CINXE.COM

Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer | Scientific Reports

<!DOCTYPE html> <html lang="en" class="grade-c"> <head> <title>Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer | Scientific Reports</title> <link rel="alternate" type="application/rss+xml" href="https://www.nature.com/srep.rss"/> <link rel="preconnect" href="https://cmp.nature.com" crossorigin> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="applicable-device" content="pc,mobile"> <meta name="viewport" content="width=device-width,initial-scale=1.0,maximum-scale=5,user-scalable=yes"> <meta name="360-site-verification" content="5a2dc4ab3fcb9b0393241ffbbb490480" /> <script data-test="dataLayer"> window.dataLayer = [{"content":{"category":{"contentType":"article","legacy":{"webtrendsPrimaryArticleType":"research","webtrendsSubjectTerms":"optics-and-photonics;physics","webtrendsContentCategory":null,"webtrendsContentCollection":"Editor’s choice: Biosensors","webtrendsContentGroup":"Scientific Reports","webtrendsContentGroupType":null,"webtrendsContentSubGroup":"Article","status":null}},"article":{"doi":"10.1038/s41598-022-09213-w"},"attributes":{"cms":null,"deliveryPlatform":"oscar","copyright":{"open":true,"legacy":{"webtrendsLicenceType":"http://creativecommons.org/licenses/by/4.0/"}}},"contentInfo":{"authors":["Shiva Khani","Mohsen Hayati"],"publishedAt":1648425600,"publishedAtString":"2022-03-28","title":"Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer","legacy":null,"publishedAtTime":null,"documentType":"aplusplus","subjects":"Optics and photonics,Physics"},"journal":{"pcode":"srep","title":"scientific reports","volume":"12","issue":"1","id":41598,"publishingModel":"Open Access"},"authorization":{"status":true},"features":[{"name":"furtherReadingSection","present":true}],"collection":{"id":"abddhifijf"}},"page":{"category":{"pageType":"article"},"attributes":{"template":"mosaic","featureFlags":[{"name":"nature-onwards-journey","active":false}],"testGroup":null},"search":null},"privacy":{},"version":"1.0.0","product":null,"session":null,"user":null,"backHalfContent":true,"country":"HK","hasBody":true,"uneditedManuscript":false,"twitterId":["o3xnx","o43y9","o3ef7"],"baiduId":"d38bce82bcb44717ccc29a90c4b781ea","japan":false}]; window.dataLayer.push({ ga4MeasurementId: 'G-ERRNTNZ807', ga360TrackingId: 'UA-71668177-1', twitterId: ['3xnx', 'o43y9', 'o3ef7'], baiduId: 'd38bce82bcb44717ccc29a90c4b781ea', ga4ServerUrl: 'https://collect.nature.com', imprint: 'nature' }); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}html{text-size-adjust:100%;box-sizing:border-box;font-size:100%;height:100%;line-height:1.15;overflow-y:scroll}body{background:#eee;color:#222;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.125rem;line-height:1.76;margin:0;min-height:100%}details,main{display:block}h1{font-size:2em;margin:.67em 0}a,sup{vertical-align:baseline}a{background-color:transparent;color:#069;overflow-wrap:break-word;text-decoration:underline;text-decoration-skip-ink:auto;word-break:break-word}b{font-weight:bolder}sup{font-size:75%;line-height:0;position:relative;top:-.5em}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input,select{font-family:inherit;font-size:100%;line-height:1.15;margin:0}button,input{overflow:visible}button,select{text-transform:none}[type=submit],button{-webkit-appearance:button}[type=checkbox]{box-sizing:border-box;padding:0}summary{display:list-item}[hidden]{display:none}.c-card--major .c-card__title,.u-h1,.u-h2,button,h1,h2{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}button{border-radius:0;cursor:pointer}.c-card--major .c-card__title,.u-h1,.u-h2,h1,h2{font-weight:700}h1{font-size:2rem;letter-spacing:-.0390625rem;line-height:2.25rem}.c-card--major .c-card__title,.u-h2,h2{font-size:1.5rem;letter-spacing:-.0117156rem;line-height:1.6rem}.u-h3{letter-spacing:-.0117156rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-card__title,.c-reading-companion__figure-title,.u-h3,.u-h4,h3,h4,h5,h6{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:700;line-height:1.4rem}.c-article-editorial-summary__container .c-article-editorial-summary__article-title,.c-reading-companion__figure-title,.u-h4,h3,h4,h5,h6{letter-spacing:-.0117156rem}.c-reading-companion__figure-title,.u-h4,h4{font-size:1.125rem}button:focus{outline:3px solid #fece3e;will-change:transform}input+label{padding-left:.5em}nav ol,nav ul{list-style:none none}p:empty{display:none}.sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.article-page{background:#fff}.c-article-header{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-bottom:40px}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}.c-article-title{font-size:1.5rem;line-height:1.25;margin:0 0 16px}@media only screen and (min-width:768px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list svg{margin-left:4px}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:539px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#069;border-color:transparent;color:#fff}.c-article-info-details{font-size:1rem;margin-bottom:8px;margin-top:16px}.c-article-info-details__cite-as{border-left:1px solid #6f6f6f;margin-left:8px;padding-left:8px}.c-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3}.c-article-metrics-bar__wrapper{margin:16px 0}.c-article-metrics-bar__item{align-items:baseline;border-right:1px solid #6f6f6f;margin-right:8px}.c-article-metrics-bar__item:last-child{border-right:0}.c-article-metrics-bar__count{font-weight:700;margin:0}.c-article-metrics-bar__label{color:#626262;font-style:normal;font-weight:400;margin:0 10px 0 5px}.c-article-metrics-bar__details{margin:0}.c-article-main-column{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;margin-right:8.6%;width:60.2%}@media only screen and (max-width:1023px){.c-article-main-column{margin-right:0;width:100%}}.c-article-extras{float:left;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;width:31.2%}@media only screen and (max-width:1023px){.c-article-extras{display:none}}.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{border-bottom:2px solid #d5d5d5;font-size:1.25rem;margin:0;padding-bottom:8px}@media only screen and (min-width:768px){.c-article-associated-content__container .c-article-associated-content__title,.c-article-section__title{font-size:1.5rem;line-height:1.24}}.c-article-associated-content__container .c-article-associated-content__title{margin-bottom:8px}.c-article-body p{margin-bottom:24px;margin-top:0}.c-article-section{clear:both}.c-article-section__content{margin-bottom:40px;padding-top:8px}@media only screen and (max-width:1023px){.c-article-section__content{padding-left:0}}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-article-license__badge,c-card__section{margin-top:8px}.c-code-block{border:1px solid #eee;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#069;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-editorial-summary__container{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem}.c-article-editorial-summary__container .c-article-editorial-summary__content p:last-child{margin-bottom:0}.c-article-editorial-summary__container .c-article-editorial-summary__content--less{max-height:9.5rem;overflow:hidden}.c-article-editorial-summary__container .c-article-editorial-summary__button{background-color:#fff;border:0;color:#069;font-size:.875rem;margin-bottom:16px}.c-article-editorial-summary__container .c-article-editorial-summary__button.active,.c-article-editorial-summary__container .c-article-editorial-summary__button.hover,.c-article-editorial-summary__container .c-article-editorial-summary__button:active,.c-article-editorial-summary__container .c-article-editorial-summary__button:hover{text-decoration:underline;text-decoration-skip-ink:auto}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-context-bar{box-shadow:0 0 10px 0 rgba(51,51,51,.2);position:relative;width:100%}.c-context-bar__title{display:none}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__sticky{max-width:389px}.c-reading-companion__scroll-pane{margin:0;min-height:200px;overflow:hidden auto}.c-reading-companion__tabs{display:flex;flex-flow:row nowrap;font-size:1rem;list-style:none;margin:0 0 8px;padding:0}.c-reading-companion__tabs>li{flex-grow:1}.c-reading-companion__tab{background-color:#eee;border:1px solid #d5d5d5;border-image:initial;border-left-width:0;color:#069;font-size:1rem;padding:8px 8px 8px 15px;text-align:left;width:100%}.c-reading-companion__tabs li:first-child .c-reading-companion__tab{border-left-width:1px}.c-reading-companion__tab--active{background-color:#fff;border-bottom:1px solid #fff;color:#222;font-weight:700}.c-reading-companion__sections-list{list-style:none;padding:0}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__sections-list{margin:0 0 8px;min-height:50px}.c-reading-companion__section-item{font-size:1rem;padding:0}.c-reading-companion__section-item a{display:block;line-height:1.5;overflow:hidden;padding:8px 0 8px 16px;text-overflow:ellipsis;white-space:nowrap}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:8px 8px 8px 16px}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-reading-companion__figure-full-link svg{height:.8em;margin-left:2px}.c-reading-companion__panel{border-top:none;display:none;margin-top:0;padding-top:0}.c-cod,.c-reading-companion__panel--active{display:block}.c-cod{font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-basis:75%;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#069;border:1px solid #069;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#069}.c-pdf-download__link .u-icon{padding-top:2px}.c-pdf-download{display:flex;margin-bottom:16px;max-height:48px}@media only screen and (min-width:540px){.c-pdf-download{max-height:none}}@media only screen and (min-width:1024px){.c-pdf-download{max-height:48px}}.c-pdf-download__link{display:flex;flex:1 1 0%}.c-pdf-download__link:hover{text-decoration:none}.c-pdf-download__text{padding-right:4px}@media only screen and (max-width:539px){.c-pdf-download__text{text-transform:capitalize}}@media only screen and (min-width:540px){.c-pdf-download__text{padding-right:8px}}.c-context-bar--sticky .c-pdf-download{display:block;margin-bottom:0;white-space:nowrap}@media only screen and (max-width:539px){.c-pdf-download .u-sticky-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}}.c-pdf-container{display:flex;justify-content:flex-end}@media only screen and (max-width:539px){.c-pdf-container .c-pdf-download{display:flex;flex-basis:100%}}.c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:16px}.c-article-extras .c-pdf-container .c-pdf-download{width:100%}.c-article-extras .c-pdf-container .c-pdf-download+.c-pdf-download{margin-left:0}@media only screen and (min-width:540px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:none}@media only screen and (max-width:1023px){.article-page--commercial .c-article-main-column .c-pdf-button__container .c-pdf-download{display:block}}.c-status-message--success{border-bottom:2px solid #00b8b0;justify-content:center;margin-bottom:16px;padding-bottom:8px}.c-recommendations-list__item .c-card{flex-basis:100%}.c-recommendations-list__item .c-card__image{align-items:baseline;flex:1 1 40%;margin:0 0 0 16px;max-width:150px}.c-recommendations-list__item .c-card__image img{border:1px solid #cedbe0;height:auto;min-height:0;position:static}@media only screen and (max-width:1023px){.c-recommendations-list__item .c-card__image{display:none}}.c-card__layout{display:flex;flex:1 1 auto;justify-content:space-between}.c-card__title-recommendation{-webkit-box-orient:vertical;-webkit-line-clamp:4;display:-webkit-box;font-size:1rem;font-weight:700;line-height:1.4;margin:0 0 8px;max-height:5.6em;overflow:hidden!important;text-overflow:ellipsis}.c-card__title-recommendation .c-card__link{color:inherit}.c-card__title-recommendation .c-card__link:hover{text-decoration:underline}.c-card__title-recommendation .MathJax_Display{display:inline!important}.c-card__link:not(.c-card__link--no-block-link):before{z-index:1}.c-article-metrics__heading a,.c-article-metrics__posts .c-card__title a,.c-article-recommendations-card__link{color:inherit}.c-recommendations-column-switch .c-meta{margin-top:auto}.c-article-recommendations-card__meta-type,.c-meta .c-meta__item:first-child{font-weight:700}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:539px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-metrics__posts .c-card__title{font-size:1.05rem}.c-article-metrics__posts .c-card__title+span{color:#6f6f6f;font-size:1rem}p{overflow-wrap:break-word;word-break:break-word}.c-ad{text-align:center}@media only screen and (min-width:320px){.c-ad{padding:8px}}.c-ad--728x90{background-color:#ccc;display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:768px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-author-list{color:#6f6f6f;font-family:inherit;font-size:1rem;line-height:inherit;list-style:none;margin:0;padding:0}.c-author-list>li,.c-breadcrumbs>li,.c-footer__links>li,.js .c-author-list,.u-list-comma-separated>li,.u-list-inline>li{display:inline}.c-author-list>li:not(:first-child):not(:last-child):before{content:", "}.c-author-list>li:not(:only-child):last-child:before{content:" & "}.c-author-list--compact{font-size:.875rem;line-height:1.4}.c-author-list--truncated>li:not(:only-child):last-child:before{content:" ... "}.js .c-author-list__hide{display:none;visibility:hidden}.js .c-author-list__hide:first-child+*{margin-block-start:0}.c-meta{color:inherit;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;list-style:none;margin:0;padding:0}.c-meta--large{font-size:1rem}.c-meta--large .c-meta__item{margin-bottom:8px}.c-meta__item{display:inline-block;margin-bottom:4px}.c-meta__item:not(:last-child){border-right:1px solid #d5d5d5;margin-right:4px;padding-right:4px}@media only screen and (max-width:539px){.c-meta__item--block-sm-max{display:block}.c-meta__item--block-sm-max:not(:last-child){border-right:none;margin-right:0;padding-right:0}}@media only screen and (min-width:1024px){.c-meta__item--block-at-lg{display:block}.c-meta__item--block-at-lg:not(:last-child){border-right:none;margin-right:0;padding-right:0}}.c-meta__type{font-weight:700;text-transform:none}.c-skip-link{background:#069;bottom:auto;color:#fff;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:link{color:#fff}.c-status-message{align-items:center;box-sizing:border-box;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;position:relative;width:100%}.c-card__summary>p:last-child,.