CINXE.COM

Quantum logic gate - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Quantum logic gate - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"6c8fc55f-9709-44dd-9380-59e3541df54c","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Quantum_logic_gate","wgTitle":"Quantum logic gate","wgCurRevisionId":1240670066,"wgRevisionId":1240670066,"wgArticleId":888587,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Use American English from April 2019","All Wikipedia articles written in American English","Pages using multiple image with auto scaled images","Pages with French IPA","Quantum gates","Quantum information science","Logic gates","Australian inventions"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Quantum_logic_gate","wgRelevantArticleId": 888587,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":80000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q2118982","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics" :true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","ext.pygments":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","ext.pygments.view","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher", "ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.pygments%2CwikimediaBadges%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/1200px-Quantum_Logic_Gates.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1475"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/800px-Quantum_Logic_Gates.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="983"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/640px-Quantum_Logic_Gates.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="787"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Quantum logic gate - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Quantum_logic_gate"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Quantum_logic_gate&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Quantum_logic_gate"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Quantum_logic_gate rootpage-Quantum_logic_gate skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+logic+gate" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+logic+gate" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Quantum+logic+gate" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Quantum+logic+gate" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <ul id="toc-History-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Representation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Representation</span> </div> </a> <ul id="toc-Representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notable_examples" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notable_examples"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Notable examples</span> </div> </a> <button aria-controls="toc-Notable_examples-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notable examples subsection</span> </button> <ul id="toc-Notable_examples-sublist" class="vector-toc-list"> <li id="toc-Identity_gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Identity_gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Identity gate</span> </div> </a> <ul id="toc-Identity_gate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Pauli_gates_(X,Y,Z)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Pauli_gates_(X,Y,Z)"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Pauli gates (<i>X</i>,<i>Y</i>,<i>Z</i>)</span> </div> </a> <ul id="toc-Pauli_gates_(X,Y,Z)-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Controlled_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Controlled_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Controlled gates</span> </div> </a> <ul id="toc-Controlled_gates-sublist" class="vector-toc-list"> <li id="toc-Classical_control" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Classical_control"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3.1</span> <span>Classical control</span> </div> </a> <ul id="toc-Classical_control-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Phase_shift_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Phase_shift_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Phase shift gates</span> </div> </a> <ul id="toc-Phase_shift_gates-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Hadamard_gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Hadamard_gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.5</span> <span>Hadamard gate</span> </div> </a> <ul id="toc-Hadamard_gate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Swap_gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Swap_gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.6</span> <span>Swap gate</span> </div> </a> <ul id="toc-Swap_gate-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Toffoli_(CCNOT)_gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Toffoli_(CCNOT)_gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.7</span> <span>Toffoli (CCNOT) gate</span> </div> </a> <ul id="toc-Toffoli_(CCNOT)_gate-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Universal_quantum_gates" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Universal_quantum_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Universal quantum gates</span> </div> </a> <button aria-controls="toc-Universal_quantum_gates-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Universal quantum gates subsection</span> </button> <ul id="toc-Universal_quantum_gates-sublist" class="vector-toc-list"> <li id="toc-Deutsch_gate" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Deutsch_gate"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Deutsch gate</span> </div> </a> <ul id="toc-Deutsch_gate-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Circuit_composition" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Circuit_composition"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Circuit composition</span> </div> </a> <button aria-controls="toc-Circuit_composition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Circuit composition subsection</span> </button> <ul id="toc-Circuit_composition-sublist" class="vector-toc-list"> <li id="toc-Serially_wired_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Serially_wired_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Serially wired gates</span> </div> </a> <ul id="toc-Serially_wired_gates-sublist" class="vector-toc-list"> <li id="toc-Exponents_of_quantum_gates" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Exponents_of_quantum_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1.1</span> <span>Exponents of quantum gates</span> </div> </a> <ul id="toc-Exponents_of_quantum_gates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Parallel_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Parallel_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Parallel gates</span> </div> </a> <ul id="toc-Parallel_gates-sublist" class="vector-toc-list"> <li id="toc-Hadamard_transform" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Hadamard_transform"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.1</span> <span>Hadamard transform</span> </div> </a> <ul id="toc-Hadamard_transform-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Application_on_entangled_states" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Application_on_entangled_states"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.2</span> <span>Application on entangled states</span> </div> </a> <ul id="toc-Application_on_entangled_states-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Computational_complexity_and_the_tensor_product" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Computational_complexity_and_the_tensor_product"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2.3</span> <span>Computational complexity and the tensor product</span> </div> </a> <ul id="toc-Computational_complexity_and_the_tensor_product-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Unitary_inversion_of_gates" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Unitary_inversion_of_gates"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Unitary inversion of gates</span> </div> </a> <ul id="toc-Unitary_inversion_of_gates-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Measurement" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Measurement"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Measurement</span> </div> </a> <button aria-controls="toc-Measurement-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Measurement subsection</span> </button> <ul id="toc-Measurement-sublist" class="vector-toc-list"> <li id="toc-The_effect_of_measurement_on_entangled_states" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_effect_of_measurement_on_entangled_states"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>The effect of measurement on entangled states</span> </div> </a> <ul id="toc-The_effect_of_measurement_on_entangled_states-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Measurement_on_registers_with_pairwise_entangled_qubits" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Measurement_on_registers_with_pairwise_entangled_qubits"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Measurement on registers with pairwise entangled qubits</span> </div> </a> <ul id="toc-Measurement_on_registers_with_pairwise_entangled_qubits-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Logic_function_synthesis" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Logic_function_synthesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Logic function synthesis</span> </div> </a> <ul id="toc-Logic_function_synthesis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-Sources" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sources"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Sources</span> </div> </a> <ul id="toc-Sources-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Quantum logic gate</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D9%84%D8%A8%D9%88%D8%A7%D8%A8%D8%A7%D8%AA_%D8%A7%D9%84%D9%85%D9%86%D8%B7%D9%82%D9%8A%D8%A9_%D8%A7%D9%84%D9%83%D9%85%D9%8A%D8%A9" title="البوابات المنطقية الكمية – Arabic" lang="ar" hreflang="ar" data-title="البوابات المنطقية الكمية" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Porta_qu%C3%A0ntica" title="Porta quàntica – Catalan" lang="ca" hreflang="ca" data-title="Porta quàntica" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Quantengatter" title="Quantengatter – German" lang="de" hreflang="de" data-title="Quantengatter" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Puerta_cu%C3%A1ntica" title="Puerta cuántica – Spanish" lang="es" hreflang="es" data-title="Puerta cuántica" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Ate_kuantiko" title="Ate kuantiko – Basque" lang="eu" hreflang="eu" data-title="Ate kuantiko" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%AF%D8%B1%D9%88%D8%A7%D8%B2%D9%87%E2%80%8C%D9%87%D8%A7%DB%8C_%D9%85%D9%86%D8%B7%D9%82%DB%8C_%DA%A9%D9%88%D8%A7%D9%86%D8%AA%D9%88%D9%85%DB%8C" title="دروازه‌های منطقی کوانتومی – Persian" lang="fa" hreflang="fa" data-title="دروازه‌های منطقی کوانتومی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Porte_quantique" title="Porte quantique – French" lang="fr" hreflang="fr" data-title="Porte quantique" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Porta_quantistica" title="Porta quantistica – Italian" lang="it" hreflang="it" data-title="Porta quantistica" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%A9%D7%A2%D7%A8_%D7%A7%D7%95%D7%95%D7%A0%D7%98%D7%99" title="שער קוונטי – Hebrew" lang="he" hreflang="he" data-title="שער קוונטי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-pa mw-list-item"><a href="https://pa.wikipedia.org/wiki/%E0%A8%95%E0%A9%81%E0%A8%86%E0%A8%82%E0%A8%9F%E0%A8%AE_%E0%A8%B2%E0%A9%8C%E0%A8%9C%E0%A8%BF%E0%A8%95_%E0%A8%97%E0%A9%87%E0%A8%9F" title="ਕੁਆਂਟਮ ਲੌਜਿਕ ਗੇਟ – Punjabi" lang="pa" hreflang="pa" data-title="ਕੁਆਂਟਮ ਲੌਜਿਕ ਗੇਟ" data-language-autonym="ਪੰਜਾਬੀ" data-language-local-name="Punjabi" class="interlanguage-link-target"><span>ਪੰਜਾਬੀ</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Bramka_kwantowa" title="Bramka kwantowa – Polish" lang="pl" hreflang="pl" data-title="Bramka kwantowa" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D1%8B%D0%B9_%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8C" title="Квантовый вентиль – Russian" lang="ru" hreflang="ru" data-title="Квантовый вентиль" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Kvanttiportti" title="Kvanttiportti – Finnish" lang="fi" hreflang="fi" data-title="Kvanttiportti" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B8%D0%B9_%D0%B2%D0%B5%D0%BD%D1%82%D0%B8%D0%BB%D1%8C" title="Квантовий вентиль – Ukrainian" lang="uk" hreflang="uk" data-title="Квантовий вентиль" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/C%E1%BB%95ng_l%C6%B0%E1%BB%A3ng_t%E1%BB%AD" title="Cổng lượng tử – Vietnamese" lang="vi" hreflang="vi" data-title="Cổng lượng tử" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E9%87%8F%E5%AD%90%E9%96%98" title="量子閘 – Chinese" lang="zh" hreflang="zh" data-title="量子閘" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2118982#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_logic_gate" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Quantum_logic_gate" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Quantum_logic_gate"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Quantum_logic_gate"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Quantum_logic_gate" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Quantum_logic_gate" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;oldid=1240670066" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Quantum_logic_gate&amp;id=1240670066&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_logic_gate"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FQuantum_logic_gate"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Quantum_logic_gate&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Quantum_logic_gate&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q2118982" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Basic circuit in quantum computing</div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">"Quantum gate" redirects here. Not to be confused with <a href="/wiki/Quantum_Gate_(video_game)" title="Quantum Gate (video game)">Quantum Gate (video game)</a> or <a href="/wiki/Quantum_Gate_(album)" title="Quantum Gate (album)">Quantum Gate (album)</a>.</div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Quantum_Logic_Gates.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/440px-Quantum_Logic_Gates.png" decoding="async" width="440" height="541" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/660px-Quantum_Logic_Gates.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/Quantum_Logic_Gates.png/880px-Quantum_Logic_Gates.png 2x" data-file-width="2443" data-file-height="3003" /></a><figcaption>Common quantum logic gates by name (including abbreviation), circuit form(s) and the corresponding unitary matrices</figcaption></figure> <p> In <a href="/wiki/Quantum_computing" title="Quantum computing">quantum computing</a> and specifically the <a href="/wiki/Quantum_circuit" title="Quantum circuit">quantum circuit</a> <a href="/wiki/Model_of_computation" title="Model of computation">model of computation</a>, a <b>quantum logic gate</b> (or simply <b>quantum gate</b>) is a basic quantum circuit operating on a small number of <a href="/wiki/Qubit" title="Qubit">qubits</a>. Quantum logic gates are the building blocks of quantum circuits, like classical <a href="/wiki/Logic_gate" title="Logic gate">logic gates</a> are for conventional digital circuits. </p><p>Unlike many classical logic gates, quantum logic gates are <a href="/wiki/Reversible_computing" title="Reversible computing">reversible</a>. It is possible to perform classical computing using only reversible gates. For example, the reversible <a href="/wiki/Toffoli_gate" title="Toffoli gate">Toffoli gate</a> can implement all <a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a>, often at the cost of having to use <a href="/wiki/Ancilla_bit" title="Ancilla bit">ancilla bits</a>. The Toffoli gate has a direct quantum equivalent, showing that quantum circuits can perform all operations performed by classical circuits. </p><p>Quantum gates are <a href="/wiki/Unitary_operators" class="mw-redirect" title="Unitary operators">unitary operators</a>, and are described as <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> relative to some <a href="/wiki/Orthonormal" class="mw-redirect" title="Orthonormal">orthonormal</a> <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a>. Usually the <i>computational basis</i> is used, which unless comparing it with something, just means that for a <i>d</i>-level quantum system (such as a <a href="/wiki/Qubit" title="Qubit">qubit</a>, a <a href="/wiki/Quantum_register" title="Quantum register">quantum register</a>, or <a href="/wiki/Qutrit" title="Qutrit">qutrits</a> and <a href="/wiki/Qudit" class="mw-redirect" title="Qudit">qudits</a>)<sup id="cite_ref-Williams_1-0" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 22–23">&#58;&#8202;22–23&#8202;</span></sup> the <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a> <a href="/wiki/Vector_space" title="Vector space">vectors</a> are labeled <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle ,|1\rangle ,\dots ,|d-1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle ,|1\rangle ,\dots ,|d-1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/157ee648c5e3be82aab0eacba4e6b1fe8a815a71" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.41ex; height:2.843ex;" alt="{\displaystyle |0\rangle ,|1\rangle ,\dots ,|d-1\rangle }"></span>,</span> or use <a href="/wiki/Binary_number" title="Binary number">binary notation</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The current notation for quantum gates was developed by many of the founders of <a href="/wiki/Quantum_information_science" title="Quantum information science">quantum information science</a> including Adriano Barenco, <a href="/wiki/Charles_H._Bennett_(physicist)" title="Charles H. Bennett (physicist)">Charles Bennett</a>, <a href="/wiki/Richard_Cleve" title="Richard Cleve">Richard Cleve</a>, <a href="/wiki/David_P._DiVincenzo" class="mw-redirect" title="David P. DiVincenzo">David P. DiVincenzo</a>, <a href="/wiki/Norman_Margolus" title="Norman Margolus">Norman Margolus</a>, <a href="/wiki/Peter_Shor" title="Peter Shor">Peter Shor</a>, Tycho Sleator, <a href="/wiki/John_A._Smolin" title="John A. Smolin">John A. Smolin</a>, and Harald Weinfurter,<sup id="cite_ref-Barenco_2-0" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> building on notation introduced by <a href="/wiki/Richard_Feynman" title="Richard Feynman">Richard Feynman</a> in 1986.<sup id="cite_ref-Feynman-QMC_3-0" class="reference"><a href="#cite_note-Feynman-QMC-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Representation">Representation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=2" title="Edit section: Representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Bloch_sphere.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/220px-Bloch_sphere.svg.png" decoding="async" width="220" height="233" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/330px-Bloch_sphere.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6b/Bloch_sphere.svg/440px-Bloch_sphere.svg.png 2x" data-file-width="238" data-file-height="252" /></a><figcaption>Single <a href="/wiki/Qubit" title="Qubit">qubit</a> states that are not <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled</a> and lack <a href="/wiki/List_of_quantum_logic_gates#Identity_gate_and_global_phase" title="List of quantum logic gates">global phase</a> can be represented as points on the surface of the <b><a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a></b>, written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle =\cos \left(\theta /2\right)|0\rangle +e^{i\varphi }\sin \left(\theta /2\right)|1\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mrow> <mo>(</mo> <mrow> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle =\cos \left(\theta /2\right)|0\rangle +e^{i\varphi }\sin \left(\theta /2\right)|1\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e513e7b15f8c5e2903d8d331086fd92aa7ed48c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.839ex; height:3.176ex;" alt="{\displaystyle |\psi \rangle =\cos \left(\theta /2\right)|0\rangle +e^{i\varphi }\sin \left(\theta /2\right)|1\rangle .}"></span><br />Rotations about the <span class="texhtml">x, y, z</span> axes of the Bloch sphere are represented by the <a href="/wiki/List_of_quantum_logic_gates#Rotation_operator_gates" title="List of quantum logic gates">rotation operator gates</a>.</figcaption></figure> <p>Quantum logic gates are represented by <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a>. A gate that acts on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> <a href="/wiki/Qubit" title="Qubit">qubits</a> is represented by a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}\times 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}\times 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/224a4a2c00116d57f7d93bd1116d1518837f1c28" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.602ex; height:2.343ex;" alt="{\displaystyle 2^{n}\times 2^{n}}"></span> unitary matrix, and the <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">set</a> of all such gates with the group operation of <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">matrix multiplication</a><sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup> is the <a href="/wiki/Unitary_group" title="Unitary group">unitary group</a> U(2<sup><i>n</i></sup>).<sup id="cite_ref-Barenco_2-1" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> The <a href="/wiki/Quantum_state" title="Quantum state">quantum states</a> that the gates act upon are <a href="/wiki/Unit_vector" title="Unit vector">unit vectors</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> <a href="/wiki/Complex_number" title="Complex number">complex</a> dimensions, with the <a href="/wiki/Norm_(mathematics)#Euclidean_norm_of_complex_numbers" title="Norm (mathematics)">complex Euclidean norm</a> (the <a href="/wiki/Norm_(mathematics)#p-norm" title="Norm (mathematics)">2-norm</a>).<sup id="cite_ref-Nielsen-Chuang_5-0" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 66">&#58;&#8202;66&#8202;</span></sup><sup id="cite_ref-Yanofsky-Mannucci_6-0" class="reference"><a href="#cite_note-Yanofsky-Mannucci-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 56, 65">&#58;&#8202;56,&#8202;65&#8202;</span></sup> The <a href="/wiki/Basis_vectors" class="mw-redirect" title="Basis vectors">basis vectors</a> (sometimes called <i><a href="/wiki/Eigenstate" class="mw-redirect" title="Eigenstate">eigenstates</a></i>) are the possible outcomes if the state of the qubits is <a href="/wiki/Quantum_measurement" class="mw-redirect" title="Quantum measurement">measured</a>, and a quantum state is a <a href="/wiki/Linear_combination" title="Linear combination">linear combination</a> of these outcomes. The most common quantum gates operate on <a href="/wiki/Vector_space" title="Vector space">vector spaces</a> of one or two qubits, just like the common <a href="/wiki/Logic_gate" title="Logic gate">classical logic gates</a> operate on one or two <a href="/wiki/Bit" title="Bit">bits</a>. </p><p>Even though the quantum logic gates belong to <a href="/wiki/Continuous_symmetry" title="Continuous symmetry">continuous symmetry groups</a>, real <a href="/wiki/Computer_hardware" title="Computer hardware">hardware</a> is inexact and thus limited in precision. The application of gates typically introduces errors, and the <a href="/wiki/Fidelity_of_quantum_states" title="Fidelity of quantum states">quantum states' fidelities</a> decrease over time. If <a href="/wiki/Quantum_error_correction" title="Quantum error correction">error correction</a> is used, the usable gates are further restricted to a finite set.<sup id="cite_ref-Nielsen-Chuang_5-1" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: ch. 10">&#58;&#8202;ch. 10&#8202;</span></sup><sup id="cite_ref-Williams_1-1" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: ch. 14">&#58;&#8202;ch. 14&#8202;</span></sup> Later in this article, this is ignored as the focus is on the ideal quantum gates' properties. </p><p>Quantum states are typically represented by "kets", from a notation known as <a href="/wiki/Bra%E2%80%93ket_notation" title="Bra–ket notation">bra–ket</a>. </p><p>The vector representation of a single <a href="/wiki/Qubit" title="Qubit">qubit</a> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a\rangle =v_{0}|0\rangle +v_{1}|1\rangle \rightarrow {\begin{bmatrix}v_{0}\\v_{1}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a\rangle =v_{0}|0\rangle +v_{1}|1\rangle \rightarrow {\begin{bmatrix}v_{0}\\v_{1}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4aa1fdec790427d0d27abd4694886c03f9331814" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:28.161ex; height:6.176ex;" alt="{\displaystyle |a\rangle =v_{0}|0\rangle +v_{1}|1\rangle \rightarrow {\begin{bmatrix}v_{0}\\v_{1}\end{bmatrix}}.}"></span></dd></dl> <p>Here, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/60faad24775635f4722ccc438093dbbfe05f34ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{0}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle v_{1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle v_{1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/98d33f5d498d528bd8c10edc8ac8c34347f32b3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.182ex; height:2.009ex;" alt="{\displaystyle v_{1}}"></span> are the complex <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitudes</a> of the qubit. These values determine the probability of measuring a 0 or a 1, when measuring the state of the qubit. See <a href="#Measurement">measurement</a> below for details. </p><p>The value zero is represented by the ket <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle ={\begin{bmatrix}1\\0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle ={\begin{bmatrix}1\\0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/855ffa3000909578bcdfc15200ea39139c2d5a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.181ex; height:6.176ex;" alt="{\displaystyle |0\rangle ={\begin{bmatrix}1\\0\end{bmatrix}}}"></span>,</span> and the value one is represented by the ket <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle ={\begin{bmatrix}0\\1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle ={\begin{bmatrix}0\\1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/138b70e71118d01fa7c2c52f596b343e18100cf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:10.181ex; height:6.176ex;" alt="{\displaystyle |1\rangle ={\begin{bmatrix}0\\1\end{bmatrix}}}"></span>.</span> </p><p>The <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a> (or <a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a>) is used to combine quantum states. The combined state for a <a href="/wiki/Quantum_register" title="Quantum register">qubit register</a> is the tensor product of the constituent qubits. The tensor product is denoted by the symbol <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \otimes }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2297;<!-- ⊗ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \otimes }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de29098f5a34ee296a505681a0d5e875070f2aea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \otimes }"></span>.</span> </p><p>The vector representation of two qubits is:<sup id="cite_ref-Preskill_7-0" class="reference"><a href="#cite_note-Preskill-7"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle =v_{00}|00\rangle +v_{01}|01\rangle +v_{10}|10\rangle +v_{11}|11\rangle \rightarrow {\begin{bmatrix}v_{00}\\v_{01}\\v_{10}\\v_{11}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>v</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle =v_{00}|00\rangle +v_{01}|01\rangle +v_{10}|10\rangle +v_{11}|11\rangle \rightarrow {\begin{bmatrix}v_{00}\\v_{01}\\v_{10}\\v_{11}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c24308be6c63295e8f57f58e2c1f165dd2e7471" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:53.322ex; height:12.509ex;" alt="{\displaystyle |\psi \rangle =v_{00}|00\rangle +v_{01}|01\rangle +v_{10}|10\rangle +v_{11}|11\rangle \rightarrow {\begin{bmatrix}v_{00}\\v_{01}\\v_{10}\\v_{11}\end{bmatrix}}.}"></span></dd></dl> <p>The action of the gate on a specific quantum state is found by <a href="/wiki/Matrix_multiplication" title="Matrix multiplication">multiplying</a> the vector <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi _{1}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi _{1}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7917a2e2cb0d3c7191f41a4f7ee250f4d4c56fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.119ex; height:2.843ex;" alt="{\displaystyle |\psi _{1}\rangle }"></span>, which represents the state by the matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> representing the gate. The result is a new quantum state <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi _{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi _{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d9cace1b140a568a4b9a90587dde3b342266bcf1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.119ex; height:2.843ex;" alt="{\displaystyle |\psi _{2}\rangle }"></span>:</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U|\psi _{1}\rangle =|\psi _{2}\rangle .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U|\psi _{1}\rangle =|\psi _{2}\rangle .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc198cbc5ff7eac290b33a556f9cd6edda690374" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.766ex; height:2.843ex;" alt="{\displaystyle U|\psi _{1}\rangle =|\psi _{2}\rangle .}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Notable_examples">Notable examples</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=3" title="Edit section: Notable examples"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/List_of_quantum_logic_gates" title="List of quantum logic gates">List of quantum logic gates</a></div> <p>There exists an <a href="/wiki/Uncountable_set" title="Uncountable set">uncountably infinite</a> number of gates. Some of them have been named by various authors,<sup id="cite_ref-Barenco_2-2" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Williams_1-2" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Nielsen-Chuang_5-2" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Yanofsky-Mannucci_6-1" class="reference"><a href="#cite_note-Yanofsky-Mannucci-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-inspire_9-0" class="reference"><a href="#cite_note-inspire-9"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> and below follow some of those most often used in the literature. </p> <div class="mw-heading mw-heading3"><h3 id="Identity_gate">Identity gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=4" title="Edit section: Identity gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The identity gate is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>, usually written as <i>I</i>, and is defined for a single qubit as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I={\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I={\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e219040ddfed5b96c79d0b24bc976aeba218991b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:12.771ex; height:6.176ex;" alt="{\displaystyle I={\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}},}"></span></dd></dl> <p>where <i>I</i> is basis independent and does not modify the quantum state. The identity gate is most useful when describing mathematically the result of various gate operations or when discussing multi-qubit circuits. </p><p><span class="anchor" id="Pauli_X"></span><span class="anchor" id="Not"></span><span class="anchor" id="X"></span><span class="anchor" id="X_gate"></span><span class="anchor" id="Not_gate"></span> <span class="anchor" id="Pauli_Z"></span><span class="anchor" id="Z"></span><span class="anchor" id="Z_gate"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Pauli_gates_(X,Y,Z)"><span id="Pauli_gates_.28X.2CY.2CZ.29"></span>Pauli gates (<i>X</i>,<i>Y</i>,<i>Z</i>)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=5" title="Edit section: Pauli gates (X,Y,Z)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Clifford_gates" title="Clifford gates">Clifford gates</a> and <a href="/wiki/Pauli_group" title="Pauli group">Pauli group</a></div> <style data-mw-deduplicate="TemplateStyles:r1237032888/mw-parser-output/.tmulti">.mw-parser-output .tmulti .multiimageinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .tsingle .thumbcaption{text-align:left}.mw-parser-output .tmulti .trow>.thumbcaption{text-align:center}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .tmulti .multiimageinner img{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .tmulti .multiimageinner img{background-color:white}}</style><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:112px;max-width:112px"><div class="trow"><div class="tsingle" style="width:110px;max-width:110px"><div class="thumbimage" style="height:42px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_I.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_I.svg/108px-Qcircuit_I.svg.png" decoding="async" width="108" height="42" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_I.svg/162px-Qcircuit_I.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_I.svg/216px-Qcircuit_I.svg.png 2x" data-file-width="269" data-file-height="105" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:110px;max-width:110px"><div class="thumbimage" style="height:32px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_NOT.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Qcircuit_NOT.svg/108px-Qcircuit_NOT.svg.png" decoding="async" width="108" height="33" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Qcircuit_NOT.svg/162px-Qcircuit_NOT.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Qcircuit_NOT.svg/216px-Qcircuit_NOT.svg.png 2x" data-file-width="250" data-file-height="76" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:110px;max-width:110px"><div class="thumbimage" style="height:39px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_Y.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Qcircuit_Y.svg/108px-Qcircuit_Y.svg.png" decoding="async" width="108" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/79/Qcircuit_Y.svg/162px-Qcircuit_Y.