240" y="168" width="12" height="12" /> <rect x="264" y="168" width="12" height="12" /> <rect x="276" y="168" width="12" height="12" /> <rect x="312" y="168" width="12" height="12" /> <rect x="336" y="168" width="12" height="12" /> <rect x="12" y="180" width="12" height="12" /> <rect x="36" y="180" width="12" height="12" /> <rect x="48" y="180" width="12" height="12" /> <rect x="84" y="180" width="12" height="12" /> <rect x="96" y="180" width="12" height="12" /> <rect x="108" y="180" width="12" height="12" /> <rect x="120" y="180" width="12" height="12" /> <rect x="132" y="180" width="12" height="12" /> <rect x="216" y="180" width="12" height="12" /> <rect x="228" y="180" width="12" height="12" /> <rect x="264" y="180" width="12" height="12" /> <rect x="276" y="180" width="12" height="12" /> <rect x="288" y="180" width="12" height="12" /> <rect x="312" y="180" width="12" height="12" /> <rect x="336" y="180" width="12" height="12" /> <rect x="0" y="192" width="12" height="12" /> <rect x="12" y="192" width="12" height="12" /> <rect x="24" y="192" width="12" height="12" /> <rect x="60" y="192" width="12" height="12" /> <rect x="72" y="192" width="12" height="12" /> <rect x="84" y="192" width="12" height="12" /> <rect x="120" y="192" width="12" height="12" /> <rect x="156" y="192" width="12" height="12" /> <rect x="180" y="192" width="12" height="12" /> <rect x="228" y="192" width="12" height="12" /> <rect x="240" y="192" width="12" height="12" /> <rect x="300" y="192" width="12" height="12" /> <rect x="0" y="204" width="12" height="12" /> <rect x="36" y="204" width="12" height="12" /> <rect x="48" y="204" width="12" height="12" /> <rect x="96" y="204" width="12" height="12" /> <rect x="108" y="204" width="12" height="12" /> <rect x="132" y="204" width="12" height="12" /> <rect x="180" y="204" width="12" height="12" /> <rect x="204" y="204" width="12" height="12" /> <rect x="216" y="204" width="12" height="12" /> <rect x="228" y="204" width="12" height="12" /> <rect x="240" y="204" width="12" height="12" /> <rect x="252" y="204" width="12" height="12" /> <rect x="288" y="204" width="12" height="12" /> <rect x="312" y="204" width="12" height="12" /> <rect x="324" y="204" width="12" height="12" /> <rect x="0" y="216" width="12" height="12" /> <rect x="12" y="216" width="12" height="12" /> <rect x="48" y="216" width="12" height="12" /> <rect x="72" y="216" width="12" height="12" /> <rect x="84" y="216" width="12" height="12" /> <rect x="96" y="216" width="12" height="12" /> <rect x="132" y="216" width="12" height="12" /> <rect x="156" y="216" width="12" height="12" /> <rect x="180" y="216" width="12" height="12" /> <rect x="192" y="216" width="12" height="12" /> <rect x="204" y="216" width="12" height="12" /> <rect x="216" y="216" width="12" height="12" /> <rect x="228" y="216" width="12" height="12" /> <rect x="252" y="216" width="12" height="12" /> <rect x="264" y="216" width="12" height="12" /> <rect x="300" y="216" width="12" height="12" /> <rect x="336" y="216" width="12" height="12" /> <rect x="0" y="228" width="12" height="12" /> <rect x="12" y="228" width="12" height="12" /> <rect x="84" y="228" width="12" height="12" /> <rect x="120" y="228" width="12" height="12" /> <rect x="132" y="228" width="12" height="12" /> <rect x="144" y="228" width="12" height="12" /> <rect x="156" y="228" width="12" height="12" /> <rect x="168" y="228" width="12" height="12" /> <rect x="192" y="228" width="12" height="12" /> <rect x="240" y="228" width="12" height="12" /> <rect x="276" y="228" width="12" height="12" /> <rect x="288" y="228" width="12" height="12" /> <rect x="300" y="228" width="12" height="12" /> <rect x="312" y="228" width="12" height="12" /> <rect x="0" y="240" width="12" height="12" /> <rect x="12" y="240" width="12" height="12" /> <rect x="24" y="240" width="12" height="12" /> <rect x="36" y="240" width="12" height="12" /> <rect x="60" y="240" width="12" height="12" /> <rect x="72" y="240" width="12" height="12" /> <rect