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #eee;border-radius:2px;line-height:1.4;padding:16px}.c-status-message__heading{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.c-breadcrumbs{color:#000;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs__link{color:#666}svg.c-breadcrumbs__chevron{fill:#888;height:10px;margin:4px 4px 0;width:10px}@media only screen and (max-width:539px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-card{background-color:transparent;border:0;box-shadow:none;display:flex;flex-direction:column;font-size:14px;min-width:0;overflow:hidden;padding:0;position:relative}.c-card--no-shape{background:0 0;border:0;box-shadow:none}.c-card__image{display:flex;justify-content:center;overflow:hidden;padding-bottom:56.25%;position:relative}@supports (aspect-ratio:1/1){.c-card__image{padding-bottom:0}}.c-card__image img{left:0;min-height:100%;min-width:100%;position:absolute}@supports ((-o-object-fit:cover) or (object-fit:cover)){.c-card__image img{height:100%;object-fit:cover;width:100%}}.c-card__body{flex:1 1 auto;padding:16px}.c-card--no-shape .c-card__body{padding:0}.c-card--no-shape .c-card__body:not(:first-child){padding-top:16px}.c-card__title{letter-spacing:-.01875rem;margin-bottom:8px;margin-top:0}[lang=de] .c-card__title{hyphens:auto}.c-card__summary{line-height:1.4}.c-card__summary>p{margin-bottom:5px}.c-card__summary a{text-decoration:underline}.c-card__link:not(.c-card__link--no-block-link):before{bottom:0;content:"";left:0;position:absolute;right:0;top:0}.c-card--flush .c-card__body{padding:0}.c-card--major{font-size:1rem}.c-card--dark{background-color:#29303c;border-width:0;color:#e3e4e5}.c-card--dark .c-card__title{color:#fff}.c-card--dark .c-card__link,.c-card--dark .c-card__summary a{color:inherit}.c-header{background-color:#fff;border-bottom:5px solid #000;font-size:1rem;line-height:1.4;margin-bottom:16px}.c-header__row{padding:0;position:relative}.c-header__row:not(:last-child){border-bottom:1px solid #eee}.c-header__split{align-items:center;display:flex;justify-content:space-between}.c-header__logo-container{flex:1 1 0px;line-height:0;margin:8px 24px 8px 0}.c-header__logo{transform:translateZ(0)}.c-header__logo img{max-height:32px}.c-header__container{margin:0 auto;max-width:1280px}.c-header__menu{align-items:center;display:flex;flex:0 1 auto;flex-wrap:wrap;font-weight:700;gap:8px 8px;line-height:1.4;list-style:none;margin:0 -8px;padding:0}@media print{.c-header__menu{display:none}}@media only screen and (max-width:1023px){.c-header__menu--hide-lg-max{display:none;visibility:hidden}}.c-header__menu--global{font-weight:400;justify-content:flex-end}.c-header__menu--global svg{display:none;visibility:hidden}.c-header__menu--global svg:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__menu--global svg{display:block;visibility:visible}}.c-header__menu--journal{font-size:.875rem;margin:8px 0 8px -8px}@media only screen and (min-width:540px){.c-header__menu--journal{flex-wrap:nowrap;font-size:1rem}}.c-header__item{padding-bottom:0;padding-top:0;position:static}.c-header__item--pipe{border-left:2px solid #eee;padding-left:8px}.c-header__item--padding{padding-bottom:8px;padding-top:8px}@media only screen and (min-width:540px){.c-header__item--dropdown-menu{position:relative}}@media only screen and (min-width:1024px){.c-header__item--hide-lg{display:none;visibility:hidden}}@media only screen and (max-width:767px){.c-header__item--hide-md-max{display:none;visibility:hidden}.c-header__item--hide-md-max:first-child+*{margin-block-start:0}}.c-header__link{align-items:center;color:inherit;display:inline-flex;gap:4px 4px;padding:8px;white-space:nowrap}.c-header__link svg{transition-duration:.2s}.c-header__show-text{display:none;visibility:hidden}.has-tethered .c-header__heading--js-hide:first-child+*{margin-block-start:0}@media only screen and (min-width:540px){.c-header__show-text{display:inline;visibility:visible}}.c-header__dropdown{background-color:#000;border-bottom:1px solid #2f2f2f;color:#eee;font-size:.875rem;line-height:1.2;padding:16px 0}@media print{.c-header__dropdown{display:none}}.c-header__heading{display:inline-block;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:1.25rem;font-weight:400;line-height:1.4;margin-bottom:8px}.c-header__heading--keyline{border-top:1px solid;border-color:#2f2f2f;margin-top:16px;padding-top:16px;width:100%}.c-header__list{display:flex;flex-wrap:wrap;gap:0 16px;list-style:none;margin:0 -8px}.c-header__flush{margin:0 -8px}.c-header__visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}.c-header__search-form{margin-bottom:8px}.c-header__search-layout{display:flex;flex-wrap:wrap;gap:16px 16px}.c-header__search-layout>:first-child{flex:999 1 auto}.c-header__search-layout>*{flex:1 1 auto}.c-header__search-layout--max-width{max-width:720px}.c-header__search-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #fff;border-radius:2px;color:#fff;cursor:pointer;display:flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.15;margin:0;padding:8px 16px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:100%}.u-button svg,.u-button--primary svg{fill:currentcolor}.c-header__input,.c-header__select{border:1px solid;border-radius:3px;box-sizing:border-box;font-size:1rem;padding:8px 16px;width:100%}.c-header__select{-webkit-appearance:none;background-image:url("data:image/svg+xml,%3Csvg height='16' viewBox='0 0 16 16' width='16' xmlns='http://www.w3.org/2000/svg'%3E%3Cpath d='m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z' fill='%23333' fill-rule='evenodd' transform='matrix(0 1 -1 0 11 3)'/%3E%3C/svg%3E");background-position:right .7em top 50%;background-repeat:no-repeat;background-size:1em;box-shadow:0 1px 0 1px rgba(0,0,0,.04);display:block;margin:0;max-width:100%;min-width:150px}@media only screen and (min-width:540px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:auto;right:0}}@media only screen and (min-width:768px){.c-header__menu--journal .c-header__item--dropdown-menu:last-child .c-header__dropdown.has-tethered{left:0;right:auto}}.c-header__dropdown.has-tethered{border-bottom:0;border-radius:0 0 2px 2px;left:0;position:absolute;top:100%;transform:translateY(5px);width:100%;z-index:1}@media only screen and (min-width:540px){.c-header__dropdown.has-tethered{transform:translateY(8px);width:auto}}@media only screen and (min-width:768px){.c-header__dropdown.has-tethered{min-width:225px}}.c-header__dropdown--full-width.has-tethered{padding:32px 0 24px;transform:none;width:100%}.has-tethered .c-header__heading--js-hide{display:none;visibility:hidden}.has-tethered .c-header__list--js-stack{flex-direction:column}.has-tethered .c-header__item--keyline,.has-tethered .c-header__list~.c-header__list .c-header__item:first-child{border-top:1px solid #d5d5d5;margin-top:8px;padding-top:8px}.c-header__item--snid-account-widget{display:flex}.c-header__container{padding:0 4px}.c-header__list{padding:0 12px}.c-header__menu .c-header__link{font-size:14px}.c-header__item--snid-account-widget .c-header__link{padding:8px}.c-header__menu--journal{margin-left:0}@media only screen and (min-width:540px){.c-header__container{padding:0 16px}.c-header__menu--journal{margin-left:-8px}.c-header__menu .c-header__link{font-size:16px}.c-header__link--search{gap:13px 13px}}.u-button{align-items:center;background-color:transparent;background-image:none;border:1px solid #069;border-radius:2px;color:#069;cursor:pointer;display:inline-flex;font-family:sans-serif;font-size:1rem;justify-content:center;line-height:1.3;margin:0;padding:8px;position:relative;text-decoration:none;transition:all .25s ease 0s,color .25s ease 0s,border-color .25s ease 0s;width:auto}.u-button--primary{background-color:#069;background-image:none;border:1px solid #069;color:#fff}.u-button--full-width{display:flex;width:100%}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-hide:first-child+*{margin-block-start:0}.u-visually-hidden{clip:rect(0,0,0,0);border:0;height:1px;margin:-100%;overflow:hidden;padding:0;position:absolute!important;width:1px}@media print{.u-hide-print{display:none}}@media only screen and (min-width:1024px){.u-hide-at-lg{display:none;visibility:hidden}.u-hide-at-lg:first-child+*{margin-block-start:0}}.u-clearfix:after,.u-clearfix:before{content:"";display:table}.u-clearfix:after{clear:both}.u-color-open-access{color:#b74616}.u-float-left{float:left}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-full-height{height:100%}.u-link-inherit{color:inherit}.u-list-reset{list-style:none;margin:0;padding:0}.u-sans-serif{font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif}.u-text-bold{font-weight:700}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-16{margin-bottom:16px}.u-mb-24{margin-bottom:24px}.u-mb-32{margin-bottom:32px}.c-nature-box svg+.c-article__button-text,.u-ml-8{margin-left:8px}.u-pa-16{padding:16px}html *,html :after,html :before{box-sizing:inherit}.c-article-section__title,.c-article-title{font-weight:700}.c-card__title{line-height:1.4em}.c-article__button{background-color:#069;border:1px solid #069;border-radius:2px;color:#fff;display:flex;font-family:-apple-system,BlinkMacSystemFont,Segoe UI,Roboto,Oxygen-Sans,Ubuntu,Cantarell,Helvetica Neue,sans-serif;font-size:.875rem;line-height:1.4;margin-bottom:16px;padding:13px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-article__button,.c-article__button:hover{text-decoration:none}.c-article__button--inverted,.c-article__button:hover{background-color:#fff;color:#069}.c-article__button--inverted:hover{background-color:#069;color:#fff}.c-header__link{text-decoration:inherit}.grade-c-hide{display:block}.u-lazy-ad-wrapper{background-color:#ccc;display:none;min-height:137px}@media only screen and (min-width:768px){.u-lazy-ad-wrapper{display:block}}.c-nature-box{background-color:#fff;border:1px solid #d5d5d5;border-radius:2px;box-shadow:0 0 5px 0 rgba(51,51,51,.1);line-height:1.3;margin-bottom:24px;padding:16px 16px 3px}.c-nature-box__text{font-size:1rem;margin-bottom:16px}.c-nature-box .c-pdf-download{margin-bottom:16px!important}.c-nature-box--version{background-color:#eee}.c-nature-box__wrapper{transform:translateZ(0)}.c-nature-box__wrapper--placeholder{min-height:165px}.c-pdf-download__link{padding:13px 24px} } </style> <link data-test="critical-css-handler" data-inline-css-source="critical-css" rel="stylesheet" href="/static/css/enhanced-article-912e265451.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <noscript> <link rel="stylesheet" type="text/css" href="/static/css/enhanced-article-912e265451.css" media="only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)"> </noscript> <link rel="stylesheet" type="text/css" href="/static/css/article-print-122346e276.css" media="print"> <link rel="apple-touch-icon" sizes="180x180" href=/static/images/favicons/nature/apple-touch-icon-f39cb19454.png> <link rel="icon" type="image/png" sizes="48x48" href=/static/images/favicons/nature/favicon-48x48-b52890008c.png> <link rel="icon" type="image/png" sizes="32x32" href=/static/images/favicons/nature/favicon-32x32-3fe59ece92.png> <link rel="icon" type="image/png" sizes="16x16" href=/static/images/favicons/nature/favicon-16x16-951651ab72.png> <link rel="manifest" href=/static/manifest.json crossorigin="use-credentials"> <link rel="mask-icon" href=/static/images/favicons/nature/safari-pinned-tab-69bff48fe6.svg color="#000000"> <link rel="shortcut icon" href=/static/images/favicons/nature/favicon.ico> <meta name="msapplication-TileColor" content="#000000"> <meta name="msapplication-config" content=/static/browserconfig.xml> <meta name="theme-color" content="#000000"> <meta name="application-name" content="Nature"> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <!-- Google Tag Manager --> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <!-- End Google Tag Manager --> <script> (function(w,d,t) { function cc() { var h = w.location.hostname; if (h.indexOf('preview-www.nature.com') > -1) return; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('nature.com') > -1) { if (h.indexOf('test-www.nature.com') > -1) { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.nature.com/production_live/en/consent-bundle-8-68.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else { e.src = '/static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window,document,'script'); </script> <script id="js-position0"> (function(w, d) { w.idpVerifyPrefix = 'https://verify.nature.com'; w.ra21Host = 'https://wayf.springernature.com'; var moduleSupport = (function() { return 'noModule' in d.createElement('script'); })(); if (w.config.mustardcut === true) { w.loader = { index: 0, registered: [], scripts: [ {src: '/static/js/global-article-es6-bundle-c8a573ca90.js', test: 'global-article-js', module: true}, {src: '/static/js/global-article-es5-bundle-d17603b9e9.js', test: 'global-article-js', nomodule: true}, {src: '/static/js/shared-es6-bundle-606cb67187.js', test: 'shared-js', module: true}, {src: '/static/js/shared-es5-bundle-e919764a53.js', test: 'shared-js', nomodule: true}, {src: '/static/js/header-150-es6-bundle-5bb959eaa1.js', test: 'header-150-js', module: true}, {src: '/static/js/header-150-es5-bundle-994fde5b1d.js', test: 'header-150-js', nomodule: true} ].filter(function (s) { if (s.src === null) return false; if (moduleSupport && s.nomodule) return false; return !(!moduleSupport && s.module); }), register: function (value) { this.registered.push(value); }, ready: function () { if (this.registered.length === this.scripts.length) { this.registered.forEach(function (fn) { if (typeof fn === 'function') { setTimeout(fn, 0); } }); this.ready = function () {}; } }, insert: function (s) { var t = d.getElementById('js-position' + this.index); if (t && t.insertAdjacentElement) { t.insertAdjacentElement('afterend', s); } else { d.head.appendChild(s); } ++this.index; }, createScript: function (script, beforeLoad) { var s = d.createElement('script'); s.id = 'js-position' + (this.index + 1); s.setAttribute('data-test', script.test); if (beforeLoad) { s.defer = 'defer'; s.onload = function () { if (script.noinit) { loader.register(true); } if (d.readyState === 'interactive' || d.readyState === 'complete') { loader.ready(); } }; } else { s.async = 'async'; } s.src = script.src; return s; }, init: function () { this.scripts.forEach(function (s) { loader.insert(loader.createScript(s, true)); }); d.addEventListener('DOMContentLoaded', function () { loader.ready(); var conditionalScripts; conditionalScripts = [ {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es6-bundle-464a2af269.js', test: 'pan-zoom-js', module: true }, {match: 'div[data-pan-container]', src: '/static/js/pan-zoom-es5-bundle-98fb9b653b.js', test: 'pan-zoom-js', nomodule: true }, {match: 'math,span.mathjax-tex', src: '/static/js/math-es6-bundle-23597ae350.js', test: 'math-js', module: true}, {match: 'math,span.mathjax-tex', src: '/static/js/math-es5-bundle-6532c6f78b.js', test: 'math-js', nomodule: true} ]; if (conditionalScripts) { conditionalScripts.filter(function (script) { return !!document.querySelector(script.match) && !((moduleSupport && script.nomodule) || (!moduleSupport && script.module)); }).forEach(function (script) { loader.insert(loader.createScript(script)); }); } }, false); } }; loader.init(); } })(window, document); </script> <meta name="robots" content="noarchive"> <meta name="access" content="Yes"> <link rel="search" href="https://www.nature.com/search"> <link rel="search" href="https://www.nature.com/opensearch/opensearch.xml" type="application/opensearchdescription+xml" title="nature.com"> <link rel="search" href="https://www.nature.com/opensearch/request" type="application/sru+xml" title="nature.com"> <script type="application/ld+json">{"mainEntity":{"headline":"Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer","description":"One of the most interesting topics in bio-optics is measuring the refractive index of tissues. Accordingly, two novel optical biosensor configurations for cancer cell detections have been proposed in this paper. These structures are composed of one-dimensional photonic crystal (PC) lattices coupled to two metal–insulator–metal (MIM) plasmonic waveguides. Also, the tapering method is used to improve the matching between the MIM plasmonic waveguides and PC structure in the second proposed topology. The PC lattices at the central part of the structures generate photonic bandgaps (PBGs) with sharp edges in the transmission spectra of the biosensors. These sharp edges are suitable candidates for sensing applications. On the other hand, the long distance between two PBG edges causes that when the low PBG edge is used for sensing mechanism, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. Therefore, the proposed biosensors can be used for a wide wavelength range. The maximum obtained sensitivities and FOM values of the designed biosensors are equal to 718.6, 714.3 nm/RIU, and 156.217, 60.1 RIU−1, respectively. The metal and insulator materials which are used in the designed structures are silver, air, and GaAs, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. Furthermore, the initial structure of the proposed biosensors is analyzed using the transmission line method to verify the FDTD simulations. The attractive and simple topologies of the proposed biosensors and their high sensitivities make them suitable candidates for biosensing applications.","datePublished":"2022-03-28T00:00:00Z","dateModified":"2022-03-28T00:00:00Z","pageStart":"1","pageEnd":"19","license":"http://creativecommons.org/licenses/by/4.0/","sameAs":"https://doi.org/10.1038/s41598-022-09213-w","keywords":["Optics and photonics","Physics","Science","Humanities and Social Sciences","multidisciplinary"],"image":["https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig1_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig2_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig3_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig4_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig5_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig6_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig7_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig8_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig9_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig10_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig11_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig12_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig13_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig14_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig15_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig16_HTML.png","https://media.springernature.com/lw1200/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig17_HTML.png"],"isPartOf":{"name":"Scientific Reports","issn":["2045-2322"],"volumeNumber":"12","@type":["Periodical","PublicationVolume"]},"publisher":{"name":"Nature Publishing Group UK","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Shiva Khani","affiliation":[{"name":"Razi University","address":{"name":"Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"},{"name":"Mohsen Hayati","affiliation":[{"name":"Razi University","address":{"name":"Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran","@type":"PostalAddress"},"@type":"Organization"}],"email":"mohsen_hayati@yahoo.com","@type":"Person"}],"isAccessibleForFree":true,"@type":"ScholarlyArticle"},"@context":"https://schema.org","@type":"WebPage"}</script> <link rel="canonical" href="https://www.nature.com/articles/s41598-022-09213-w"> <meta name="journal_id" content="41598"/> <meta name="dc.title" content="Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer"/> <meta name="dc.source" content="Scientific Reports 2022 12:1"/> <meta name="dc.format" content="text/html"/> <meta name="dc.publisher" content="Nature Publishing Group"/> <meta name="dc.date" content="2022-03-28"/> <meta name="dc.type" content="OriginalPaper"/> <meta name="dc.language" content="En"/> <meta name="dc.copyright" content="2022 The Author(s)"/> <meta name="dc.rights" content="2022 The Author(s)"/> <meta name="dc.