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/7/79/Qcircuit_Y.svg/216px-Qcircuit_Y.svg.png 2x" data-file-width="287" data-file-height="105" /></a></span></div></div></div><div class="trow"><div class="tsingle" style="width:110px;max-width:110px"><div class="thumbimage" style="height:39px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_Z.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Qcircuit_Z.svg/108px-Qcircuit_Z.svg.png" decoding="async" width="108" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Qcircuit_Z.svg/162px-Qcircuit_Z.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/f7/Qcircuit_Z.svg/216px-Qcircuit_Z.svg.png 2x" data-file-width="284" data-file-height="105" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Quantum gates (from top to bottom): Identity gate, NOT gate, Pauli Y, Pauli Z</div></div></div></div> <p>The Pauli gates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (X,Y,Z)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>Y</mi> <mo>,</mo> <mi>Z</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (X,Y,Z)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15fcf4aac62f9533d646603bdc5a9cf76ce95c23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.311ex; height:2.843ex;" alt="{\displaystyle (X,Y,Z)}"></span> are the three <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\sigma _{x},\sigma _{y},\sigma _{z})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\sigma _{x},\sigma _{y},\sigma _{z})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d993dce0df7a03512e7138127aeb449a27809c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.083ex; height:3.009ex;" alt="{\displaystyle (\sigma _{x},\sigma _{y},\sigma _{z})}"></span> and act on a single qubit. The Pauli <i>X</i>, <i>Y</i> and <i>Z</i> equate, respectively, to a rotation around the <i>x</i>, <i>y</i> and <i>z</i> axes of the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> radians.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> </p><p>The Pauli-<i>X</i> gate is the quantum equivalent of the <a href="/wiki/NOT_gate" class="mw-redirect" title="NOT gate">NOT gate</a> for classical computers with respect to the standard basis <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>,</span> which distinguishes the <i>z</i> axis on the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a>. It is sometimes called a bit-flip as it maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>. Similarly, the Pauli-<i>Y</i> maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fe7ec28f6f4cd048ac8218e3e7f06c42f87c9a75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.516ex; height:2.843ex;" alt="{\displaystyle i|1\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> to <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -i|0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -i|0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1196813b0bcdffbc39e0e2b7a4222ebd496ce33a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.325ex; height:2.843ex;" alt="{\displaystyle -i|0\rangle }"></span></span>. Pauli <i>Z</i> leaves the basis state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> unchanged and maps <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> to <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab00082f4c8dfcff92abed1aebdac8fccb24c74d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.522ex; height:2.843ex;" alt="{\displaystyle -|1\rangle }"></span>.</span> Due to this nature, Pauli <i>Z</i> is sometimes called phase-flip. </p><p>These matrices are usually represented as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X=\sigma _{x}=\operatorname {NOT} ={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> <mo>=</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mi>NOT</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X=\sigma _{x}=\operatorname {NOT} ={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0d745eb40be91cedbb78ee74cd78f732f255d4e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.505ex; height:6.176ex;" alt="{\displaystyle X=\sigma _{x}=\operatorname {NOT} ={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=\sigma _{y}={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=\sigma _{y}={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01dae26e885ebbee9aa17740b7788dd5af595e75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.296ex; height:6.176ex;" alt="{\displaystyle Y=\sigma _{y}={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}},}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z=\sigma _{z}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z=\sigma _{z}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6b765eb972472c14f2060feebeb0e7ec1e3313e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.515ex; height:6.176ex;" alt="{\displaystyle Z=\sigma _{z}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}.}"></span></dd></dl> <p>The Pauli matrices are <a href="/wiki/Involutory_matrix" title="Involutory matrix">involutory</a>, meaning that the square of a Pauli matrix is the <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I^{2}=X^{2}=Y^{2}=Z^{2}=-iXYZ=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>Y</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mi>X</mi> <mi>Y</mi> <mi>Z</mi> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I^{2}=X^{2}=Y^{2}=Z^{2}=-iXYZ=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd6a1463cb7ac4242f688fa6ae070c67b6808658" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:35.747ex; height:2.843ex;" alt="{\displaystyle I^{2}=X^{2}=Y^{2}=Z^{2}=-iXYZ=I}"></span></dd></dl> <p>The Pauli matrices also <a href="/wiki/Anticommutative_property" title="Anticommutative property">anti-commute</a>, for example <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ZX=iY=-XZ.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mi>X</mi> <mo>=</mo> <mi>i</mi> <mi>Y</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>X</mi> <mi>Z</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ZX=iY=-XZ.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db35bb2ebb48777878ed4179243753965d479447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:18.548ex; height:2.343ex;" alt="{\displaystyle ZX=iY=-XZ.}"></span> </p><p>The <a href="/wiki/Matrix_exponential" title="Matrix exponential">matrix exponential</a> of a Pauli matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{j}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{j}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a234b1f289568934f127c2dd68ba77b6ef3f3569" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.237ex; height:2.343ex;" alt="{\displaystyle \sigma _{j}}"></span> is a <a href="/wiki/List_of_quantum_logic_gates#Rotation_operator_gates" title="List of quantum logic gates">rotation operator</a>, often written as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{-i\sigma _{j}\theta /2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mi>&#x03B8;<!-- θ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{-i\sigma _{j}\theta /2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c885dc77ccc9644eec847be1110806c3666de2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.876ex; height:2.843ex;" alt="{\displaystyle e^{-i\sigma _{j}\theta /2}.}"></span> </p><p><span class="anchor" id="squares"></span> </p><p><span class="anchor" id="CX"></span><span class="anchor" id="CY"></span><span class="anchor" id="CZ"></span><span class="anchor" id="controlled_gate"></span><span class="anchor" id="Controlled_gates"></span><span class="anchor" id="Controlled"></span><span class="anchor" id="CNOT"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Controlled_gates">Controlled gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=6" title="Edit section: Controlled gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Controlled_NOT_gate" title="Controlled NOT gate">Controlled NOT gate</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Controlled_gate.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Controlled_gate.svg/130px-Controlled_gate.svg.png" decoding="async" width="130" height="87" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Controlled_gate.svg/195px-Controlled_gate.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/dc/Controlled_gate.svg/260px-Controlled_gate.svg.png 2x" data-file-width="51" data-file-height="34" /></a><figcaption>Circuit representation of controlled-<i>U</i> gate</figcaption></figure> <p>Controlled gates act on 2 or more qubits, where one or more qubits act as a control for some operation.<sup id="cite_ref-Barenco_2-3" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> For example, the <a href="/wiki/Controlled_NOT_gate" title="Controlled NOT gate">controlled NOT gate</a> (or CNOT or CX) acts on 2 qubits, and performs the NOT operation on the second qubit only when the first qubit is <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>,</span> and otherwise leaves it unchanged. With respect to the basis <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span>,</span> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20574b999c62f66d7995a0c2e662af619f83c08a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |01\rangle }"></span>,</span> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea8f8133d5db75de4b048da145e24ff71c02c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |10\rangle }"></span>,</span> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>,</span> it is represented by the <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a> <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary</a> matrix: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{CNOT}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>CNOT</mtext> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{CNOT}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8d7628eecddb4a570d6c5f12fc68c0b5d4f0cd2e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:26.122ex; height:12.509ex;" alt="{\displaystyle {\mbox{CNOT}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}.}"></span></dd></dl> <p>The CNOT (or controlled Pauli-<i>X</i>) gate can be described as the gate that maps the basis states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a,b\rangle \mapsto |a,a\oplus b\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>a</mi> <mo>&#x2295;<!-- ⊕ --></mo> <mi>b</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a,b\rangle \mapsto |a,a\oplus b\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5292741bc7a011f02ae7c701cf379bfd67e9a4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.31ex; height:2.843ex;" alt="{\displaystyle |a,b\rangle \mapsto |a,a\oplus b\rangle }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span> is <a href="/wiki/Exclusive_or" title="Exclusive or">XOR</a>. </p><p>The CNOT can be expressed in the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli basis</a> as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{CNOT}}=e^{i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}=e^{-i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>CNOT</mtext> </mstyle> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{CNOT}}=e^{i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}=e^{-i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6dc1e2ef53e4202b539765e65d076cca4eb8e347" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:43.836ex; height:3.176ex;" alt="{\displaystyle {\mbox{CNOT}}=e^{i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}=e^{-i{\frac {\pi }{4}}(I-Z_{1})(I-X_{2})}.}"></span></dd></dl> <p>Being a Hermitian unitary operator, CNOT <a href="/wiki/Sylvester%27s_formula" title="Sylvester&#39;s formula">has the property</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\theta U}=(\cos \theta )I+(i\sin \theta )U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>U</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>I</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\theta U}=(\cos \theta )I+(i\sin \theta )U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5385692ef2d165b264048e15ab96eaef161a24c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.538ex; height:3.176ex;" alt="{\displaystyle e^{i\theta U}=(\cos \theta )I+(i\sin \theta )U}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=e^{i{\frac {\pi }{2}}(I-U)}=e^{-i{\frac {\pi }{2}}(I-U)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>U</mi> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=e^{i{\frac {\pi }{2}}(I-U)}=e^{-i{\frac {\pi }{2}}(I-U)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d97db0380952a5f664e1982ea353b8ced9f8218d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:25.52ex; height:3.176ex;" alt="{\displaystyle U=e^{i{\frac {\pi }{2}}(I-U)}=e^{-i{\frac {\pi }{2}}(I-U)}}"></span>, and is <a href="/wiki/Involutory_matrix" title="Involutory matrix">involutory</a>. </p><p>More generally if <i>U</i> is a gate that operates on a single qubit with matrix representation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U={\begin{bmatrix}u_{00}&amp;u_{01}\\u_{10}&amp;u_{11}\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U={\begin{bmatrix}u_{00}&amp;u_{01}\\u_{10}&amp;u_{11}\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6267efa578d909dc09fb65f5a800cbf32cc26f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.469ex; height:6.176ex;" alt="{\displaystyle U={\begin{bmatrix}u_{00}&amp;u_{01}\\u_{10}&amp;u_{11}\end{bmatrix}},}"></span></dd></dl><p> then the <i>controlled-U gate</i> is a gate that operates on two qubits in such a way that the first qubit serves as a control. It maps the basis states as follows.<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1237032888/mw-parser-output/.tmulti"></p><div class="thumb tmulti tright"><div class="thumbinner multiimageinner" style="width:392px;max-width:392px"><div class="trow"><div class="tsingle" style="width:127px;max-width:127px"><div class="thumbimage" style="height:101px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_CNOT.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Qcircuit_CNOT.svg/125px-Qcircuit_CNOT.svg.png" decoding="async" width="125" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/91/Qcircuit_CNOT.svg/188px-Qcircuit_CNOT.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/91/Qcircuit_CNOT.svg/250px-Qcircuit_CNOT.svg.png 2x" data-file-width="250" data-file-height="202" /></a></span></div></div><div class="tsingle" style="width:128px;max-width:128px"><div class="thumbimage" style="height:101px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_CY.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Qcircuit_CY.svg/126px-Qcircuit_CY.svg.png" decoding="async" width="126" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/92/Qcircuit_CY.svg/189px-Qcircuit_CY.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/92/Qcircuit_CY.svg/252px-Qcircuit_CY.svg.png 2x" data-file-width="287" data-file-height="231" /></a></span></div></div><div class="tsingle" style="width:131px;max-width:131px"><div class="thumbimage" style="height:101px;overflow:hidden"><span typeof="mw:File"><a href="/wiki/File:Qcircuit_CC.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Qcircuit_CC.svg/129px-Qcircuit_CC.svg.png" decoding="async" width="129" height="101" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Qcircuit_CC.svg/194px-Qcircuit_CC.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/6c/Qcircuit_CC.svg/258px-Qcircuit_CC.svg.png 2x" data-file-width="214" data-file-height="167" /></a></span></div></div></div><div class="trow" style="display:flex"><div class="thumbcaption">Circuit diagrams of controlled Pauli gates (from left to right): CNOT (or controlled-X), controlled-Y and controlled-Z.</div></div></div></div> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle \mapsto |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle \mapsto |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/da7e976ad12c78afc74cd7cf9beda526022dcaa8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.367ex; height:2.843ex;" alt="{\displaystyle |00\rangle \mapsto |00\rangle }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |01\rangle \mapsto |01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |01\rangle \mapsto |01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2125c0107eb3d3b66f83c3be65c9db1a7619fbb0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.367ex; height:2.843ex;" alt="{\displaystyle |01\rangle \mapsto |01\rangle }"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |10\rangle \mapsto |1\rangle \otimes U|0\rangle =|1\rangle \otimes (u_{00}|0\rangle +u_{10}|1\rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |10\rangle \mapsto |1\rangle \otimes U|0\rangle =|1\rangle \otimes (u_{00}|0\rangle +u_{10}|1\rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb7418fc0df5487bd0f96a387ff023e1fe0b1a25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.684ex; height:2.843ex;" alt="{\displaystyle |10\rangle \mapsto |1\rangle \otimes U|0\rangle =|1\rangle \otimes (u_{00}|0\rangle +u_{10}|1\rangle )}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle \mapsto |1\rangle \otimes U|1\rangle =|1\rangle \otimes (u_{01}|0\rangle +u_{11}|1\rangle )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo stretchy="false">(</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle \mapsto |1\rangle \otimes U|1\rangle =|1\rangle \otimes (u_{01}|0\rangle +u_{11}|1\rangle )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ad3f73e92d3d1d2a7d4025124ae0b9f19109d8ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:42.684ex; height:2.843ex;" alt="{\displaystyle |11\rangle \mapsto |1\rangle \otimes U|1\rangle =|1\rangle \otimes (u_{01}|0\rangle +u_{11}|1\rangle )}"></span></dd></dl> <p>The matrix representing the controlled <i>U</i> is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{C}}U={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;u_{00}&amp;u_{01}\\0&amp;0&amp;u_{10}&amp;u_{11}\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>C</mtext> </mstyle> </mrow> <mi>U</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>00</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>01</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{C}}U={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;u_{00}&amp;u_{01}\\0&amp;0&amp;u_{10}&amp;u_{11}\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9e155ee5cfa895fafcab4db6b031d88128e339d5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:26.763ex; height:12.509ex;" alt="{\displaystyle {\mbox{C}}U={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;u_{00}&amp;u_{01}\\0&amp;0&amp;u_{10}&amp;u_{11}\end{bmatrix}}.}"></span></dd></dl> <p>When <i>U</i> is one of the Pauli operators, <i>X</i>,<i>Y</i>, <i>Z</i>, the respective terms "controlled-<i>X</i>", "controlled-<i>Y</i>", or "controlled-<i>Z</i>" are sometimes used.<sup id="cite_ref-Nielsen-Chuang_5-3" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 177–185">&#58;&#8202;177–185&#8202;</span></sup> Sometimes this is shortened to just C<i>X</i>, C<i>Y</i> and C<i>Z</i>. </p><p>In general, any single qubit <a href="/wiki/Unitary_matrix#Properties" title="Unitary matrix">unitary gate</a> can be expressed as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U=e^{iH}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>H</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U=e^{iH}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53b453df132d014e83dd49eb29775c93d92c5cc0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.223ex; height:2.676ex;" alt="{\displaystyle U=e^{iH}}"></span>, where <i>H</i> is a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a>, and then the controlled <i>U</i> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle CU=e^{i{\frac {1}{2}}(I-Z_{1})H_{2}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mi>U</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle CU=e^{i{\frac {1}{2}}(I-Z_{1})H_{2}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/280c356bb2f03b515ba8083ed34a44ac0160601d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:18.219ex; height:3.509ex;" alt="{\displaystyle CU=e^{i{\frac {1}{2}}(I-Z_{1})H_{2}}.}"></span> </p><p>Control can be extended to gates with arbitrary number of qubits<sup id="cite_ref-Barenco_2-4" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> and functions in programming languages.<sup id="cite_ref-adjoint-controlled-qsharp_12-0" class="reference"><a href="#cite_note-adjoint-controlled-qsharp-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Functions can be conditioned on superposition states.<sup id="cite_ref-Oemer-structured-programming_13-0" class="reference"><a href="#cite_note-Oemer-structured-programming-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Oemer2_14-0" class="reference"><a href="#cite_note-Oemer2-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Classical_control">Classical control</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=7" title="Edit section: Classical control"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Deferred_measurement_principle" title="Deferred measurement principle">Deferred measurement principle</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Example_for_classic_controlled_quantum_gate.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Example_for_classic_controlled_quantum_gate.png/180px-Example_for_classic_controlled_quantum_gate.png" decoding="async" width="180" height="77" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Example_for_classic_controlled_quantum_gate.png/270px-Example_for_classic_controlled_quantum_gate.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Example_for_classic_controlled_quantum_gate.png/360px-Example_for_classic_controlled_quantum_gate.png 2x" data-file-width="485" data-file-height="207" /></a><figcaption><b>Example:</b> The qubit <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is <a href="#Measurement">measured</a>, and the result of this measurement is a <a href="/wiki/Boolean_data_type" title="Boolean data type">Boolean</a> value, which is consumed by the classical computer. If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> measures to 1, then the classical computer tells the quantum computer to apply the U gate on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>.<br />In circuit diagrams, single lines are <a href="/wiki/Qubit" title="Qubit">qubits</a>, and doubled lines are <a href="/wiki/Bit" title="Bit">bits</a>.</figcaption></figure><p> Gates can also be controlled by classical logic. A quantum computer is controlled by a <a href="/wiki/Classical_computing" class="mw-redirect" title="Classical computing">classical computer</a>, and behaves like a <a href="/wiki/Coprocessor" title="Coprocessor">coprocessor</a> that receives instructions from the classical computer about what gates to execute on which qubits.<sup id="cite_ref-Oemer_15-0" class="reference"><a href="#cite_note-Oemer-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 42–43">&#58;&#8202;42–43&#8202;</span></sup><sup id="cite_ref-cryo-controller_16-0" class="reference"><a href="#cite_note-cryo-controller-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Classical control is simply the inclusion, or omission, of gates in the instruction sequence for the quantum computer.<sup id="cite_ref-Nielsen-Chuang_5-4" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 26–28">&#58;&#8202;26–28&#8202;</span></sup><sup id="cite_ref-Williams_1-3" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 87–88">&#58;&#8202;87–88&#8202;</span></sup> </p><p><span class="anchor" id="Phase_shift"></span><span class="anchor" id="Phase_shift_gates"></span><span class="anchor" id="Phase_shift_gate"></span><span class="anchor" id="Phase_gate"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Phase_shift_gates">Phase shift gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=8" title="Edit section: Phase shift gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The phase shift is a family of single-qubit gates that map the basis states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle \mapsto |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle \mapsto |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/22321e9a77664a5a5091fed9bbbba59e8f7fbb16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.042ex; height:2.843ex;" alt="{\displaystyle |0\rangle \mapsto |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle \mapsto e^{i\varphi }|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle \mapsto e^{i\varphi }|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a9cc528b6e7c2b29961fb63355c09bfa943ea36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12ex; height:3.176ex;" alt="{\displaystyle |1\rangle \mapsto e^{i\varphi }|1\rangle }"></span>. The probability of measuring a <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> is unchanged after applying this gate, however it modifies the phase of the quantum state. This is equivalent to tracing a horizontal circle (a line of constant latitude), or a rotation about the z-axis on the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a> by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> radians. The phase shift gate is represented by the matrix: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\varphi )={\begin{bmatrix}1&amp;0\\0&amp;e^{i\varphi }\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C6;<!-- φ --></mi> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\varphi )={\begin{bmatrix}1&amp;0\\0&amp;e^{i\varphi }\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e7fab3c0ed23553ddea581803346b641589ac06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:17.823ex; height:6.176ex;" alt="{\displaystyle P(\varphi )={\begin{bmatrix}1&amp;0\\0&amp;e^{i\varphi }\end{bmatrix}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is the <i>phase shift</i> with the <a href="/wiki/Periodic_function" title="Periodic function">period</a> <span class="texhtml">2&#960;</span>. Some common examples are the <i>T</i> gate where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \varphi ={\frac {\pi }{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \varphi ={\frac {\pi }{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1a0346777f005a93bc5ea5f747adab4b428958a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.397ex; height:3.176ex;" alt="{\textstyle \varphi ={\frac {\pi }{4}}}"></span> (historically known as the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi /8}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>8</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi /8}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5560bd24fb121d12a76b93236ac084e4c5844770" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.657ex; height:2.843ex;" alt="{\displaystyle \pi /8}"></span> gate), the phase gate (also known as the S gate, written as <i>S</i>, though <i>S</i> is sometimes used for SWAP gates) where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \varphi ={\frac {\pi }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \varphi ={\frac {\pi }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03cda5fd119bd25e6bff74f37c2198e4670d52a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.397ex; height:3.176ex;" alt="{\textstyle \varphi ={\frac {\pi }{2}}}"></span> and the <a href="#Z">Pauli-<i>Z</i> gate</a> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =\pi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>&#x03C0;<!-- π --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =\pi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a29f340d8b2e59b095384fa781485ab8cb831dbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.597ex; height:2.176ex;" alt="{\displaystyle \varphi =\pi .}"></span> </p><p>The phase shift gates are related to each other as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Z={\begin{bmatrix}1&amp;0\\0&amp;e^{i\pi }\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}=P\left(\pi \right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Z</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03C0;<!-- π --></mi> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mi>&#x03C0;<!-- π --></mi> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Z={\begin{bmatrix}1&amp;0\\0&amp;e^{i\pi }\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}=P\left(\pi \right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d78227b8a69fe57d5f4c7559bf19eef705babc6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:35.428ex; height:6.176ex;" alt="{\displaystyle Z={\begin{bmatrix}1&amp;0\\0&amp;e^{i\pi }\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;-1\end{bmatrix}}=P\left(\pi \right)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{2}}}\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;i\end{bmatrix}}=P\left({\frac {\pi }{2}}\right)={\sqrt {Z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>Z</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{2}}}\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;i\end{bmatrix}}=P\left({\frac {\pi }{2}}\right)={\sqrt {Z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/64c32888869df28af43cdffe525735c783ff7c2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:42.87ex; height:7.509ex;" alt="{\displaystyle S={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{2}}}\end{bmatrix}}={\begin{bmatrix}1&amp;0\\0&amp;i\end{bmatrix}}=P\left({\frac {\pi }{2}}\right)={\sqrt {Z}}}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{4}}}\end{bmatrix}}=P\left({\frac {\pi }{4}}\right)={\sqrt {S}}={\sqrt[{4}]{Z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>T</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> </mrow> </msup> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>P</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>S</mi> </msqrt> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mroot> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </mroot> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{4}}}\end{bmatrix}}=P\left({\frac {\pi }{4}}\right)={\sqrt {S}}={\sqrt[{4}]{Z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33c88bbaf48f6f443648d8e67637a140138ef2cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:38.589ex; height:7.509ex;" alt="{\displaystyle T={\begin{bmatrix}1&amp;0\\0&amp;e^{i{\frac {\pi }{4}}}\end{bmatrix}}=P\left({\frac {\pi }{4}}\right)={\sqrt {S}}={\sqrt[{4}]{Z}}}"></span></dd></dl> <p>Note that the phase gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/849dd55fa13defbda3c5e45a8ba53d6c995aa74d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.075ex; height:2.843ex;" alt="{\displaystyle P(\varphi )}"></span> is not <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a> (except for all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi =n\pi ,n\in \mathbb {Z} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>=</mo> <mi>n</mi> <mi>&#x03C0;<!-- π --></mi> <mo>,</mo> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi =n\pi ,n\in \mathbb {Z} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf9dbfef11f31837ad7c23151c001697b17c3435" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.165ex; height:2.676ex;" alt="{\displaystyle \varphi =n\pi ,n\in \mathbb {Z} }"></span>). These gates are different from their Hermitian conjugates: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{\dagger }(\varphi )=P(-\varphi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{\dagger }(\varphi )=P(-\varphi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92d16d84f559ef949164f162fb8add22d151e6d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.095ex; height:3.176ex;" alt="{\displaystyle P^{\dagger }(\varphi )=P(-\varphi )}"></span>. The two <a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">adjoint</a> (or <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>) gates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30011dcdbaf9b267c154008891b2eb6f51dfe50f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.484ex; height:2.676ex;" alt="{\displaystyle S^{\dagger }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ecfdf41cde0b4b5db2ef0b01507a83454ddc2cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.682ex; height:2.676ex;" alt="{\displaystyle T^{\dagger }}"></span> are sometimes included in instruction sets.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="anchor" id="Hadamard"></span><span class="anchor" id="Hadamard_gate"></span><span class="anchor" id="H_gate"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Hadamard_gate">Hadamard gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=9" title="Edit section: Hadamard gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Hadamard_transform#Quantum_computing_applications" title="Hadamard transform">Hadamard transform §&#160;Quantum computing applications</a>, and <a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard matrix</a></div><p>The Hadamard or Walsh-Hadamard gate, named after <a href="/wiki/Jacques_Hadamard" title="Jacques Hadamard">Jacques Hadamard</a> (<style data-mw-deduplicate="TemplateStyles:r1177148991">.mw-parser-output .IPA-label-small{font-size:85%}.mw-parser-output .references .IPA-label-small,.mw-parser-output .infobox .IPA-label-small,.mw-parser-output .navbox .IPA-label-small{font-size:100%}</style><span class="IPA-label IPA-label-small">French:</span> <span class="IPA nowrap" lang="fr-Latn-fonipa"><a href="/wiki/Help:IPA/French" title="Help:IPA/French">&#91;adamaʁ&#93;</a></span>) and <a href="/wiki/Joseph_L._Walsh" title="Joseph L. Walsh">Joseph L. Walsh</a>, acts on a single qubit. It maps the basis states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |0\rangle \mapsto {\frac {|0\rangle +|1\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |0\rangle \mapsto {\frac {|0\rangle +|1\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5c8d6214d9d2c13eee5e10baa63459ab14d53e7b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.281ex; height:4.843ex;" alt="{\textstyle |0\rangle \mapsto {\frac {|0\rangle +|1\rangle }{\sqrt {2}}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |1\rangle \mapsto {\frac {|0\rangle -|1\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |1\rangle \mapsto {\frac {|0\rangle -|1\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/562f1c71463f8646444c2916c8691c72721ee41f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.281ex; height:4.843ex;" alt="{\textstyle |1\rangle \mapsto {\frac {|0\rangle -|1\rangle }{\sqrt {2}}}}"></span> (it creates an equal superposition state if given a computational basis state). The two states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|0\rangle +|1\rangle )/{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|0\rangle +|1\rangle )/{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029991aa9287ede9d50054e2200af0c300529100" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.338ex; height:3.176ex;" alt="{\displaystyle (|0\rangle +|1\rangle )/{\sqrt {2}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (|0\rangle -|1\rangle )/{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (|0\rangle -|1\rangle )/{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/15a195233549ed17eb9154c1b8ff38b22e662056" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.338ex; height:3.176ex;" alt="{\displaystyle (|0\rangle -|1\rangle )/{\sqrt {2}}}"></span> are sometimes written <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |+\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>+</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |+\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f39109e5dd0d63a152bd539e71a233b78e23eb5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |+\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |-\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x2212;<!