x="84" y="240" width="12" height="12" /> <rect x="96" y="240" width="12" height="12" /> <rect x="108" y="240" width="12" height="12" /> <rect x="120" y="240" width="12" height="12" /> <rect x="168" y="240" width="12" height="12" /> <rect x="192" y="240" width="12" height="12" /> <rect x="204" y="240" width="12" height="12" /> <rect x="228" y="240" width="12" height="12" /> <rect x="240" y="240" width="12" height="12" /> <rect x="252" y="240" width="12" height="12" /> <rect x="264" y="240" width="12" height="12" /> <rect x="276" y="240" width="12" height="12" /> <rect x="288" y="240" width="12" height="12" /> <rect x="300" y="240" width="12" height="12" /> <rect x="312" y="240" width="12" height="12" /> <rect x="324" y="240" width="12" height="12" /> <rect x="96" y="252" width="12" height="12" /> <rect x="108" y="252" width="12" height="12" /> <rect x="120" y="252" width="12" height="12" /> <rect x="132" y="252" width="12" height="12" /> <rect x="156" y="252" width="12" height="12" /> <rect x="168" y="252" width="12" height="12" /> <rect x="180" y="252" width="12" height="12" /> <rect x="204" y="252" width="12" height="12" /> <rect x="216" y="252" width="12" height="12" /> <rect x="240" y="252" width="12" height="12" /> <rect x="288" y="252" width="12" height="12" /> <rect x="300" y="252" width="12" height="12" /> <rect x="0" y="264" width="12" height="12" /> <rect x="12" y="264" width="12" height="12" /> <rect x="24" y="264" width="12" height="12" /> <rect x="36" y="264" width="12" height="12" /> <rect x="48" y="264" width="12" height="12" /> <rect x="60" y="264" width="12" height="12" /> <rect x="72" y="264" width="12" height="12" /> <rect x="108" y="264" width="12" height="12" /> <rect x="132" y="264" width="12" height="12" /> <rect x="144" y="264" width="12" height="12" /> <rect x="168" y="264" width="12" height="12" /> <rect x="180" y="264" width="12" height="12" /> <rect x="192" y="264" width="12" height="12" /> <rect x="204" y="264" width="12" height="12" /> <rect x="228" y="264" width="12" height="12" /> <rect x="240" y="264" width="12" height="12" /> <rect x="264" y="264" width="12" height="12" /> <rect x="288" y="264" width="12" height="12" /> <rect x="300" y="264" width="12" height="12" /> <rect x="0" y="276" width="12" height="12" /> <rect x="72" y="276" width="12" height="12" /> <rect x="108" y="276" width="12" height="12" /> <rect x="144" y="276" width="12" height="12" /> <rect x="168" y="276" width="12" height="12" /> <rect x="180" y="276" width="12" height="12" /> <rect x="204" y="276" width="12" height="12" /> <rect x="216" y="276" width="12" height="12" /> <rect x="228" y="276" width="12" height="12" /> <rect x="240" y="276" width="12" height="12" /> <rect x="288" y="276" width="12" height="12" /> <rect x="324" y="276" width="12" height="12" /> <rect x="336" y="276" width="12" height="12" /> <rect x="0" y="288" width="12" height="12" /> <rect x="24" y="288" width="12" height="12" /> <rect x="36" y="288" width="12" height="12" /> <rect x="48" y="288" width="12" height="12" /> <rect x="72" y="288" width="12" height="12" /> <rect x="96" y="288" width="12" height="12" /> <rect x="108" y="288" width="12" height="12" /> <rect x="132" y="288" width="12" height="12" /> <rect x="192" y="288" width="12" height="12" /> <rect x="216" y="288" width="12" height="12" /> <rect x="228" y="288" width="12" height="12" /> <rect x="240" y="288" width="12" height="12" /> <rect x="252" y="288" width="12" height="12" /> <rect x="264" y="288" width="12" height="12" /> <rect x="276" y="288" width="12" height="12" /> <rect x="288" y="288" width="12" height="12" /> <rect x="300" y="288" width="12" height="12" /> <rect x="336" y="288" width="12" height="12" /> <rect x="0" y="300" width="12" height="12" /> <rect x="24" y="300" width="12" height="12" /> <rect x="36" y="300" width="12" height="12" /> <rect x="48" y="300" width="12" height="12" /> <rect x="72" y="300" width="12" height="12" /> <rect x="96" y="300" width="12" height="12" /> <rect