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="dc.description" content="One of the most interesting topics in bio-optics is measuring the refractive index of tissues. Accordingly, two novel optical biosensor configurations for cancer cell detections have been proposed in this paper. These structures are composed of one-dimensional photonic crystal (PC) lattices coupled to two metal&#8211;insulator&#8211;metal (MIM) plasmonic waveguides. Also, the tapering method is used to improve the matching between the MIM plasmonic waveguides and PC structure in the second proposed topology. The PC lattices at the central part of the structures generate photonic bandgaps (PBGs) with sharp edges in the transmission spectra of the biosensors. These sharp edges are suitable candidates for sensing applications. On the other hand, the long distance between two PBG edges causes that when the low PBG edge is used for sensing mechanism, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. Therefore, the proposed biosensors can be used for a wide wavelength range. The maximum obtained sensitivities and FOM&amp;nbsp;values of the designed biosensors are equal to 718.6, 714.3&amp;nbsp;nm/RIU, and 156.217, 60.1&amp;nbsp;RIU&#8722;1, respectively. The metal and insulator materials which are used in the designed structures are silver, air, and GaAs, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. Furthermore, the initial structure of the proposed biosensors is analyzed using the transmission line method to verify the FDTD simulations. The attractive and simple topologies of the proposed biosensors and their high sensitivities make them suitable candidates for biosensing applications."/> <meta name="prism.issn" content="2045-2322"/> <meta name="prism.publicationName" content="Scientific Reports"/> <meta name="prism.publicationDate" content="2022-03-28"/> <meta name="prism.volume" content="12"/> <meta name="prism.number" content="1"/> <meta name="prism.section" content="OriginalPaper"/> <meta name="prism.startingPage" content="1"/> <meta name="prism.endingPage" content="19"/> <meta name="prism.copyright" content="2022 The Author(s)"/> <meta name="prism.rightsAgent" content="journalpermissions@springernature.com"/> <meta name="prism.url" content="https://www.nature.com/articles/s41598-022-09213-w"/> <meta name="prism.doi" content="doi:10.1038/s41598-022-09213-w"/> <meta name="citation_pdf_url" content="https://www.nature.com/articles/s41598-022-09213-w.pdf"/> <meta name="citation_fulltext_html_url" content="https://www.nature.com/articles/s41598-022-09213-w"/> <meta name="citation_journal_title" content="Scientific Reports"/> <meta name="citation_journal_abbrev" content="Sci Rep"/> <meta name="citation_publisher" content="Nature Publishing Group"/> <meta name="citation_issn" content="2045-2322"/> <meta name="citation_title" content="Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer"/> <meta name="citation_volume" content="12"/> <meta name="citation_issue" content="1"/> <meta name="citation_online_date" content="2022/03/28"/> <meta name="citation_firstpage" content="1"/> <meta name="citation_lastpage" content="19"/> <meta name="citation_article_type" content="Article"/> <meta name="citation_fulltext_world_readable" content=""/> <meta name="citation_language" content="en"/> <meta name="dc.identifier" content="doi:10.1038/s41598-022-09213-w"/> <meta name="DOI" content="10.1038/s41598-022-09213-w"/> <meta name="size" content="287327"/> <meta name="citation_doi" content="10.1038/s41598-022-09213-w"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1038/s41598-022-09213-w&amp;api_key="/> <meta name="description" content="One of the most interesting topics in bio-optics is measuring the refractive index of tissues. Accordingly, two novel optical biosensor configurations for cancer cell detections have been proposed in this paper. These structures are composed of one-dimensional photonic crystal (PC) lattices coupled to two metal&#8211;insulator&#8211;metal (MIM) plasmonic waveguides. Also, the tapering method is used to improve the matching between the MIM plasmonic waveguides and PC structure in the second proposed topology. The PC lattices at the central part of the structures generate photonic bandgaps (PBGs) with sharp edges in the transmission spectra of the biosensors. These sharp edges are suitable candidates for sensing applications. On the other hand, the long distance between two PBG edges causes that when the low PBG edge is used for sensing mechanism, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. Therefore, the proposed biosensors can be used for a wide wavelength range. The maximum obtained sensitivities and FOM&amp;nbsp;values of the designed biosensors are equal to 718.6, 714.3&amp;nbsp;nm/RIU, and 156.217, 60.1&amp;nbsp;RIU&#8722;1, respectively. The metal and insulator materials which are used in the designed structures are silver, air, and GaAs, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. Furthermore, the initial structure of the proposed biosensors is analyzed using the transmission line method to verify the FDTD simulations. The attractive and simple topologies of the proposed biosensors and their high sensitivities make them suitable candidates for biosensing applications."/> <meta name="dc.creator" content="Khani, Shiva"/> <meta name="dc.creator" content="Hayati, Mohsen"/> <meta name="dc.subject" content="Optics and photonics"/> <meta name="dc.subject" content="Physics"/> <meta name="citation_reference" content="citation_journal_title=IET Power Electron.; citation_title=Design of class-E M amplifier with consideration of parasitic non-linear capacitances and on-state resistance; citation_author=H Abbasi, M Hayati, MK Kazimierczuk, H Sekiya; citation_volume=13; citation_publication_date=2020; citation_pages=3065-3071; citation_doi=10.1049/iet-pel.2020.0253; citation_id=CR1"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Three-dimensional printed electrode and its novel applications in electronic devices; citation_author=CY Foo, HN Lim, MA Mahdi, MH Wahid, NM Huang; citation_volume=8; citation_publication_date=2018; citation_pages=1-11; citation_doi=10.1038/s41598-018-25861-3; citation_id=CR2"/> <meta name="citation_reference" content="citation_journal_title=JOSA B; citation_title=2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal; citation_author=A Farmani, A Mir, M Irannejad; citation_volume=36; citation_publication_date=2019; citation_pages=811-818; citation_doi=10.1364/JOSAB.36.000811; citation_id=CR3"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation; citation_author=ZA Zaky, AM Ahmed, AS Shalaby, AH Aly; citation_volume=10; citation_publication_date=2020; citation_pages=1-9; citation_doi=10.1038/s41598-020-66427-6; citation_id=CR4"/> <meta name="citation_reference" content="citation_journal_title=Photonics Nanostruct. Fundam. Appl.; citation_title=Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=40; citation_publication_date=2020; citation_pages=100802; citation_doi=10.1016/j.photonics.2020.100802; citation_id=CR5"/> <meta name="citation_reference" content="citation_journal_title=Nature; citation_title=Photonic crystals: Putting a new twist on light; citation_author=JD Joannopoulos, PR Villeneuve, S Fan; citation_volume=386; citation_publication_date=1997; citation_pages=143-149; citation_doi=10.1038/386143a0; citation_id=CR6"/> <meta name="citation_reference" content="citation_journal_title=Phys. Scr.; citation_title=Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor; citation_author=AH Aly, ZA Zaky, AS Shalaby, AM Ahmed, D Vigneswaran; citation_volume=95; citation_publication_date=2020; citation_pages=035510; citation_doi=10.1088/1402-4896/ab53f5; citation_id=CR7"/> <meta name="citation_reference" content="citation_journal_title=Opt. Lett.; citation_title=One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators; citation_author=H Yan; citation_volume=41; citation_publication_date=2016; citation_pages=5466-5469; citation_doi=10.1364/OL.41.005466; citation_id=CR8"/> <meta name="citation_reference" content="citation_journal_title=J. Comput. Electron.; citation_title=Plasmonic all-optical metal&#8211;insulator&#8211;metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=20; citation_publication_date=2021; citation_pages=442-457; citation_doi=10.1007/s10825-020-01638-8; citation_id=CR9"/> <meta name="citation_reference" content="citation_journal_title=Nat. Photonics; citation_title=Electrical detection of confined gap plasmons in metal&#8211;insulator&#8211;metal waveguides; citation_author=P Neutens, P Dorpe, I Vlaminck, L Lagae, G Borghs; citation_volume=3; citation_publication_date=2009; citation_pages=283-286; citation_doi=10.1038/nphoton.2009.47; citation_id=CR10"/> <meta name="citation_reference" content="Genet, C. &amp; Ebbesen, T. W. Light in tiny holes. Nanosci. Technol. Collect. Rev. Nat. J. 205&#8211;212. https://doi.org/10.1142/9789814287005_0021 (2010)."/> <meta name="citation_reference" content="Kiani, S., Rezaei, P. &amp; Fakhr, M. An overview of interdigitated microwave resonance sensors for liquid samples permittivity detection. Interdigit. Sens. Prog. Last Two Decades. 153&#8211;197. https://doi.org/10.1007/978-3-030-62684-6_7 (2021)."/> <meta name="citation_reference" content="citation_journal_title=Electron. Lett.; citation_title=Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator; citation_author=S Kiani, P Rezaei, M Karami, R Sadeghzadeh; citation_volume=54; citation_publication_date=2018; citation_pages=667-668; citation_doi=10.1049/el.2018.0170; citation_id=CR13"/> <meta name="citation_reference" content="citation_journal_title=IEEE Microw. Wirel. Compon. Lett.; citation_title=Design of SRR-based microwave sensor for characterization of magnetodielectric substrates; citation_author=KT Muhammed Shafi, MAH Ansari, AK Jha, MJ Akhtar; citation_volume=27; citation_publication_date=2017; citation_pages=524-526; citation_doi=10.1109/LMWC.2017.2690873; citation_id=CR14"/> <meta name="citation_reference" content="citation_journal_title=Microw. J.; citation_title=Compact microstrip lowpass filter with wide stopband and sharp roll-off; citation_author=S Khani, M Hayati; citation_volume=60; citation_publication_date=2017; citation_pages=86-92; citation_id=CR15"/> <meta name="citation_reference" content="citation_journal_title=Mater. Sci. Semicond. Process.; citation_title=Tunable infrared wide band-stop plasmonic filter using T-shaped resonators; citation_author=M Kamari, M Hayati, S Khosravi; citation_volume=133; citation_publication_date=2021; citation_pages=105983; citation_doi=10.1016/j.mssp.2021.105983; citation_id=CR16"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Mid-infrared plasmonic multispectral filters; citation_author=A Wang, Y Dan; citation_volume=8; citation_publication_date=2018; citation_pages=1-7; citation_id=CR17"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=420; citation_publication_date=2018; citation_pages=147-156; citation_doi=10.1016/j.optcom.2018.03.047; citation_id=CR18"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=A three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits; citation_author=LS Dizaj, K Abbasian, T Nurmohammadi; citation_volume=15; citation_publication_date=2020; citation_pages=2213-2221; citation_doi=10.1007/s11468-020-01249-w; citation_id=CR19"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide; citation_author=K-W Chang, C-C Huang; citation_volume=6; citation_publication_date=2016; citation_pages=1-11; citation_id=CR20"/> <meta name="citation_reference" content="citation_journal_title=SILICON; citation_title=Surface plasmon resonance-based SiO2 kretschmann configuration biosensor for the detection of blood glucose; citation_author=A Omidniaee, S Karimi, A Farmani; citation_volume=10; citation_publication_date=2021; citation_pages=1-10; citation_id=CR21"/> <meta name="citation_reference" content="citation_journal_title=Superlattices Microstruct.; citation_title=An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide; citation_author=S Khani, M Hayati; citation_volume=156; citation_publication_date=2021; citation_pages=106970; citation_doi=10.1016/j.spmi.2021.106970; citation_id=CR22"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect; citation_author=N Amoosoltani, K Mehrabi, A Zarifkar, A Farmani, N Yasrebi; citation_volume=16; citation_publication_date=2021; citation_pages=1-9; citation_doi=10.1007/s11468-021-01395-9; citation_id=CR23"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method; citation_author=S Khani, A Farmani, A Mir; citation_volume=11; citation_publication_date=2021; citation_pages=1-13; citation_doi=10.1038/s41598-021-93167-y; citation_id=CR24"/> <meta name="citation_reference" content="citation_journal_title=Appl. Sci.; citation_title=Tunable mid-infrared graphene plasmonic cross-shaped resonator for demultiplexing application; citation_author=S Asgari, T Fabritius; citation_volume=10; citation_publication_date=2020; citation_pages=1193; citation_doi=10.3390/app10031193; citation_id=CR25"/> <meta name="citation_reference" content="citation_journal_title=J. Opt.; citation_title=Plasmonic slow light waveguide with hyperbolic metamaterials claddings; citation_author=S Liang; citation_volume=20; citation_publication_date=2018; citation_pages=065001; citation_doi=10.1088/2040-8986/aabc18; citation_id=CR26"/> <meta name="citation_reference" content="citation_journal_title=IET Optoelectron.; citation_title=Metal&#8211;insulator&#8211;metal waveguide-coupled asymmetric resonators for sensing and slow light applications; citation_author=A Akhavan, H Ghafoorifard, S Abdolhosseini, H Habibiyan; citation_volume=12; citation_publication_date=2018; citation_pages=220-227; citation_doi=10.1049/iet-opt.2018.0028; citation_id=CR27"/> <meta name="citation_reference" content="citation_journal_title=Opt. Quantum Electron.; citation_title=A novel variable-length header extraction scheme based on ring laser for all-optical packet switching network; citation_author=D Jafari, M Danaie, P Rezaei, T Nurmohammadi; citation_volume=2021; citation_issue=53; citation_publication_date=2021; citation_pages=1-9; citation_id=CR28"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Reversible and tunable photochemical switch based on plasmonic structure; citation_author=H Mbarak, RT Ghahrizjani, S Hamidi, E Mohajerani, Y Zaatar; citation_volume=10; citation_publication_date=2020; citation_pages=1-7; citation_doi=10.1038/s41598-020-62058-z; citation_id=CR29"/> <meta name="citation_reference" content="citation_journal_title=Superlattices Microstruct.; citation_title=Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=141; citation_publication_date=2020; citation_pages=106481; citation_doi=10.1016/j.spmi.2020.106481; citation_id=CR30"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=477; citation_publication_date=2020; citation_pages=126359; citation_doi=10.1016/j.optcom.2020.126359; citation_id=CR31"/> <meta name="citation_reference" content="citation_journal_title=Opt. Mater.; citation_title=Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio; citation_author=MH Rezaei, A Zarifkar, M Miri; citation_volume=84; citation_publication_date=2018; citation_pages=572-578; citation_doi=10.1016/j.optmat.2018.07.043; citation_id=CR32"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures; citation_author=G Kewes; citation_volume=6; citation_publication_date=2016; citation_pages=1-10; citation_doi=10.1038/srep28877; citation_id=CR33"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Ultra-fast two-bit all-optical analog to digital convertor based on surface plasmons and kerr-type nonlinear cavity; citation_author=D Jafari, M Danaie, AA