-- − --></mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |-\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7da62e696eae51c2d89944b647e24b41cafb2f1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |-\rangle }"></span> respectively. The Hadamard gate performs a rotation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9be4ba0bb8df3af72e90a0535fabcc17431e540a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.332ex; height:1.676ex;" alt="{\displaystyle \pi }"></span> about the axis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle ({\hat {x}}+{\hat {z}})/{\sqrt {2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mn>2</mn> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle ({\hat {x}}+{\hat {z}})/{\sqrt {2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5265b9225c6522496c0d0eef013830380ecb0320" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.536ex; height:3.176ex;" alt="{\displaystyle ({\hat {x}}+{\hat {z}})/{\sqrt {2}}}"></span> at the <a href="/wiki/Bloch_sphere" title="Bloch sphere">Bloch sphere</a>, and is therefore <a href="/wiki/Involutory_matrix" title="Involutory matrix">involutory</a>. It is represented by the <a href="/wiki/Hadamard_matrix" title="Hadamard matrix">Hadamard matrix</a>: </p><figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Hadamard_gate.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Hadamard_gate.svg/180px-Hadamard_gate.svg.png" decoding="async" width="180" height="76" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Hadamard_gate.svg/270px-Hadamard_gate.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Hadamard_gate.svg/360px-Hadamard_gate.svg.png 2x" data-file-width="52" data-file-height="22" /></a><figcaption>Circuit representation of Hadamard gate</figcaption></figure> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72eec613db5aede0264dedc3fb84cdda4b2ceabc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:19.405ex; height:6.509ex;" alt="{\displaystyle H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}.}"></span></dd></dl> <p>If the <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a> (so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{\dagger }=H^{-1}=H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{\dagger }=H^{-1}=H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31b62b6b79cdad0dd09b73d3b0e1019051d1bce3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.763ex; height:2.676ex;" alt="{\displaystyle H^{\dagger }=H^{-1}=H}"></span>) Hadamard gate is used to perform a <a href="/wiki/Change_of_basis#Endomorphisms" title="Change of basis">change of basis</a>, it flips <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {x}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>x</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {x}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18d95a7845e4e16ffb7e18ab37a208d0ab18e0e0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:2.176ex;" alt="{\displaystyle {\hat {x}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\hat {z}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>z</mi> <mo stretchy="false">&#x005E;<!-- ^ --></mo> </mover> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\hat {z}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/722665b45e05afe79f4395a3de0237d8ce856273" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.296ex; height:2.176ex;" alt="{\displaystyle {\hat {z}}}"></span>. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle HZH=X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mi>Z</mi> <mi>H</mi> <mo>=</mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle HZH=X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7f1700f7015ad2ff112b2ea52f2b150ce6b7d380" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.886ex; height:2.176ex;" alt="{\displaystyle HZH=X}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H{\sqrt {X}}\;H={\sqrt {Z}}=S.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mspace width="thickmathspace" /> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>Z</mi> </msqrt> </mrow> <mo>=</mo> <mi>S</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H{\sqrt {X}}\;H={\sqrt {Z}}=S.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11b5f1794cc3cc812b73892ef69e3d0bb1059880" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:20.648ex; height:3.009ex;" alt="{\displaystyle H{\sqrt {X}}\;H={\sqrt {Z}}=S.}"></span> <span class="anchor" id="Swap"></span><span class="anchor" id="SWAP"></span><span class="anchor" id="Swap_gate"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Swap_gate">Swap gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=10" title="Edit section: Swap gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/List_of_quantum_logic_gates#Non-Clifford_swap_gates" title="List of quantum logic gates">List of quantum logic gates §&#160;Non-Clifford swap gates</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Swap_gate.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Swap_gate.svg/130px-Swap_gate.svg.png" decoding="async" width="130" height="81" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Swap_gate.svg/195px-Swap_gate.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ea/Swap_gate.svg/260px-Swap_gate.svg.png 2x" data-file-width="32" data-file-height="20" /></a><figcaption>Circuit representation of SWAP gate</figcaption></figure> <p>The swap gate swaps two qubits. With respect to the basis <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20574b999c62f66d7995a0c2e662af619f83c08a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |01\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea8f8133d5db75de4b048da145e24ff71c02c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |10\rangle }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>, it is represented by the matrix </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{SWAP}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\end{bmatrix}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>SWAP</mtext> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{SWAP}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\end{bmatrix}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/471587670c031419c2374fccbbcccdcfa42a7dfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:26.222ex; height:12.509ex;" alt="{\displaystyle {\mbox{SWAP}}={\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\end{bmatrix}}.}"></span></dd></dl> <p>The swap gate can be decomposed into summation form: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{SWAP}}={\frac {I\otimes I+X\otimes X+Y\otimes Y+Z\otimes Z}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>SWAP</mtext> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>I</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>I</mi> <mo>+</mo> <mi>X</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>Y</mi> <mo>+</mo> <mi>Z</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>Z</mi> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{SWAP}}={\frac {I\otimes I+X\otimes X+Y\otimes Y+Z\otimes Z}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3960fd9027cba460c1a342c6128ee790ac356530" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.036ex; height:5.176ex;" alt="{\displaystyle {\mbox{SWAP}}={\frac {I\otimes I+X\otimes X+Y\otimes Y+Z\otimes Z}{2}}}"></span></dd></dl> <p><span class="anchor" id="Toffoli_gate"></span><span class="anchor" id="Toffoli"></span><span class="anchor" id="CCNOT"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Toffoli_(CCNOT)_gate"><span id="Toffoli_.28CCNOT.29_gate"></span>Toffoli (CCNOT) gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=11" title="Edit section: Toffoli (CCNOT) gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Toffoli_gate" title="Toffoli gate">Toffoli gate</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Toffoli_gate.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Toffoli_gate.svg/130px-Toffoli_gate.svg.png" decoding="async" width="130" height="112" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/26/Toffoli_gate.svg/195px-Toffoli_gate.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Toffoli_gate.svg/260px-Toffoli_gate.svg.png 2x" data-file-width="43" data-file-height="37" /></a><figcaption>Circuit representation of Toffoli gate</figcaption></figure> <p>The Toffoli gate, named after <a href="/wiki/Tommaso_Toffoli" title="Tommaso Toffoli">Tommaso Toffoli</a> and also called the CCNOT gate or <a href="#Deutsch_gate">Deutsch gate</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(\pi /2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(\pi /2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/777d83651ee6f12e138a69d36ad903a0e59eff5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.39ex; height:2.843ex;" alt="{\displaystyle D(\pi /2)}"></span>, is a 3-bit gate that is <a href="/wiki/Functional_completeness" title="Functional completeness">universal</a> for classical computation but not for quantum computation. The quantum Toffoli gate is the same gate, defined for 3 qubits. If we limit ourselves to only accepting input qubits that are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>,</span> then if the first two bits are in the state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> it applies a Pauli-<i>X</i> (or NOT) on the third bit, else it does nothing. It is an example of a CC-U (controlled-controlled Unitary) gate. Since it is the quantum analog of a classical gate, it is completely specified by its truth table. The Toffoli gate is universal when combined with the single qubit Hadamard gate.<sup id="cite_ref-Aharonov_19-0" class="reference"><a href="#cite_note-Aharonov-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <table> <tbody><tr> <th>Truth table</th> <th>Matrix form </th></tr> <tr> <td> <table class="wikitable"> <tbody><tr> <th colspan="3">INPUT </th> <th colspan="3">OUTPUT </th></tr> <tr style="text-align:center;"> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0 </td></tr> <tr style="text-align:center;"> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1 </td></tr> <tr style="text-align:center;"> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0 </td></tr> <tr style="text-align:center;"> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1 </td></tr> <tr style="text-align:center;"> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0 </td></tr> <tr style="text-align:center;"> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>0</td> <td>1 </td></tr> <tr style="text-align:center;"> <td>1</td> <td>1</td> <td>0</td> <td>1</td> <td>1</td> <td>1 </td></tr> <tr style="text-align:center;"> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>0 </td></tr></tbody></table> </td> <td> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0\\\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0\\\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70d00c695dd6889b6a71c6aad344f7a13a409c64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -12.171ex; width:29.41ex; height:25.509ex;" alt="{\displaystyle {\begin{bmatrix}1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1\\0&amp;0&amp;0&amp;0&amp;0&amp;0&amp;1&amp;0\\\end{bmatrix}}}"></span> </p> </td></tr></tbody></table> <p>The Toffoli gate is related to the classical <a href="/wiki/Logical_conjunction" title="Logical conjunction">AND</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span>) and <a href="/wiki/Exclusive_or" title="Exclusive or">XOR</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span>) operations as it performs the mapping <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a,b,c\rangle \mapsto |a,b,c\oplus (a\land b)\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&#x2295;<!-- ⊕ --></mo> <mo stretchy="false">(</mo> <mi>a</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a,b,c\rangle \mapsto |a,b,c\oplus (a\land b)\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4245377b44710faf7af742432d64abef018e0e25" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.781ex; height:2.843ex;" alt="{\displaystyle |a,b,c\rangle \mapsto |a,b,c\oplus (a\land b)\rangle }"></span> on states in the computational basis. </p><p>The Toffoli gate can be expressed using <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli matrices</a> as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mbox{Toff}}=e^{i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}=e^{-i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>Toff</mtext> </mstyle> </mrow> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>8</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>8</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>Z</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mbox{Toff}}=e^{i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}=e^{-i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c77690be8d83f6c858c4ba0746bbb91b4600e69b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:51.874ex; height:3.176ex;" alt="{\displaystyle {\mbox{Toff}}=e^{i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}=e^{-i{\frac {\pi }{8}}(I-Z_{1})(I-Z_{2})(I-X_{3})}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Universal_quantum_gates">Universal quantum gates</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=12" title="Edit section: Universal quantum gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Qcircuit_CNOTsqrtSWAP2.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_CNOTsqrtSWAP2.svg/330px-Qcircuit_CNOTsqrtSWAP2.svg.png" decoding="async" width="330" height="61" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_CNOTsqrtSWAP2.svg/495px-Qcircuit_CNOTsqrtSWAP2.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2e/Qcircuit_CNOTsqrtSWAP2.svg/660px-Qcircuit_CNOTsqrtSWAP2.svg.png 2x" data-file-width="1878" data-file-height="348" /></a><figcaption>Both CNOT and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\mbox{SWAP}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mstyle displaystyle="false" scriptlevel="0"> <mtext>SWAP</mtext> </mstyle> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\mbox{SWAP}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4d5f4ce40f77fa2aee09d8be054af4c3d216ae1d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.943ex; height:3.009ex;" alt="{\displaystyle {\sqrt {\mbox{SWAP}}}}"></span> are universal two-qubit gates and can be transformed into each other.</figcaption></figure> <p>A set of <b>universal quantum gates</b> is any set of gates to which any operation possible on a quantum computer can be reduced, that is, any other unitary operation can be expressed as a finite sequence of gates from the set. Technically, this is impossible with anything less than an <a href="/wiki/Uncountable" class="mw-redirect" title="Uncountable">uncountable</a> set of gates since the number of possible quantum gates is uncountable, whereas the number of finite sequences from a finite set is <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a>. To solve this problem, we only require that any quantum operation can be approximated by a sequence of gates from this finite set. Moreover, for <a href="/wiki/Unitary_transformation_(quantum_mechanics)" title="Unitary transformation (quantum mechanics)">unitaries</a> on a constant number of qubits, the <a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev theorem</a> guarantees that this can be done efficiently. Checking if a set of quantum gates is universal can be done using <a href="/wiki/Group_theory" title="Group theory">group theory</a> methods<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> and/or relation to (approximate) <a href="/wiki/Quantum_t-design" title="Quantum t-design">unitary t-designs</a><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> </p><p>Some universal quantum gate sets include: </p> <ul><li>The <a href="/wiki/List_of_quantum_logic_gates#Rotation_operator_gates" title="List of quantum logic gates">rotation operators</a> <span class="texhtml"><i>R<sub>x</sub></i>(<i>&#952;</i>)</span>, <span class="texhtml"><i>R<sub>y</sub></i>(<i>&#952;</i>)</span>, <span class="texhtml"><i>R<sub>z</sub></i>(<i>&#952;</i>)</span>, the <a href="#Phase_shift_gates">phase shift gate</a> <span class="texhtml"><i>P</i>(<i>&#966;</i>)</span><sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> and <a href="#CNOT">CNOT</a> are commonly used to form a universal quantum gate set.<sup id="cite_ref-:0_23-0" class="reference"><a href="#cite_note-:0-23"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>d<span class="cite-bracket">&#93;</span></a></sup></li> <li>The <a href="/wiki/Clifford_gates" title="Clifford gates">Clifford</a> set {CNOT, <i>H</i>, <i>S</i>} + <i>T</i> gate. The Clifford set alone is not a universal quantum gate set, as it can be efficiently simulated classically according to the <a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill theorem</a>.</li> <li>The <a href="/wiki/Toffoli_gate" title="Toffoli gate">Toffoli gate</a> + Hadamard gate.<sup id="cite_ref-Aharonov_19-1" class="reference"><a href="#cite_note-Aharonov-19"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The Toffoli gate alone forms a set of universal gates for reversible <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebraic</a> logic circuits, which encompasses all classical computation.</li></ul> <div class="mw-heading mw-heading3"><h3 id="Deutsch_gate">Deutsch gate</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=13" title="Edit section: Deutsch gate"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A single-gate set of universal quantum gates can also be formulated using the parametrized three-qubit Deutsch gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(\theta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(\theta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0104626f49026cea3d067c0301ce2fe52b0faf57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.824ex; height:2.843ex;" alt="{\displaystyle D(\theta )}"></span>,<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> named after physicist <a href="/wiki/David_Deutsch" title="David Deutsch">David Deutsch</a>. It is a general case of <i>CC-U</i>, or <i>controlled-controlled-unitary</i> gate, and is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a,b,c\rangle \mapsto {\begin{cases}i\cos(\theta )|a,b,c\rangle +\sin(\theta )|a,b,1-c\rangle &amp;{\text{for}}\ a=b=1,\\|a,b,c\rangle &amp;{\text{otherwise}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">&#x21A6;<!-- ↦ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mi>i</mi> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>c</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>for</mtext> </mrow> <mtext>&#xA0;</mtext> <mi>a</mi> <mo>=</mo> <mi>b</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a,b,c\rangle \mapsto {\begin{cases}i\cos(\theta )|a,b,c\rangle +\sin(\theta )|a,b,1-c\rangle &amp;{\text{for}}\ a=b=1,\\|a,b,c\rangle &amp;{\text{otherwise}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ab6acd8b9f5e571f4c27e91002979bba6d047e99" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:62.391ex; height:6.176ex;" alt="{\displaystyle |a,b,c\rangle \mapsto {\begin{cases}i\cos(\theta )|a,b,c\rangle +\sin(\theta )|a,b,1-c\rangle &amp;{\text{for}}\ a=b=1,\\|a,b,c\rangle &amp;{\text{otherwise}}.\end{cases}}}"></span></dd></dl> <p>Unfortunately, a working Deutsch gate has remained out of reach, due to lack of a protocol. There are some proposals to realize a Deutsch gate with dipole–dipole interaction in neutral atoms.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="anchor" id="Universal_gates"></span><span class="anchor" id="Deutsch_gate"></span> </p><p>A universal logic gate for reversible classical computing, the Toffoli gate, is reducible to the Deutsch gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle D(\pi /2)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>D</mi> <mo stretchy="false">(</mo> <mi>&#x03C0;<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle D(\pi /2)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/777d83651ee6f12e138a69d36ad903a0e59eff5a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.39ex; height:2.843ex;" alt="{\displaystyle D(\pi /2)}"></span>, thus showing that all reversible classical logic operations can be performed on a universal quantum computer. </p><p>There also exist single two-qubit gates sufficient for universality. In 1996, Adriano Barenco showed that the Deutsch gate can be decomposed using only a single two-qubit gate (<a href="/wiki/List_of_quantum_logic_gates#Barenco" title="List of quantum logic gates">Barenco gate</a>), but it is hard to realize experimentally.<sup id="cite_ref-Williams_1-5" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 93">&#58;&#8202;93&#8202;</span></sup> This feature is exclusive to quantum circuits, as there is no classical two-bit gate that is both reversible and universal.<sup id="cite_ref-Williams_1-6" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 93">&#58;&#8202;93&#8202;</span></sup> Universal two-qubit gates could be implemented to improve classical reversible circuits in fast low-power microprocessors.<sup id="cite_ref-Williams_1-7" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 93">&#58;&#8202;93&#8202;</span></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Circuit_composition">Circuit composition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=14" title="Edit section: Circuit composition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Serially_wired_gates">Serially wired gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=15" title="Edit section: Serially wired gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Serially_wired_quantum_logic_gates.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Serially_wired_quantum_logic_gates.png/440px-Serially_wired_quantum_logic_gates.png" decoding="async" width="440" height="46" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/0/0a/Serially_wired_quantum_logic_gates.png 1.5x" data-file-width="562" data-file-height="59" /></a><figcaption>Two gates <i>Y</i> and <i>X</i> in series. The order in which they appear on the wire is reversed when multiplying them together.</figcaption></figure><p>Assume that we have two gates <i>A</i> and <i>B</i> that both act on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits. When <i>B</i> is put after <i>A</i> in a series circuit, then the effect of the two gates can be described as a single gate <i>C</i>. </p><dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=B\cdot A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=B\cdot A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7e29a0b89531eb257c915bdafdabad58987f56f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.051ex; height:2.176ex;" alt="{\displaystyle C=B\cdot A}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span> is <a href="/wiki/Matrix_multiplication#Definition" title="Matrix multiplication">matrix multiplication</a>. The resulting gate <i>C</i> will have the same dimensions as <i>A</i> and <i>B</i>. The order in which the gates would appear in a circuit diagram is reversed when multiplying them together.<sup id="cite_ref-Nielsen-Chuang_5-5" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 17–18,22–23,62–64">&#58;&#8202;17–18,22–23,62–64&#8202;</span></sup><sup id="cite_ref-Yanofsky-Mannucci_6-2" class="reference"><a href="#cite_note-Yanofsky-Mannucci-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 147–169">&#58;&#8202;147–169&#8202;</span></sup> </p><p>For example, putting the Pauli <i>X</i> gate after the Pauli <i>Y</i> gate, both of which act on a single qubit, can be described as a single combined gate <i>C</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=X\cdot Y={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\cdot {\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}={\begin{bmatrix}i&amp;0\\0&amp;-i\end{bmatrix}}=iZ}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>X</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>Y</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mi>i</mi> <mi>Z</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=X\cdot Y={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\cdot {\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}={\begin{bmatrix}i&amp;0\\0&amp;-i\end{bmatrix}}=iZ}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4749c365a7a0945e59216aef409aa9605b7f266f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:50.213ex; height:6.176ex;" alt="{\displaystyle C=X\cdot Y={\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\cdot {\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}={\begin{bmatrix}i&amp;0\\0&amp;-i\end{bmatrix}}=iZ}"></span></dd></dl> <p>The product symbol (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \cdot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x22C5;<!-- ⋅ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \cdot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba2c023bad1bd39ed49080f729cbf26bc448c9ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.439ex; margin-bottom: -0.61ex; width:0.647ex; height:1.176ex;" alt="{\displaystyle \cdot }"></span>) is often omitted. </p> <div class="mw-heading mw-heading4"><h4 id="Exponents_of_quantum_gates">Exponents of quantum gates</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=16" title="Edit section: Exponents of quantum gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>All <a href="/wiki/Real_number" title="Real number">real</a> exponents of <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> are also unitary matrices, and all quantum gates are unitary matrices. </p><p>Positive integer exponents are equivalent to sequences of serially wired gates (e.g. <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{3}=X\cdot X\cdot X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>=</mo> <mi>X</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>X</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{3}=X\cdot X\cdot X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a2f99e18ed2fd6c60eebaaebd5eccf68c65ba9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:15.448ex; height:2.676ex;" alt="{\displaystyle X^{3}=X\cdot X\cdot X}"></span>),</span> and the real exponents is a generalization of the series circuit. For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X^{\pi }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C0;<!-- π --></mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X^{\pi }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7ea5869fdd7c5bd7b249552e81b5d6a892b70a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.171ex; height:2.343ex;" alt="{\displaystyle X^{\pi }}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {X}}=X^{1/2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>X</mi> </msqrt> </mrow> <mo>=</mo> <msup> <mi>X</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {X}}=X^{1/2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f73d004bd9526de6e6986a735563e030f1ab784" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.709ex; height:3.176ex;" alt="{\displaystyle {\sqrt {X}}=X^{1/2}}"></span> are both valid quantum gates. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{0}=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{0}=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a1634ee0e88e5121b82d0519691d19462ddb39a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.166ex; height:2.676ex;" alt="{\displaystyle U^{0}=I}"></span> for any unitary matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span>. The <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>) behaves like a <a href="/wiki/NOP_(code)" title="NOP (code)">NOP</a><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> and can be represented as bare wire in quantum circuits, or not shown at all. </p><p>All gates are unitary matrices, so that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\dagger }U=UU^{\dagger }=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mi>U</mi> <mo>=</mo> <mi>U</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\dagger }U=UU^{\dagger }=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e529c1da367db7775cc5bcdddbcefbe8adfe839f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.541ex; height:2.676ex;" alt="{\displaystyle U^{\dagger }U=UU^{\dagger }=I}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\dagger }=U^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\dagger }=U^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dd9c215cd4e9a7d24b1954fa55b9101ff33933f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.076ex; height:2.676ex;" alt="{\displaystyle U^{\dagger }=U^{-1}}"></span>,</span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dagger }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2020;<!-- † --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dagger }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fbce70d5be6fec538cd30d8bc7b7bb2d3ed2d3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.032ex; height:2.676ex;" alt="{\displaystyle \dagger }"></span> is the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>. This means that negative exponents of gates are <a href="#Unitary_inversion_of_gates">unitary inverses</a> of their positively exponentiated counterparts: <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{-n}=(U^{n})^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{-n}=(U^{n})^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8bf55bacee3ecb168e17173f7c7caf89a4e9ce1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.268ex; height:3.176ex;" alt="{\displaystyle U^{-n}=(U^{n})^{\dagger }}"></span>.</span> For example, some negative exponents of the <a href="#Phase_gate">phase shift gates</a> are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{-1}=T^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{-1}=T^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31b1747c4448f014cdfdd37b0da11ef9e0dd37f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.834ex; height:2.676ex;" alt="{\displaystyle T^{-1}=T^{\dagger }}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T^{-2}=(T^{2})^{\dagger }=S^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T^{-2}=(T^{2})^{\dagger }=S^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48edd07a28da9469659139f7acb817b6d6144f4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.279ex; height:3.176ex;" alt="{\displaystyle T^{-2}=(T^{2})^{\dagger }=S^{\dagger }}"></span>.</span> </p><p>Note that for a <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian matrix</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{\dagger }=H,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mi>H</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{\dagger }=H,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0093fb924ebe2d7767cb56ef63e86c2162ceef29" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.875ex; height:3.009ex;" alt="{\displaystyle H^{\dagger }=H,}"></span> and because of unitarity, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle HH^{\dagger }=I,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle HH^{\dagger }=I,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e22cf022e65d6cb96d7d3ddd0823642e6b515dce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.046ex; height:3.009ex;" alt="{\displaystyle HH^{\dagger }=I,}"></span> so <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H^{2}=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H^{2}=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/41155382d852f2fd1a215324483d3eeccb8a4cec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.428ex; height:2.676ex;" alt="{\displaystyle H^{2}=I}"></span> for all Hermitian gates. They are <a href="/wiki/Involutory_matrix" title="Involutory matrix">involutory</a>. Examples of Hermitian gates are the <a href="#X">Pauli gates</a>, <a href="#Hadamard_gate">Hadamard</a>, <a href="#Controlled_gates">CNOT</a>, <a href="#Swap_gate">SWAP</a> and <a href="#Toffoli">Toffoli</a>. Each Hermitian unitary matrix <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> <a href="/wiki/Sylvester%27s_formula#Special_case" title="Sylvester&#39;s formula">has the property</a> that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle e^{i\theta H}=(\cos \theta )I+(i\sin \theta )H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>&#x03B8;<!-- θ --></mi> <mi>H</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>I</mi> <mo>+</mo> <mo stretchy="false">(</mo> <mi>i</mi> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo stretchy="false">)</mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle e^{i\theta H}=(\cos \theta )I+(i\sin \theta )H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d91383216e99af33f919a48dbc264cce59a084a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.018ex; height:3.176ex;" alt="{\displaystyle e^{i\theta H}=(\cos \theta )I+(i\sin \theta )H}"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H=e^{i{\frac {\pi }{2}}(I-H)}=e^{-i{\frac {\pi }{2}}(I-H)}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>H</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C0;<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <mi>I</mi> <mo>&#x2212;<!-- − --></mo> <mi>H</mi> <mo stretchy="false">)</mo> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H=e^{i{\frac {\pi }{2}}(I-H)}=e^{-i{\frac {\pi }{2}}(I-H)}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f25650f884348561ff9770391d5448e0db71e787" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:26.845ex; height:3.176ex;" alt="{\displaystyle H=e^{i{\frac {\pi }{2}}(I-H)}=e^{-i{\frac {\pi }{2}}(I-H)}.}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Parallel_gates">Parallel gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=17" title="Edit section: Parallel gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Parallel_quantum_logic_gates.