x="108" y="300" width="12" height="12" /> <rect x="132" y="300" width="12" height="12" /> <rect x="156" y="300" width="12" height="12" /> <rect x="180" y="300" width="12" height="12" /> <rect x="192" y="300" width="12" height="12" /> <rect x="204" y="300" width="12" height="12" /> <rect x="216" y="300" width="12" height="12" /> <rect x="228" y="300" width="12" height="12" /> <rect x="252" y="300" width="12" height="12" /> <rect x="276" y="300" width="12" height="12" /> <rect x="324" y="300" width="12" height="12" /> <rect x="336" y="300" width="12" height="12" /> <rect x="0" y="312" width="12" height="12" /> <rect x="24" y="312" width="12" height="12" /> <rect x="36" y="312" width="12" height="12" /> <rect x="48" y="312" width="12" height="12" /> <rect x="72" y="312" width="12" height="12" /> <rect x="108" y="312" width="12" height="12" /> <rect x="120" y="312" width="12" height="12" /> <rect x="156" y="312" width="12" height="12" /> <rect x="168" y="312" width="12" height="12" /> <rect x="180" y="312" width="12" height="12" /> <rect x="204" y="312" width="12" height="12" /> <rect x="240" y="312" width="12" height="12" /> <rect x="252" y="312" width="12" height="12" /> <rect x="276" y="312" width="12" height="12" /> <rect x="288" y="312" width="12" height="12" /> <rect x="312" y="312" width="12" height="12" /> <rect x="324" y="312" width="12" height="12" /> <rect x="336" y="312" width="12" height="12" /> <rect x="0" y="324" width="12" height="12" /> <rect x="72" y="324" width="12" height="12" /> <rect x="96" y="324" width="12" height="12" /> <rect x="120" y="324" width="12" height="12" /> <rect x="132" y="324" width="12" height="12" /> <rect x="168" y="324" width="12" height="12" /> <rect x="276" y="324" width="12" height="12" /> <rect x="300" y="324" width="12" height="12" /> <rect x="312" y="324" width="12" height="12" /> <rect x="336" y="324" width="12" height="12" /> <rect x="0" y="336" width="12" height="12" /> <rect x="12" y="336" width="12" height="12" /> <rect x="24" y="336" width="12" height="12" /> <rect x="36" y="336" width="12" height="12" /> <rect x="48" y="336" width="12" height="12" /> <rect x="60" y="336" width="12" height="12" /> <rect x="72" y="336" width="12" height="12" /> <rect x="96" y="336" width="12" height="12" /> <rect x="120" y="336" width="12" height="12" /> <rect x="144" y="336" width="12" height="12" /> <rect x="156" y="336" width="12" height="12" /> <rect x="240" y="336" width="12" height="12" /> <rect x="288" y="336" width="12" height="12" /> <rect x="300" y="336" width="12" height="12" /> </g> </svg> </div> </div> </div> <a class="close-reveal-modal" aria-label="Close"> <i class="material-icons">clear</i> </a> </div> <a href="#" class="back-to-top"><span class="show-for-medium-up">Back to Top</span><span class="show-for-small">Top</span></a> <script data-cfasync="false" src="/cdn-cgi/scripts/5c5dd728/cloudflare-static/email-decode.min.js"></script><script src="https://pub.mdpi-res.com/assets/js/modernizr-2.8.3.min.js?5227e0738f7f421d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery-1.12.4.min.js?4f252523d4af0b47?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.min.js?6b2ec41c18b29054?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/foundation-5.5.3.equalizer.min.js?0f6c549b75ec554c?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.multiselect.js?0edd3998731d1091?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/jquery.cycle2.min.js?63413052928f97ee?1732286508"></script> <script> // old browser fix - this way the console log rows won't throw (silent) errors in browsers not supporting console log if (!window.console) window.console = {}; if (!window.console.log) window.console.log = function () { }; var currentJournalNameSystem = "molecules"; $(document).ready(function() { $('select.foundation-select').multiselect({ search: true, minHeight: 130, maxHeight: 130, }); $(document).foundation({ orbit: { timer_speed: 4000, }, reveal: { animation: 'fadeAndPop', animation_speed: 100, } }); $(".chosen-select").each(function(element) { var maxSelected = (undefined !