Orouji; citation_volume=16; citation_publication_date=2021; citation_pages=1-8; citation_doi=10.1007/s11468-021-01474-x; citation_id=CR34"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=16; citation_publication_date=2021; citation_pages=1-18; citation_doi=10.1007/s11468-021-01447-0; citation_id=CR35"/> <meta name="citation_reference" content="citation_journal_title=Nat. Photonics; citation_title=High-speed plasmonic phase modulators; citation_author=A Melikyan; citation_volume=8; citation_publication_date=2014; citation_pages=229-233; citation_doi=10.1038/nphoton.2014.9; citation_id=CR36"/> <meta name="citation_reference" content="citation_journal_title=Opt. Eng.; citation_title=Dual-wide band plasmonic filter based on nanocomposite media; citation_author=S Khosravi, M Hayati; citation_volume=59; citation_publication_date=2020; citation_pages=095107; citation_doi=10.1117/1.OE.59.9.095107; citation_id=CR37"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=15; citation_publication_date=2020; citation_pages=869-879; citation_doi=10.1007/s11468-019-01106-5; citation_id=CR38"/> <meta name="citation_reference" content="citation_journal_title=IEEE Photonics Technol. Lett.; citation_title=Photonic crystal 180&#176; ring-shaped hybrid: From microwave to optics; citation_author=SA Khatami, P Rezaei, M Danaie, AH Daroonkola; citation_volume=33; citation_publication_date=2021; citation_pages=1165-1168; citation_doi=10.1109/LPT.2021.3109633; citation_id=CR39"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators; citation_author=A Tavousi, M Rakhshani, M Mansouri-Birjandi; citation_volume=429; citation_publication_date=2018; citation_pages=166-174; citation_doi=10.1016/j.optcom.2018.08.019; citation_id=CR40"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution; citation_author=L Hajshahvaladi, H Kaatuzian, M Danaie; citation_volume=502; citation_publication_date=2022; citation_pages=127421; citation_doi=10.1016/j.optcom.2021.127421; citation_id=CR41"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=Optical sensing in single-mode filters base on surface plasmon H-shaped cavities; citation_author=S Khani, M Hayati; citation_volume=505; citation_publication_date=2021; citation_pages=127534; citation_doi=10.1016/j.optcom.2021.127534; citation_id=CR42"/> <meta name="citation_reference" content="citation_journal_title=Phys. Lett. A; citation_title=Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications; citation_author=L Hajshahvaladi, H Kaatuzian, M Danaie; citation_volume=420; citation_publication_date=2021; citation_pages=127754; citation_doi=10.1016/j.physleta.2021.127754; citation_id=CR43"/> <meta name="citation_reference" content="citation_journal_title=Photonics Nanostruct. Fundam. Appl.; citation_title=Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer; citation_author=MR Rakhshani; citation_volume=43; citation_publication_date=2021; citation_pages=100883; citation_doi=10.1016/j.photonics.2020.100883; citation_id=CR44"/> <meta name="citation_reference" content="citation_journal_title=J. Appl. Phys.; citation_title=Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations; citation_author=AK Sharma; citation_volume=114; citation_publication_date=2013; citation_pages=044701; citation_doi=10.1063/1.4816272; citation_id=CR45"/> <meta name="citation_reference" content="citation_journal_title=J. Biophotonics; citation_title=Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe; citation_author=U Dinish, G Balasundaram, YT Chang, M Olivo; citation_volume=7; citation_publication_date=2014; citation_pages=956-965; citation_doi=10.1002/jbio.201300084; citation_id=CR46"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=High-quality temperature sensor based on the plasmonic resonant absorber; citation_author=J Chen; citation_volume=14; citation_publication_date=2019; citation_pages=279-283; citation_doi=10.1007/s11468-018-0802-7; citation_id=CR47"/> <meta name="citation_reference" content="citation_journal_title=Opt. Express; citation_title=Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing; citation_author=C Liu; citation_volume=26; citation_publication_date=2018; citation_pages=9039-9049; citation_doi=10.1364/OE.26.009039; citation_id=CR48"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators; citation_author=MR Nickpay, M Danaie, A Shahzadi; citation_volume=17; citation_issue=1; citation_publication_date=2021; citation_pages=237-248; citation_doi=10.1007/s11468-021-01512-8; citation_id=CR49"/> <meta name="citation_reference" content="citation_journal_title=Photonics Nanostruct. Fundam. Appl.; citation_title=Surface plasmon resonance biosensor using inverted graded index optical fiber; citation_author=R Nasirifar, M Danaie, A Dideban; citation_volume=44; citation_publication_date=2021; citation_pages=100916; citation_doi=10.1016/j.photonics.2021.100916; citation_id=CR50"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer; citation_author=RS Shamy, D Khalil, MA Swillam; citation_volume=10; citation_publication_date=2020; citation_pages=1-9; citation_doi=10.1038/s41598-020-57538-1; citation_id=CR51"/> <meta name="citation_reference" content="citation_journal_title=Opt. Express; citation_title=Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas; citation_author=S Khonina, N Kazanskiy, M Butt, A Ka&#378;mierczak, R Piramidowicz; citation_volume=29; citation_publication_date=2021; citation_pages=16584-16594; citation_doi=10.1364/OE.423141; citation_id=CR52"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Tunable electromagnetically induced transparency-like in plasmonic stub waveguide with cross resonator; citation_author=S Pang, Y Huo, Y Xie, L Hao; citation_volume=12; citation_publication_date=2017; citation_pages=1161-1168; citation_doi=10.1007/s11468-016-0371-6; citation_id=CR53"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Rectangular plasmonic interferometer for high sensitive glycerol sensor; citation_author=Z Khajemiri, D Lee, SM Hamidi, D-S Kim; citation_volume=9; citation_publication_date=2019; citation_pages=1-7; citation_doi=10.1038/s41598-018-37499-2; citation_id=CR54"/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=A highly sensitive plasmonic refractive index sensor based on triangular resonator; citation_author=R Al Mahmud, MO Faruque, RH Sagor; citation_volume=483; citation_publication_date=2021; citation_pages=126634; citation_doi=10.1016/j.optcom.2020.126634; citation_id=CR55"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region; citation_author=AM Ahmed, A Mehaney; citation_volume=9; citation_publication_date=2019; citation_pages=1-9; citation_doi=10.1038/s41598-019-43440-y; citation_id=CR56"/> <meta name="citation_reference" content="citation_journal_title=Phys. E Low Dimens. Syst. Nanostruct.; citation_title=Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study; citation_author=E Salih, AI Ayesh; citation_volume=125; citation_publication_date=2021; citation_pages=114418; citation_doi=10.1016/j.physe.2020.114418; citation_id=CR57"/> <meta name="citation_reference" content="citation_journal_title=IET Optoelectron.; citation_title=Tunable single-mode bandpass filter based on metal&#8211;insulator&#8211;metal plasmonic coupled U-shaped cavities; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=13; citation_publication_date=2019; citation_pages=161-171; citation_doi=10.1049/iet-opt.2018.5098; citation_id=CR58"/> <meta name="citation_reference" content="citation_journal_title=Opt. Eng.; citation_title=Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=57; citation_publication_date=2018; citation_pages=107102; citation_doi=10.1117/1.OE.57.10.107102; citation_id=CR59"/> <meta name="citation_reference" content="citation_journal_title=Optik; citation_title=Highly sensitive surface plasmon resonance sensor using perforated optical fiber for biomedical applications; citation_author=R Nasirifar, M Danaie, A Dideban; citation_volume=250; citation_publication_date=2022; citation_pages=168051; citation_doi=10.1016/j.ijleo.2021.168051; citation_id=CR60"/> <meta name="citation_reference" content="citation_journal_title=Phys. E; citation_title=Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods; citation_author=S Khani, M Danaie, P Rezaei; citation_volume=113; citation_publication_date=2019; citation_pages=25-34; citation_doi=10.1016/j.physe.2019.04.015; citation_id=CR61"/> <meta name="citation_reference" content="citation_journal_title=JOSA B; citation_title=Broadband zero reflection plasmonic junctions; citation_author=M Farahani, N Granpayeh, M Rezvani; citation_volume=29; citation_publication_date=2012; citation_pages=1722-1730; citation_doi=10.1364/JOSAB.29.001722; citation_id=CR62"/> <meta name="citation_reference" content="citation_journal_title=Appl. Phys. Lett.; citation_title=Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides; citation_author=G Veronis, S Fan; citation_volume=87; citation_publication_date=2005; citation_pages=131102; citation_doi=10.1063/1.2056594; citation_id=CR63"/> <meta name="citation_reference" content="citation_journal_title=Opt. Express; citation_title=Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure; citation_author=A Pannipitiya, ID Rukhlenko, M Premaratne, HT Hattori, GP Agrawal; citation_volume=18; citation_publication_date=2010; citation_pages=6191-6204; citation_doi=10.1364/OE.18.006191; citation_id=CR64"/> <meta name="citation_reference" content="citation_journal_title=Appl. Opt.; citation_title=Design and simulation of a nanoscale electro-plasmonic 1&#215; 2 switch based on asymmetric metal&#8211;insulator&#8211;metal stub filters; citation_author=AN Taheri, H Kaatuzian; citation_volume=53; citation_publication_date=2014; citation_pages=6546-6553; citation_doi=10.1364/AO.53.006546; citation_id=CR65"/> <meta name="citation_reference" content="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)."/> <meta name="citation_reference" content="citation_journal_title=Opt. Commun.; citation_title=Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime; citation_author=MS Islam; citation_volume=426; citation_publication_date=2018; citation_pages=341-347; citation_doi=10.1016/j.optcom.2018.05.030; citation_id=CR67"/> <meta name="citation_reference" content="citation_journal_title=Sci. Rep.; citation_title=Flexibly tunable high-quality-factor induced transparency in plasmonic systems; citation_author=H Lu, X Gan, D Mao, B Jia, J Zhao; citation_volume=8; citation_publication_date=2018; citation_pages=1-9; citation_id=CR68"/> <meta name="citation_reference" content="citation_journal_title=J. Quant. Spectrosc. Radiat. Transf.; citation_title=V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, SPIE Press, Bellingham, WA (2007) Hardbound, ISBN 0-8194-6433-3, xl+ 841 pp; citation_author=MI Mishchenko; citation_volume=110; citation_publication_date=2009; citation_pages=528; citation_doi=10.1016/j.jqsrt.2009.02.009; citation_id=CR69"/> <meta name="citation_reference" content="citation_journal_title=Opt. Lett.; citation_title=High-contrast mapping of basal cell carcinomas; citation_author=AN Yaroslavsky; citation_volume=37; citation_publication_date=2012; citation_pages=644-646; citation_doi=10.1364/OL.37.000644; citation_id=CR70"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Plasmonic wavelength demultiplexer with mode conversion capabilities; citation_author=U Aparna, H Mruthyunjaya, MS Kumar; citation_volume=13; citation_publication_date=2018; citation_pages=511-517; citation_doi=10.1007/s11468-017-0537-x; citation_id=CR71"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Novel SPR sensor based on MIM-based waveguide and an asymmetric cross-shaped resonator; citation_author=C Su, J Zhu; citation_volume=16; citation_publication_date=2021; citation_pages=769-775; citation_doi=10.1007/s11468-020-01348-8; citation_id=CR72"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Design of a high-resolution metal&#8211;insulator&#8211;metal plasmonic refractive index sensor based on a ring-shaped Si resonator; citation_author=M Danaie, A Shahzadi; citation_volume=14; citation_publication_date=2019; citation_pages=1453-1465; citation_doi=10.1007/s11468-019-00926-9; citation_id=CR73"/> <meta name="citation_reference" content="citation_journal_title=Plasmonics; citation_title=Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators; citation_author=C Wu; citation_volume=13; citation_publication_date=2018; citation_pages=251-257; citation_doi=10.1007/s11468-017-0506-4; citation_id=CR74"/> <meta name="citation_reference" content="citation_journal_title=Photonics Nanostruct. Fundam. Appl.; citation_title=Design of a label-free photonic crystal refractive index sensor for biomedical applications; citation_author=M Danaie, B Kiani; citation_volume=31; citation_publication_date=2018; citation_pages=89-98; citation_doi=10.1016/j.photonics.2018.06.004; citation_id=CR75"/> <meta name="citation_author" content="Khani, Shiva"/> <meta name="citation_author_institution" content="Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran"/> <meta name="citation_author" content="Hayati, Mohsen"/> <meta name="citation_author_institution" content="Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran"/> <meta name="access_endpoint" content="https://www.nature.com/platform/readcube-access"/> <meta name="twitter:site" content="@SciReports"/> <meta name="twitter:card" content="summary_large_image"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer"/> <meta name="twitter:description" content="Scientific Reports - Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer"/> <meta name="twitter:image" content="https://media.springernature.com/full/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig1_HTML.png"/> <meta property="og:url" content="https://www.nature.com/articles/s41598-022-09213-w"/> <meta property="og:type" content="article"/> <meta property="og:site_name" content="Nature"/> <meta property="og:title" content="Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer - Scientific Reports"/> <meta property="og:image" content="https://media.springernature.com/m685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig1_HTML.png"/> <script> window.eligibleForRa21 = 'false'; </script> </head> <body class="article-page"> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <div class="position-relative cleared z-index-50 background-white" data-test="top-containers"> <a class="c-skip-link" href="#content">Skip to main content</a> <div class="c-grade-c-banner u-hide"> <div class="c-grade-c-banner__container"> <p>Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.