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Parallel_quantum_logic_gates.png/400px-Parallel_quantum_logic_gates.png" decoding="async" width="400" height="62" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d5/Parallel_quantum_logic_gates.png/600px-Parallel_quantum_logic_gates.png 1.5x, //upload.wikimedia.org/wikipedia/commons/d/d5/Parallel_quantum_logic_gates.png 2x" data-file-width="653" data-file-height="102" /></a><figcaption>Two gates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/961d67d6b454b4df2301ac571808a3538b3a6d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.171ex; width:1.773ex; height:2.009ex;" alt="{\displaystyle Y}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68baa052181f707c662844a465bfeeb135e82bab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.98ex; height:2.176ex;" alt="{\displaystyle X}"></span> in parallel is equivalent to the gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y\otimes X}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>X</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y\otimes X}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0785637134422638483250eaf3b2b30756dfd4cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.594ex; height:2.343ex;" alt="{\displaystyle Y\otimes X}"></span>.</figcaption></figure> <p>The <a href="/wiki/Tensor_product#Tensor_product_of_linear_maps" title="Tensor product">tensor product</a> (or <a href="/wiki/Kronecker_product" title="Kronecker product">Kronecker product</a>) of two quantum gates is the gate that is equal to the two gates in parallel.<sup id="cite_ref-Nielsen-Chuang_5-6" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 71–75">&#58;&#8202;71–75&#8202;</span></sup><sup id="cite_ref-Yanofsky-Mannucci_6-3" class="reference"><a href="#cite_note-Yanofsky-Mannucci-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 148">&#58;&#8202;148&#8202;</span></sup> </p><p>If we, as in the picture, combine the Pauli-<i>Y</i> gate with the Pauli-<i>X</i> gate in parallel, then this can be written as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C=Y\otimes X={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}\otimes {\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}={\begin{bmatrix}0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;-i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\\i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\end{bmatrix}}={\begin{bmatrix}0&amp;0&amp;0&amp;-i\\0&amp;0&amp;-i&amp;0\\0&amp;i&amp;0&amp;0\\i&amp;0&amp;0&amp;0\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> <mo>=</mo> <mi>Y</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>X</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> <mtd> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>i</mi> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C=Y\otimes X={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}\otimes {\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}={\begin{bmatrix}0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;-i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\\i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\end{bmatrix}}={\begin{bmatrix}0&amp;0&amp;0&amp;-i\\0&amp;0&amp;-i&amp;0\\0&amp;i&amp;0&amp;0\\i&amp;0&amp;0&amp;0\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/882f48f2aeb826e64268e0aa0061f6e010b463a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:84.772ex; height:12.509ex;" alt="{\displaystyle C=Y\otimes X={\begin{bmatrix}0&amp;-i\\i&amp;0\end{bmatrix}}\otimes {\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}={\begin{bmatrix}0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;-i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\\i{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}&amp;0{\begin{bmatrix}0&amp;1\\1&amp;0\end{bmatrix}}\end{bmatrix}}={\begin{bmatrix}0&amp;0&amp;0&amp;-i\\0&amp;0&amp;-i&amp;0\\0&amp;i&amp;0&amp;0\\i&amp;0&amp;0&amp;0\end{bmatrix}}}"></span></dd></dl> <p>Both the Pauli-<i>X</i> and the Pauli-<i>Y</i> gate act on a single qubit. The resulting gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle C}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>C</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle C}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fc55753007cd3c18576f7933f6f089196732029" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.766ex; height:2.176ex;" alt="{\displaystyle C}"></span> act on two qubits. </p><p>Sometimes the tensor product symbol is omitted, and indexes are used for the operators instead.<sup id="cite_ref-Loss-DiVincenzo_29-0" class="reference"><a href="#cite_note-Loss-DiVincenzo-29"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading4"><h4 id="Hadamard_transform">Hadamard transform</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=18" title="Edit section: Hadamard transform"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Hadamard_transform" title="Hadamard transform">Hadamard transform</a></div> <p>The gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}=H\otimes H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}=H\otimes H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49cb345b5194ded36c469d1f9332b173e7c54c9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.052ex; height:2.509ex;" alt="{\displaystyle H_{2}=H\otimes H}"></span> is the <a href="#Hadamard_gate">Hadamard gate</a> <span class="nowrap">(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>)</span> applied in parallel on 2 qubits. It can be written as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}=H\otimes H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}=H\otimes H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b922bf733c45e865d408d4cc902af7acc3f4d5db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:72.175ex; height:12.509ex;" alt="{\displaystyle H_{2}=H\otimes H={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}}"></span></dd></dl> <p>This "two-qubit parallel Hadamard gate" will, when applied to, for example, the two-qubit zero-vector <span class="nowrap">(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span>),</span> create a quantum state that has equal probability of being observed in any of its four possible outcomes; <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span>,</span> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20574b999c62f66d7995a0c2e662af619f83c08a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |01\rangle }"></span>,</span> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea8f8133d5db75de4b048da145e24ff71c02c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |10\rangle }"></span>,</span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>.</span> We can write this operation as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}|00\rangle ={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}{\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\1\end{bmatrix}}={\frac {1}{2}}|00\rangle +{\frac {1}{2}}|01\rangle +{\frac {1}{2}}|10\rangle +{\frac {1}{2}}|11\rangle ={\frac {|00\rangle +|01\rangle +|10\rangle +|11\rangle }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}|00\rangle ={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}{\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\1\end{bmatrix}}={\frac {1}{2}}|00\rangle +{\frac {1}{2}}|01\rangle +{\frac {1}{2}}|10\rangle +{\frac {1}{2}}|11\rangle ={\frac {|00\rangle +|01\rangle +|10\rangle +|11\rangle }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69425ec11dab52f42eea25b809104f1202b92b03" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:111.06ex; height:12.509ex;" alt="{\displaystyle H_{2}|00\rangle ={\frac {1}{2}}{\begin{bmatrix}1&amp;1&amp;1&amp;1\\1&amp;-1&amp;1&amp;-1\\1&amp;1&amp;-1&amp;-1\\1&amp;-1&amp;-1&amp;1\end{bmatrix}}{\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\1\end{bmatrix}}={\frac {1}{2}}|00\rangle +{\frac {1}{2}}|01\rangle +{\frac {1}{2}}|10\rangle +{\frac {1}{2}}|11\rangle ={\frac {|00\rangle +|01\rangle +|10\rangle +|11\rangle }{2}}}"></span></dd></dl> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Hadamard_transform_on_3_qubits.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Hadamard_transform_on_3_qubits.png/440px-Hadamard_transform_on_3_qubits.png" decoding="async" width="440" height="114" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2f/Hadamard_transform_on_3_qubits.png/660px-Hadamard_transform_on_3_qubits.png 1.5x, //upload.wikimedia.org/wikipedia/commons/2/2f/Hadamard_transform_on_3_qubits.png 2x" data-file-width="776" data-file-height="201" /></a><figcaption><b>Example:</b> The Hadamard transform on a 3-<a href="/wiki/Qubit" title="Qubit">qubit</a> <a href="/wiki/Quantum_register" title="Quantum register">register</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span>.</span></figcaption></figure> <p>Here the amplitude for each measurable state is <style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">1</span>&#8260;<span class="den">2</span></span>. The probability to observe any state is the square of the absolute value of the measurable states amplitude, which in the above example means that there is one in four that we observe any one of the individual four cases. See <a href="#Measurement">measurement</a> for details. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7fa4324515cc7343ee952e3840a1bb1aa8c7f74c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.985ex; height:2.509ex;" alt="{\displaystyle H_{2}}"></span> performs the <a href="/wiki/Hadamard_transform" title="Hadamard transform">Hadamard transform</a> on two qubits. Similarly the gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \underbrace {H\otimes H\otimes \dots \otimes H} _{n{\text{ times}}}=\bigotimes _{1}^{n}H=H^{\otimes n}=H_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;times</mtext> </mrow> </mrow> </munder> <mo>=</mo> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>H</mi> <mo>=</mo> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2297;<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \underbrace {H\otimes H\otimes \dots \otimes H} _{n{\text{ times}}}=\bigotimes _{1}^{n}H=H^{\otimes n}=H_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa6e7493c13061bebb4db502ec7dec07245f1850" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.838ex; margin-left: -0.058ex; width:40.5ex; height:7.676ex;" alt="{\displaystyle \underbrace {H\otimes H\otimes \dots \otimes H} _{n{\text{ times}}}=\bigotimes _{1}^{n}H=H^{\otimes n}=H_{n}}"></span> performs a Hadamard transform on a <a href="/wiki/Quantum_register" title="Quantum register">register</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits. </p><p>When applied to a register of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits all initialized to <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>,</span> the Hadamard transform puts the quantum register into a superposition with equal probability of being measured in any of its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> possible states: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigotimes _{0}^{n-1}(H|0\rangle )={\frac {1}{\sqrt {2^{n}}}}{\begin{bmatrix}1\\1\\\vdots \\1\end{bmatrix}}={\frac {1}{\sqrt {2^{n}}}}{\Big (}|0\rangle +|1\rangle +\dots +|2^{n}-1\rangle {\Big )}={\frac {1}{\sqrt {2^{n}}}}\sum _{i=0}^{2^{n}-1}|i\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>i</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigotimes _{0}^{n-1}(H|0\rangle )={\frac {1}{\sqrt {2^{n}}}}{\begin{bmatrix}1\\1\\\vdots \\1\end{bmatrix}}={\frac {1}{\sqrt {2^{n}}}}{\Big (}|0\rangle +|1\rangle +\dots +|2^{n}-1\rangle {\Big )}={\frac {1}{\sqrt {2^{n}}}}\sum _{i=0}^{2^{n}-1}|i\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b2ae638fd811b08b3f9a0eebafdf07f9f53a24a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.338ex; width:74.265ex; height:13.843ex;" alt="{\displaystyle \bigotimes _{0}^{n-1}(H|0\rangle )={\frac {1}{\sqrt {2^{n}}}}{\begin{bmatrix}1\\1\\\vdots \\1\end{bmatrix}}={\frac {1}{\sqrt {2^{n}}}}{\Big (}|0\rangle +|1\rangle +\dots +|2^{n}-1\rangle {\Big )}={\frac {1}{\sqrt {2^{n}}}}\sum _{i=0}^{2^{n}-1}|i\rangle }"></span></dd></dl> <p>This state is a <i>uniform superposition</i> and it is generated as the first step in some search algorithms, for example in <a href="/wiki/Amplitude_amplification" title="Amplitude amplification">amplitude amplification</a> and <a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">phase estimation</a>. </p><p><a href="#Measurement">Measuring</a> this state results in a <a href="/wiki/Random_number_generation" title="Random number generation">random number</a> between <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |2^{n}-1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |2^{n}-1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7063ff6cecddf36c880e25b76c397e988c39ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.935ex; height:2.843ex;" alt="{\displaystyle |2^{n}-1\rangle }"></span>.</span><sup id="cite_ref-stochastic-interpretations_30-0" class="reference"><a href="#cite_note-stochastic-interpretations-30"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> How random the number is depends on the <a href="/wiki/Quantum_fidelity" class="mw-redirect" title="Quantum fidelity">fidelity</a> of the logic gates. If not measured, it is a quantum state with equal <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{\sqrt {2^{n}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f2d86242881274d1e7e07d61da9a41b8100ca6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:5.153ex; height:6.176ex;" alt="{\displaystyle {\frac {1}{\sqrt {2^{n}}}}}"></span> for each of its possible states. </p><p>The Hadamard transform acts on a register <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits such that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle |\psi \rangle =\bigotimes _{i=0}^{n-1}|\psi _{i}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle |\psi \rangle =\bigotimes _{i=0}^{n-1}|\psi _{i}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed542cee11dabe4609de978a2bde7e8247b3719e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.315ex; height:3.509ex;" alt="{\textstyle |\psi \rangle =\bigotimes _{i=0}^{n-1}|\psi _{i}\rangle }"></span> as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bigotimes _{0}^{n-1}H|\psi \rangle =\bigotimes _{i=0}^{n-1}{\frac {|0\rangle +(-1)^{\psi _{i}}|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2^{n}}}}\bigotimes _{i=0}^{n-1}{\Big (}|0\rangle +(-1)^{\psi _{i}}|1\rangle {\Big )}=H|\psi _{0}\rangle \otimes H|\psi _{1}\rangle \otimes \cdots \otimes H|\psi _{n-1}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>&#x2A02;<!-- ⨂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">(</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo maxsize="1.623em" minsize="1.623em">)</mo> </mrow> </mrow> <mo>=</mo> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>&#x03C8;<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bigotimes _{0}^{n-1}H|\psi \rangle =\bigotimes _{i=0}^{n-1}{\frac {|0\rangle +(-1)^{\psi _{i}}|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2^{n}}}}\bigotimes _{i=0}^{n-1}{\Big (}|0\rangle +(-1)^{\psi _{i}}|1\rangle {\Big )}=H|\psi _{0}\rangle \otimes H|\psi _{1}\rangle \otimes \cdots \otimes H|\psi _{n-1}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8514e4378e5848a4f89ac296c49cfbdd5c46186c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:97.276ex; height:7.176ex;" alt="{\displaystyle \bigotimes _{0}^{n-1}H|\psi \rangle =\bigotimes _{i=0}^{n-1}{\frac {|0\rangle +(-1)^{\psi _{i}}|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2^{n}}}}\bigotimes _{i=0}^{n-1}{\Big (}|0\rangle +(-1)^{\psi _{i}}|1\rangle {\Big )}=H|\psi _{0}\rangle \otimes H|\psi _{1}\rangle \otimes \cdots \otimes H|\psi _{n-1}\rangle }"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Application_on_entangled_states">Application on entangled states</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=19" title="Edit section: Application on entangled states"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If two or more qubits are viewed as a single quantum state, this combined state is equal to the tensor product of the constituent qubits. Any state that can be written as a tensor product from the constituent subsystems are called <i><a href="/wiki/Separable_states" class="mw-redirect" title="Separable states">separable states</a></i>. On the other hand, an <i><a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled state</a></i> is any state that cannot be tensor-factorized, or in other words: <i>An entangled state can not be written as a tensor product of its constituent qubits states.</i> Special care must be taken when applying gates to constituent qubits that make up entangled states. </p><p>If we have a set of <i>N</i> qubits that are entangled and wish to apply a quantum gate on <i>M</i> &lt; <i>N</i> qubits in the set, we will have to extend the gate to take <i>N</i> qubits. This application can be done by combining the gate with an <a href="/wiki/Identity_matrix" title="Identity matrix">identity matrix</a> such that their tensor product becomes a gate that act on <i>N</i> qubits. The identity matrix <span class="nowrap">(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span>)</span> is a representation of the gate that maps every state to itself (i.e., does nothing at all). In a circuit diagram the identity gate or matrix will often appear as just a bare wire. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png/400px-Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png" decoding="async" width="400" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png/600px-Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/d/d2/Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png/800px-Shows_the_application_of_a_hadamard_gate_on_a_state_that_span_two_qubits.png 2x" data-file-width="1126" data-file-height="225" /></a><figcaption>The example given in the text. The Hadamard gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> only act on 1 qubit, but <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc27f1893b769a08cd6b296e115a29e61cab675e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.065ex; height:2.843ex;" alt="{\displaystyle |\psi \rangle }"></span> is an entangled quantum state that spans 2 qubits. In our example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\psi \rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\psi \rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/897205e379c3d799abd0b3eb4825849bfa36a8ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:17.592ex; height:6.676ex;" alt="{\displaystyle |\psi \rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"></span>.</figcaption></figure> <p>For example, the Hadamard gate <span class="nowrap">(<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>)</span> acts on a single qubit, but if we feed it the first of the two qubits that constitute the <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled</a> <a href="/wiki/Bell_state" title="Bell state">Bell state</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a979b516a0d8bfee0047f75cdabbfb9aef8b063" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:11.429ex; height:6.676ex;" alt="{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"></span>,</span> we cannot write that operation easily. We need to extend the Hadamard gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span> with the identity gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> so that we can act on quantum states that span <i>two</i> qubits: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=H\otimes I={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>I</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=H\otimes I={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55cedba8eef562fc19fd7159eaad265e62d2ea7f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:64.748ex; height:12.509ex;" alt="{\displaystyle K=H\otimes I={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}}"></span></dd></dl> <p>The gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> can now be applied to any two-qubit state, entangled or otherwise. The gate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span> will leave the second qubit untouched and apply the Hadamard transform to the first qubit. If applied to the Bell state in our example, we may write that as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K{\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}{\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\-1\end{bmatrix}}={\frac {|00\rangle +|01\rangle +|10\rangle -|11\rangle }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K{\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}{\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\-1\end{bmatrix}}={\frac {|00\rangle +|01\rangle +|10\rangle -|11\rangle }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f973debcf4ef39c0f1ddd8625fc113d363c42ace" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:88.444ex; height:12.509ex;" alt="{\displaystyle K{\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;0&amp;1&amp;0\\0&amp;1&amp;0&amp;1\\1&amp;0&amp;-1&amp;0\\0&amp;1&amp;0&amp;-1\end{bmatrix}}{\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {1}{2}}{\begin{bmatrix}1\\1\\1\\-1\end{bmatrix}}={\frac {|00\rangle +|01\rangle +|10\rangle -|11\rangle }{2}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="Computational_complexity_and_the_tensor_product">Computational complexity and the tensor product</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=20" title="Edit section: Computational complexity and the tensor product"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Computational_complexity_of_matrix_multiplication" title="Computational complexity of matrix multiplication">time complexity for multiplying</a> two <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\times n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\times n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/59d2b4cb72e304526cf5b5887147729ea259da78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.63ex; height:1.676ex;" alt="{\displaystyle n\times n}"></span>-matrices is at least <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega (n^{2}\log n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega (n^{2}\log n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81924af671873a2f478c9bc244755a98cdf19429" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.077ex; height:3.176ex;" alt="{\displaystyle \Omega (n^{2}\log n)}"></span>,<sup id="cite_ref-31" class="reference"><a href="#cite_note-31"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup></span> if using a classical machine. Because the size of a gate that operates on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> qubits is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{q}\times 2^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{q}\times 2^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776f613f81830a66c9457ea8f226dc6bce2bd26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.142ex; height:2.343ex;" alt="{\displaystyle 2^{q}\times 2^{q}}"></span> it means that the time for simulating a step in a quantum circuit (by means of multiplying the gates) that operates on generic entangled states is <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega ({2^{q}}^{2}\log({2^{q}}))}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mi>log</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mrow> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega ({2^{q}}^{2}\log({2^{q}}))}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9823ddec0d5773e35cd7a554160436ca622d2814" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.012ex; height:3.176ex;" alt="{\displaystyle \Omega ({2^{q}}^{2}\log({2^{q}}))}"></span>.</span> For this reason it is believed to be <a href="/wiki/Computational_complexity_theory#Intractability" title="Computational complexity theory">intractable</a> to simulate large entangled quantum systems using classical computers. Subsets of the gates, such as the <a href="/wiki/Clifford_gates" title="Clifford gates">Clifford gates</a>, or the trivial case of circuits that only implement classical Boolean functions (e.g. combinations of <a href="#X">X</a>, <a href="#CNOT">CNOT</a>, <a href="#Toffoli">Toffoli</a>), can however be efficiently simulated on classical computers. </p><p>The state vector of a <a href="/wiki/Quantum_register" title="Quantum register">quantum register</a> with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> complex entries. Storing the <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitudes</a> as a list of <a href="/wiki/Floating-point_arithmetic" title="Floating-point arithmetic">floating point</a> values is not tractable for large <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Unitary_inversion_of_gates">Unitary inversion of gates</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=21" title="Edit section: Unitary inversion of gates"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:The_unitary_inverse_of_hadamard-cnot.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/The_unitary_inverse_of_hadamard-cnot.png/130px-The_unitary_inverse_of_hadamard-cnot.png" decoding="async" width="130" height="191" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/44/The_unitary_inverse_of_hadamard-cnot.png/195px-The_unitary_inverse_of_hadamard-cnot.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/44/The_unitary_inverse_of_hadamard-cnot.png/260px-The_unitary_inverse_of_hadamard-cnot.png 2x" data-file-width="320" data-file-height="470" /></a><figcaption><b>Example:</b> The unitary inverse of the Hadamard-CNOT product. The three gates <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>H</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a9edddcca2f782014371f75dca39d7e13a9c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.064ex; height:2.176ex;" alt="{\displaystyle H}"></span>,</span> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/535ea7fc4134a31cbe2251d9d3511374bc41be9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.172ex; height:2.176ex;" alt="{\displaystyle I}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {CNOT} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">C</mi> <mi mathvariant="normal">N</mi> <mi mathvariant="normal">O</mi> <mi mathvariant="normal">T</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {CNOT} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6b4b62c6f0908dfac5f282a46c9defdfeb4a9fa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.907ex; height:2.176ex;" alt="{\displaystyle \mathrm {CNOT} }"></span> are their own unitary inverses.</figcaption></figure><p>Because all quantum logical gates are <a href="/wiki/Reversible_computing" title="Reversible computing">reversible</a>, any composition of multiple gates is also reversible. All products and tensor products (i.e. <a href="#Serially_wired_gates">series</a> and <a href="#Parallel_gates">parallel</a> combinations) of <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrices</a> are also unitary matrices. This means that it is possible to construct an inverse of all algorithms and functions, as long as they contain only gates. </p><p>Initialization, measurement, <a href="/wiki/Input/Output" class="mw-redirect" title="Input/Output">I/O</a> and spontaneous <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">decoherence</a> are <a href="/wiki/Side_effect_(computer_science)" title="Side effect (computer science)">side effects</a> in quantum computers. Gates however are <a href="/wiki/Pure_function" title="Pure function">purely functional</a> and <a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a>. </p><p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>U</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/458a728f53b9a0274f059cd695e067c430956025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.783ex; height:2.176ex;" alt="{\displaystyle U}"></span> is a <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary matrix</a>, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\dagger }U=UU^{\dagger }=I}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mi>U</mi> <mo>=</mo> <mi>U</mi> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mi>I</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\dagger }U=UU^{\dagger }=I}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e529c1da367db7775cc5bcdddbcefbe8adfe839f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:16.541ex; height:2.676ex;" alt="{\displaystyle U^{\dagger }U=UU^{\dagger }=I}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle U^{\dagger }=U^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle U^{\dagger }=U^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3dd9c215cd4e9a7d24b1954fa55b9101ff33933f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.076ex; height:2.676ex;" alt="{\displaystyle U^{\dagger }=U^{-1}}"></span>.</span> The dagger (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \dagger }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2020;<!-- † --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \dagger }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2fbce70d5be6fec538cd30d8bc7b7bb2d3ed2d3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.032ex; height:2.676ex;" alt="{\displaystyle \dagger }"></span>) denotes the <a href="/wiki/Conjugate_transpose" title="Conjugate transpose">conjugate transpose</a>. It is also called the <a href="/wiki/Hermitian_adjoint" title="Hermitian adjoint">Hermitian adjoint</a>. </p><p>If a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> is a product of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"></span> gates, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F=A_{1}\cdot A_{2}\cdot \dots \cdot A_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F=A_{1}\cdot A_{2}\cdot \dots \cdot A_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63933487fbec4dbcc0bb22f155f252120cdae090" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:21.613ex; height:2.509ex;" alt="{\displaystyle F=A_{1}\cdot A_{2}\cdot \dots \cdot A_{m}}"></span>,</span> the unitary inverse of the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7dba1f10641e174c33ee73ce2ab48d84dffedb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.777ex; height:2.676ex;" alt="{\displaystyle F^{\dagger }}"></span> can be constructed: </p><p>Because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (UV)^{\dagger }=V^{\dagger }U^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>U</mi> <mi>V</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <msup> <mi>U</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (UV)^{\dagger }=V^{\dagger }U^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91525e34c3ba73428aecf02bd36aad1864756f46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.123ex; height:3.176ex;" alt="{\displaystyle (UV)^{\dagger }=V^{\dagger }U^{\dagger }}"></span> we have, after repeated application on itself </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\dagger }=\left(\prod _{i=1}^{m}A_{i}\right)^{\dagger }=\prod _{i=m}^{1}A_{i}^{\dagger }=A_{m}^{\dagger }\cdot \dots \cdot A_{2}^{\dagger }\cdot A_{1}^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <munderover> <mo>&#x220F;<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </munderover> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>&#x22C5;<!-- ⋅ --></mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msubsup> <mo>&#x22C5;<!-- ⋅ --></mo> <msubsup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\dagger }=\left(\prod _{i=1}^{m}A_{i}\right)^{\dagger }=\prod _{i=m}^{1}A_{i}^{\dagger }=A_{m}^{\dagger }\cdot \dots \cdot A_{2}^{\dagger }\cdot A_{1}^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9ccb3d9e4e62785a7891a34d4e8082a533e51a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:45.77ex; height:8.009ex;" alt="{\displaystyle F^{\dagger }=\left(\prod _{i=1}^{m}A_{i}\right)^{\dagger }=\prod _{i=m}^{1}A_{i}^{\dagger }=A_{m}^{\dagger }\cdot \dots \cdot A_{2}^{\dagger }\cdot A_{1}^{\dagger }}"></span></dd></dl> <p>Similarly if the function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f5f3c8921a3b352de45446a6789b104458c9f90b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.827ex; height:2.176ex;" alt="{\displaystyle G}"></span> consists of two gates <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> in parallel, then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=A\otimes B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mi>A</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=A\otimes B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b29978e12f0c05d3fd50ac74eb78dd1c6bfe20c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:11.273ex; height:2.343ex;" alt="{\displaystyle G=A\otimes B}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G^{\dagger }=(A\otimes B)^{\dagger }=A^{\dagger }\otimes B^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>B</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>=</mo> <msup> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mo>&#x2297;<!-- ⊗ --></mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G^{\dagger }=(A\otimes B)^{\dagger }=A^{\dagger }\otimes B^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bf6a661daf860b9bce977bda669e6b4eb0d6fa3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.377ex; height:3.176ex;" alt="{\displaystyle G^{\dagger }=(A\otimes B)^{\dagger }=A^{\dagger }\otimes B^{\dagger }}"></span>.