== $(this).data('maxselectedoptions') ? $(this).data('maxselectedoptions') : 100); $(this).on('chosen:ready', function(event, data) { var select = $(data.chosen.form_field); if (select.attr('id') === 'journal-browser-volume') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Volume_Options'); } if (select.attr('id') === 'journal-browser-issue') { $(data.chosen.dropdown).addClass('UI_JournalBrowser_Issue_Options'); } }).chosen({ display_disabled_options: false, disable_search_threshold: 7, max_selected_options: maxSelected, width: "100%" }); }); $(".toEncode").each(function(e) { var oldHref = $(this).attr("href"); var newHref = oldHref.replace('.botdefense.please.enable.javascript.','@'); $(this).attr("href", newHref); if (!$(this).hasClass("emailCaptcha")) { $(this).html(newHref.replace('mailto:', '')); } $(this).removeClass("visibility-hidden"); }); $(document).on('opened.fndtn.reveal', '[data-reveal]', function() { $(document).foundation('equalizer', 'reflow'); }); // fix the images that have tag height / width defined // otherwise the default foundation styles overwrite the tag definitions $("img").each(function() { if ($(this).attr('width') != undefined || $(this).attr('height') != undefined) { $(this).addClass("img-fixed"); } }); $("#basic_search, #advanced_search").submit(function(e) { var searchArguments = false; $(this).find("input,select").not("#search,.search-button").each(function() { if (undefined === $(this).val() || "" === $(this).val()) { $(this).attr('name', null); } else { $(this).attr('name'); searchArguments = true; } }); if (!searchArguments) { window.location = $(this).attr('action'); return false; } }); $(".hide-show-desktop-option").click(function(e) { e.preventDefault(); var parentDiv = $(this).closest("div"); $.ajax({ url: $(this).attr('href'), success: function(msg) { parentDiv.removeClass().hide(); } }); }); $(".generic-toggleable-header").click(function(e) { $(this).toggleClass("active"); $(this).next(".generic-toggleable-content").toggleClass("active"); }); /* * handle whole row as a link if the row contains only one visible link */ $("table.new tr").hover(function() { if ($(this).find("td:visible a").length == 1) { $(this).addClass("single-link"); } }, function() { $(this).removeClass("single-link"); }); $("table.new:not(.table-of-tables)").on("click", "tr.single-link", function(e) { var target = $(e.target); if (!e.ctrlKey && !target.is("a")) { $(this).find("td:visible a")[0].click(); } }); $(document).on("click", ".custom-accordion-for-small-screen-link", function(e) { if ($(this).closest("#basic_search").length > 0) { if ($(".search-container__advanced").first().is(":visible")) { openAdvanced() } } if (Foundation.utils.is_small_only()) { if ($(this).hasClass("active")) { $(this).removeClass("active"); $(this).next(".custom-accordion-for-small-screen-content").addClass("show-for-medium-up"); } else { $(this).addClass("active"); $(this).next(".custom-accordion-for-small-screen-content").removeClass("show-for-medium-up"); $(document).foundation('orbit', 'reflow'); } } if (undefined !== $(this).data("callback")) { var customCallback = $(this).data("callback"); func = window[customCallback]; func(); } }); $(document).on("click", ".js-open-small-search", function(e) { e.preventDefault(); $(this).toggleClass("active").closest(".tab-bar").toggleClass("active"); $(".search-container").toggleClass("hide-for-small-down"); }); $(document).on("click", ".js-open-menu", function(e) { $(".search-container").addClass("hide-for-small-down"); }); $(window).on('resize', function() { recalculate_main_browser_position(); recalculate_responsive_moving_containers(); }); updateSearchLabelVisibilities(); recalculate_main_browser_position(); recalculate_responsive_moving_containers(); if (window.document.documentMode == 11) { $("<link/>", { rel: "stylesheet", type: "text/css", href: "https://fonts.googleapis.com/icon?family=Material+Icons"}).appendTo("head"); } }); function