</p> </div> </div> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90"> <div class="c-ad__inner" data-container-type="banner-advert"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-top-1" class="div-gpt-ad advert leaderboard js-ad text-center hide-print grade-c-hide" data-ad-type="top" data-test="top-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/scientific_reports/article" data-gpt-sizes="728x90" data-gpt-targeting="type=article;pos=top;artid=s41598-022-09213-w;doi=10.1038/s41598-022-09213-w;subjmeta=624,639,766;kwrd=Optics+and+photonics,Physics"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/scientific_reports/article&amp;sz=728x90&amp;c=-1538988373&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41598-022-09213-w%26doi%3D10.1038/s41598-022-09213-w%26subjmeta%3D624,639,766%26kwrd%3DOptics+and+photonics,Physics"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/scientific_reports/article&amp;sz=728x90&amp;c=-1538988373&amp;t=pos%3Dtop%26type%3Darticle%26artid%3Ds41598-022-09213-w%26doi%3D10.1038/s41598-022-09213-w%26subjmeta%3D624,639,766%26kwrd%3DOptics+and+photonics,Physics" alt="Advertisement" width="728" height="90"></a> </noscript> </div> </div> </aside> <header class="c-header" id="header" data-header data-track-component="nature-150-split-header" style="border-color:#cedde4"> <div class="c-header__row"> <div class="c-header__container"> <div class="c-header__split"> <div class="c-header__logo-container"> <a href="/srep" data-track="click" data-track-action="home" data-track-label="image"> <picture class="c-header__logo"> <source srcset="https://media.springernature.com/full/nature-cms/uploads/product/srep/header-d3c533c187c710c1bedbd8e293815d5f.svg" media="(min-width: 875px)"> <img src="https://media.springernature.com/full/nature-cms/uploads/product/srep/header-d3c533c187c710c1bedbd8e293815d5f.svg" height="32" alt="Scientific Reports"> </picture> </a> </div> <ul class="c-header__menu c-header__menu--global"> <li class="c-header__item c-header__item--padding c-header__item--hide-md-max"> <a class="c-header__link" href="https://www.nature.com/siteindex" data-test="siteindex-link" data-track="click" data-track-action="open nature research index" data-track-label="link"> <span>View all journals</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--pipe"> <a class="c-header__link c-header__link--search" href="#search-menu" data-header-expander data-test="search-link" data-track="click" data-track-action="open search tray" data-track-label="button"> <svg role="img" aria-hidden="true" focusable="false" height="22" width="22" viewBox="0 0 18 18" xmlns="http://www.w3.org/2000/svg"><path d="M16.48 15.455c.283.282.29.749.007 1.032a.738.738 0 01-1.032-.007l-3.045-3.044a7 7 0 111.026-1.026zM8 14A6 6 0 108 2a6 6 0 000 12z"/></svg><span>Search</span> </a> </li> <li class="c-header__item c-header__item--padding c-header__item--snid-account-widget c-header__item--pipe"> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.nature.com/auth/personal/springernature?redirect_uri=https://www.nature.com/articles/s41598-022-09213-w?error=cookies_not_supported&code=06d201f5-2db0-4507-9288-44739686ea8f'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </li> </ul> </div> </div> </div> <div class="c-header__row"> <div class="c-header__container" data-test="navigation-row"> <div class="c-header__split"> <ul class="c-header__menu c-header__menu--journal"> <li class="c-header__item c-header__item--dropdown-menu" data-test="explore-content-button"> <a href="#explore" class="c-header__link" data-header-expander data-test="menu-button--explore" data-track="click" data-track-action="open explore expander" data-track-label="button"> <span><span class="c-header__show-text">Explore</span> content</span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu"> <a href="#about-the-journal" class="c-header__link" data-header-expander data-test="menu-button--about-the-journal" data-track="click" data-track-action="open about the journal expander" data-track-label="button"> <span>About <span class="c-header__show-text">the journal</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> <li class="c-header__item c-header__item--dropdown-menu" data-test="publish-with-us-button"> <a href="#publish-with-us" class="c-header__link c-header__link--dropdown-menu" data-header-expander data-test="menu-button--publish" data-track="click" data-track-action="open publish with us expander" data-track-label="button"> <span>Publish <span class="c-header__show-text">with us</span></span><svg role="img" aria-hidden="true" focusable="false" height="16" viewBox="0 0 16 16" width="16" xmlns="http://www.w3.org/2000/svg"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" transform="matrix(0 1 -1 0 11 3)"/></svg> </a> </li> </ul> <ul class="c-header__menu c-header__menu--hide-lg-max"> <li class="c-header__item"> <a class="c-header__link" href="https://idp.nature.com/auth/personal/springernature?redirect_uri&#x3D;https%3A%2F%2Fwww.nature.com%2Fmy-account%2Falerts%2Fsubscribe-journal%3Flist-id%3D288%26journal-link%3Dhttps%253A%252F%252Fwww.nature.com%252Fsrep%252F" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-label="link (desktop site header)" data-track-external> <span>Sign up for alerts</span><svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#222"/></svg> </a> </li> <li class="c-header__item c-header__item--pipe"> <a class="c-header__link" href="https://www.nature.com/srep.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </div> </div> </header> <nav class="u-mb-16" aria-label="breadcrumbs"> <div class="u-container"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:nature"><span itemprop="name">nature</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/srep" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:scientific reports"><span itemprop="name">scientific reports</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"><a class="c-breadcrumbs__link" href="/srep/articles?type&#x3D;article" itemprop="item" data-track="click" data-track-action="breadcrumb" data-track-category="header" data-track-label="link:articles"><span itemprop="name">articles</span></a><meta itemprop="position" content="3"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" height="10" viewBox="0 0 10 10" width="10" xmlns="http://www.w3.org/2000/svg"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill="#666" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li><li class="c-breadcrumbs__item" id="breadcrumb3" itemprop="itemListElement" itemscope itemtype="https://schema.org/ListItem"> <span itemprop="name">article</span><meta itemprop="position" content="4"></li> </ol> </div> </nav> </div> <div class="u-container u-mt-32 u-mb-32 u-clearfix" id="content" data-component="article-container" data-container-type="article"> <main class="c-article-main-column u-float-left js-main-column" data-track-component="article body"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer </div> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41598-022-09213-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <article lang="en"> <div class="c-pdf-button__container u-mb-16 u-hide-at-lg js-context-bar-sticky-point-mobile"> <div class="c-pdf-container" data-track-context="article body"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41598-022-09213-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> </div> <div class="c-article-header"> <header> <ul class="c-article-identifiers" data-test="article-identifier"> <li class="c-article-identifiers__item" data-test="article-category">Article</li> <li class="c-article-identifiers__item"> <a href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="click" data-track-action="open access" data-track-label="link" class="u-color-open-access" data-test="open-access">Open access</a> </li> <li class="c-article-identifiers__item">Published: <time datetime="2022-03-28">28 March 2022</time></li> </ul> <h1 class="c-article-title" data-test="article-title" data-article-title="">Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer</h1> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Shiva-Khani-Aff1" data-author-popup="auth-Shiva-Khani-Aff1" data-author-search="Khani, Shiva">Shiva Khani</a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> &amp; </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Mohsen-Hayati-Aff1" data-author-popup="auth-Mohsen-Hayati-Aff1" data-author-search="Hayati, Mohsen" data-corresp-id="c1">Mohsen Hayati<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff1">1</a></sup> </li></ul> <p class="c-article-info-details" data-container-section="info"> <a data-test="journal-link" href="/srep" data-track="click" data-track-action="journal homepage" data-track-category="article body" data-track-label="link"><i data-test="journal-title">Scientific Reports</i></a> <b data-test="journal-volume"><span class="u-visually-hidden">volume</span> 12</b>, Article number: <span data-test="article-number">5246</span> (<span data-test="article-publication-year">2022</span>) <a href="#citeas" class="c-article-info-details__cite-as u-hide-print" data-track="click" data-track-action="cite this article" data-track-label="link">Cite this article</a> </p> <div class="c-article-metrics-bar__wrapper u-clear-both"> <ul class="c-article-metrics-bar u-list-reset"> <li class=" c-article-metrics-bar__item" data-test="access-count"> <p class="c-article-metrics-bar__count">4839 <span class="c-article-metrics-bar__label">Accesses</span></p> </li> <li class="c-article-metrics-bar__item" data-test="citation-count"> <p class="c-article-metrics-bar__count">59 <span class="c-article-metrics-bar__label">Citations</span></p> </li> <li class="c-article-metrics-bar__item" data-test="altmetric-score"> <p class="c-article-metrics-bar__count">7 <span class="c-article-metrics-bar__label">Altmetric</span></p> </li> <li class="c-article-metrics-bar__item"> <p class="c-article-metrics-bar__details"><a href="/articles/s41598-022-09213-w/metrics" data-track="click" data-track-action="view metrics" data-track-label="link" rel="nofollow">Metrics <span class="u-visually-hidden">details</span></a></p> </li> </ul> </div> </header> <div class="u-js-hide" data-component="article-subject-links"> <h3 class="c-article__sub-heading">Subjects</h3> <ul class="c-article-subject-list"> <li class="c-article-subject-list__subject"><a href="/subjects/optics-and-photonics" data-track="click" data-track-action="view subject" data-track-label="link">Optics and photonics</a></li><li class="c-article-subject-list__subject"><a href="/subjects/physics" data-track="click" data-track-action="view subject" data-track-label="link">Physics</a></li> </ul> </div> </div> <div class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Abs1">Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>One of the most interesting topics in bio-optics is measuring the refractive index of tissues. Accordingly, two novel optical biosensor configurations for cancer cell detections have been proposed in this paper. These structures are composed of one-dimensional photonic crystal (PC) lattices coupled to two metal–insulator–metal (MIM) plasmonic waveguides. Also, the tapering method is used to improve the matching between the MIM plasmonic waveguides and PC structure in the second proposed topology. The PC lattices at the central part of the structures generate photonic bandgaps (PBGs) with sharp edges in the transmission spectra of the biosensors. These sharp edges are suitable candidates for sensing applications. On the other hand, the long distance between two PBG edges causes that when the low PBG edge is used for sensing mechanism, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. Therefore, the proposed biosensors can be used for a wide wavelength range. The maximum obtained sensitivities and FOM values of the designed biosensors are equal to 718.6, 714.3 nm/RIU, and 156.217, 60.1 RIU<sup>−1</sup>, respectively. The metal and insulator materials which are used in the designed structures are silver, air, and GaAs, respectively. The finite-difference time-domain (FDTD) method is used for the numerical investigation of the proposed structures. Furthermore, the initial structure of the proposed biosensors is analyzed using the transmission line method to verify the FDTD simulations. The attractive and simple topologies of the proposed biosensors and their high sensitivities make them suitable candidates for biosensing applications.</p></div></div></section> <noscript> </noscript> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-023-41193-3/MediaObjects/41598_2023_41193_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41598-023-41193-3?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1038/s41598-023-41193-3">A single-mode tunable plasmonic sensor based on an 8-shaped resonator for cancer cell detection </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">26 August 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-023-46667-y/MediaObjects/41598_2023_46667_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41598-023-46667-y?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1038/s41598-023-46667-y">Ultra-high sensitive cancerous cells detection and sensing capabilities of photonic biosensor </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">09 November 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w215h120/springer-static/image/art%3A10.1038%2Fs41598-020-63459-w/MediaObjects/41598_2020_63459_Fig1_HTML.png" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://www.nature.com/articles/s41598-020-63459-w?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1038/s41598-020-63459-w">Multi-band MIM refractive index biosensor based on Ag-air grating with equivalent circuit and T-matrix methods in near-infrared region </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Article</span> <span class="c-article-meta-recommendations__access-type">Open access</span> <span class="c-article-meta-recommendations__date">14 April 2020</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732383414, embedded_user: 'null' } }); </script> <div class="main-content"> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec1">Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>Electronic devices<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="Abbasi, H., Hayati, M., Kazimierczuk, M. K. &amp; Sekiya, H. Design of class-E M amplifier with consideration of parasitic non-linear capacitances and on-state resistance. IET Power Electron. 13, 3065–3071 (2020)." href="/articles/s41598-022-09213-w#ref-CR1" id="ref-link-section-d121634187e297">1</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Foo, C. Y., Lim, H. N., Mahdi, M. A., Wahid, M. H. &amp; Huang, N. M. Three-dimensional printed electrode and its novel applications in electronic devices. Sci. Rep. 8, 1–11 (2018)." href="/articles/s41598-022-09213-w#ref-CR2" id="ref-link-section-d121634187e300">2</a></sup> are unable to fulfill all of the future’s expanding needs such as increasing the speed and reducing power dissipation. As a result, photonic integrated circuits such as photonic crystals (PCs)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Farmani, A., Mir, A. &amp; Irannejad, M. 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. JOSA B 36, 811–818 (2019)." href="/articles/s41598-022-09213-w#ref-CR3" id="ref-link-section-d121634187e304">3</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Zaky, Z. A., Ahmed, A. M., Shalaby, A. S. &amp; Aly, A. H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. Sci. Rep. 10, 1–9 (2020)." href="/articles/s41598-022-09213-w#ref-CR4" id="ref-link-section-d121634187e307">4</a></sup> can be suitable candidates to replace electronic integrated circuits due to their higher computational speeds, higher information densities, and less noise. One-dimensional PC structures consist of a multilayer stack of insulator materials<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Khani, S., Danaie, M. &amp; Rezaei, P. Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct. Fundam. Appl. 40, 100802 (2020)." href="/articles/s41598-022-09213-w#ref-CR5" id="ref-link-section-d121634187e311">5</a></sup>. Appearance of photonic band-gap (PBG) is one of the most significant properties of these structures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Joannopoulos, J. D., Villeneuve, P. R. &amp; Fan, S. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997)." href="/articles/s41598-022-09213-w#ref-CR6" id="ref-link-section-d121634187e315">6</a></sup>. The dynamic shift of the PBG edge in PCs can be used to design various structures such as optical sensors<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Aly, A. H., Zaky, Z. A., Shalaby, A. S., Ahmed, A. M. &amp; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. Phys. Scr. 95, 035510 (2020)." href="/articles/s41598-022-09213-w#ref-CR7" id="ref-link-section-d121634187e319">7</a></sup>, switches<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Khani, S., Danaie, M. &amp; Rezaei, P. Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct. Fundam. Appl. 40, 100802 (2020)." href="/articles/s41598-022-09213-w#ref-CR5" id="ref-link-section-d121634187e324">5</a></sup>, and modulators<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Yan, H. et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt. Lett. 41, 5466–5469 (2016)." href="/articles/s41598-022-09213-w#ref-CR8" id="ref-link-section-d121634187e328">8</a></sup>. Unfortunately, due to the diffraction limit of light, PC devices are not suitable structures for the realization of highly integrated optical circuits<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Khani, S., Danaie, M. &amp; Rezaei, P. Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. Photonics Nanostruct. Fundam. Appl. 40, 100802 (2020)." href="/articles/s41598-022-09213-w#ref-CR5" id="ref-link-section-d121634187e332">5</a></sup>.</p><p>Surface plasmon polaritons (SPPs) can be used to overcome the footprint problem<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Khani, S., Danaie, M. &amp; Rezaei, P. Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J. Comput. Electron. 