</span> </p><p>Gates that are their own unitary inverses are called <a href="/wiki/Hermitian_matrix" title="Hermitian matrix">Hermitian</a> or <a href="/wiki/Self-adjoint_operator" title="Self-adjoint operator">self-adjoint operators</a>. Some elementary gates such as the <a href="#Hadamard">Hadamard</a> (<i>H</i>) and the <a href="/wiki/Pauli_matrices" title="Pauli matrices">Pauli gates</a> (<i>I</i>, <i>X</i>, <i>Y</i>, <i>Z</i>) are Hermitian operators, while others like the <a href="#Phase_shift">phase shift</a> (<i>S</i>, <i>T</i>, <i>P</i>, <a href="/wiki/List_of_quantum_logic_gates#Relative_phase_gates" title="List of quantum logic gates">CPhase</a>) gates generally are not. </p><p>For example, an algorithm for addition can be used for subtraction, if it is being "run in reverse", as its unitary inverse. The <a href="/wiki/Quantum_Fourier_transform#Unitarity" title="Quantum Fourier transform">inverse quantum Fourier transform</a> is the unitary inverse. Unitary inverses can also be used for <a href="/wiki/Uncomputation" title="Uncomputation">uncomputation</a>. Programming languages for quantum computers, such as <a href="/wiki/Microsoft" title="Microsoft">Microsoft</a>'s <a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a>,<sup id="cite_ref-adjoint-controlled-qsharp_12-1" class="reference"><a href="#cite_note-adjoint-controlled-qsharp-12"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Bernhard Ömer's <a href="/wiki/Quantum_Computation_Language" title="Quantum Computation Language">QCL</a>,<sup id="cite_ref-Oemer_15-1" class="reference"><a href="#cite_note-Oemer-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 61">&#58;&#8202;61&#8202;</span></sup> and <a href="/wiki/IBM" title="IBM">IBM</a>'s <a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>,<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> contain function inversion as programming concepts. </p> <div class="mw-heading mw-heading2"><h2 id="Measurement">Measurement</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=22" title="Edit section: Measurement"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/Measurement_in_quantum_mechanics" title="Measurement in quantum mechanics">Measurement in quantum mechanics</a> and <a href="/wiki/Deferred_measurement_principle" title="Deferred measurement principle">Deferred measurement principle</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Qcircuit_measure-arrow.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Qcircuit_measure-arrow.svg/130px-Qcircuit_measure-arrow.svg.png" decoding="async" width="130" height="47" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Qcircuit_measure-arrow.svg/195px-Qcircuit_measure-arrow.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/2b/Qcircuit_measure-arrow.svg/260px-Qcircuit_measure-arrow.svg.png 2x" data-file-width="311" data-file-height="112" /></a><figcaption>Circuit representation of measurement. The two lines on the right hand side represent a classical bit, and the single line on the left hand side represents a qubit.</figcaption></figure> <p>Measurement (sometimes called <i>observation</i>) is irreversible and therefore not a quantum gate, because it assigns the observed quantum state to a single value. Measurement takes a quantum state and projects it to one of the <a href="/wiki/Basis_vector" class="mw-redirect" title="Basis vector">basis vectors</a>, with a likelihood equal to the square of the vector's length (in the <a href="/wiki/Norm_(mathematics)#p-norm" title="Norm (mathematics)">2-norm</a><sup id="cite_ref-Nielsen-Chuang_5-7" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 66">&#58;&#8202;66&#8202;</span></sup><sup id="cite_ref-Yanofsky-Mannucci_6-4" class="reference"><a href="#cite_note-Yanofsky-Mannucci-6"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 56, 65">&#58;&#8202;56,&#8202;65&#8202;</span></sup>) along that basis vector.<sup id="cite_ref-Williams_1-8" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 15–17">&#58;&#8202;15–17&#8202;</span></sup><sup id="cite_ref-33" class="reference"><a href="#cite_note-33"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-35" class="reference"><a href="#cite_note-35"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> This is known as the <a href="/wiki/Born_rule" title="Born rule">Born rule</a> and appears<sup id="cite_ref-stochastic-interpretations_30-1" class="reference"><a href="#cite_note-stochastic-interpretations-30"><span class="cite-bracket">&#91;</span>e<span class="cite-bracket">&#93;</span></a></sup> as a <a href="/wiki/Stochastic" title="Stochastic">stochastic</a> non-reversible operation as it probabilistically sets the quantum state equal to the basis vector that represents the measured state. At the instant of measurement, the state is said to "<a href="/wiki/Wave_function_collapse" title="Wave function collapse">collapse</a>" to the definite single value that was measured. Why and how, or even if<sup id="cite_ref-36" class="reference"><a href="#cite_note-36"><span class="cite-bracket">&#91;</span>31<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-37" class="reference"><a href="#cite_note-37"><span class="cite-bracket">&#91;</span>32<span class="cite-bracket">&#93;</span></a></sup> the quantum state collapses at measurement, is called the <a href="/wiki/Measurement_problem" title="Measurement problem">measurement problem</a>. </p><p>The probability of measuring a value with <a href="/wiki/Probability_amplitude" title="Probability amplitude">probability amplitude</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/72b1f30316670aee6270a28334bdf4f5072cdde4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.385ex; height:2.509ex;" alt="{\displaystyle \phi }"></span> is <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1\geq |\phi |^{2}\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>&#x2265;<!-- ≥ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03D5;<!-- ϕ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1\geq |\phi |^{2}\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b515a6106cfbf728271d21637c6d569dcadcbe07" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.255ex; height:3.343ex;" alt="{\displaystyle 1\geq |\phi |^{2}\geq 0}"></span>,</span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\cdot |}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\cdot |}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4570d0a1c9fb8f2f413f0b73ce846dd1eb1dca3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.973ex; height:2.843ex;" alt="{\displaystyle |\cdot |}"></span> is the <a href="/wiki/Absolute_value#Complex_numbers" title="Absolute value">modulus</a>. </p><p>Measuring a single qubit, whose quantum state is represented by the vector <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a|0\rangle +b|1\rangle ={\begin{bmatrix}a\\b\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>a</mi> </mtd> </mtr> <mtr> <mtd> <mi>b</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a|0\rangle +b|1\rangle ={\begin{bmatrix}a\\b\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/edeb6ad22990fa7bcc57f5812b85aacbf9f35521" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:18.03ex; height:6.176ex;" alt="{\displaystyle a|0\rangle +b|1\rangle ={\begin{bmatrix}a\\b\end{bmatrix}}}"></span>,</span> will result in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> with probability <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7133fc1eb12b720745ceeadcfaef7a2ba93b8f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.578ex; height:3.343ex;" alt="{\displaystyle |a|^{2}}"></span>,</span> and in <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span> with probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |b|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>b</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |b|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8767348694a78600febc716768a494ed6db2663" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.345ex; height:3.343ex;" alt="{\displaystyle |b|^{2}}"></span>.</span> </p><p>For example, measuring a qubit with the quantum state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|0\rangle -i|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\-i\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mi>i</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|0\rangle -i|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\-i\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/44a20a87e857846e97b1595bfa5496e621c77b58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:22.757ex; height:6.676ex;" alt="{\displaystyle {\frac {|0\rangle -i|1\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\-i\end{bmatrix}}}"></span> will yield with equal probability either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> or <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>.</span> </p> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Qubit_state_with_sin_and_cos.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/en/thumb/3/31/Qubit_state_with_sin_and_cos.png/180px-Qubit_state_with_sin_and_cos.png" decoding="async" width="180" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/3/31/Qubit_state_with_sin_and_cos.png/270px-Qubit_state_with_sin_and_cos.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/3/31/Qubit_state_with_sin_and_cos.png/360px-Qubit_state_with_sin_and_cos.png 2x" data-file-width="594" data-file-height="594" /></a><figcaption>For a single qubit, we have a unit sphere in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f43d6ec8a1e1fe5a85aec0dd9bdcd45ae09b06b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{2}}"></span> with the quantum state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a|0\rangle +b|1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a|0\rangle +b|1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38c36a64d1833c764a536a897c9663d00e48c693" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.496ex; height:2.843ex;" alt="{\displaystyle a|0\rangle +b|1\rangle }"></span> such that <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}+|b|^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>b</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}+|b|^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d97c2d4faa2fca9ecdbe83e6d715d4534cb7abd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.025ex; height:3.343ex;" alt="{\displaystyle |a|^{2}+|b|^{2}=1}"></span>.</span> The state can be re-written as <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\cos \theta |^{2}+|\sin \theta |^{2}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>cos</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\cos \theta |^{2}+|\sin \theta |^{2}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63d819030b784ca01b6c8ece7729c3d859fe9ec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.493ex; height:3.343ex;" alt="{\displaystyle |\cos \theta |^{2}+|\sin \theta |^{2}=1}"></span>,</span> <a href="/wiki/Pythagorean_trigonometric_identity" title="Pythagorean trigonometric identity">or</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}=\cos ^{2}\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>cos</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}=\cos ^{2}\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34fdf13742d860ffaac986762de3150a98d31d9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.319ex; height:3.343ex;" alt="{\displaystyle |a|^{2}=\cos ^{2}\theta }"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |b|^{2}=\sin ^{2}\theta }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>b</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <msup> <mi>sin</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |b|^{2}=\sin ^{2}\theta }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/114a4c97de7d3a7bb7790e0be5c915ca03876bde" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.831ex; height:3.343ex;" alt="{\displaystyle |b|^{2}=\sin ^{2}\theta }"></span>.</span><br />Note: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7133fc1eb12b720745ceeadcfaef7a2ba93b8f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.578ex; height:3.343ex;" alt="{\displaystyle |a|^{2}}"></span> is the probability of measuring <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |b|^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>b</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |b|^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8767348694a78600febc716768a494ed6db2663" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.345ex; height:3.343ex;" alt="{\displaystyle |b|^{2}}"></span> is the probability of measuring <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>.</span></figcaption></figure> <p>A quantum state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e77f6b1e903837c5765c9683da41dd93199621c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |\Psi \rangle }"></span> that spans <span class="texhtml mvar" style="font-style:italic;">n</span> qubits can be written as a vector in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> <a href="/wiki/Complex_number" title="Complex number">complex</a> dimensions: <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle \in \mathbb {C} ^{2^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle \in \mathbb {C} ^{2^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed9b1a3848904b6d97ca605ff028747d35ec7f12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.897ex; height:3.343ex;" alt="{\displaystyle |\Psi \rangle \in \mathbb {C} ^{2^{n}}}"></span>.</span> This is because the tensor product of <span class="texhtml mvar" style="font-style:italic;">n</span> qubits is a vector in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> dimensions. This way, a <a href="/wiki/Quantum_register" title="Quantum register">register</a> of <span class="texhtml mvar" style="font-style:italic;">n</span> qubits can be measured to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> distinct states, similar to how a register of <span class="texhtml mvar" style="font-style:italic;">n</span> classical <a href="/wiki/Bit" title="Bit">bits</a> can hold <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> distinct states. Unlike with the bits of classical computers, quantum states can have non-zero probability amplitudes in multiple measurable values simultaneously. This is called <i>superposition</i>. </p><p>The sum of all probabilities for all outcomes must always be equal to <span class="nowrap"><span data-sort-value="7000100000000000000♠"></span>1</span>.<sup id="cite_ref-38" class="reference"><a href="#cite_note-38"><span class="cite-bracket">&#91;</span>f<span class="cite-bracket">&#93;</span></a></sup> Another way to say this is that the <a href="/wiki/Pythagorean_theorem" title="Pythagorean theorem">Pythagorean theorem</a> generalized to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/529d92e88844b6880aa6a7abf4a8281af6920231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.697ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} ^{2^{n}}}"></span> has that all quantum states <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e77f6b1e903837c5765c9683da41dd93199621c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |\Psi \rangle }"></span> with <span class="texhtml mvar" style="font-style:italic;">n</span> qubits must satisfy <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle 1=\sum _{x=0}^{2^{n}-1}|a_{x}|^{2},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mn>1</mn> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle 1=\sum _{x=0}^{2^{n}-1}|a_{x}|^{2},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3aae545d5ae6349c31a41dd16c531f2e3749a83" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.619ex; height:3.509ex;" alt="{\textstyle 1=\sum _{x=0}^{2^{n}-1}|a_{x}|^{2},}"></span><sup id="cite_ref-39" class="reference"><a href="#cite_note-39"><span class="cite-bracket">&#91;</span>g<span class="cite-bracket">&#93;</span></a></sup> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{x}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{x}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/339ff13ca52000e5467b829dfd008f6846820b57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.402ex; height:2.009ex;" alt="{\displaystyle a_{x}}"></span> is the probability amplitude for measurable state <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |x\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |x\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48004887d8f9dfc489bd2bc793780b7f1d8039ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.881ex; height:2.843ex;" alt="{\displaystyle |x\rangle }"></span>.</span> A geometric interpretation of this is that the possible <a href="/wiki/State_space" class="mw-redirect" title="State space">value-space</a> of a quantum state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e77f6b1e903837c5765c9683da41dd93199621c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |\Psi \rangle }"></span> with <span class="texhtml mvar" style="font-style:italic;">n</span> qubits is the surface of the <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a> in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{2^{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{2^{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/529d92e88844b6880aa6a7abf4a8281af6920231" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.697ex; height:2.843ex;" alt="{\displaystyle \mathbb {C} ^{2^{n}}}"></span> and that the <a href="/wiki/Unitary_transformation" title="Unitary transformation">unitary transforms</a> (i.e. quantum logic gates) applied to it are rotations on the sphere. The rotations that the gates perform form the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> <a href="/wiki/Unitary_group" title="Unitary group">U(2<sup>n</sup>)</a>. Measurement is then a probabilistic projection of the points at the surface of this <a href="/wiki/Complex_number" title="Complex number">complex</a> sphere onto the <a href="/wiki/Basis_vector" class="mw-redirect" title="Basis vector">basis vectors</a> that span the space (and labels the outcomes). </p><p>In many cases the space is represented as a <a href="/wiki/Hilbert_space" title="Hilbert space">Hilbert space</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {H}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">H</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {H}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19ef4c7b923a5125ac91aa491838a95ee15b804f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.964ex; height:2.176ex;" alt="{\displaystyle {\mathcal {H}}}"></span> rather than some specific <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span>-dimensional</span> complex space. The number of dimensions (defined by the basis vectors, and thus also the possible outcomes from measurement) is then often implied by the operands, for example as the required <a href="/wiki/State_space" class="mw-redirect" title="State space">state space</a> for solving a <a href="/wiki/Computational_problem" title="Computational problem">problem</a>. In <a href="/wiki/Grover%27s_algorithm#Applications" title="Grover&#39;s algorithm">Grover's algorithm</a>, <a href="/wiki/Lov_Grover" title="Lov Grover">Grover</a> named this generic basis vector set <i>"the database"</i>. </p><p>The selection of basis vectors against which to measure a quantum state will influence the outcome of the measurement.<sup id="cite_ref-Williams_1-9" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 30–35">&#58;&#8202;30–35&#8202;</span></sup><sup id="cite_ref-Nielsen-Chuang_5-8" class="reference"><a href="#cite_note-Nielsen-Chuang-5"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 22, 84–85, 185–188">&#58;&#8202;22,&#8202;84–85,&#8202;185–188&#8202;</span></sup><sup id="cite_ref-40" class="reference"><a href="#cite_note-40"><span class="cite-bracket">&#91;</span>33<span class="cite-bracket">&#93;</span></a></sup> See <a href="/wiki/Change_of_basis#Endomorphisms" title="Change of basis">change of basis</a> and <a href="/wiki/Von_Neumann_entropy" title="Von Neumann entropy">Von Neumann entropy</a> for details. In this article, we always use the <i>computational <a href="/wiki/Basis_(linear_algebra)" title="Basis (linear algebra)">basis</a></i>, which means that we have labeled the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> basis vectors of an <span class="texhtml mvar" style="font-style:italic;">n</span>-qubit <a href="/wiki/Quantum_register" title="Quantum register">register</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle ,|1\rangle ,|2\rangle ,\cdots ,|2^{n}-1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>2</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle ,|1\rangle ,|2\rangle ,\cdots ,|2^{n}-1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e630eb6f86e3c5ceb3263ef37b8ab61d1acb500" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.323ex; height:2.843ex;" alt="{\displaystyle |0\rangle ,|1\rangle ,|2\rangle ,\cdots ,|2^{n}-1\rangle }"></span>,</span> or use the <a href="/wiki/Binary_number#Counting_in_binary" title="Binary number">binary representation</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0_{10}\rangle =|0\dots 00_{2}\rangle ,|1_{10}\rangle =|0\dots 01_{2}\rangle ,|2_{10}\rangle =|0\dots 10_{2}\rangle ,\cdots ,|2^{n}-1\rangle =|111\dots 1_{2}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo>&#x2026;<!-- … --></mo> <msub> <mn>00</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo>&#x2026;<!-- … --></mo> <msub> <mn>01</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo>&#x2026;<!-- … --></mo> <msub> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>111</mn> <mo>&#x2026;<!-- … --></mo> <msub> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0_{10}\rangle =|0\dots 00_{2}\rangle ,|1_{10}\rangle =|0\dots 01_{2}\rangle ,|2_{10}\rangle =|0\dots 10_{2}\rangle ,\cdots ,|2^{n}-1\rangle =|111\dots 1_{2}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4fd46b954ee0daedc1b2a176f0baf2df2c854c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:80.87ex; height:2.843ex;" alt="{\displaystyle |0_{10}\rangle =|0\dots 00_{2}\rangle ,|1_{10}\rangle =|0\dots 01_{2}\rangle ,|2_{10}\rangle =|0\dots 10_{2}\rangle ,\cdots ,|2^{n}-1\rangle =|111\dots 1_{2}\rangle }"></span>.</span> </p><p>In <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">quantum mechanics</a>, the basis vectors constitute an <a href="/wiki/Orthonormal_basis" title="Orthonormal basis">orthonormal basis</a>. </p><p>An example of usage of an alternative measurement basis is in the <a href="/wiki/BB84" title="BB84">BB84</a> cipher. </p> <div class="mw-heading mw-heading3"><h3 id="The_effect_of_measurement_on_entangled_states">The effect of measurement on entangled states</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=23" title="Edit section: The effect of measurement on entangled states"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:The_Hadamard-CNOT_transform_on_the_zero-state.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/The_Hadamard-CNOT_transform_on_the_zero-state.png/290px-The_Hadamard-CNOT_transform_on_the_zero-state.png" decoding="async" width="290" height="80" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fc/The_Hadamard-CNOT_transform_on_the_zero-state.png/435px-The_Hadamard-CNOT_transform_on_the_zero-state.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fc/The_Hadamard-CNOT_transform_on_the_zero-state.png/580px-The_Hadamard-CNOT_transform_on_the_zero-state.png 2x" data-file-width="636" data-file-height="176" /></a><figcaption>The <a href="#Hadamard">Hadamard</a>-<a href="#CNOT">CNOT</a> gate, which when given the input <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span> produces a <a href="/wiki/Bell_state" title="Bell state">Bell state</a></figcaption></figure> <p>If two <a href="/wiki/Quantum_state" title="Quantum state">quantum states</a> (i.e. <a href="/wiki/Qubit" title="Qubit">qubits</a>, or <a href="/wiki/Quantum_register" title="Quantum register">registers</a>) are <a href="/wiki/Quantum_entanglement" title="Quantum entanglement">entangled</a> (meaning that their combined state cannot be expressed as a <a href="/wiki/Tensor_product" title="Tensor product">tensor product</a>), measurement of one register affects or reveals the state of the other register by partially or entirely collapsing its state too. This effect can be used for computation, and is used in many algorithms. </p><p>The Hadamard-CNOT combination acts on the zero-state as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \operatorname {CNOT} (H\otimes I)|00\rangle =\left({\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}\left({\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}\right)\right){\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>CNOT</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>H</mi> <mo>&#x2297;<!-- ⊗ --></mo> <mi>I</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \operatorname {CNOT} (H\otimes I)|00\rangle =\left({\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}\left({\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}\right)\right){\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d31d14550fb55da001563e2f744f98af845a9c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:101.38ex; height:12.509ex;" alt="{\displaystyle \operatorname {CNOT} (H\otimes I)|00\rangle =\left({\begin{bmatrix}1&amp;0&amp;0&amp;0\\0&amp;1&amp;0&amp;0\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;1&amp;0\end{bmatrix}}\left({\frac {1}{\sqrt {2}}}{\begin{bmatrix}1&amp;1\\1&amp;-1\end{bmatrix}}\otimes {\begin{bmatrix}1&amp;0\\0&amp;1\end{bmatrix}}\right)\right){\begin{bmatrix}1\\0\\0\\0\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Used_for_geometric_description_of_the_Bell_state.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Used_for_geometric_description_of_the_Bell_state.png/180px-Used_for_geometric_description_of_the_Bell_state.png" decoding="async" width="180" height="159" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/2/23/Used_for_geometric_description_of_the_Bell_state.png/270px-Used_for_geometric_description_of_the_Bell_state.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/23/Used_for_geometric_description_of_the_Bell_state.png/360px-Used_for_geometric_description_of_the_Bell_state.png 2x" data-file-width="783" data-file-height="693" /></a><figcaption>The Bell state in the text is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle =a|00\rangle +b|01\rangle +c|10\rangle +d|11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mi>d</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle =a|00\rangle +b|01\rangle +c|10\rangle +d|11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d56830fa5bd0484c7107e12fc3213ec2da332c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:34.935ex; height:2.843ex;" alt="{\displaystyle |\Psi \rangle =a|00\rangle +b|01\rangle +c|10\rangle +d|11\rangle }"></span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a=d={\frac {1}{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>=</mo> <mi>d</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a=d={\frac {1}{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ac9e99f1766e3c184cb7e37a24eeab8a3604ade" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:12.577ex; height:6.176ex;" alt="{\displaystyle a=d={\frac {1}{\sqrt {2}}}}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39bbe827f2c74486cf3ffee1104842735a695bbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.364ex; height:2.176ex;" alt="{\displaystyle b=c=0}"></span>.</span> Therefore, it can be described by the <a href="/wiki/Plane_(geometry)" class="mw-redirect" title="Plane (geometry)">plane</a> spanned by the <a href="/wiki/Basis_vector" class="mw-redirect" title="Basis vector">basis vectors</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>,</span> as in the picture. The <a href="/wiki/Unit_sphere" title="Unit sphere">unit sphere</a> <span class="nowrap">(in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {C} ^{4}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">C</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {C} ^{4}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/990797533f68706456ef046fb4e390c6d064f8a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.732ex; height:2.676ex;" alt="{\displaystyle \mathbb {C} ^{4}}"></span>)</span> that represent the possible <a href="/wiki/State_space" class="mw-redirect" title="State space">value-space</a> of the 2-qubit system intersects the plane and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\Psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi mathvariant="normal">&#x03A8;<!-- Ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\Psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e77f6b1e903837c5765c9683da41dd93199621c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.36ex; height:2.843ex;" alt="{\displaystyle |\Psi \rangle }"></span> lies on the unit spheres surface. Because <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |a|^{2}=|d|^{2}=1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>d</mi> <msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |a|^{2}=|d|^{2}=1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2f03aa5dbc086c7a13ab3d7dab1df09a9fb6b39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.826ex; height:3.343ex;" alt="{\displaystyle |a|^{2}=|d|^{2}=1/2}"></span>,</span> there is equal probability of measuring this state to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span> or <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>,</span> and because <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b=c=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo>=</mo> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b=c=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/39bbe827f2c74486cf3ffee1104842735a695bbe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:9.364ex; height:2.176ex;" alt="{\displaystyle b=c=0}"></span> there is zero probability of measuring it to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |01\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>01</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |01\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20574b999c62f66d7995a0c2e662af619f83c08a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |01\rangle }"></span> or <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |10\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>10</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |10\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ea8f8133d5db75de4b048da145e24ff71c02c7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |10\rangle }"></span>.</span></figcaption></figure> <p>This resulting state is the <a href="/wiki/Bell_state" title="Bell state">Bell state</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e400f002d22377ef581dc19faefe9dc4645f3a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:23.477ex; height:12.509ex;" alt="{\displaystyle {\frac {|00\rangle +|11\rangle }{\sqrt {2}}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}}}"></span>.</span> It cannot be described as a tensor product of two qubits. There is no solution for </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}}\otimes {\begin{bmatrix}w\\z\end{bmatrix}}={\begin{bmatrix}xw\\xz\\yw\\yz\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>w</mi> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mi>x</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd> <mi>x</mi> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mi>w</mi> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mi>z</mi> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}}\otimes {\begin{bmatrix}w\\z\end{bmatrix}}={\begin{bmatrix}xw\\xz\\yw\\yz\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf8fd5385cdeb732d5e4f105aaf2def105fc2cba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:34.886ex; height:12.509ex;" alt="{\displaystyle {\begin{bmatrix}x\\y\end{bmatrix}}\otimes {\begin{bmatrix}w\\z\end{bmatrix}}={\begin{bmatrix}xw\\xz\\yw\\yz\end{bmatrix}}={\frac {1}{\sqrt {2}}}{\begin{bmatrix}1\\0\\0\\1\end{bmatrix}},}"></span></dd></dl> <p>because for example <span class="texhtml mvar" style="font-style:italic;">w</span> needs to be both non-zero and zero in the case of <span class="texhtml mvar" style="font-style:italic;">xw</span> and <span class="texhtml mvar" style="font-style:italic;">yw</span>. </p><p>The quantum state <i>spans</i> the two qubits. This is called <i>entanglement</i>. Measuring one of the two qubits that make up this Bell state will result in that the other qubit logically must have the same value, both must be the same: Either it will be found in the state <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |00\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |00\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/79016644d7bb5d4282f69bf8af1befa3131445fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |00\rangle }"></span>,</span> or in the state <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>.</span> If we measure one of the qubits to be for example <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>,</span> then the other qubit must also be <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f53021ca18e77477ee5bd3c1523e5830189ec5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |1\rangle }"></span>,</span> because their combined state <i>became</i> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |11\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |11\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a30390d3d468e3c5993820c84f8c5c5407d14e96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.876ex; height:2.843ex;" alt="{\displaystyle |11\rangle }"></span>.</span> Measurement of one of the qubits collapses the entire quantum state, that span the two qubits. </p><p>The <a href="/wiki/Greenberger%E2%80%93Horne%E2%80%93Zeilinger_state" title="Greenberger–Horne–Zeilinger state">GHZ state</a> is a similar entangled quantum state that spans three or more qubits. </p><p>This type of value-assignment occurs <i>instantaneously over any distance</i> and this has as of 2018 been experimentally verified by <a href="/wiki/Quantum_Experiments_at_Space_Scale" title="Quantum Experiments at Space Scale">QUESS</a> for distances of up to 1200 kilometers.<sup id="cite_ref-41" class="reference"><a href="#cite_note-41"><span class="cite-bracket">&#91;</span>34<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-42" class="reference"><a href="#cite_note-42"><span class="cite-bracket">&#91;</span>35<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-43" class="reference"><a href="#cite_note-43"><span class="cite-bracket">&#91;</span>36<span class="cite-bracket">&#93;</span></a></sup> That the phenomena appears to happen instantaneously as opposed to the time it would take to traverse the distance separating the qubits at the speed of light is called the <a href="/wiki/EPR_paradox" class="mw-redirect" title="EPR paradox">EPR paradox</a>, and it is an open question in physics how to resolve this. Originally it was solved by giving up the assumption of <a href="/wiki/Local_realism" class="mw-redirect" title="Local realism">local realism</a>, but other <a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">interpretations</a> have also emerged. For more information see the <a href="/wiki/Bell_test_experiments" class="mw-redirect" title="Bell test experiments">Bell test experiments</a>. The <a href="/wiki/No-communication_theorem" title="No-communication theorem">no-communication theorem</a> proves that this phenomenon cannot be used for faster-than-light communication of <a href="/wiki/Entropy_(information_theory)" title="Entropy (information theory)">classical information</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Measurement_on_registers_with_pairwise_entangled_qubits">Measurement on registers with pairwise entangled qubits</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=24" title="Edit section: Measurement on registers with pairwise entangled qubits"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png/400px-The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png" decoding="async" width="400" height="279" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/85/The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png/600px-The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/85/The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png/800px-The_effect_of_unitary_transforms_on_registers_with_pairwise_entangled_qubits.png 2x" data-file-width="1050" data-file-height="732" /></a><figcaption>The effect of a unitary transform F on a register A that is in a superposition of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> states and pairwise entangled with the register B. Here, <span class="texhtml mvar" style="font-style:italic;">n</span> is 3 (each register has 3 qubits).