recalculate_main_browser_position() { if (Foundation.utils.is_small_only()) { if ($("#js-main-top-container").parent("#js-large-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-small-main-top-container")); } } else { if ($("#js-main-top-container").parent("#js-small-main-top-container").length > 0) { $("#js-main-top-container").appendTo($("#js-large-main-top-container")); } } } function recalculate_responsive_moving_containers() { $(".responsive-moving-container.large").each(function() { var previousParent = $(".responsive-moving-container.active[data-id='"+$(this).data("id")+"']"); var movingContent = previousParent.html(); if (Foundation.utils.is_small_only()) { var currentParent = $(".responsive-moving-container.small[data-id='"+$(this).data("id")+"']"); } else if (Foundation.utils.is_medium_only()) { var currentParent = $(".responsive-moving-container.medium[data-id='"+$(this).data("id")+"']"); } else { var currentParent = $(".responsive-moving-container.large[data-id='"+$(this).data("id")+"']"); } if (previousParent.attr("class") !== currentParent.attr("class")) { currentParent.html(movingContent); previousParent.html(); currentParent.addClass("active"); previousParent.removeClass("active"); } }); } // cookies allowed is checked from a) local storage and b) from server separately so that the footer bar doesn't // get included in the custom page caches function checkCookiesAllowed() { var cookiesEnabled = localStorage.getItem("mdpi_cookies_enabled"); if (null === cookiesEnabled) { $.ajax({ url: "/ajax_cookie_value/mdpi_cookies_accepted", success: function(data) { if (data.value) { localStorage.setItem("mdpi_cookies_enabled", true); checkDisplaySurvey(); } else { $(".js-allow-cookies").show(); } } }); } else { checkDisplaySurvey(); } } function checkDisplaySurvey() { } window.addEventListener('CookiebotOnAccept', function (e) { var CookieDate = new Date; if (Cookiebot.consent.preferences) { CookieDate.setFullYear(CookieDate.getFullYear() + 1); document.cookie = "mdpi_layout_type_v2=mobile; path=/; expires=" + CookieDate.toUTCString() + ";"; $(".js-toggle-desktop-layout-link").css("display", "inline-block"); } }, false); window.addEventListener('CookiebotOnDecline', function (e) { if (!Cookiebot.consent.preferences) { $(".js-toggle-desktop-layout-link").hide(); if ("" === "desktop") { window.location = "/toggle_desktop_layout_cookie"; } } }, false); var hash = $(location).attr('hash'); if ("#share" === hash) { if (1 === $("#main-share-modal").length) { $('#main-share-modal').foundation('reveal', 'open'); } } </script> <script src="https://pub.mdpi-res.com/assets/js/lib.js?f8d3d71b3a772f9d?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/mdpi.js?c267ce58392b15da?1732286508"></script> <script>var banners_url = 'https://serve.mdpi.com';</script> <script type='text/javascript' src='https://pub.mdpi-res.com/assets/js/ifvisible.min.js?c621d19ecb761212?1732286508'></script> <script src="https://pub.mdpi-res.com/assets/js/xmltohtml/affix.js?ac4ea55275297c15?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/clipboard.min.js?3f3688138a1b9fc4?1732286508"></script> <script type="text/javascript"> $(document).ready(function() { var helpFunctions = $(".middle-column__help__fixed"); var leftColumnAffix = $(".left-column__fixed"); var middleColumn = $("#middle-column"); var clone = null; helpFunctions.affix({ offset: { top: function() { return middleColumn.offset().top - 8 - (Foundation.utils.is_medium_only() ? 30 : 0); }, bottom: function() { return $("#footer").innerHeight() + 74 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); if (leftColumnAffix.length > 0) { clone = leftColumnAffix.clone(); clone.addClass("left-column__fixed__affix"); clone.insertBefore(leftColumnAffix); clone.css('width', leftColumnAffix.outerWidth() + 50); clone.affix({ offset: { top: function() { return leftColumnAffix.offset().top - 30 - (Foundation.utils.is_medium_only() ? 50 : 0); }, bottom: function() { return $("#footer").innerHeight() + 92 + (Foundation.utils.is_medium_only() ? 