20, 442–457 (2021)." href="/articles/s41598-022-09213-w#ref-CR9" id="ref-link-section-d121634187e339">9</a></sup>, by overcoming the diffraction limit<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. &amp; Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. Nat. Photonics 3, 283–286 (2009)." href="/articles/s41598-022-09213-w#ref-CR10" id="ref-link-section-d121634187e343">10</a></sup> and manipulating light at a sub-wavelength scale<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Genet, C. &amp; Ebbesen, T. W. Light in tiny holes. Nanosci. Technol. Collect. Rev. Nat. J. 205–212. &#xA; https://doi.org/10.1142/9789814287005_0021&#xA; &#xA; (2010)." href="/articles/s41598-022-09213-w#ref-CR11" id="ref-link-section-d121634187e347">11</a></sup>. SPPs are the electromagnetic surface waves that propagate at the surface of the metal and insulator materials. In the low-frequency range, metal is treated as a perfect conductor. In the UV and visible region, metal can no longer be treated as a perfect conductor. It is because of its collective electrons excitation, which is called the plasmon. In this frequency range, metal can still be used to build a low-loss metal waveguide or metal–insulator waveguide. In these cases, the electromagnetic field takes the form of an evanescent field. Furthermore, the complex permittivity of noble metals such as gold and silver has a relatively larger real part than its imaginary part. Also, its real part is usually a large negative number in the near infrared region (NIR) and visible region. This optical property of metal causes the surface plasmon wave can propagate at the surface of the metal and insulator.</p><p>In addition, plasmonic structures have the integration capability with other electrical and microwave components<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kiani, S., Rezaei, P. &amp; Fakhr, M. An overview of interdigitated microwave resonance sensors for liquid samples permittivity detection. Interdigit. Sens. Prog. Last Two Decades. 153–197. &#xA; https://doi.org/10.1007/978-3-030-62684-6_7&#xA; &#xA; (2021)." href="#ref-CR12" id="ref-link-section-d121634187e354">12</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kiani, S., Rezaei, P., Karami, M. &amp; Sadeghzadeh, R. Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. Electron. Lett. 54, 667–668 (2018)." href="#ref-CR13" id="ref-link-section-d121634187e354_1">13</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Muhammed Shafi, K. T., Ansari, M. A. H., Jha, A. K. &amp; Akhtar, M. J. Design of SRR-based microwave sensor for characterization of magnetodielectric substrates. IEEE Microw. Wirel. Compon. Lett. 27, 524–526 (2017)." href="#ref-CR14" id="ref-link-section-d121634187e354_2">14</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Khani, S. &amp; Hayati, M. Compact microstrip lowpass filter with wide stopband and sharp roll-off. Microw. J. 60, 86–92 (2017)." href="/articles/s41598-022-09213-w#ref-CR15" id="ref-link-section-d121634187e357">15</a></sup>. Therefore, different metal–insulator–metal (MIM) plasmonic devices have been designed so far. Such devices include plasmonic filters<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Kamari, M., Hayati, M. &amp; Khosravi, S. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. Mater. Sci. Semicond. Process. 133, 105983 (2021)." href="#ref-CR16" id="ref-link-section-d121634187e361">16</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Wang, A. &amp; Dan, Y. Mid-infrared plasmonic multispectral filters. Sci. Rep. 8, 1–7 (2018)." href="#ref-CR17" id="ref-link-section-d121634187e361_1">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Khani, S., Danaie, M. &amp; Rezaei, P. Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt. Commun. 420, 147–156 (2018)." href="/articles/s41598-022-09213-w#ref-CR18" id="ref-link-section-d121634187e364">18</a></sup>, splitters<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Dizaj, L. S., Abbasian, K. &amp; Nurmohammadi, T. A three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits. Plasmonics 15, 2213–2221 (2020)." href="/articles/s41598-022-09213-w#ref-CR19" id="ref-link-section-d121634187e368">19</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Chang, K.-W. &amp; Huang, C.-C. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide. Sci. Rep. 6, 1–11 (2016)." href="/articles/s41598-022-09213-w#ref-CR20" id="ref-link-section-d121634187e371">20</a></sup>, sensors<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Omidniaee, A., Karimi, S. &amp; Farmani, A. Surface plasmon resonance-based SiO2 kretschmann configuration biosensor for the detection of blood glucose. SILICON 10, 1–10 (2021)." href="#ref-CR21" id="ref-link-section-d121634187e375">21</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Khani, S. &amp; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)." href="#ref-CR22" id="ref-link-section-d121634187e375_1">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A. &amp; Yasrebi, N. Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16, 1–9 (2021)." href="/articles/s41598-022-09213-w#ref-CR23" id="ref-link-section-d121634187e378">23</a></sup>, demultiplexers<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Khani, S., Farmani, A. &amp; Mir, A. Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. Sci. Rep. 11, 1–13 (2021)." href="/articles/s41598-022-09213-w#ref-CR24" id="ref-link-section-d121634187e382">24</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 25" title="Asgari, S. &amp; Fabritius, T. Tunable mid-infrared graphene plasmonic cross-shaped resonator for demultiplexing application. Appl. Sci. 10, 1193 (2020)." href="/articles/s41598-022-09213-w#ref-CR25" id="ref-link-section-d121634187e385">25</a></sup>, slow light waveguides<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 26" title="Liang, S. et al. Plasmonic slow light waveguide with hyperbolic metamaterials claddings. J. Opt. 20, 065001 (2018)." href="/articles/s41598-022-09213-w#ref-CR26" id="ref-link-section-d121634187e390">26</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 27" title="Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. &amp; Habibiyan, H. Metal–insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications. IET Optoelectron. 12, 220–227 (2018)." href="/articles/s41598-022-09213-w#ref-CR27" id="ref-link-section-d121634187e393">27</a></sup>, switches<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Jafari, D., Danaie, M., Rezaei, P. &amp; Nurmohammadi, T. A novel variable-length header extraction scheme based on ring laser for all-optical packet switching network. Opt. Quantum Electron. 2021(53), 1–9 (2021)." href="#ref-CR28" id="ref-link-section-d121634187e397">28</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Mbarak, H., Ghahrizjani, R. T., Hamidi, S., Mohajerani, E. &amp; Zaatar, Y. Reversible and tunable photochemical switch based on plasmonic structure. Sci. Rep. 10, 1–7 (2020)." href="#ref-CR29" id="ref-link-section-d121634187e397_1">29</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Khani, S., Danaie, M. &amp; Rezaei, P. Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 141, 106481 (2020)." href="#ref-CR30" id="ref-link-section-d121634187e397_2">30</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 31" title="Khani, S., Danaie, M. &amp; Rezaei, P. Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions. Opt. Commun. 477, 126359 (2020)." href="/articles/s41598-022-09213-w#ref-CR31" id="ref-link-section-d121634187e400">31</a></sup>, logic gates<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 32" title="Rezaei, M. H., Zarifkar, A. &amp; Miri, M. Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. Opt. Mater. 84, 572–578 (2018)." href="/articles/s41598-022-09213-w#ref-CR32" id="ref-link-section-d121634187e404">32</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 33" title="Kewes, G. et al. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 6, 1–10 (2016)." href="/articles/s41598-022-09213-w#ref-CR33" id="ref-link-section-d121634187e407">33</a></sup>, converters<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 34" title="Jafari, D., Danaie, M. &amp; Orouji, A. A. Ultra-fast two-bit all-optical analog to digital convertor based on surface plasmons and kerr-type nonlinear cavity. Plasmonics 16, 1–8 (2021)." href="/articles/s41598-022-09213-w#ref-CR34" id="ref-link-section-d121634187e411">34</a></sup>, modulators<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 35" title="Khani, S., Danaie, M. &amp; Rezaei, P. Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. Plasmonics 16, 1–18 (2021)." href="/articles/s41598-022-09213-w#ref-CR35" id="ref-link-section-d121634187e415">35</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 36" title="Melikyan, A. et al. High-speed plasmonic phase modulators. Nat. Photonics 8, 229–233 (2014)." href="/articles/s41598-022-09213-w#ref-CR36" id="ref-link-section-d121634187e418">36</a></sup> and so on. It is worth mentioning that the main disadvantage of plasmonic structures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 37" title="Khosravi, S. &amp; Hayati, M. Dual-wide band plasmonic filter based on nanocomposite media. Opt. Eng. 59, 095107 (2020)." href="/articles/s41598-022-09213-w#ref-CR37" id="ref-link-section-d121634187e422">37</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 38" title="Khani, S., Danaie, M. &amp; Rezaei, P. All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. Plasmonics 15, 869–879 (2020)." href="/articles/s41598-022-09213-w#ref-CR38" id="ref-link-section-d121634187e425">38</a></sup> compared to PCs<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 39" title="Khatami, S. A., Rezaei, P., Danaie, M. &amp; Daroonkola, A. H. Photonic crystal 180° ring-shaped hybrid: From microwave to optics. IEEE Photonics Technol. Lett. 33, 1165–1168 (2021)." href="/articles/s41598-022-09213-w#ref-CR39" id="ref-link-section-d121634187e430">39</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 40" title="Tavousi, A., Rakhshani, M. &amp; Mansouri-Birjandi, M. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. Opt. Commun. 429, 166–174 (2018)." href="/articles/s41598-022-09213-w#ref-CR40" id="ref-link-section-d121634187e433">40</a></sup> is their higher absorption value which results in lower Q-factor. As a result, the combination of plasmonic and PC structures has been used to obtain a trade-off between various designing parameters in this paper.</p><p>Optical sensors<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Hajshahvaladi, L., Kaatuzian, H. &amp; Danaie, M. A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. Opt. Commun. 502, 127421 (2022)." href="#ref-CR41" id="ref-link-section-d121634187e440">41</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="#ref-CR42" id="ref-link-section-d121634187e440_1">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 43" title="Hajshahvaladi, L., Kaatuzian, H. &amp; Danaie, M. Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. Phys. Lett. A 420, 127754 (2021)." href="/articles/s41598-022-09213-w#ref-CR43" id="ref-link-section-d121634187e443">43</a></sup> are attracted important interest as their wide range of applications. One of the most significant applications of optical sensors is in the biomedical field. For example, such sensors can be used for cancer cell detections<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e447">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Rakhshani, M. R. Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct. Fundam. Appl. 43, 100883 (2021)." href="/articles/s41598-022-09213-w#ref-CR44" id="ref-link-section-d121634187e450">44</a></sup>, health care applications<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 45" title="Sharma, A. K. Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. J. Appl. Phys. 114, 044701 (2013)." href="/articles/s41598-022-09213-w#ref-CR45" id="ref-link-section-d121634187e454">45</a></sup>, and blood component measurements<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 46" title="Dinish, U., Balasundaram, G., Chang, Y. T. &amp; Olivo, M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. J. Biophotonics 7, 956–965 (2014)." href="/articles/s41598-022-09213-w#ref-CR46" id="ref-link-section-d121634187e458">46</a></sup>. Up to now, different approaches based on various configurations such as plasmonic<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 47" title="Chen, J. et al. High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279–283 (2019)." href="/articles/s41598-022-09213-w#ref-CR47" id="ref-link-section-d121634187e462">47</a></sup>, PC<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 48" title="Liu, C. et al. Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. Opt. Express 26, 9039–9049 (2018)." href="/articles/s41598-022-09213-w#ref-CR48" id="ref-link-section-d121634187e467">48</a></sup>, graphene<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 49" title="Nickpay, M.-R., Danaie, M. &amp; Shahzadi, A. Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. Plasmonics. 17(1), 237–248 (2021)." href="/articles/s41598-022-09213-w#ref-CR49" id="ref-link-section-d121634187e471">49</a></sup>, optical fiber topologies<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 50" title="Nasirifar, R., Danaie, M. &amp; Dideban, A. Surface plasmon resonance biosensor using inverted graded index optical fiber. Photonics Nanostruct. Fundam. Appl. 44, 100916 (2021)." href="/articles/s41598-022-09213-w#ref-CR50" id="ref-link-section-d121634187e475">50</a></sup>, etc. have been adopted to design optical sensors. Since surface plasmons are sensitive to changes in the refractive index of the metal surface, this phenomenon can be used as a tool for optical sensing. Sensors designed using plasmonic structures are sensitive to refractive index changes so that by connecting the particle to the surface, refractive index changes will be detectable. In this method, the particle-to-surface connection is converted directly into a signal and does not require labeling, while in conventional optical sensors, chromophore colors are required. Recent progress in plasmon-based sensors has overcome the limitations of conventional optical sensors so that using such structures will enhance the sensitivity, optical stability, tunability, and usability of these sensors in the living environment.</p><p>The conventional configurations to design optical sensors are based on plasmonic Mach–Zehnder interferometer<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 51" title="El Shamy, R. S., Khalil, D. &amp; Swillam, M. A. Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer. Sci. Rep. 10, 1–9 (2020)." href="/articles/s41598-022-09213-w#ref-CR51" id="ref-link-section-d121634187e483">51</a></sup>, plasmonic square ring resonator<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 52" title="Khonina, S., Kazanskiy, N., Butt, M., Kaźmierczak, A. &amp; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas. Opt. Express 29, 16584–16594 (2021)." href="/articles/s41598-022-09213-w#ref-CR52" id="ref-link-section-d121634187e487">52</a></sup>, plasmonic cross resonator<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 53" title="Pang, S., Huo, Y., Xie, Y. &amp; Hao, L. Tunable electromagnetically induced transparency-like in plasmonic stub waveguide with cross resonator. Plasmonics 12, 1161–1168 (2017)." href="/articles/s41598-022-09213-w#ref-CR53" id="ref-link-section-d121634187e491">53</a></sup>, rectangular plasmonic interferometer<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 54" title="Khajemiri, Z., Lee, D., Hamidi, S. M. &amp; Kim, D.-S. Rectangular plasmonic interferometer for high sensitive glycerol sensor. Sci. Rep. 9, 1–7 (2019)." href="/articles/s41598-022-09213-w#ref-CR54" id="ref-link-section-d121634187e495">54</a></sup>, plasmonic triangular resonator<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 55" title="Al Mahmud, R., Faruque, M. O. &amp; Sagor, R. H. A highly sensitive plasmonic refractive index sensor based on triangular resonator. Opt. Commun. 483, 126634 (2021)." href="/articles/s41598-022-09213-w#ref-CR55" id="ref-link-section-d121634187e499">55</a></sup>, one dimensional porous silicon PC sensor<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 56" title="Ahmed, A. M. &amp; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 9, 1–9 (2019)." href="/articles/s41598-022-09213-w#ref-CR56" id="ref-link-section-d121634187e504">56</a></sup>, armchair graphene nano-ribbon<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 57" title="Salih, E. &amp; Ayesh, A. I. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO2: DFT study. Phys. E Low Dimens. Syst. Nanostruct. 125, 114418 (2021)." href="/articles/s41598-022-09213-w#ref-CR57" id="ref-link-section-d121634187e508">57</a></sup>, and so on. All aforementioned sensor structures in the literature create conventional spectra like Lorentzian, Fano resonance, and electromagnetically induced transparency (EIT) spectra for sensing applications.