</figcaption></figure> <p>Take a <a href="/wiki/Quantum_register" title="Quantum register">register</a> A with <span class="texhtml mvar" style="font-style:italic;">n</span> qubits all initialized to <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span>,</span> and feed it through a <a href="#Hadamard_transform">parallel Hadamard gate</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle H^{\otimes n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2297;<!-- ⊗ --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle H^{\otimes n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd711588751b229f450fb36b3477163d661488fd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.6ex; height:2.343ex;" alt="{\textstyle H^{\otimes n}}"></span>.</span> Register A will then enter the state <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msqrt> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </msqrt> </mfrac> </mrow> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>k</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03eb0fe10d3b338118717a2abed1c4f581023e43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:14.102ex; height:4.343ex;" alt="{\textstyle {\frac {1}{\sqrt {2^{n}}}}\sum _{k=0}^{2^{n}-1}|k\rangle }"></span> that have equal probability of when measured to be in any of its <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> possible states; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> to <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |2^{n}-1\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |2^{n}-1\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cb7063ff6cecddf36c880e25b76c397e988c39ad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.935ex; height:2.843ex;" alt="{\displaystyle |2^{n}-1\rangle }"></span>.</span> Take a second register B, also with <span class="texhtml mvar" style="font-style:italic;">n</span> qubits initialized to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |0\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>0</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |0\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ed066a3ad158da0ad6d6a421a606b1c8a35eb95b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:2.714ex; height:2.843ex;" alt="{\displaystyle |0\rangle }"></span> and pairwise <a href="#CNOT">CNOT</a> its qubits with the qubits in register A, such that for each <span class="texhtml mvar" style="font-style:italic;">p</span> the qubits <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1ea46c20042fba4142a87ecd1f7c29776a6ce46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.802ex; height:2.843ex;" alt="{\displaystyle A_{p}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{p}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{p}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18a1069ed15b2551691c1f85039842d7e7642f05" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.823ex; height:2.843ex;" alt="{\displaystyle B_{p}}"></span> forms the state <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A_{p}B_{p}\rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>00</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mn>11</mn> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mrow> <msqrt> <mn>2</mn> </msqrt> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |A_{p}B_{p}\rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ab8926cd9e3809a0826e4c0a116f1f7c148ead" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:21.705ex; height:6.676ex;" alt="{\displaystyle |A_{p}B_{p}\rangle ={\frac {|00\rangle +|11\rangle }{\sqrt {2}}}}"></span>.</span> </p><p>If we now measure the qubits in register A, then register B will be found to contain the same value as A. If we however instead apply a quantum logic gate <span class="texhtml mvar" style="font-style:italic;">F</span> on A and then measure, then <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A\rangle =F|B\rangle \iff F^{\dagger }|A\rangle =|B\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mspace width="thickmathspace" /> <mo stretchy="false">&#x27FA;<!-- ⟺ --></mo> <mspace width="thickmathspace" /> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |A\rangle =F|B\rangle \iff F^{\dagger }|A\rangle =|B\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1bf8616c4b01e93d60d02dc54fe2f93397b8761" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:30.832ex; height:3.176ex;" alt="{\displaystyle |A\rangle =F|B\rangle \iff F^{\dagger }|A\rangle =|B\rangle }"></span>,</span> where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\dagger }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\dagger }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3a7dba1f10641e174c33ee73ce2ab48d84dffedb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.777ex; height:2.676ex;" alt="{\displaystyle F^{\dagger }}"></span> is the <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary inverse</a> of <span class="texhtml mvar" style="font-style:italic;">F</span>. </p><p>Because of how <a href="#Unitary_inversion_of_gates">unitary inverses of gates</a> act, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{\dagger }|A\rangle =F^{-1}(|A\rangle )=|B\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{\dagger }|A\rangle =F^{-1}(|A\rangle )=|B\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35cb76868b08959ddc074b38a8ea948f4c35677f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.835ex; height:3.176ex;" alt="{\displaystyle F^{\dagger }|A\rangle =F^{-1}(|A\rangle )=|B\rangle }"></span>.</span> For example, say <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(x)=x+3{\pmod {2^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(x)=x+3{\pmod {2^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30adaa455334959f896ec494890aa0930d242c1a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.376ex; height:2.843ex;" alt="{\displaystyle F(x)=x+3{\pmod {2^{n}}}}"></span>, then <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |B\rangle =|A-3{\pmod {2^{n}}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>B</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>A</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |B\rangle =|A-3{\pmod {2^{n}}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ef883e7640781b95946f75e76845d09bd6a60080" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.776ex; height:2.843ex;" alt="{\displaystyle |B\rangle =|A-3{\pmod {2^{n}}}\rangle }"></span>.</span> </p><p>The equality will hold no matter in which order measurement is performed (on the registers A or B), assuming that <span class="texhtml mvar" style="font-style:italic;">F</span> has run to completion. Measurement can even be randomly and concurrently interleaved qubit by qubit, since the measurements assignment of one qubit will limit the possible value-space from the other entangled qubits. </p><p>Even though the equalities holds, the probabilities for measuring the possible outcomes may change as a result of applying <span class="texhtml mvar" style="font-style:italic;">F</span>, as may be the intent in a quantum search algorithm. </p><p>This effect of value-sharing via entanglement is used in <a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's algorithm</a>, <a href="/wiki/Quantum_phase_estimation" class="mw-redirect" title="Quantum phase estimation">phase estimation</a> and in <a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">quantum counting</a>. Using the <a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Fourier transform</a> to amplify the probability amplitudes of the solution states for some <a href="/wiki/Computational_problem" title="Computational problem">problem</a> is a generic method known as "<a href="/wiki/Quantum_algorithm#Fourier_fishing_and_Fourier_checking" title="Quantum algorithm">Fourier fishing</a>".<sup id="cite_ref-44" class="reference"><a href="#cite_note-44"><span class="cite-bracket">&#91;</span>37<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Logic_function_synthesis">Logic function synthesis</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=25" title="Edit section: Logic function synthesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Quantum_Full_Adder.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Quantum_Full_Adder.png/330px-Quantum_Full_Adder.png" decoding="async" width="330" height="121" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Quantum_Full_Adder.png/495px-Quantum_Full_Adder.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/0a/Quantum_Full_Adder.png/660px-Quantum_Full_Adder.png 2x" data-file-width="891" data-file-height="328" /></a><figcaption>A quantum <a href="/wiki/Full_adder" class="mw-redirect" title="Full adder">full adder</a>, given by Feynman in 1986.<sup id="cite_ref-Feynman-QMC_3-1" class="reference"><a href="#cite_note-Feynman-QMC-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> It consists of only <a href="#Toffoli">Toffoli</a> and <a href="#CNOT">CNOT</a> gates. The gate that is surrounded by the dotted square in this picture can be omitted if <a href="/wiki/Uncomputation" title="Uncomputation">uncomputation</a> to restore the <i>B output</i> is not required.</figcaption></figure> <p>Functions and routines that only use gates can themselves be described as matrices, just like the smaller gates. The matrix that represents a quantum function acting on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> qubits has size <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{q}\times 2^{q}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>q</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{q}\times 2^{q}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b776f613f81830a66c9457ea8f226dc6bce2bd26" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.142ex; height:2.343ex;" alt="{\displaystyle 2^{q}\times 2^{q}}"></span>.</span> For example, a function that acts on a "qubyte" (a <a href="/wiki/Quantum_register" title="Quantum register">register</a> of 8 qubits) would be represented by a matrix with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{8}\times 2^{8}=256\times 256}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mo>&#x00D7;<!-- × --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> <mo>=</mo> <mn>256</mn> <mo>&#x00D7;<!-- × --></mo> <mn>256</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{8}\times 2^{8}=256\times 256}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfae157553326f31d204120925c8ef06fec2d724" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:20.187ex; height:2.676ex;" alt="{\displaystyle 2^{8}\times 2^{8}=256\times 256}"></span> elements. </p><p>Unitary transformations that are not in the set of gates natively available at the quantum computer (the primitive gates) can be synthesised, or approximated, by combining the available primitive gates in a <a href="/wiki/Quantum_circuit" title="Quantum circuit">circuit</a>. One way to do this is to factor the matrix that encodes the unitary transformation into a product of tensor products (i.e. <a href="#Serially_wired_gates">series</a> and <a href="#Parallel_gates">parallel</a> circuits) of the available primitive gates. The <a href="/wiki/Group_(mathematics)" title="Group (mathematics)">group</a> <a href="/wiki/Unitary_group" title="Unitary group">U(2<sup><i>q</i></sup>)</a> is the <a href="/wiki/Symmetry_group" title="Symmetry group">symmetry group</a> for the gates that act on <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06809d64fa7c817ffc7e323f85997f783dbdf71d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.07ex; height:2.009ex;" alt="{\displaystyle q}"></span> qubits.<sup id="cite_ref-Barenco_2-6" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> Factorization is then the <a href="/wiki/Computational_problem" title="Computational problem">problem</a> of finding a path in U(2<sup><i>q</i></sup>) from the <a href="/wiki/Generating_set_of_a_group" title="Generating set of a group">generating set</a> of primitive gates. The <a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev theorem</a> shows that given a sufficient set of primitive gates, there exist an efficient approximate for any gate. For the general case with a large number of qubits this direct approach to circuit synthesis is <a href="/wiki/Computational_complexity_theory#Intractability" title="Computational complexity theory">intractable</a>.<sup id="cite_ref-45" class="reference"><a href="#cite_note-45"><span class="cite-bracket">&#91;</span>38<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-46" class="reference"><a href="#cite_note-46"><span class="cite-bracket">&#91;</span>39<span class="cite-bracket">&#93;</span></a></sup> This puts a limit on how large functions can be brute-force factorized into primitive quantum gates. Typically quantum programs are instead built using relatively small and simple quantum functions, similar to normal classical programming. </p><p>Because of the gates <a href="/wiki/Unitary_matrix" title="Unitary matrix">unitary</a> nature, all functions must be <a href="/wiki/Reversible_computing" title="Reversible computing">reversible</a> and always be <a href="/wiki/Bijective" class="mw-redirect" title="Bijective">bijective</a> mappings of input to output. There must always exist a function <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2a1a300038291319dc37f8cf5d1e87b6abc1ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.148ex; height:2.676ex;" alt="{\displaystyle F^{-1}}"></span> such that <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}(F(|\psi \rangle ))=|\psi \rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>&#x03C8;<!-- ψ --></mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}(F(|\psi \rangle ))=|\psi \rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0f980d0bc4e87902e50be033a908670a69d1edab" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.735ex; height:3.176ex;" alt="{\displaystyle F^{-1}(F(|\psi \rangle ))=|\psi \rangle }"></span>.</span> Functions that are not invertible can be made invertible by adding <a href="/wiki/Ancilla_bit" title="Ancilla bit">ancilla qubits</a> to the input or the output, or both. After the function has run to completion, the ancilla qubits can then either be <a href="/wiki/Uncomputation" title="Uncomputation">uncomputed</a> or left untouched. Measuring or otherwise collapsing the quantum state of an ancilla qubit (e.g. by re-initializing the value of it, or by its spontaneous <a href="/wiki/Quantum_decoherence" title="Quantum decoherence">decoherence</a>) that have not been uncomputed may result in errors,<sup id="cite_ref-47" class="reference"><a href="#cite_note-47"><span class="cite-bracket">&#91;</span>40<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-48" class="reference"><a href="#cite_note-48"><span class="cite-bracket">&#91;</span>41<span class="cite-bracket">&#93;</span></a></sup> as their state may be entangled with the qubits that are still being used in computations. </p><p>Logically irreversible operations, for example addition modulo <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8226f30650ee4fe4e640c6d2798127e80e9c160d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.381ex; height:2.343ex;" alt="{\displaystyle 2^{n}}"></span> of two <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-qubit registers <i>a</i> and <i>b</i>, <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(a,b)=a+b{\pmod {2^{n}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(a,b)=a+b{\pmod {2^{n}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1767ef115d9d5b0671854dcd19002fd2260b0dfe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.043ex; height:2.843ex;" alt="{\displaystyle F(a,b)=a+b{\pmod {2^{n}}}}"></span>,</span><sup id="cite_ref-49" class="reference"><a href="#cite_note-49"><span class="cite-bracket">&#91;</span>h<span class="cite-bracket">&#93;</span></a></sup> can be made logically reversible by adding information to the output, so that the input can be computed from the output (i.e. there exists a function <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e2a1a300038291319dc37f8cf5d1e87b6abc1ae7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.148ex; height:2.676ex;" alt="{\displaystyle F^{-1}}"></span>).</span> In our example, this can be done by passing on one of the input registers to the output: <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(|a\rangle \otimes |b\rangle )=|a+b{\pmod {2^{n}}}\rangle \otimes |a\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>b</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>&#x2297;<!-- ⊗ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>a</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(|a\rangle \otimes |b\rangle )=|a+b{\pmod {2^{n}}}\rangle \otimes |a\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05478ca7f2d4a96eb88ac6f053552270d7c30b5c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:39.125ex; height:2.843ex;" alt="{\displaystyle F(|a\rangle \otimes |b\rangle )=|a+b{\pmod {2^{n}}}\rangle \otimes |a\rangle }"></span>.</span> The output can then be used to compute the input (i.e. given the output <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a+b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>+</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a+b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a2391acf09244b9dba74eb940e871a6be7e7973a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.068ex; height:2.343ex;" alt="{\displaystyle a+b}"></span> and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span>,</span> we can easily find the input; <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ffd2487510aa438433a2579450ab2b3d557e5edc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.23ex; height:1.676ex;" alt="{\displaystyle a}"></span> is given and <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (a+b)-a=b}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>a</mi> <mo>+</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>a</mi> <mo>=</mo> <mi>b</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (a+b)-a=b}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34bba698c40c449d23758cdea3ea341065be5c16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.043ex; height:2.843ex;" alt="{\displaystyle (a+b)-a=b}"></span>)</span> and the function is made bijective. </p><p>All <a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebraic</a> expressions can be encoded as unitary transforms (quantum logic gates), for example by using combinations of the <a href="#Pauli_X">Pauli-X</a>, <a href="#CNOT">CNOT</a> and <a href="#CCNOT">Toffoli</a> gates. These gates are <a href="/wiki/Functional_completeness" title="Functional completeness">functionally complete</a> in the Boolean logic domain. </p><p>There are many unitary transforms available in the libraries of <a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a>, <a href="/wiki/Quantum_Computation_Language" title="Quantum Computation Language">QCL</a>, <a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>, and other <a href="/wiki/Quantum_programming" title="Quantum programming">quantum programming</a> languages. It also appears in the literature.<sup id="cite_ref-50" class="reference"><a href="#cite_note-50"><span class="cite-bracket">&#91;</span>42<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-51" class="reference"><a href="#cite_note-51"><span class="cite-bracket">&#91;</span>43<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {inc} (|x\rangle )=|x+1{\pmod {2^{x_{\text{length}}}}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">c</mi> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>length</mtext> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {inc} (|x\rangle )=|x+1{\pmod {2^{x_{\text{length}}}}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d3cf7696447da28a103986423b07b15aa8821413" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:33.463ex; height:2.843ex;" alt="{\displaystyle \mathrm {inc} (|x\rangle )=|x+1{\pmod {2^{x_{\text{length}}}}}\rangle }"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{\text{length}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>length</mtext> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{\text{length}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7e186c8f7cfd1b2235ebc9e765cbee60a9f952d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.039ex; height:2.343ex;" alt="{\displaystyle x_{\text{length}}}"></span> is the number of qubits that constitutes the <a href="/wiki/Quantum_register" title="Quantum register">register</a> <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f9e315fd7e2ba406057a97300593c4802b53e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.33ex; height:1.676ex;" alt="{\displaystyle x}"></span>,</span> is implemented as the following in QCL:<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">&#91;</span>44<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Oemer_15-2" class="reference"><a href="#cite_note-Oemer-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Oemer2_14-1" class="reference"><a href="#cite_note-Oemer2-14"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-highlight mw-highlight-lang-verilog mw-content-ltr" dir="ltr"><pre><span></span><span class="n">cond</span><span class="w"> </span><span class="n">qufunct</span><span class="w"> </span><span class="n">inc</span><span class="p">(</span><span class="n">qureg</span><span class="w"> </span><span class="n">x</span><span class="p">)</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="c1">// increment register</span> <span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="p">;</span> <span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">#</span><span class="n">x</span><span class="o">-</span><span class="mh">1</span><span class="w"> </span><span class="n">to</span><span class="w"> </span><span class="mh">0</span><span class="w"> </span><span class="n">step</span><span class="w"> </span><span class="o">-</span><span class="mh">1</span><span class="w"> </span><span class="p">{</span> <span class="w"> </span><span class="n">CNot</span><span class="p">(</span><span class="n">x</span><span class="p">[</span><span class="n">i</span><span class="p">],</span><span class="w"> </span><span class="n">x</span><span class="p">[</span><span class="mh">0</span><span class="o">::</span><span class="n">i</span><span class="p">]);</span><span class="w"> </span><span class="c1">// apply controlled-not from</span> <span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="c1">// MSB to LSB</span> <span class="p">}</span> </pre></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png/350px-Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png" decoding="async" width="350" height="104" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/11/Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png/525px-Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png 1.5x, //upload.wikimedia.org/wikipedia/commons/1/11/Increment_with_one_on_four_qubits_using_controlled_Pauli_X_gates_only.png 2x" data-file-width="639" data-file-height="189" /></a><figcaption>The generated circuit, when <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle x_{\text{length}}=4}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>length</mtext> </mrow> </msub> <mo>=</mo> <mn>4</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle x_{\text{length}}=4}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1dca41f4746da2921085d1ec1bc0380cf2b8cc4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:10.3ex; height:2.843ex;" alt="{\displaystyle x_{\text{length}}=4}"></span></span>. The symbols <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \oplus }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2295;<!-- ⊕ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \oplus }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b16e2bdaefee9eed86d866e6eba3ac47c710f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \oplus }"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \land }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2227;<!-- ∧ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \land }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d6823e5a222eb3ca49672818ac3d13ec607052c4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.55ex; height:2.009ex;" alt="{\displaystyle \land }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa78fd02085d39aa58c9e47a6d4033ce41e02fad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: 0.204ex; margin-bottom: -0.376ex; width:1.55ex; height:1.176ex;" alt="{\displaystyle \neg }"></span> denotes <a href="/wiki/Exclusive_or" title="Exclusive or">XOR</a>, <a href="/wiki/Logical_conjunction" title="Logical conjunction">AND</a> and <a href="/wiki/Negation" title="Negation">NOT</a> respectively, and comes from the Boolean representation of Pauli-<i>X</i> with zero or more control qubits when applied to states that are in the computational basis.</figcaption></figure> <p>In QCL, decrement is done by "undoing" increment. The prefix <code>!</code> is used to instead run the <a href="#Unitary_inversion_of_gates">unitary inverse</a> of the function. <code>!inc(x)</code> is the inverse of <code>inc(x)</code> and instead performs the operation <span class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathrm {inc} ^{\dagger }|x\rangle =\mathrm {inc} ^{-1}(|x\rangle )=|x-1{\pmod {2^{x_{\text{length}}}}}\rangle }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2020;<!-- † --></mo> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo>=</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">c</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>length</mtext> </mrow> </msub> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo fence="false" stretchy="false">&#x27E9;<!-- ⟩ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathrm {inc} ^{\dagger }|x\rangle =\mathrm {inc} ^{-1}(|x\rangle )=|x-1{\pmod {2^{x_{\text{length}}}}}\rangle }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07e60b3e9c95ab622a890775683d6957d641e8ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:45.709ex; height:3.176ex;" alt="{\displaystyle \mathrm {inc} ^{\dagger }|x\rangle =\mathrm {inc} ^{-1}(|x\rangle )=|x-1{\pmod {2^{x_{\text{length}}}}}\rangle }"></span>.</span> The <code>cond</code> keyword means that the function can be <a href="#Controlled_gates">conditional</a>.<sup id="cite_ref-Oemer-structured-programming_13-1" class="reference"><a href="#cite_note-Oemer-structured-programming-13"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the <a href="/wiki/Model_of_computation" title="Model of computation">model of computation</a> used in this article (the <a href="/wiki/Quantum_circuit" title="Quantum circuit">quantum circuit</a> model), a classic computer generates the gate composition for the quantum computer, and the quantum computer behaves as a <a href="/wiki/Coprocessor" title="Coprocessor">coprocessor</a> that receives instructions from the classical computer about which primitive gates to apply to which qubits.<sup id="cite_ref-Oemer_15-3" class="reference"><a href="#cite_note-Oemer-15"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 36–43">&#58;&#8202;36–43&#8202;</span></sup><sup id="cite_ref-cryo-controller_16-1" class="reference"><a href="#cite_note-cryo-controller-16"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> Measurement of quantum registers results in binary values that the classical computer can use in its computations. <a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a> often contain both a classical and a quantum part. Unmeasured <a href="/wiki/Input/output" title="Input/output">I/O</a> (sending qubits to remote computers without collapsing their quantum states) can be used to create <a href="/wiki/Quantum_network" title="Quantum network">networks of quantum computers</a>. <a href="/wiki/Quantum_teleportation#Entanglement_swapping" title="Quantum teleportation">Entanglement swapping</a> can then be used to realize <a href="/wiki/Distributed_algorithms" class="mw-redirect" title="Distributed algorithms">distributed algorithms</a> with quantum computers that are not directly connected. Examples of distributed algorithms that only require the use of a handful of quantum logic gates are <a href="/wiki/Superdense_coding" title="Superdense coding">superdense coding</a>, the <a href="/wiki/Quantum_Byzantine_agreement" title="Quantum Byzantine agreement">quantum Byzantine agreement</a> and the <a href="/wiki/BB84" title="BB84">BB84</a> <a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">cipherkey exchange protocol</a>. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=26" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Further information: <a href="/wiki/List_of_quantum_logic_gates" title="List of quantum logic gates">List of quantum logic gates</a></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 18em;"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Cellular_automaton" title="Cellular automaton">Cellular automaton</a></li> <li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">Cloud-based quantum computing</a></li> <li><a href="/wiki/Counterfactual_definiteness" title="Counterfactual definiteness">Counterfactual definiteness</a></li> <li><a href="/wiki/Counterfactual_quantum_computation" title="Counterfactual quantum computation">Counterfactual quantum computation</a></li> <li><a href="/wiki/Landauer%27s_principle" title="Landauer&#39;s principle">Landauer's principle</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a></li> <li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithm</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">Quantum cellular automaton</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a></li> <li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">Quantum finite automaton</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">Quantum logic</a></li> <li><a href="/wiki/Quantum_memory" title="Quantum memory">Quantum memory</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">Quantum network</a></li> <li><a href="/wiki/Quantum_Zeno_effect" title="Quantum Zeno effect">Quantum Zeno effect</a></li> <li><a href="/wiki/Reversible_computing" title="Reversible computing">Reversible computing</a></li> <li><a href="/wiki/Unitary_transformation_(quantum_mechanics)" title="Unitary transformation (quantum mechanics)">Unitary transformation (quantum mechanics)</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=27" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Matrix multiplication of quantum gates is defined as <a href="#Serially_wired_gates">series circuits</a>.</span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text">Note, here a full rotation about the Bloch sphere is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2\pi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>&#x03C0;<!-- π --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2\pi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73efd1f6493490b058097060a572606d2c550a06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.494ex; height:2.176ex;" alt="{\displaystyle 2\pi }"></span> radians, as opposed to the <a href="/wiki/List_of_quantum_logic_gates#Rotation_operator_gates" title="List of quantum logic gates">rotation operator gates</a> where a full turn is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 4\pi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>4</mn> <mi>&#x03C0;<!-- π --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 4\pi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6e68e161d697344939ec2ce1676fc1f3b873804b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.141ex; height:2.176ex;" alt="{\displaystyle 4\pi .}"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text">Either the <span class="texhtml"><i>P</i></span> or <a href="/wiki/List_of_quantum_logic_gates#Identity_gate_and_global_phase" title="List of quantum logic gates"><span class="texhtml">Ph</span></a> gate can be used, as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R_{z}(\delta )\operatorname {Ph} (\delta /2)=P(\delta )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">)</mo> <mi>Ph</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03B4;<!-- δ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R_{z}(\delta )\operatorname {Ph} (\delta /2)=P(\delta )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e69a54f3e1e32085bb2926327163031b6a903f60" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.771ex; height:2.843ex;" alt="{\displaystyle R_{z}(\delta )\operatorname {Ph} (\delta /2)=P(\delta )}"></span><sup id="cite_ref-Barenco_2-5" class="reference"><a href="#cite_note-Barenco-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Page: 11">&#58;&#8202;11&#8202;</span></sup><sup id="cite_ref-Williams_1-4" class="reference"><a href="#cite_note-Williams-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup><sup class="reference nowrap"><span title="Pages: 76–83">&#58;&#8202;76–83&#8202;</span></sup></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text">This set generates every possible unitary gate exactly. However as the global phase is irrelevant in the measurement output, universal quantum subsets can be constructed e.g. the set containing <span class="texhtml"><i>R<sub>y</sub></i>(<i>&#952;</i>)</span>,<span class="texhtml"><i>R<sub>z</sub></i>(<i>&#952;</i>)</span> and CNOT only spans all unitaries with determinant ±1 but it is sufficient for quantum computation.