0 : 0); } } }); } $(window).on("resize", function() { if (clone !== null) { clone.css('width', leftColumnAffix.outerWidth() + 50); } }); new ClipboardJS('.js-clipboard-copy'); }); </script> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/magnific-popup.min.css?04d343e036f8eecd?1732286508"> <link rel="stylesheet" href="https://pub.mdpi-res.com/assets/css/jquery-ui-1.10.4.custom.min.css?80647d88647bf347?1732286508"> <script src="https://pub.mdpi-res.com/assets/js/jquery-ui-1.13.2.min.js?1e2047978946a1d2?1732286508"></script> <script type="text/javascript" src="https://pub.mdpi-res.com/assets/js/magnific-popup.min.js?2be3d9e7dc569146?1732286508"></script> <script> var mainColumn1 = "#middle-column"; var extendingReady = true; $(document).ready(function() { $("#journal-browser-go").toggleClass("button--grey", "" === $("#journal-browser-volume").val()); $("#journal-browser-go").toggleClass("button--color", "" !== $("#journal-browser-volume").val()); $("#journal-browser-volume").change(function(e) { $('#journal-browser-issue').find('option').not('.volume-0').hide(); $('#journal-browser-issue').find('.volume-' + $(this).val()).show(); $('#journal-browser-issue').find('option:first').prop('selected', 'selected'); $("#journal-browser-issue").trigger("chosen:updated"); $('#journal-browser-go').toggleClass('button--grey', '' === $(this).val()); $('#journal-browser-go').toggleClass('button--color', '' !== $(this).val()); }); // add resize event for the window (to recalculate side column elements) // TODO: is it better to use resize end or resize here? $(window).on('resize', function() { mdpi_column_height_module.calculateColumnHeights(false, mainColumn1); }); $(".link-journal-menu").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("ul").toggleClass("active"); $("#social-media-links").toggle(); $("#journal-alerts").toggle(); }); $(".link-journal-browser").click(function(e) { e.preventDefault(); $(this).find('span').toggle(); $(this).next("div").toggleClass('show-for-medium-up'); }); }); </script> <script type="text/javascript"> $(document).ready(function() { $(".label.choice[data-dropdown='drop-article-label-choice']").data('editorschoiceaddition', ''); }); </script> <!--[if lt IE 9]> <script src="https://pub.mdpi-res.com/assets/js/ie8/ie8.js?6eef8fcbc831f5bd?1732286508"></script> <script src="https://pub.mdpi-res.com/assets/js/ie8/jquery.xdomainrequest.min.js?a945caca315782b0?1732286508"></script> <![endif]--> <!-- Twitter universal website tag code --> <script type="text/plain" data-cookieconsent="marketing"> !function(e,t,n,s,u,a){e.twq||(s=e.twq=function(){s.exe?s.exe.apply(s,arguments):s.queue.push(arguments); },s.version='1.1',s.queue=[],u=t.createElement(n),u.async=!0,u.src='//static.ads-twitter.com/uwt.js', a=t.getElementsByTagName(n)[0],a.parentNode.insertBefore(u,a))}(window,document,'script'); // Insert Twitter Pixel ID and Standard Event data below twq('init','o2pip'); twq('track','PageView'); </script> <!-- End Twitter universal website tag code --> <script>(function(){function c(){var b=a.contentDocument||a.contentWindow.document;if(b){var d=b.createElement('script');d.innerHTML="window.__CF$cv$params={r:'8e6f82650925cdf9',t:'MTczMjM0NzYwOS4wMDAwMDA='};var a=document.createElement('script');a.nonce='';a.src='/cdn-cgi/challenge-platform/scripts/jsd/main.js';document.getElementsByTagName('head')[0].appendChild(a);";b.getElementsByTagName('head')[0].appendChild(d)}}if(document.body){var a=document.createElement('iframe');a.height=1;a.width=1;a.style.position='absolute';a.style.top=0;a.style.left=0;a.style.border='none';a.style.visibility='hidden';document.body.appendChild(a);if('loading'!==document.readyState)c();else if(window.addEventListener)document.addEventListener('DOMContentLoaded',c);else{var e=document.onreadystatechange||function(){};document.onreadystatechange=function(b){e(b);'loading'!==document.readyState&&(document.onreadystatechange=e,c())}}}})();</script></body> </html>