</p><p>In this paper, two novel topologies have been proposed based on the combination of one-dimensional (1D) PC and MIM plasmonic configurations. In these structures, the PC topologies have been used at the central part of the sensor structures (between two MIM plasmonic waveguides) to create PBGs in the transmission spectra with sharp transient edges. These sharp edges increase the sensitivity of the proposed sensors. Accordingly, this spectrum type is a suitable choice for sensing mechanisms. Also, the tapering technique has been used in the second proposed topology to improve the matching between the plasmonic and PC sections. It is worth mentioning that the designed sensors can be used for the detection of the basal cell cancer. Today, cancer has spread worldwide in a way that has attracted the serious attention of researchers. Prompt and timely diagnosis of cancer is one way to determine the best treatment option. Cancer seems to be on the rise today due to environmental pollution, lifestyle, and nutrition. On the other hand, due to the high cost, lengthy and difficult treatment of cancer, early detection of cancer is very important for treatment.</p><p>The metal material of the substrate area in these structures is assumed to be silver, which is characterized by a well-known Drude model<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 58" title="Khani, S., Danaie, M. &amp; Rezaei, P. Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. IET Optoelectron. 13, 161–171 (2019)." href="/articles/s41598-022-09213-w#ref-CR58" id="ref-link-section-d121634187e518">58</a></sup>. Meanwhile, the used insulator materials are air (<span class="mathjax-tex">\(\varepsilon =1\)</span>) and GaAs (Palik model). The finite-difference time-domain (FDTD) method has been used for the numerical investigation of the designed structures. To verify the FDTD simulations, analytical formulas based on the transmission line method (TLM) have also been proposed for the initial structure.</p><p>The rest of this paper is organized as follows: The initial structure which is used to design the proposed biosensor structures is introduced in “Initial structure and its formulation”. Also, an analytical model is presented in this section to calculate the transmission spectrum of the initial structure. “Design of the proposed biosensor I” and “Design of the proposed biosensor II” introduce the first and second proposed biosensors. Biosensors application is explained in “Biosensors application”. The obtained results are summarized and compared with other works in “Discussions and comparisons”. Finally, the last section is devoted to conclusions.</p></div></div></section><section data-title="Initial structure and its formulation"><div class="c-article-section" id="Sec2-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec2">Initial structure and its formulation</h2><div class="c-article-section__content" id="Sec2-content"><p>As shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig1">1</a>, a rectangular resonator connected to two MIM plasmonic waveguides is used to design the initial structure of the proposed sensors. The geometrical parameters of the initial structure include the length (L = 3980 nm) and width (W<sub>2</sub> = 250 nm) of the rectangular resonator and the width of the MIM waveguide (W<sub>1</sub> = 100 nm). The insulator layer is air with <span class="mathjax-tex">\({\varepsilon }_{d1}=1\)</span>, and the metal layers are silver. The complex relative permittivity of silver is characterized by the Drude model<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 59" title="Khani, S., Danaie, M. &amp; Rezaei, P. Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. Opt. Eng. 57, 107102 (2018)." href="/articles/s41598-022-09213-w#ref-CR59" id="ref-link-section-d121634187e598">59</a></sup>:</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\upvarepsilon }_{\mathrm{m}}\left(\upomega \right)= {\upvarepsilon }_{\infty }-\frac{{\upomega }_{\mathrm{p}}^{2}}{\upomega \left(\upomega +\mathrm{j \gamma }\right)},$$</span></div><div class="c-article-equation__number"> (1) </div></div><p>where ε<sub>∞</sub> = 3.7 is the medium dielectric constant for the infinite frequency, ω<sub>p</sub> = 1.38 × 1016 Hz presents the bulk plasma frequency, ɤ = 2.73 × 1013 Hz denotes the electron collision frequency, and ω is the angular frequency of incident light.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Figure 1"><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 1</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig1_HTML.png?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig1_HTML.png" alt="figure 1" loading="lazy" width="685" height="553"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>3D topology of the initial structure.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The FDTD method is commonly used to model the MIM waveguide-based plasmonic structures<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 60" title="Nasirifar, R., Danaie, M. &amp; Dideban, A. Highly sensitive surface plasmon resonance sensor using perforated optical fiber for biomedical applications. Optik 250, 168051 (2022)." href="/articles/s41598-022-09213-w#ref-CR60" id="ref-link-section-d121634187e716">60</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 61" title="Khani, S., Danaie, M. &amp; Rezaei, P. Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. Phys. E 113, 25–34 (2019)." href="/articles/s41598-022-09213-w#ref-CR61" id="ref-link-section-d121634187e719">61</a></sup>. Another method to model such structures is the TLM<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 62" title="Farahani, M., Granpayeh, N. &amp; Rezvani, M. Broadband zero reflection plasmonic junctions. JOSA B 29, 1722–1730 (2012)." href="/articles/s41598-022-09213-w#ref-CR62" id="ref-link-section-d121634187e723">62</a></sup>. The second model, which is an analytical method, is usually used for the plasmonic structures with linear insulator materials. On the other hand, the FDTD method is more time-consuming than the TLM. Consequently, in addition to the FDTD method, the TLM has also been investigated for the initial structure.</p><p>After introducing the initial structure, the analytical model is presented to describe the behavior of this structure. Since the width of the rectangular resonator (W<sub>2</sub>) is close to the width of the MIM waveguides (W<sub>1</sub>) and <span class="mathjax-tex">\(L\gg {W}_{2}\)</span>, the proposed initial structure can be considered as a combination of three cascaded waveguides with widths of W<sub>1</sub>, W<sub>2</sub>, and W<sub>1</sub>, respectively. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>a shows the 2D topology of the initial structure. Also, the schematic of MIM junctions between three serial waveguides and the equivalent circuit of the initial structure are shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>b,c, respectively<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Khani, S., Danaie, M. &amp; Rezaei, P. Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. J. Comput. Electron. 20, 442–457 (2021)." href="/articles/s41598-022-09213-w#ref-CR9" id="ref-link-section-d121634187e776">9</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 30" title="Khani, S., Danaie, M. &amp; Rezaei, P. Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct. 141, 106481 (2020)." href="/articles/s41598-022-09213-w#ref-CR30" id="ref-link-section-d121634187e779">30</a></sup>. As seen in the equivalent transmission-line circuit (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>c), the MIM waveguides are modeled by semi-infinite transmission lines. In this model, the characteristic impedances of Z<sub>1</sub> and Z<sub>2</sub> are assigned to the waveguides with widths of W<sub>1</sub> and W<sub>2</sub>, respectively. The microwave circuit theories can be used to obtain the values of characteristic impedances<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 63" title="Veronis, G. &amp; Fan, S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl. Phys. Lett. 87, 131102 (2005)." href="/articles/s41598-022-09213-w#ref-CR63" id="ref-link-section-d121634187e795">63</a></sup>. Accordingly, they are approximated by the ratio of the voltage to the current (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ2">2</a>):</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${Z}_{j}=\frac{{V}_{j}}{{I}_{j}}=\frac{\beta ({W}_{j}){W}_{j}}{\omega {\varepsilon }_{0}{\varepsilon }_{1}} j=1, 2,$$</span></div><div class="c-article-equation__number"> (2) </div></div><p>where <span class="mathjax-tex">\({W}_{j}\)</span> is the width of the waveguides, <span class="mathjax-tex">\(\omega\)</span> is the frequency of incident light, <span class="mathjax-tex">\({\varepsilon }_{0}\)</span> is the linear dielectric constant, <span class="mathjax-tex">\({\varepsilon }_{1}\)</span> the relative permittivity of the insulator, and <span class="mathjax-tex">\(\beta\)</span> is the propagation constant, calculated by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ3">3</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Pannipitiya, A., Rukhlenko, I. D., Premaratne, M., Hattori, H. T. &amp; Agrawal, G. P. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18, 6191–6204 (2010)." href="/articles/s41598-022-09213-w#ref-CR64" id="ref-link-section-d121634187e1018">64</a></sup>:</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\beta \left({W}_{j}\right)=k\bullet {n}_{eff}\left({W}_{j}\right) j=1, 2,$$</span></div><div class="c-article-equation__number"> (3) </div></div><p>where <span class="mathjax-tex">\(k\)</span> can be given by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ4">4</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 64" title="Pannipitiya, A., Rukhlenko, I. D., Premaratne, M., Hattori, H. T. &amp; Agrawal, G. P. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. Opt. Express 18, 6191–6204 (2010)." href="/articles/s41598-022-09213-w#ref-CR64" id="ref-link-section-d121634187e1115">64</a></sup>:</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Figure 2"><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 2</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig2_HTML.png?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig2_HTML.png" alt="figure 2" loading="lazy" width="685" height="507"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>(<b>a</b>) 2D topology of the initial structure. (<b>b</b>) Schematic of MIM junctions between three waveguides, (<b>c</b>) Equivalent transmission line circuit of the initial structure.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div id="Equ4" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$k=\frac{2\pi }{\lambda }.$$</span></div><div class="c-article-equation__number"> (4) </div></div><p>Here, the wavelength of λ is obtained by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ5">5</a>):</p><div id="Equ5" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\lambda =\frac{2\pi c}{\omega },$$</span></div><div class="c-article-equation__number"> (5) </div></div><p>where c is the light speed in vacuum. It is worth mentioning that <span class="mathjax-tex">\({n}_{eff}\)</span> in Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ3">3</a>) can be approximated by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ6">6</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 65" title="Taheri, A. N. &amp; Kaatuzian, H. Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. Appl. Opt. 53, 6546–6553 (2014)." href="/articles/s41598-022-09213-w#ref-CR65" id="ref-link-section-d121634187e1263">65</a></sup>:</p><div id="Equ6" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${n}_{eff}=\sqrt{{\varepsilon }_{1}}{\left(1+\frac{\lambda }{\pi h\sqrt{{-\varepsilon }_{2}}}\sqrt{1+\frac{{\varepsilon }_{1}}{{-\varepsilon }_{2}}}\right)}^\frac{1}{2}.$$</span></div><div class="c-article-equation__number"> (6) </div></div><p>The transfer matrix method is used to calculate the transfer function of the transmission line circuit (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>c). Therefore, the scattering matrix of a plasmonic MIM junction is introduced (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig3">3</a>). The input and output voltages of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig3">3</a> (<span class="mathjax-tex">\({V}_{1}^{+}\)</span>, <span class="mathjax-tex">\({V}_{2}^{+}\)</span>, <span class="mathjax-tex">\({V}_{1}^{-}\)</span>, <span class="mathjax-tex">\({V}_{2}^{-}\)</span>) are given by Eqs. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ7">7</a> and <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ8">8</a>) <sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)." href="/articles/s41598-022-09213-w#ref-CR66" id="ref-link-section-d121634187e1518">66</a></sup>:</p><div id="Equ7" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${V}_{1}\left(x\right)={V}_{1}^{+}{e}^{i\beta x}+{V}_{1}^{-}{e}^{-i\beta x},$$</span></div><div class="c-article-equation__number"> (7) </div></div><div id="Equ8" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${V}_{2}\left(x\right)={V}_{2}^{+}{e}^{i\beta {x}^{^{\prime}}}+{V}_{2}^{-}{e}^{-i\beta {x}^{^{\prime}}},$$</span></div><div class="c-article-equation__number"> (8) </div></div><p>where <span class="mathjax-tex">\(x\)</span> is the distance from the input port and <span class="mathjax-tex">\({x}^{^{\prime}}\)</span> is the distance from the output port. Also, <span class="mathjax-tex">\({x+x}^{^{\prime}}\)</span> presents the total distance from the input port to the output port. The voltages at the input and output ports of the line are related to each other by the scattering matrix of <b>S</b><sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)." href="/articles/s41598-022-09213-w#ref-CR66" id="ref-link-section-d121634187e1829">66</a></sup>:</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Figure 3"><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 3</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig3_HTML.png?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig3_HTML.png" alt="figure 3" loading="lazy" width="685" height="144"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Schematic of relations between circuit input and outputs through (<b>a</b>) Scattering matrix. (<b>b</b>) Transfer matrix.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div id="Equ9" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\left[\begin{array}{c}{\mathrm{V}}_{1}^{-}\\ {\mathrm{V}}_{2}^{-}\end{array}\right]=\mathbf{S}\left[\begin{array}{c}{\mathrm{V}}_{1}^{+}\\ {\mathrm{V}}_{2}^{+}\end{array}\right].$$</span></div><div class="c-article-equation__number"> (9) </div></div><p>In this formula, the scattering matrix of a straight waveguide is given by<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)." href="/articles/s41598-022-09213-w#ref-CR66" id="ref-link-section-d121634187e1991">66</a></sup>:</p><div id="Equ10" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathbf{S}}_{MIM}=\left[\begin{array}{cc}0&amp; {\mathrm{e}}^{-\mathrm{i\beta L}}\\ {\mathrm{e}}^{\mathrm{i\beta L}}&amp; 0\end{array}\right].$$</span></div><div class="c-article-equation__number"> (10) </div></div><p>Here, <span class="mathjax-tex">\(L\)</span> is the length of the straight waveguide. Furthermore, the scattering matrix of the direct junction of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>c is defined as<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)." href="/articles/s41598-022-09213-w#ref-CR66" id="ref-link-section-d121634187e2134">66</a></sup>:</p><div id="Equ11" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathbf{S}}_{jun}=\left[\begin{array}{cc}\Gamma &amp; 1-\Gamma \\ 1+\Gamma &amp; -\Gamma \end{array}\right].$$</span></div><div class="c-article-equation__number"> (11) </div></div><p>In this formula, <span class="mathjax-tex">\(\Gamma\)</span> is calculated by:</p><div id="Equ12" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\Gamma =\frac{{\mathrm{Z}}_{2}-{\mathrm{Z}}_{1}}{{\mathrm{Z}}_{2}+{\mathrm{Z}}_{1}}.$$</span></div><div class="c-article-equation__number"> (12) </div></div><p>By introducing <span class="mathjax-tex">\({V}_{1}^{+,-}=\sqrt{{Z}_{1}}{ {\tilde{\text{V}}} }_{1}^{+,-}\)</span> and <span class="mathjax-tex">\({V}_{2}^{+,-}=\sqrt{{Z}_{2}}{ {\tilde{\text{V}}} }_{2}^{+,-}\)</span>, the normalized scattering matrix can be given by:</p><div id="Equ13" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathrm{S}}_{11}=-{\mathrm{S}}_{22}=\Gamma , {\mathrm{S}}_{12}={\mathrm{S}}_{21}=\frac{2\sqrt{{\mathrm{Z}}_{1}{\mathrm{Z}}_{2}}}{{\mathrm{Z}}_{1}+{\mathrm{Z}}_{2}}.