</span> </li> <li id="cite_note-stochastic-interpretations-30"><span class="mw-cite-backlink">^ <a href="#cite_ref-stochastic-interpretations_30-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-stochastic-interpretations_30-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">If this actually is a <a href="/wiki/Stochastic" title="Stochastic">stochastic</a> effect depends on which <a href="/wiki/Interpretations_of_quantum_mechanics" title="Interpretations of quantum mechanics">interpretation of quantum mechanics</a> that is correct (and if any interpretation can be correct). For example, <a href="/wiki/De_Broglie%E2%80%93Bohm_theory" title="De Broglie–Bohm theory">De Broglie–Bohm theory</a> and the <a href="/wiki/Many-worlds_interpretation" title="Many-worlds interpretation">many-worlds interpretation</a> asserts <a href="/wiki/Determinism" title="Determinism">determinism</a>. (In the many-worlds interpretation, a quantum computer is a machine that runs programs (<a href="/wiki/Quantum_circuit" title="Quantum circuit">quantum circuits</a>) that selects a reality where the probability of it having the solution states of a <a href="/wiki/Computational_problem" title="Computational problem">problem</a> is large. That is, the machine more often than not ends up in a reality where it gives the correct answer. Because <i>all</i> outcomes are realized in separate universes according to the many-worlds interpretation, the total outcome is deterministic. This <i>interpretation</i> does however not change the <a href="/wiki/Quantum_mechanics" title="Quantum mechanics">mechanics</a> by which the machine operates.)</span> </li> <li id="cite_note-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-38">^</a></b></span> <span class="reference-text">See <a href="/wiki/Probability_axioms#Second_axiom" title="Probability axioms">Probability axioms § Second axiom</a></span> </li> <li id="cite_note-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-39">^</a></b></span> <span class="reference-text">The <a href="/wiki/Hypotenuse" title="Hypotenuse">hypotenuse</a> has length 1 because the probabilities sum to 1, so the quantum state vector is a <a href="/wiki/Unit_vector" title="Unit vector">unit vector</a>.</span> </li> <li id="cite_note-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-49">^</a></b></span> <span class="reference-text">The input is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/134afa8ff09fdddd24b06f289e92e3a045092bd1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.557ex; height:2.176ex;" alt="{\displaystyle 2n}"></span> qubits, but the output is just <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> qubits. Information erasure is not a reversible (or <a href="/wiki/Unitarity_(physics)" title="Unitarity (physics)">unitary</a>) operation, and therefore not allowed. See also <a href="/wiki/Landauer%27s_principle" title="Landauer&#39;s principle">Landauer's principle</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=28" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Williams-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Williams_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Williams_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Williams_1-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Williams_1-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Williams_1-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Williams_1-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Williams_1-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Williams_1-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Williams_1-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-Williams_1-9"><sup><i><b>j</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFColin_P._Williams2011" class="citation book cs1">Colin P. Williams (2011). <i>Explorations in Quantum Computing</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84628-887-6" title="Special:BookSources/978-1-84628-887-6"><bdi>978-1-84628-887-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Explorations+in+Quantum+Computing&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-1-84628-887-6&amp;rft.au=Colin+P.+Williams&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Barenco-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Barenco_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Barenco_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Barenco_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Barenco_2-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Barenco_2-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Barenco_2-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Barenco_2-6"><sup><i><b>g</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBarencoBennettCleveDiVincenzo1995" class="citation journal cs1">Barenco, Adriano; Bennett, Charles H.; Cleve, Richard; DiVincenzo, David P.; Margolus, Norman; Shor, Peter; Sleator, Tycho; Smolin, John A.; Weinfurter, Harald (1995-11-01). "Elementary gates for quantum computation". <i><a href="/wiki/Physical_Review_A" title="Physical Review A">Physical Review A</a></i>. <b>52</b> (5). American Physical Society (APS): 3457–3467. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/9503016">quant-ph/9503016</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1995PhRvA..52.3457B">1995PhRvA..52.3457B</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.52.3457">10.1103/physreva.52.3457</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1050-2947">1050-2947</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/9912645">9912645</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:8764584">8764584</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Elementary+gates+for+quantum+computation&amp;rft.volume=52&amp;rft.issue=5&amp;rft.pages=3457-3467&amp;rft.date=1995-11-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A8764584%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F1995PhRvA..52.3457B&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F9503016&amp;rft.issn=1050-2947&amp;rft_id=info%3Adoi%2F10.1103%2Fphysreva.52.3457&amp;rft_id=info%3Apmid%2F9912645&amp;rft.aulast=Barenco&amp;rft.aufirst=Adriano&amp;rft.au=Bennett%2C+Charles+H.&amp;rft.au=Cleve%2C+Richard&amp;rft.au=DiVincenzo%2C+David+P.&amp;rft.au=Margolus%2C+Norman&amp;rft.au=Shor%2C+Peter&amp;rft.au=Sleator%2C+Tycho&amp;rft.au=Smolin%2C+John+A.&amp;rft.au=Weinfurter%2C+Harald&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Feynman-QMC-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-Feynman-QMC_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Feynman-QMC_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeynman1986" class="citation journal cs1">Feynman, Richard P. (1986). "Quantum mechanical computers". <i><a href="/wiki/Foundations_of_Physics" title="Foundations of Physics">Foundations of Physics</a></i>. <b>16</b> (6). Springer Science and Business Media LLC: 507–531. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1986FoPh...16..507F">1986FoPh...16..507F</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01886518">10.1007/bf01886518</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0015-9018">0015-9018</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:122076550">122076550</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Physics&amp;rft.atitle=Quantum+mechanical+computers&amp;rft.volume=16&amp;rft.issue=6&amp;rft.pages=507-531&amp;rft.date=1986&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01886518&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A122076550%23id-name%3DS2CID&amp;rft.issn=0015-9018&amp;rft_id=info%3Abibcode%2F1986FoPh...16..507F&amp;rft.aulast=Feynman&amp;rft.aufirst=Richard+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Nielsen-Chuang-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-Nielsen-Chuang_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-Nielsen-Chuang_5-8"><sup><i><b>i</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2010" class="citation book cs1"><a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Nielsen, Michael A.</a>; <a href="/wiki/Isaac_Chuang" title="Isaac Chuang">Chuang, Isaac</a> (2010). <a rel="nofollow" class="external text" href="https://www.cambridge.org/9781107002173"><i>Quantum Computation and Quantum Information</i></a>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-10700-217-3" title="Special:BookSources/978-1-10700-217-3"><bdi>978-1-10700-217-3</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/43641333">43641333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Quantum+Information&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2010&amp;rft_id=info%3Aoclcnum%2F43641333&amp;rft.isbn=978-1-10700-217-3&amp;rft.aulast=Nielsen&amp;rft.aufirst=Michael+A.&amp;rft.au=Chuang%2C+Isaac&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2F9781107002173&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Yanofsky-Mannucci-6"><span class="mw-cite-backlink">^ <a href="#cite_ref-Yanofsky-Mannucci_6-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Yanofsky-Mannucci_6-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Yanofsky-Mannucci_6-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Yanofsky-Mannucci_6-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-Yanofsky-Mannucci_6-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanofskyMannucci2013" class="citation book cs1">Yanofsky, Noson S.; Mannucci, Mirco (2013). <i>Quantum computing for computer scientists</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-87996-5" title="Special:BookSources/978-0-521-87996-5"><bdi>978-0-521-87996-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+computing+for+computer+scientists&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-0-521-87996-5&amp;rft.aulast=Yanofsky&amp;rft.aufirst=Noson+S.&amp;rft.au=Mannucci%2C+Mirco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Preskill-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-Preskill_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPreskill2021" class="citation arxiv cs1">Preskill, John (2021-06-06). "Quantum computing 40 years later". pp.&#160;10–15. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2106.10522">2106.10522</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=Quantum+computing+40+years+later&amp;rft.pages=10-15&amp;rft.date=2021-06-06&amp;rft_id=info%3Aarxiv%2F2106.10522&amp;rft.aulast=Preskill&amp;rft.aufirst=John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://qiskit.org/documentation/apidoc/circuit_library.html">"Circuit Library"</a>. IBM (<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>).</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Circuit+Library&amp;rft.pub=IBM+%28Qiskit%29&amp;rft_id=https%3A%2F%2Fqiskit.org%2Fdocumentation%2Fapidoc%2Fcircuit_library.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-inspire-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-inspire_9-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.quantum-inspire.com/kbase/cqasm-qubit-gate-operations/">"cQASM: Qubit gate operations"</a>. QuTech.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=cQASM%3A+Qubit+gate+operations&amp;rft.pub=QuTech&amp;rft_id=https%3A%2F%2Fwww.quantum-inspire.com%2Fkbase%2Fcqasm-qubit-gate-operations%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic">"Microsoft.Quantum.Intrinsic namespace"</a>. Microsoft (<a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a>). 28 July 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Microsoft.Quantum.Intrinsic+namespace&amp;rft.pub=Microsoft+%28Q%23%29&amp;rft.date=2023-07-28&amp;rft_id=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fqsharp%2Fapi%2Fqsharp%2Fmicrosoft.quantum.intrinsic&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-adjoint-controlled-qsharp-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-adjoint-controlled-qsharp_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-adjoint-controlled-qsharp_12-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-us/quantum/user-guide/using-qsharp/operations-functions?view=qsharp-preview#controlled-and-adjoint-operations">Operations and Functions (Q# documentation)</a></span> </li> <li id="cite_note-Oemer-structured-programming-13"><span class="mw-cite-backlink">^ <a href="#cite_ref-Oemer-structured-programming_13-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Oemer-structured-programming_13-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÖmer2009" class="citation web cs1">Ömer, Bernhard (2 September 2009). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220327170025/tph.tuwien.ac.at/~oemer/doc/structquprog.pdf">"Structured Quantum Programming"</a> <span class="cs1-format">(PDF)</span>. Institute for Theoretical Physics, Vienna University of Technology. pp.&#160;72, 92–107. Archived from <a rel="nofollow" class="external text" href="http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf">the original</a> <span class="cs1-format">(PDF)</span> on March 27, 2022.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Structured+Quantum+Programming&amp;rft.pages=72%2C+92-107&amp;rft.pub=Institute+for+Theoretical+Physics%2C+Vienna+University+of+Technology&amp;rft.date=2009-09-02&amp;rft.aulast=%C3%96mer&amp;rft.aufirst=Bernhard&amp;rft_id=http%3A%2F%2Ftph.tuwien.ac.at%2F~oemer%2Fdoc%2Fstructquprog.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Oemer2-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-Oemer2_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Oemer2_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÖmer2003" class="citation journal cs1">Ömer, Bernhard (29 Apr 2003). "Classical Concepts in Quantum Programming". <i>International Journal of Theoretical Physics</i>. <b>44</b> (7): 943–955. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0211100">quant-ph/0211100</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10773-005-7071-x">10.1007/s10773-005-7071-x</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119373370">119373370</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Theoretical+Physics&amp;rft.atitle=Classical+Concepts+in+Quantum+Programming&amp;rft.volume=44&amp;rft.issue=7&amp;rft.pages=943-955&amp;rft.date=2003-04-29&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0211100&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119373370%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10773-005-7071-x&amp;rft.aulast=%C3%96mer&amp;rft.aufirst=Bernhard&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-Oemer-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-Oemer_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Oemer_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Oemer_15-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-Oemer_15-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFÖmer2000" class="citation thesis cs1">Ömer, Bernhard (2000-01-20). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20220601141903/http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf"><i>Quantum Programming in QCL</i></a> <span class="cs1-format">(PDF)</span> (Thesis). Institute for Theoretical Physics, Vienna University of Technology. Archived from <a rel="nofollow" class="external text" href="http://tph.tuwien.ac.at/~oemer/doc/quprog.pdf">the original</a> <span class="cs1-format">(PDF)</span> on June 1, 2022<span class="reference-accessdate">. Retrieved <span class="nowrap">2021-05-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&amp;rft.title=Quantum+Programming+in+QCL&amp;rft.inst=Institute+for+Theoretical+Physics%2C+Vienna+University+of+Technology&amp;rft.date=2000-01-20&amp;rft.aulast=%C3%96mer&amp;rft.aufirst=Bernhard&amp;rft_id=http%3A%2F%2Ftph.tuwien.ac.at%2F~oemer%2Fdoc%2Fquprog.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-cryo-controller-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-cryo-controller_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-cryo-controller_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaukaDasKalraMoini2021" class="citation journal cs1">Pauka SJ, Das W, Kalra R, Moini A, Yang Y, Trainer M, Bousquet A, Cantaloube C, Dick N, Gardner GC, Manfra MJ, Reilly DJ (2021). "A cryogenic CMOS chip for generating control signals for multiple qubits". <i><a href="/wiki/Nature_Electronics" title="Nature Electronics">Nature Electronics</a></i>. <b>4</b> (4): 64–70. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1912.01299">1912.01299</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fs41928-020-00528-y">10.1038/s41928-020-00528-y</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:231715555">231715555</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nature+Electronics&amp;rft.atitle=A+cryogenic+CMOS+chip+for+generating+control+signals+for+multiple+qubits&amp;rft.volume=4&amp;rft.issue=4&amp;rft.pages=64-70&amp;rft.date=2021&amp;rft_id=info%3Aarxiv%2F1912.01299&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A231715555%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1038%2Fs41928-020-00528-y&amp;rft.aulast=Pauka&amp;rft.aufirst=SJ&amp;rft.au=Das%2C+W&amp;rft.au=Kalra%2C+R&amp;rft.au=Moini%2C+A&amp;rft.au=Yang%2C+Y&amp;rft.au=Trainer%2C+M&amp;rft.au=Bousquet%2C+A&amp;rft.au=Cantaloube%2C+C&amp;rft.au=Dick%2C+N&amp;rft.au=Gardner%2C+GC&amp;rft.au=Manfra%2C+MJ&amp;rft.au=Reilly%2C+DJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://qiskit.org/documentation/stubs/qiskit.circuit.library.TdgGate.html#qiskit.circuit.library.TdgGate">"TdgGate"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=TdgGate&amp;rft_id=https%3A%2F%2Fqiskit.org%2Fdocumentation%2Fstubs%2Fqiskit.circuit.library.TdgGate.html%23qiskit.circuit.library.TdgGate&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span> <a href="/wiki/Qiskit" title="Qiskit">Qiskit</a> online documentation.</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.quantum-inspire.com/kbase/t-dagger-gate/">"T dagger Gate"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=T+dagger+Gate&amp;rft_id=https%3A%2F%2Fwww.quantum-inspire.com%2Fkbase%2Ft-dagger-gate%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span> cQASM online documentation.</span> </li> <li id="cite_note-Aharonov-19"><span class="mw-cite-backlink">^ <a href="#cite_ref-Aharonov_19-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Aharonov_19-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAharonov2003" class="citation arxiv cs1">Aharonov, Dorit (2003-01-09). "A Simple Proof that Toffoli and Hadamard are Quantum Universal". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0301040">quant-ph/0301040</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=A+Simple+Proof+that+Toffoli+and+Hadamard+are+Quantum+Universal&amp;rft.date=2003-01-09&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0301040&amp;rft.aulast=Aharonov&amp;rft.aufirst=Dorit&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSawickiKarnas2017" class="citation journal cs1">Sawicki, Adam; Karnas, Katarzyna (2017-11-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/s00023-017-0604-z">"Universality of Single-Qudit Gates"</a>. <i><a href="/wiki/Annales_Henri_Poincar%C3%A9" title="Annales Henri Poincaré">Annales Henri Poincaré</a></i>. <b>18</b> (11): 3515–3552. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1609.05780">1609.05780</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017AnHP...18.3515S">2017AnHP...18.3515S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00023-017-0604-z">10.1007/s00023-017-0604-z</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1424-0661">1424-0661</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:253594045">253594045</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Annales+Henri+Poincar%C3%A9&amp;rft.atitle=Universality+of+Single-Qudit+Gates&amp;rft.volume=18&amp;rft.issue=11&amp;rft.pages=3515-3552&amp;rft.date=2017-11-01&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A253594045%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2017AnHP...18.3515S&amp;rft_id=info%3Aarxiv%2F1609.05780&amp;rft.issn=1424-0661&amp;rft_id=info%3Adoi%2F10.1007%2Fs00023-017-0604-z&amp;rft.aulast=Sawicki&amp;rft.aufirst=Adam&amp;rft.au=Karnas%2C+Katarzyna&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2Fs00023-017-0604-z&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSawickiMattioliZimborás2022" class="citation journal cs1">Sawicki, Adam; Mattioli, Lorenzo; Zimborás, Zoltán (2022-05-12). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevA.105.052602">"Universality verification for a set of quantum gates"</a>. <i><a href="/wiki/Physical_Review_A" title="Physical Review A">Physical Review A</a></i>. <b>105</b> (5): 052602. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2111.03862">2111.03862</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2022PhRvA.105e2602S">2022PhRvA.105e2602S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevA.105.052602">10.1103/PhysRevA.105.052602</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:248761038">248761038</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Universality+verification+for+a+set+of+quantum+gates&amp;rft.volume=105&amp;rft.issue=5&amp;rft.pages=052602&amp;rft.date=2022-05-12&amp;rft_id=info%3Aarxiv%2F2111.03862&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A248761038%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevA.105.052602&amp;rft_id=info%3Abibcode%2F2022PhRvA.105e2602S&amp;rft.aulast=Sawicki&amp;rft.aufirst=Adam&amp;rft.au=Mattioli%2C+Lorenzo&amp;rft.au=Zimbor%C3%A1s%2C+Zolt%C3%A1n&amp;rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevA.105.052602&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-:0-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2011" class="citation cs2">Williams, Colin P. (2011), Williams, Colin P. (ed.), <a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-1-84628-887-6_2">"Quantum Gates"</a>, <i>Explorations in Quantum Computing</i>, Texts in Computer Science, London: Springer, pp.&#160;51–122, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-84628-887-6_2">10.1007/978-1-84628-887-6_2</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84628-887-6" title="Special:BookSources/978-1-84628-887-6"><bdi>978-1-84628-887-6</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2021-05-14</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Explorations+in+Quantum+Computing&amp;rft.atitle=Quantum+Gates&amp;rft.pages=51-122&amp;rft.date=2011&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-84628-887-6_2&amp;rft.isbn=978-1-84628-887-6&amp;rft.aulast=Williams&amp;rft.aufirst=Colin+P.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F978-1-84628-887-6_2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDeutsch1989" class="citation cs2"><a href="/wiki/David_Deutsch" title="David Deutsch">Deutsch, David</a> (September 8, 1989), "Quantum computational networks", <i><a href="/wiki/Proc._R._Soc._Lond._A" class="mw-redirect" title="Proc. R. Soc. Lond. A">Proc. R. Soc. Lond. A</a></i>, <b>425</b> (1989): 73–90, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1989RSPSA.425...73D">1989RSPSA.425...73D</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.1989.0099">10.1098/rspa.1989.0099</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:123073680">123073680</a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proc.+R.+Soc.+Lond.+A&amp;rft.atitle=Quantum+computational+networks&amp;rft.volume=425&amp;rft.issue=1989&amp;rft.pages=73-90&amp;rft.date=1989-09-08&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A123073680%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.1989.0099&amp;rft_id=info%3Abibcode%2F1989RSPSA.425...73D&amp;rft.aulast=Deutsch&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFShi2018" class="citation journal cs1">Shi, Xiao-Feng (2018-05-22). <a rel="nofollow" class="external text" href="https://link.aps.org/doi/10.1103/PhysRevApplied.9.051001">"Deutsch, Toffoli, and cnot Gates via Rydberg Blockade of Neutral Atoms"</a>. <i>Physical Review Applied</i>. <b>9</b> (5): 051001. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1710.01859">1710.01859</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2018PhRvP...9e1001S">2018PhRvP...9e1001S</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevApplied.9.051001">10.1103/PhysRevApplied.9.051001</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2331-7019">2331-7019</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118909059">118909059</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Applied&amp;rft.atitle=Deutsch%2C+Toffoli%2C+and+cnot+Gates+via+Rydberg+Blockade+of+Neutral+Atoms&amp;rft.volume=9&amp;rft.issue=5&amp;rft.pages=051001&amp;rft.date=2018-05-22&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118909059%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2018PhRvP...9e1001S&amp;rft_id=info%3Aarxiv%2F1710.01859&amp;rft.issn=2331-7019&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevApplied.9.051001&amp;rft.aulast=Shi&amp;rft.aufirst=Xiao-Feng&amp;rft_id=https%3A%2F%2Flink.aps.org%2Fdoi%2F10.1103%2FPhysRevApplied.9.051001&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-us/qsharp/api/qsharp/microsoft.quantum.intrinsic.i">"I operation"</a>. <i>docs.microsoft.com</i>. 28 July 2023.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=docs.microsoft.com&amp;rft.atitle=I+operation&amp;rft.date=2023-07-28&amp;rft_id=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fqsharp%2Fapi%2Fqsharp%2Fmicrosoft.quantum.intrinsic.i&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://qiskit.org/documentation/stubs/qiskit.circuit.library.IGate.html#qiskit.circuit.library.IGate">"IGate"</a>. <i>qiskit.org</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=qiskit.org&amp;rft.atitle=IGate&amp;rft_id=https%3A%2F%2Fqiskit.org%2Fdocumentation%2Fstubs%2Fqiskit.circuit.library.IGate.html%23qiskit.circuit.library.IGate&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span> <a href="/wiki/Qiskit" title="Qiskit">Qiskit</a> online documentation.</span> </li> <li id="cite_note-Loss-DiVincenzo-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Loss-DiVincenzo_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLossDiVincenzo1998" class="citation journal cs1">Loss, Daniel; DiVincenzo, David P. (1998-01-01). <a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.57.120">"Quantum computation with quantum dots"</a>. <i>Physical Review A</i>. <b>57</b> (1): 120–126. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/cond-mat/9701055">cond-mat/9701055</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/1998PhRvA..57..120L">1998PhRvA..57..120L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1103%2Fphysreva.57.120">10.1103/physreva.57.120</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1050-2947">1050-2947</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+A&amp;rft.atitle=Quantum+computation+with+quantum+dots&amp;rft.volume=57&amp;rft.issue=1&amp;rft.pages=120-126&amp;rft.date=1998-01-01&amp;rft_id=info%3Aarxiv%2Fcond-mat%2F9701055&amp;rft.issn=1050-2947&amp;rft_id=info%3Adoi%2F10.1103%2Fphysreva.57.120&amp;rft_id=info%3Abibcode%2F1998PhRvA..57..120L&amp;rft.aulast=Loss&amp;rft.aufirst=Daniel&amp;rft.au=DiVincenzo%2C+David+P.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1103%252Fphysreva.57.120&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span> Example in eq. 2.</span> </li> <li id="cite_note-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-31">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRaz2002" class="citation book cs1"><a href="/wiki/Ran_Raz" title="Ran Raz">Raz, Ran</a> (2002). "On the complexity of matrix product". <i>Proceedings of the thiry-fourth annual <a href="/wiki/ACM_Symposium_on_Theory_of_Computing" class="mw-redirect" title="ACM Symposium on Theory of Computing">ACM Symposium on Theory of Computing</a></i>. pp.&#160;144–151. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1145%2F509907.509932">10.1145/509907.509932</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/1581134959" title="Special:BookSources/1581134959"><bdi>1581134959</bdi></a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9582328">9582328</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=On+the+complexity+of+matrix+product&amp;rft.btitle=Proceedings+of+the+thiry-fourth+annual+ACM+Symposium+on+Theory+of+Computing&amp;rft.pages=144-151&amp;rft.date=2002&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9582328%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1145%2F509907.509932&amp;rft.isbn=1581134959&amp;rft.aulast=Raz&amp;rft.aufirst=Ran&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://docs.quantum.ibm.com/api/qiskit/qiskit.circuit.library.UnitaryGate#adjoint">"UnitaryGate § UnitaryGate adjoint()"</a>. <i>docs.quantum.ibm.com</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=docs.quantum.ibm.com&amp;rft.atitle=UnitaryGate+%C2%A7+UnitaryGate+adjoint%28%29&amp;rft_id=https%3A%2F%2Fdocs.quantum.ibm.com%2Fapi%2Fqiskit%2Fqiskit.circuit.library.UnitaryGate%23adjoint&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-33">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGriffiths,_D.J.2008" class="citation book cs1"><a href="/wiki/David_J._Griffiths" title="David J. Griffiths">Griffiths, D.J.</a> (2008). <i>Introduction to Elementary Particles (2nd ed.)</i>. <a href="/wiki/John_Wiley_%26_Sons" class="mw-redirect" title="John Wiley &amp; Sons">John Wiley &amp; Sons</a>. pp.&#160;115–121, 126. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-40601-2" title="Special:BookSources/978-3-527-40601-2"><bdi>978-3-527-40601-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+Elementary+Particles+%282nd+ed.%29&amp;rft.pages=115-121%2C+126&amp;rft.pub=John+Wiley+%26+Sons&amp;rft.date=2008&amp;rft.isbn=978-3-527-40601-2&amp;rft.au=Griffiths%2C+D.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Albert1994" class="citation book cs1">David Albert (1994). <i>Quantum mechanics and experience</i>. <a href="/wiki/Harvard_University_Press" title="Harvard University Press">Harvard University Press</a>. p.&#160;35. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-674-74113-7" title="Special:BookSources/0-674-74113-7"><bdi>0-674-74113-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+mechanics+and+experience&amp;rft.pages=35&amp;rft.pub=Harvard+University+Press&amp;rft.date=1994&amp;rft.isbn=0-674-74113-7&amp;rft.au=David+Albert&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-35">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSean_M._Carroll2019" class="citation book cs1"><a href="/wiki/Sean_M._Carroll" title="Sean M. Carroll">Sean M. Carroll</a> (2019). <i>Spacetime and geometry: An introduction to general relativity</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. pp.&#160;376–394. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-108-48839-6" title="Special:BookSources/978-1-108-48839-6"><bdi>978-1-108-48839-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Spacetime+and+geometry%3A+An+introduction+to+general+relativity&amp;rft.pages=376-394&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2019&amp;rft.isbn=978-1-108-48839-6&amp;rft.au=Sean+M.+Carroll&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-36">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDavid_Wallace2012" class="citation book cs1"><a href="/wiki/David_Wallace_(physicist)" title="David Wallace (physicist)">David Wallace</a> (2012). <i>The emergent multiverse: Quantum theory according to the Everett Interpretation</i>. <a href="/wiki/Oxford_University_Press" title="Oxford University Press">Oxford University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780199546961" title="Special:BookSources/9780199546961"><bdi>9780199546961</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+emergent+multiverse%3A+Quantum+theory+according+to+the+Everett+Interpretation&amp;rft.pub=Oxford+University+Press&amp;rft.date=2012&amp;rft.isbn=9780199546961&amp;rft.au=David+Wallace&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-37">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSean_M._Carroll2019" class="citation book cs1"><a href="/wiki/Sean_M._Carroll" title="Sean M. Carroll">Sean M. Carroll</a> (2019). <i>Something deeply hidden: Quantum worlds and the emergence of spacetime</i>. <a href="/wiki/Penguin_Random_House" title="Penguin Random House">Penguin Random House</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9781524743017" title="Special:BookSources/9781524743017"><bdi>9781524743017</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Something+deeply+hidden%3A+Quantum+worlds+and+the+emergence+of+spacetime&amp;rft.pub=Penguin+Random+House&amp;rft.date=2019&amp;rft.isbn=9781524743017&amp;rft.au=Sean+M.+Carroll&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-40">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-us/quantum/concepts/pauli-measurements">Q# Online manual: Measurement</a></span> </li> <li id="cite_note-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-41">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJuan_YinYuan_CaoYu-Huai_LiSheng-Kai_Liao2017" class="citation journal cs1">Juan Yin; Yuan Cao; Yu-Huai Li; Sheng-Kai Liao; Liang Zhang; Ji-Gang Ren; Wen-Qi Cai; Wei-Yue Liu; Bo Li; Hui Dai; Guang-Bing Li; Qi-Ming Lu; Yun-Hong Gong; Yu Xu; Shuang-Lin Li; Feng-Zhi Li; Ya-Yun Yin; Zi-Qing Jiang; Ming Li; Jian-Jun Jia; Ge Ren; Dong He; Yi-Lin Zhou; Xiao-Xiang Zhang; Na Wang; Xiang Chang; Zhen-Cai Zhu; Nai-Le Liu; Yu-Ao Chen; Chao-Yang Lu; Rong Shu; Cheng-Zhi Peng; Jian-Yu Wang; <a href="/wiki/Jian-Wei_Pan" class="mw-redirect" title="Jian-Wei Pan">Jian-Wei Pan</a> (2017). "Satellite-based entanglement distribution over 1200 kilometers". <i>Quantum Optics</i>. <b>356</b> (6343): 1140–1144. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1707.01339">1707.01339</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fscience.aan3211">10.1126/science.aan3211</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/28619937">28619937</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:5206894">5206894</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Optics&amp;rft.atitle=Satellite-based+entanglement+distribution+over+1200+kilometers&amp;rft.volume=356&amp;rft.issue=6343&amp;rft.pages=1140-1144&amp;rft.date=2017&amp;rft_id=info%3Aarxiv%2F1707.01339&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A5206894%23id-name%3DS2CID&amp;rft_id=info%3Apmid%2F28619937&amp;rft_id=info%3Adoi%2F10.1126%2Fscience.aan3211&amp;rft.au=Juan+Yin&amp;rft.au=Yuan+Cao&amp;rft.au=Yu-Huai+Li&amp;rft.au=Sheng-Kai+Liao&amp;rft.au=Liang+Zhang&amp;rft.au=Ji-Gang+Ren&amp;rft.au=Wen-Qi+Cai&amp;rft.au=Wei-Yue+Liu&amp;rft.au=Bo+Li&amp;rft.au=Hui+Dai&amp;rft.au=Guang-Bing+Li&amp;rft.au=Qi-Ming+Lu&amp;rft.au=Yun-Hong+Gong&amp;rft.au=Yu+Xu&amp;rft.au=Shuang-Lin+Li&amp;rft.au=Feng-Zhi+Li&amp;rft.au=Ya-Yun+Yin&amp;rft.au=Zi-Qing+Jiang&amp;rft.au=Ming+Li&amp;rft.au=Jian-Jun+Jia&amp;rft.au=Ge+Ren&amp;rft.au=Dong+He&amp;rft.au=Yi-Lin+Zhou&amp;rft.au=Xiao-Xiang+Zhang&amp;rft.au=Na+Wang&amp;rft.au=Xiang+Chang&amp;rft.au=Zhen-Cai+Zhu&amp;rft.au=Nai-Le+Liu&amp;rft.au=Yu-Ao+Chen&amp;rft.au=Chao-Yang+Lu&amp;rft.au=Rong+Shu&amp;rft.au=Cheng-Zhi+Peng&amp;rft.au=Jian-Yu+Wang&amp;rft.au=Jian-Wei+Pan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-42">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBillings2020" class="citation web cs1">Billings, Lee (23 April 2020). <a rel="nofollow" class="external text" href="https://www.scientificamerican.com/article/china-shatters-ldquo-spooky-action-at-a-distance-rdquo-record-preps-for-quantum-internet/">"China Shatters "Spooky Action at a Distance" Record, Preps for Quantum Internet"</a>. <i>Scientific American</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Scientific+American&amp;rft.atitle=China+Shatters+%22Spooky+Action+at+a+Distance%22+Record%2C+Preps+for+Quantum+Internet&amp;rft.date=2020-04-23&amp;rft.aulast=Billings&amp;rft.aufirst=Lee&amp;rft_id=https%3A%2F%2Fwww.scientificamerican.com%2Farticle%2Fchina-shatters-ldquo-spooky-action-at-a-distance-rdquo-record-preps-for-quantum-internet%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-43">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPopkin2017" class="citation web cs1">Popkin, Gabriel (15 June 2017). <a rel="nofollow" class="external text" href="https://www.science.org/content/article/china-s-quantum-satellite-achieves-spooky-action-record-distance">"China's quantum satellite achieves 'spooky action' at record distance"</a>. <i>Science – AAAS</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Science+%E2%80%93+AAAS&amp;rft.atitle=China%27s+quantum+satellite+achieves+%27spooky+action%27+at+record+distance&amp;rft.date=2017-06-15&amp;rft.aulast=Popkin&amp;rft.aufirst=Gabriel&amp;rft_id=https%3A%2F%2Fwww.science.org%2Fcontent%2Farticle%2Fchina-s-quantum-satellite-achieves-spooky-action-record-distance&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-44">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2009" class="citation arxiv cs1">Aaronson, Scott (2009). "BQP and the Polynomial Hierarchy". <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0910.4698">0910.4698</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/quant-ph">quant-ph</a>].</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=preprint&amp;rft.jtitle=arXiv&amp;rft.atitle=BQP+and+the+Polynomial+Hierarchy&amp;rft.date=2009&amp;rft_id=info%3Aarxiv%2F0910.4698&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-45">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDawsonNielsen2006" class="citation journal cs1">Dawson, Christopher M.; Nielsen, Michael (2006-01-01). <a rel="nofollow" class="external text" href="https://dl.acm.org/doi/abs/10.5555/2011679.2011685">"The Solovay-Kitaev algorithm"</a>. <i>Quantum Information and Computation</i>. <b>6</b> (1). Section 5.1, equation 23. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0505030">quant-ph/0505030</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.26421%2FQIC6.1-6">10.26421/QIC6.1-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+and+Computation&amp;rft.atitle=The+Solovay-Kitaev+algorithm&amp;rft.volume=6&amp;rft.issue=1&amp;rft.pages=Section+5.1%2C+equation+23&amp;rft.date=2006-01-01&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0505030&amp;rft_id=info%3Adoi%2F10.26421%2FQIC6.1-6&amp;rft.aulast=Dawson&amp;rft.aufirst=Christopher+M.&amp;rft.au=Nielsen%2C+Michael&amp;rft_id=https%3A%2F%2Fdl.acm.org%2Fdoi%2Fabs%2F10.5555%2F2011679.2011685&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-46">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMatteo2016" class="citation journal cs1">Matteo, Olivia Di (2016). <a rel="nofollow" class="external text" href="https://dx.doi.org/10.1088/2058-9565/1/1/015003">"Parallelizing quantum circuit synthesis"</a>. <i>Quantum Science and Technology</i>. <b>1</b> (1): 015003. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1606.07413">1606.07413</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016QS&amp;T....1a5003D">2016QS&#38;T....1a5003D</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F2058-9565%2F1%2F1%2F015003">10.1088/2058-9565/1/1/015003</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:62819073">62819073</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Science+and+Technology&amp;rft.atitle=Parallelizing+quantum+circuit+synthesis&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=015003&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1606.07413&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A62819073%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F2058-9565%2F1%2F1%2F015003&amp;rft_id=info%3Abibcode%2F2016QS%26T....1a5003D&amp;rft.aulast=Matteo&amp;rft.aufirst=Olivia+Di&amp;rft_id=http%3A%2F%2Fdx.doi.org%2F10.1088%2F2058-9565%2F1%2F1%2F015003&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-47">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAaronson2002" class="citation journal cs1">Aaronson, Scott (2002). "Quantum Lower Bound for Recursive Fourier Sampling". <i>Quantum Information and Computation</i>. <b>3</b> (2): 165–174. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/quant-ph/0209060">quant-ph/0209060</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2002quant.ph..9060A">2002quant.ph..9060A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.26421%2FQIC3.2-7">10.26421/QIC3.2-7</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+and+Computation&amp;rft.atitle=Quantum+Lower+Bound+for+Recursive+Fourier+Sampling&amp;rft.volume=3&amp;rft.issue=2&amp;rft.pages=165-174&amp;rft.date=2002&amp;rft_id=info%3Aarxiv%2Fquant-ph%2F0209060&amp;rft_id=info%3Adoi%2F10.26421%2FQIC3.2-7&amp;rft_id=info%3Abibcode%2F2002quant.ph..9060A&amp;rft.aulast=Aaronson&amp;rft.aufirst=Scott&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-48">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="https://docs.microsoft.com/en-us/quantum/user-guide/language/statements/quantummemorymanagement?view=qsharp-preview">Q# online manual: Quantum Memory Management</a></span> </li> <li id="cite_note-50"><span class="mw-cite-backlink"><b><a href="#cite_ref-50">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRyoKazumitsuRyoko2020" class="citation journal cs1">Ryo, Asaka; Kazumitsu, Sakai; Ryoko, Yahagi (2020). <a rel="nofollow" class="external text" href="https://link.springer.com/article/10.1007/s11128-020-02776-5">"Quantum circuit for the fast Fourier transform"</a>. <i>Quantum Information Processing</i>. <b>19</b> (277): 277. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1911.03055">1911.03055</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2020QuIP...19..277A">2020QuIP...19..277A</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs11128-020-02776-5">10.1007/s11128-020-02776-5</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:207847474">207847474</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Quantum+Information+Processing&amp;rft.atitle=Quantum+circuit+for+the+fast+Fourier+transform&amp;rft.volume=19&amp;rft.issue=277&amp;rft.pages=277&amp;rft.date=2020&amp;rft_id=info%3Aarxiv%2F1911.03055&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A207847474%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs11128-020-02776-5&amp;rft_id=info%3Abibcode%2F2020QuIP...19..277A&amp;rft.aulast=Ryo&amp;rft.aufirst=Asaka&amp;rft.au=Kazumitsu%2C+Sakai&amp;rft.au=Ryoko%2C+Yahagi&amp;rft_id=https%3A%2F%2Flink.springer.com%2Farticle%2F10.1007%2Fs11128-020-02776-5&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-51"><span class="mw-cite-backlink"><b><a href="#cite_ref-51">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMontaser2019" class="citation journal cs1">Montaser, Rasha (2019). "New Design of Reversible Full Adder/Subtractor using R gate". <i><a href="/wiki/International_Journal_of_Theoretical_Physics" title="International Journal of Theoretical Physics">International Journal of Theoretical Physics</a></i>. <b>58</b> (1): 167–183. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1708.00306">1708.00306</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019IJTP...58..167M">2019IJTP...58..167M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs10773-018-3921-1">10.1007/s10773-018-3921-1</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:24590164">24590164</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Theoretical+Physics&amp;rft.atitle=New+Design+of+Reversible+Full+Adder%2FSubtractor+using+R+gate&amp;rft.volume=58&amp;rft.issue=1&amp;rft.pages=167-183&amp;rft.date=2019&amp;rft_id=info%3Aarxiv%2F1708.00306&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A24590164%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1007%2Fs10773-018-3921-1&amp;rft_id=info%3Abibcode%2F2019IJTP...58..167M&amp;rft.aulast=Montaser&amp;rft.aufirst=Rasha&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://tph.tuwien.ac.at/~oemer/tgz/qcl-0.6.4.tgz">QCL 0.6.4 source code, the file "lib/examples.qcl"</a></span> </li> </ol></div> <div class="mw-heading mw-heading3"><h3 id="Sources">Sources</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Quantum_logic_gate&amp;action=edit&amp;section=29" title="Edit section: Sources"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNielsenChuang2000" class="citation book cs1"><a href="/wiki/Michael_Nielsen" title="Michael Nielsen">Nielsen, Michael A.</a>; <a href="/wiki/Isaac_Chuang" title="Isaac Chuang">Chuang, Isaac</a> (2000). <i>Quantum Computation and Quantum Information</i>. Cambridge: <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0521632358" title="Special:BookSources/0521632358"><bdi>0521632358</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/43641333">43641333</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+Computation+and+Quantum+Information&amp;rft.place=Cambridge&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2000&amp;rft_id=info%3Aoclcnum%2F43641333&amp;rft.isbn=0521632358&amp;rft.aulast=Nielsen&amp;rft.aufirst=Michael+A.&amp;rft.au=Chuang%2C+Isaac&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWilliams2011" class="citation book cs1">Williams, Colin P. (2011). <i>Explorations in Quantum Computing</i>. <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-84628-887-6" title="Special:BookSources/978-1-84628-887-6"><bdi>978-1-84628-887-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Explorations+in+Quantum+Computing&amp;rft.pub=Springer&amp;rft.date=2011&amp;rft.isbn=978-1-84628-887-6&amp;rft.aulast=Williams&amp;rft.aufirst=Colin+P.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFYanofskyMannucci2013" class="citation book cs1">Yanofsky, Noson S.; Mannucci, Mirco (2013). <i>Quantum computing for computer scientists</i>. <a href="/wiki/Cambridge_University_Press" title="Cambridge University Press">Cambridge University Press</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-521-87996-5" title="Special:BookSources/978-0-521-87996-5"><bdi>978-0-521-87996-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Quantum+computing+for+computer+scientists&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-0-521-87996-5&amp;rft.aulast=Yanofsky&amp;rft.aufirst=Noson+S.&amp;rft.au=Mannucci%2C+Mirco&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AQuantum+logic+gate" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Quantum_information_science" style="padding:3px"><table class="nowraplinks hlist mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Quantum_information" title="Template:Quantum information"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Quantum_information" title="Template talk:Quantum information"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Quantum_information" title="Special:EditPage/Template:Quantum information"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Quantum_information_science" style="font-size:114%;margin:0 4em"><a href="/wiki/Quantum_information_science" title="Quantum information science">Quantum information science</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/DiVincenzo%27s_criteria" title="DiVincenzo&#39;s criteria">DiVincenzo's criteria</a></li> <li><a href="/wiki/Noisy_intermediate-scale_quantum_era" title="Noisy intermediate-scale quantum era">NISQ era</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">Quantum computing</a> <ul><li><a href="/wiki/Timeline_of_quantum_computing_and_communication" title="Timeline of quantum computing and communication">timeline</a></li></ul></li> <li><a href="/wiki/Quantum_information" title="Quantum information">Quantum information</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum programming</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">Quantum simulation</a></li> <li><a href="/wiki/Qubit" title="Qubit">Qubit</a> <ul><li><a href="/wiki/Physical_and_logical_qubits" title="Physical and logical qubits">physical vs. logical</a></li></ul></li> <li><a href="/wiki/List_of_quantum_processors" title="List of quantum processors">Quantum processors</a> <ul><li><a href="/wiki/Cloud-based_quantum_computing" title="Cloud-based quantum computing">cloud-based</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell%27s_theorem" title="Bell&#39;s theorem">Bell's</a></li> <li><a href="/wiki/Eastin%E2%80%93Knill_theorem" title="Eastin–Knill theorem">Eastin–Knill</a></li> <li><a href="/wiki/Gleason%27s_theorem" title="Gleason&#39;s theorem">Gleason's</a></li> <li><a href="/wiki/Gottesman%E2%80%93Knill_theorem" title="Gottesman–Knill theorem">Gottesman–Knill</a></li> <li><a href="/wiki/Holevo%27s_theorem" title="Holevo&#39;s theorem">Holevo's</a></li> <li><a href="/wiki/No-broadcasting_theorem" title="No-broadcasting theorem">No-broadcasting</a></li> <li><a href="/wiki/No-cloning_theorem" title="No-cloning theorem">No-cloning</a></li> <li><a href="/wiki/No-communication_theorem" title="No-communication theorem">No-communication</a></li> <li><a href="/wiki/No-deleting_theorem" title="No-deleting theorem">No-deleting</a></li> <li><a href="/wiki/No-hiding_theorem" title="No-hiding theorem">No-hiding</a></li> <li><a href="/wiki/No-teleportation_theorem" title="No-teleportation theorem">No-teleportation</a></li> <li><a href="/wiki/PBR_theorem" class="mw-redirect" title="PBR theorem">PBR</a></li> <li><a href="/wiki/Quantum_speed_limit_theorems" class="mw-redirect" title="Quantum speed limit theorems">Quantum speed limit</a></li> <li><a href="/wiki/Threshold_theorem" title="Threshold theorem">Threshold</a></li> <li><a href="/wiki/Solovay%E2%80%93Kitaev_theorem" title="Solovay–Kitaev theorem">Solovay–Kitaev</a></li> <li><a href="/wiki/Schr%C3%B6dinger%E2%80%93HJW_theorem" title="Schrödinger–HJW theorem">Purification</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br />communication</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_capacity" title="Classical capacity">Classical capacity</a> <ul><li><a href="/wiki/Entanglement-assisted_classical_capacity" title="Entanglement-assisted classical capacity">entanglement-assisted</a></li> <li><a href="/wiki/Quantum_capacity" title="Quantum capacity">quantum capacity</a></li></ul></li> <li><a href="/wiki/Entanglement_distillation" title="Entanglement distillation">Entanglement distillation</a></li> <li><a href="/wiki/Monogamy_of_entanglement" title="Monogamy of entanglement">Monogamy of entanglement</a></li> <li><a href="/wiki/LOCC" title="LOCC">LOCC</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">Quantum channel</a> <ul><li><a href="/wiki/Quantum_network" title="Quantum network">quantum network</a></li></ul></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">Quantum teleportation</a> <ul><li><a href="/wiki/Quantum_gate_teleportation" title="Quantum gate teleportation">quantum gate teleportation</a></li></ul></li> <li><a href="/wiki/Superdense_coding" title="Superdense coding">Superdense coding</a></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Quantum_cryptography" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">Quantum cryptography</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">Post-quantum cryptography</a></li> <li><a href="/wiki/Quantum_coin_flipping" title="Quantum coin flipping">Quantum coin flipping</a></li> <li><a href="/wiki/Quantum_money" title="Quantum money">Quantum money</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">Quantum key distribution</a> <ul><li><a href="/wiki/BB84" title="BB84">BB84</a></li> <li><a href="/wiki/SARG04" title="SARG04">SARG04</a></li> <li><a href="/wiki/List_of_quantum_key_distribution_protocols" title="List of quantum key distribution protocols">other protocols</a></li></ul></li> <li><a href="/wiki/Quantum_secret_sharing" title="Quantum secret sharing">Quantum secret sharing</a></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">Quantum algorithms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amplitude_amplification" title="Amplitude amplification">Amplitude amplification</a></li> <li><a href="/wiki/Bernstein%E2%80%93Vazirani_algorithm" title="Bernstein–Vazirani algorithm">Bernstein–Vazirani</a></li> <li><a href="/wiki/BHT_algorithm" title="BHT algorithm">BHT</a></li> <li><a href="/wiki/Boson_sampling" title="Boson sampling">Boson sampling</a></li> <li><a href="/wiki/Deutsch%E2%80%93Jozsa_algorithm" title="Deutsch–Jozsa algorithm">Deutsch–Jozsa</a></li> <li><a href="/wiki/Grover%27s_algorithm" title="Grover&#39;s algorithm">Grover's</a></li> <li><a href="/wiki/HHL_algorithm" title="HHL algorithm">HHL</a></li> <li><a href="/wiki/Hidden_subgroup_problem" title="Hidden subgroup problem">Hidden subgroup</a></li> <li><a href="/wiki/Quantum_annealing" title="Quantum annealing">Quantum annealing</a></li> <li><a href="/wiki/Quantum_counting_algorithm" title="Quantum counting algorithm">Quantum counting</a></li> <li><a href="/wiki/Quantum_Fourier_transform" title="Quantum Fourier transform">Quantum Fourier transform</a></li> <li><a href="/wiki/Quantum_optimization_algorithms" title="Quantum optimization algorithms">Quantum optimization</a></li> <li><a href="/wiki/Quantum_phase_estimation_algorithm" title="Quantum phase estimation algorithm">Quantum phase estimation</a></li> <li><a href="/wiki/Shor%27s_algorithm" title="Shor&#39;s algorithm">Shor's</a></li> <li><a href="/wiki/Simon%27s_problem" title="Simon&#39;s problem">Simon's</a></li> <li><a href="/wiki/Variational_quantum_eigensolver" title="Variational quantum eigensolver">VQE</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">Quantum<br />complexity theory</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/BQP" title="BQP">BQP</a></li> <li><a href="/wiki/Exact_quantum_polynomial_time" title="Exact quantum polynomial time">EQP</a></li> <li><a href="/wiki/QIP_(complexity)" title="QIP (complexity)">QIP</a></li> <li><a href="/wiki/QMA" title="QMA">QMA</a></li> <li><a href="/wiki/PostBQP" title="PostBQP">PostBQP</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum <br /> processor benchmarks</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_supremacy" title="Quantum supremacy">Quantum supremacy</a></li> <li><a href="/wiki/Quantum_volume" title="Quantum volume">Quantum volume</a></li> <li><a href="/wiki/Randomized_benchmarking" title="Randomized benchmarking">Randomized benchmarking</a> <ul><li><a href="/wiki/Cross-entropy_benchmarking" title="Cross-entropy benchmarking">XEB</a></li></ul></li> <li><a href="/wiki/Relaxation_(NMR)" title="Relaxation (NMR)">Relaxation times</a> <ul><li><a href="/wiki/Spin%E2%80%93lattice_relaxation" title="Spin–lattice relaxation"><i>T</i><sub>1</sub></a></li> <li><a href="/wiki/Spin%E2%80%93spin_relaxation" title="Spin–spin relaxation"><i>T</i><sub>2</sub></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Quantum<br /><a href="/wiki/Model_of_computation" title="Model of computation">computing models</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adiabatic_quantum_computation" title="Adiabatic quantum computation">Adiabatic quantum computation</a></li> <li><a href="/wiki/Continuous-variable_quantum_information" title="Continuous-variable quantum information">Continuous-variable quantum information</a></li> <li><a href="/wiki/One-way_quantum_computer" title="One-way quantum computer">One-way quantum computer</a> <ul><li><a href="/wiki/Cluster_state" title="Cluster state">cluster state</a></li></ul></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">Quantum circuit</a> <ul><li><a class="mw-selflink selflink">quantum logic gate</a></li></ul></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">Quantum machine learning</a> <ul><li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">quantum neural network</a></li></ul></li> <li><a href="/wiki/Quantum_Turing_machine" title="Quantum Turing machine">Quantum Turing machine</a></li> <li><a href="/wiki/Topological_quantum_computer" title="Topological quantum computer">Topological quantum computer</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_error_correction" title="Quantum error correction">Quantum<br />error correction</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Codes <ul><li><a href="/wiki/CSS_code" title="CSS code">CSS</a></li> <li><a href="/wiki/Quantum_convolutional_code" title="Quantum convolutional code">quantum convolutional</a></li> <li><a href="/wiki/Stabilizer_code" title="Stabilizer code">stabilizer</a></li> <li><a href="/wiki/Shor_code" class="mw-redirect" title="Shor code">Shor</a></li> <li><a href="/wiki/Bacon%E2%80%93Shor_code" title="Bacon–Shor code">Bacon–Shor</a></li> <li><a href="/wiki/Steane_code" title="Steane code">Steane</a></li> <li><a href="/wiki/Toric_code" title="Toric code">Toric</a></li> <li><a href="/wiki/Gnu_code" title="Gnu code"><i>gnu</i></a></li></ul></li> <li><a href="/wiki/Entanglement-assisted_stabilizer_formalism" title="Entanglement-assisted stabilizer formalism">Entanglement-assisted</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Physical<br />implementations</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_optics" title="Quantum optics">Quantum optics</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cavity_quantum_electrodynamics" title="Cavity quantum electrodynamics">Cavity QED</a></li> <li><a href="/wiki/Circuit_quantum_electrodynamics" title="Circuit quantum electrodynamics">Circuit QED</a></li> <li><a href="/wiki/Linear_optical_quantum_computing" title="Linear optical quantum computing">Linear optical QC</a></li> <li><a href="/wiki/KLM_protocol" title="KLM protocol">KLM protocol</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Ultracold_atom" title="Ultracold atom">Ultracold atoms</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Neutral_atom_quantum_computer" title="Neutral atom quantum computer">Neutral atom QC</a></li> <li><a href="/wiki/Trapped-ion_quantum_computer" title="Trapped-ion quantum computer">Trapped-ion QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Spin_(physics)" title="Spin (physics)">Spin</a>-based</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Kane_quantum_computer" title="Kane quantum computer">Kane QC</a></li> <li><a href="/wiki/Spin_qubit_quantum_computer" title="Spin qubit quantum computer">Spin qubit QC</a></li> <li><a href="/wiki/Nitrogen-vacancy_center" title="Nitrogen-vacancy center">NV center</a></li> <li><a href="/wiki/Nuclear_magnetic_resonance_quantum_computer" title="Nuclear magnetic resonance quantum computer">NMR QC</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Superconducting_quantum_computing" title="Superconducting quantum computing">Superconducting</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Charge_qubit" title="Charge qubit">Charge qubit</a></li> <li><a href="/wiki/Flux_qubit" title="Flux qubit">Flux qubit</a></li> <li><a href="/wiki/Phase_qubit" title="Phase qubit">Phase qubit</a></li> <li><a href="/wiki/Transmon" title="Transmon">Transmon</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Quantum_programming" title="Quantum programming">Quantum<br />programming</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/OpenQASM" title="OpenQASM">OpenQASM</a>–<a href="/wiki/Qiskit" title="Qiskit">Qiskit</a>–<a href="/wiki/IBM_Quantum_Experience" class="mw-redirect" title="IBM Quantum Experience">IBM QX</a></li> <li><a href="/wiki/Quil_(instruction_set_architecture)" title="Quil (instruction set architecture)">Quil</a>–<a href="/wiki/Rigetti_Computing" title="Rigetti Computing">Forest/Rigetti QCS</a></li> <li><a href="/wiki/Cirq" title="Cirq">Cirq</a></li> <li><a href="/wiki/Q_Sharp" title="Q Sharp">Q#</a></li> <li><a href="/wiki/Libquantum" title="Libquantum">libquantum</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">many others...</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="Category"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/16px-Symbol_category_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/23px-Symbol_category_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/96/Symbol_category_class.svg/31px-Symbol_category_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li> <li><span class="noviewer" typeof="mw:File"><span title="Template"><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/16px-Symbol_template_class_pink.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/23px-Symbol_template_class_pink.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/83/Symbol_template_class_pink.svg/31px-Symbol_template_class_pink.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <a href="/wiki/Template:Quantum_mechanics_topics" title="Template:Quantum mechanics topics">Quantum mechanics topics</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Emerging_technologies" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="text-align: center;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Emerging_technologies" title="Template:Emerging technologies"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Emerging_technologies" title="Template talk:Emerging technologies"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Emerging_technologies" title="Special:EditPage/Template:Emerging technologies"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Emerging_technologies" style="font-size:114%;margin:0 4em"><a href="/wiki/Emerging_technologies" title="Emerging technologies">Emerging technologies</a></div></th></tr><tr><th scope="row" class="navbox-group" style="text-align: center;;width:1%">Fields</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;"><a href="/wiki/Quantum_technology" class="mw-redirect" title="Quantum technology">Quantum</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Quantum_algorithm" title="Quantum algorithm">algorithms</a></li> <li><a href="/wiki/Quantum_amplifier" title="Quantum amplifier">amplifier</a></li> <li><a href="/wiki/Quantum_bus" title="Quantum bus">bus</a></li> <li><a href="/wiki/Quantum_cellular_automaton" title="Quantum cellular automaton">cellular automata</a></li> <li><a href="/wiki/Quantum_channel" title="Quantum channel">channel</a></li> <li><a href="/wiki/Quantum_circuit" title="Quantum circuit">circuit</a></li> <li><a href="/wiki/Quantum_complexity_theory" title="Quantum complexity theory">complexity theory</a></li> <li><a href="/wiki/Quantum_computing" title="Quantum computing">computing</a></li> <li><a href="/wiki/Quantum_cryptography" title="Quantum cryptography">cryptography</a> <ul><li><a href="/wiki/Post-quantum_cryptography" title="Post-quantum cryptography">post-quantum</a></li></ul></li> <li><a href="/wiki/Quantum_dynamics" title="Quantum dynamics">dynamics</a></li> <li><a href="/wiki/Quantum_electronics" class="mw-redirect" title="Quantum electronics">electronics</a></li> <li><a href="/wiki/Quantum_error_correction" title="Quantum error correction">error correction</a></li> <li><a href="/wiki/Quantum_finite_automaton" title="Quantum finite automaton">finite automata</a></li> <li><a href="/wiki/Quantum_image_processing" title="Quantum image processing">image processing</a></li> <li><a href="/wiki/Quantum_imaging" title="Quantum imaging">imaging</a></li> <li><a href="/wiki/Quantum_information" title="Quantum information">information</a></li> <li><a href="/wiki/Quantum_key_distribution" title="Quantum key distribution">key distribution</a></li> <li><a href="/wiki/Quantum_logic" title="Quantum logic">logic</a></li> <li><a href="/wiki/Quantum_logic_clock" title="Quantum logic clock">logic clock</a></li> <li><a class="mw-selflink selflink">logic gate</a></li> <li><a href="/wiki/Quantum_machine" title="Quantum machine">machine</a></li> <li><a href="/wiki/Quantum_machine_learning" title="Quantum machine learning">machine learning</a></li> <li><a href="/wiki/Quantum_metamaterial" title="Quantum metamaterial">metamaterial</a></li> <li><a href="/wiki/Quantum_network" title="Quantum network">network</a></li> <li><a href="/wiki/Quantum_neural_network" title="Quantum neural network">neural network</a></li> <li><a href="/wiki/Quantum_optics" title="Quantum optics">optics</a></li> <li><a href="/wiki/Quantum_programming" title="Quantum programming">programming</a></li> <li><a href="/wiki/Quantum_sensor" title="Quantum sensor">sensing</a></li> <li><a href="/wiki/Quantum_simulator" title="Quantum simulator">simulator</a></li> <li><a href="/wiki/Quantum_teleportation" title="Quantum teleportation">teleportation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%;text-align: center;">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Acoustic_levitation" title="Acoustic levitation">Acoustic levitation</a></li> <li><a href="/wiki/Anti-gravity" title="Anti-gravity">Anti-gravity</a></li> <li><a href="/wiki/Cloak_of_invisibility" title="Cloak of invisibility">Cloak of invisibility</a></li> <li><a href="/wiki/Digital_scent_technology" title="Digital scent technology">Digital scent technology</a></li> <li><a href="/wiki/Force_field_(technology)" title="Force field (technology)">Force field</a> <ul><li><a href="/wiki/Plasma_window" title="Plasma window">Plasma window</a></li></ul></li> <li><a href="/wiki/Immersion_(virtual_reality)" title="Immersion (virtual reality)">Immersive virtual reality</a></li> <li><a href="/wiki/Magnetic_refrigeration" title="Magnetic refrigeration">Magnetic refrigeration</a></li> <li><a href="/wiki/Phased-array_optics" title="Phased-array optics">Phased-array optics</a></li> <li><a href="/wiki/Thermoacoustic_heat_engine" title="Thermoacoustic heat engine">Thermoacoustic heat engine</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow" colspan="2" style="text-align: center;"><div> <ul><li><span class="noviewer" typeof="mw:File"><span title="List-Class article"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/16px-Symbol_list_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/23px-Symbol_list_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/d/db/Symbol_list_class.svg/31px-Symbol_list_class.svg.png 2x" data-file-width="180" data-file-height="185" /></span></span> <b><a href="/wiki/List_of_emerging_technologies" title="List of emerging technologies">List</a></b></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐pkbrm Cached time: 20241130110129 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.207 seconds Real time usage: 1.550 seconds Preprocessor visited node count: 16148/1000000 Post‐expand include size: 177026/2097152 bytes Template argument size: 10957/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 22/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 208272/5000000 bytes Lua time usage: 0.534/10.000 seconds Lua memory usage: 16453627/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 1003.664 1 -total 16.37% 164.276 25 Template:R 15.58% 156.364 25 Template:R/ref 11.41% 114.542 12 Template:Cite_book 10.57% 106.066 25 Template:R/superscript 10.08% 101.157 1 Template:IPA 9.03% 90.604 5 Template:Navbox 8.33% 83.563 14 Template:Cite_journal 8.32% 83.481 1 Template:Short_description 8.22% 82.507 1 Template:Quantum_computing --> <!-- Saved in parser cache with key enwiki:pcache:idhash:888587-0!canonical and timestamp 20241130110129 and revision id 1240670066. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Quantum_logic_gate&amp;oldid=1240670066">https://en.wikipedia.org/w/index.php?title=Quantum_logic_gate&amp;oldid=1240670066</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Quantum_gates" title="Category:Quantum gates">Quantum gates</a></li><li><a href="/wiki/Category:Quantum_information_science" title="Category:Quantum information science">Quantum information science</a></li><li><a href="/wiki/Category:Logic_gates" title="Category:Logic gates">Logic gates</a></li><li><a href="/wiki/Category:Australian_inventions" title="Category:Australian inventions">Australian inventions</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_April_2019" title="Category:Use American English from April 2019">Use American English from April 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Pages_using_multiple_image_with_auto_scaled_images" title="Category:Pages using multiple image with auto scaled images">Pages using multiple image with auto scaled images</a></li><li><a href="/wiki/Category:Pages_with_French_IPA" title="Category:Pages with French IPA">Pages with French IPA</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 16 August 2024, at 17:26<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Quantum_logic_gate&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-qz4g9","wgBackendResponseTime":179,"wgPageParseReport":{"limitreport":{"cputime":"1.207","walltime":"1.550","ppvisitednodes":{"value":16148,"limit":1000000},"postexpandincludesize":{"value":177026,"limit":2097152},"templateargumentsize":{"value":10957,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":22,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":208272,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 1003.664 1 -total"," 16.37% 164.276 25 Template:R"," 15.58% 156.364 25 Template:R/ref"," 11.41% 114.542 12 Template:Cite_book"," 10.57% 106.066 25 Template:R/superscript"," 10.08% 101.157 1 Template:IPA"," 9.03% 90.604 5 Template:Navbox"," 8.33% 83.563 14 Template:Cite_journal"," 8.32% 83.481 1 Template:Short_description"," 8.22% 82.507 1 Template:Quantum_computing"]},"scribunto":{"limitreport-timeusage":{"value":"0.534","limit":"10.000"},"limitreport-memusage":{"value":16453627,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-pkbrm","timestamp":"20241130110129","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Quantum logic gate","url":"https:\/\/en.wikipedia.org\/wiki\/Quantum_logic_gate","sameAs":"http:\/\/www.wikidata.org\/entity\/Q2118982","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q2118982","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-08-09T20:33:18Z","dateModified":"2024-08-16T17:26:42Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/e\/e0\/Quantum_Logic_Gates.png","headline":"basic circuit in quantum computing"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10