$$</span></div><div class="c-article-equation__number"> (13) </div></div><p>Here, <span class="mathjax-tex">\({{\tilde{\text{V}}}}_{1}^{+,-}\)</span> and <span class="mathjax-tex">\({{\tilde{\text{V}}}}_{2}^{+,-}\)</span> are the normalized input and output voltages, respectively. Thereafter, the transfer matrix of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig3">3</a>b can be calculated using the obtained scattering parameters<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 66" title="Collin, R. E. Foundations for Microwave Engineering. (Wiley, 2007)." href="/articles/s41598-022-09213-w#ref-CR66" id="ref-link-section-d121634187e2683">66</a></sup>:</p><div id="Equ14" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\left[\begin{array}{c}{\mathrm{V}}_{1}^{+}\\ {\mathrm{V}}_{1}^{-}\end{array}\right]=\mathbf{T}\left[\begin{array}{c}{\mathrm{V}}_{2}^{+}\\ {\mathrm{V}}_{2}^{-}\end{array}\right],$$</span></div><div class="c-article-equation__number"> (14) </div></div><p>where <span class="mathjax-tex">\(\mathbf{T}\)</span> is given by:</p><div id="Equ15" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathbf{T}=\frac{1}{{\mathrm{S}}_{21}}\left[\begin{array}{cc}1&amp; -{\mathrm{S}}_{22}\\ {\mathrm{S}}_{11}&amp; -\mathrm{Det}(\mathbf{S})\end{array}\right]=\left[\begin{array}{cc}{\mathrm{t}}_{11}&amp; {\mathrm{t}}_{12}\\ {\mathrm{t}}_{21}&amp; {\mathrm{t}}_{22}\end{array}\right].$$</span></div><div class="c-article-equation__number"> (15) </div></div><p>In this formula, the matrix elements are defined as:</p><div id="Equ16" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathrm{t}}_{11}=\frac{1}{2}\left(\sqrt{\frac{{Z}_{2}}{{Z}_{1}}}+\sqrt{\frac{{Z}_{1}}{{Z}_{2}}}\right) . {\mathrm{t}}_{12}=\frac{1}{2}\left(\sqrt{\frac{{Z}_{2}}{{Z}_{1}}}-\sqrt{\frac{{Z}_{1}}{{Z}_{2}}}\right).$$</span></div><div class="c-article-equation__number"> (16) </div></div><p>Now, there are all the factors to calculate the total transfer matrix of the equivalent circuit of the initial structure. This transfer function can be given by:</p><div id="Equ17" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathbf{T}={\mathbf{T}}_{1}\left({l}_{1}\right){\mathbf{T}}_{\mathrm{jun}\_1}{\mathbf{T}}_{2}\left({l}_{2}\right){\mathbf{T}}_{\mathrm{jun}\_2}{\mathbf{T}}_{1}\left({l}_{1}\right).$$</span></div><div class="c-article-equation__number"> (17) </div></div><p>Here, the transfer matrixes of <span class="mathjax-tex">\({\mathbf{T}}_{j}\left({l}_{j}\right)\)</span> and <span class="mathjax-tex">\({\mathbf{T}}_{jun\_j}\)</span> are defined as:</p><div id="Equ18" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathbf{T}}_{j}\left({l}_{j}\right)=\left[\begin{array}{cc}{\mathrm{e}}^{-i{\beta }_{j}{l}_{j}}&amp; 0\\ 0&amp; {\mathrm{e}}^{i{\beta }_{j}{l}_{j}}\end{array}\right]; j=1, 2,$$</span></div><div class="c-article-equation__number"> (18) </div></div><div id="Equ19" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${\mathbf{T}}_{jun\_j}=\left[\begin{array}{cc}{\mathrm{t}}_{j}^{+}&amp; {\mathrm{t}}_{j}^{-}\\ {\mathrm{t}}_{j}^{-}&amp; {\mathrm{t}}_{j}^{+}\end{array}\right] , {\mathrm{t}}_{j}^{\pm }=\frac{\sqrt{\frac{{\mathrm{Z}}_{\mathrm{s}(\mathrm{i}+1)}}{{\mathrm{Z}}_{\mathrm{si}}}}\pm \sqrt{\frac{{\mathrm{Z}}_{\mathrm{si}}}{{\mathrm{Z}}_{\mathrm{s}(\mathrm{i}+1)}}}}{2}; j=1, 2.$$</span></div><div class="c-article-equation__number"> (19) </div></div><p>Finally, the transfer function can be calculated by realizing the total transfer matrix (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ20">20</a>):</p><div id="Equ20" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{T}={\left|\frac{{\mathrm{V}}_{2}^{+}}{{\mathrm{V}}_{1}^{+}}\right|}^{2}.$$</span></div><div class="c-article-equation__number"> (20) </div></div><p>After presenting the analytical model, the transmission spectrum of the initial structure is obtained using this method and compared with the FDTD method. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig4">4</a> shows these transmission spectra. As seen in this figure, good agreement can generally be shown between two methods. It is worth mentioning that there is a reason why these two curves do not match completely. This small amount of error stems from the fact that the approximated formula is used for the calculation of n<sub>eff</sub> (Eq. <a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ6">6</a>).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Figure 4"><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 4</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig4_HTML.png?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig4_HTML.png" alt="figure 4" loading="lazy" width="685" height="299"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Transmission spectra of the initial structure using FDTD simulations and TLM.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Design of the proposed biosensor I"><div class="c-article-section" id="Sec3-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec3">Design of the proposed biosensor I</h2><div class="c-article-section__content" id="Sec3-content"><p>The initial structure of the proposed biosensors is presented in the previous section. The main problems of this structure are its multimode spectrum and low Q-factor modes. Accordingly, such a structure is not suitable for a sensor structure and it should be improved. In this section, the periodic GaAs (Palik model) insulator layers are inserted in the rectangular resonator to improve the initial structure. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig5">5</a>a shows this structure. In this figure, the values of the geometrical parameters of “a<sub>1</sub>” and “a<sub>2</sub>” are equal to 80 and 330 nm. It is worth mentioning that the geometrical parameter of “a” is the lattice constant of the structure and it is equal to a = a<sub>1</sub> + a<sub>2</sub>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Figure 5"><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 5</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig5_HTML.png?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig5_HTML.png" alt="figure 5" loading="lazy" width="685" height="804"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>(<b>a</b>) 3D topology of the proposed biosensor I. (<b>b</b>) Its transmission and reflection spectra.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>According to Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig5">5</a>a, inserting the GaAs layers generates a 1D PC structure in the central part of the topology. Consequently, it can be expected that a PBG is generated in the transmission spectrum of this structure. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig5">5</a>b shows the transmission and reflection spectra of the proposed biosensor I. As seen, this figure proves the claim of the existence of a PBG. The wavelength range of this PBG is extended from 954 to 2074 nm with sharp edges. The maximum transmission values of the PBG edges are equal to 33.8% and 56.1%, respectively. Therefore, the edges of this PBG can be used for sensing applications.</p><p>We also intend to provide a view of the operation mechanism of the proposed structure of biosensor I by its field profile. The field profile of <span class="mathjax-tex">\(\left|{\mathrm{H}}_{\mathrm{z}}\right|\)</span> for this structure is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig6">6</a>. Figures <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig6">6</a>a–c show the field profile of the proposed biosensor I at the wavelengths of λ<sub>A</sub> = 954, λ<sub>B</sub> = 1500, and λ<sub>C</sub> = 2074 nm, respectively. As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig5">5</a>a,c the wavelengths of λ<sub>A</sub> and λ<sub>C</sub> (wavelengths of the PBG’s edges) have appeared in the structure and are transmitted to the output port. Also, the proposed structure does not transmit the wavelength of λ<sub>B</sub> which is located at the PBG region (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig6">6</a>b). It is because PCs can act as a perfect mirror and confine light in the PBG region.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Figure 6"><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 6</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig6_HTML.png?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig6_HTML.png" alt="figure 6" loading="lazy" width="685" height="893"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Field profile of <span class="mathjax-tex">\(\left|{H}_{z}\right|\)</span> for the proposed biosensor I at the wavelength of (<b>a</b>) λ<sub>A</sub>, (<b>b</b>) λ<sub>B</sub>, (<b>c</b>) λ<sub>C</sub>.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>After designing the proposed biosensor I, the sensor operation has been investigated. The transmission spectrum variation of this structure for a 0.01 change in the refractive index of the analyte (air in this case) is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig7">7</a>a. As seen, the transmission spectrum shifts to higher wavelengths by changing the refractive index of the analyte. Also, the zoomed views of the low and high PBG edges are shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig7">7</a>b,c, respectively. As seen in these figures, the wavelength shift of the low PBG is more than the high PBG. On the other hand, the sharpness of the low PBG edge is more the high PBG edge. It is also intended to design this structure for bio-optics applications whose wavelength is located at the NIR. As a result, the low PBG is more suitable for sensing applications.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-7" data-title="Figure 7"><figure><figcaption><b id="Fig7" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 7</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/7" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig7_HTML.png?as=webp"><img aria-describedby="Fig7" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig7_HTML.png" alt="figure 7" loading="lazy" width="685" height="618"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-7-desc"><p>Transmission spectra of the proposed biosensor I for n = 1 and n = 1.01 in different wavelength ranges.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/7" data-track-dest="link:Figure7 Full size image" aria-label="Full size image figure 7" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To provide a better view into the performance of the designed biosensor I, this structure is once again simulated for RI changes of 0.001. This case is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig8">8</a>a. As seen, the transmittance curve shifts for the refractive index change step of 0.001 are quite clear so that this variation can be enough for sensing. Also, a linear function is fitted on the data points, to quantify the relationship between the refractive index increasing and the resonance wavelength shifting (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig8">8</a>b). As seen in this figure, the slope value of this curve is a large value (equal to 718.6 nm/RIU). Since this value shows the sensitivity of the proposed sensor I, the proposed structure I is a high sensitive sensor. It should be noted that the sensitivity value can be calculated by<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 67" title="Islam, M. S. et al. Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. Opt. Commun. 426, 341–347 (2018)." href="/articles/s41598-022-09213-w#ref-CR67" id="ref-link-section-d121634187e4057">67</a></sup>:</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-8" data-title="Figure 8"><figure><figcaption><b id="Fig8" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 8</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/8" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig8_HTML.png?as=webp"><img aria-describedby="Fig8" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig8_HTML.png" alt="figure 8" loading="lazy" width="685" height="283"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-8-desc"><p>(<b>a</b>) Transmission spectra of the proposed biosensor I for refractive index changes from 1 to 1.005 in steps of 0.001. (<b>b</b>) Relationship between the wavelength of the PBG’s low edge and different values of the refractive index.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/8" data-track-dest="link:Figure8 Full size image" aria-label="Full size image figure 8" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><div id="Equ21" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$${S}_{\lambda }\left(\lambda \right)=\frac{\Delta \lambda }{\Delta n} \left(\frac{nm}{RIU}\right).$$</span></div><div class="c-article-equation__number"> (21) </div></div><p>Based on the perturbation theory which is discussed in Refs.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Khani, S. &amp; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)." href="/articles/s41598-022-09213-w#ref-CR22" id="ref-link-section-d121634187e4161">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e4164">42</a></sup>, two parameters can increase the sensitivity of sensors. One of them is a high portion of the resonance mode energy (σ) and the other one is a high quality factor (Q-factor) value. The portion of the resonance mode energy for the proposed biosensor I has been studied in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig6">6</a>a by showing its field profile. As a result, it is desirable to calculate the Q-factor of the proposed structure. The Q-factor can be calculated by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ22">22</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 68" title="Lu, H., Gan, X., Mao, D., Jia, B. &amp; Zhao, J. Flexibly tunable high-quality-factor induced transparency in plasmonic systems. Sci. Rep. 8, 1–9 (2018)." href="/articles/s41598-022-09213-w#ref-CR68" id="ref-link-section-d121634187e4174">68</a></sup>:</p><div id="Equ22" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$Q=\frac{{\lambda }_{res}}{\Gamma },$$</span></div><div class="c-article-equation__number"> (22) </div></div><p>where <span class="mathjax-tex">\({\uplambda }_{\mathrm{res}}\)</span> is the resonance wavelength and <span class="mathjax-tex">\(\Gamma\)</span> is the resonance bandwidth. For the resonance wavelength of the low PBG edge in the proposed biosensor I, the calculated Q-factor is equal to 207.4. The most comprehensive parameter that can be used for the comparison of the sensors’ operations is the figure of merit (FOM). It is because both factors of σ and Q-factor have been considered in this parameter. The FOM parameter can be calculated by Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ23">23</a>)<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e4267">42</a></sup>:</p><div id="Equ23" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\mathrm{FOM}=\frac{{\mathrm{S}}_{\uplambda }\left(\uplambda \right)}{\Gamma } \left({\mathrm{RIU}}^{-1}\right).$$</span></div><div class="c-article-equation__number"> (23) </div></div><p>Base on Eq. (<a data-track="click" data-track-label="link" data-track-action="equation anchor" href="/articles/s41598-022-09213-w#Equ23">23</a>), the calculated FOM value for the proposed biosensor I is 156.217 RIU<sup>−1</sup>.</p><p>After studying the sensing operation of biosensor I, some important issues such as the incident angle of the source light and the plasmonic effect on the sensor’s operation have been investigated. As shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig2">2</a>a (the initial structure), the incoming TM-polarized light irradiates one side of the sensor structure at an incidence angle θ = 0 degrees. In this part, we intend to investigate the effect of changing the incidence angle on the sensor’s performance. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig9">9</a>a shows the transmission spectra of the proposed biosensor I for different values of incident angle of the light source. As seen in this figure, by deviating the incident angle from zero degrees, the PBG region shifts to higher wavelengths. Also, this change reduces the transmittance value of the low PBG edge and the sensitivity value of the proposed sensor structure. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig9">9</a>b,c show these cases. Accordingly, the best choice for the incident angle is θ = 0 degrees.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-9" data-title="Figure 9"><figure><figcaption><b id="Fig9" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 9</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/9" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig9_HTML.png?as=webp"><img aria-describedby="Fig9" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig9_HTML.png" alt="figure 9" loading="lazy" width="685" height="607"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-9-desc"><p>(<b>a</b>) Transmission spectra of the proposed biosensor I for different incident angles. (<b>b</b>) Relationship between the maximum transmission value of the low PBG edge and different values of the incident angle. (<b>c</b>) Relationship between the sensitivity value and different values of the incident angle.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/9" data-track-dest="link:Figure9 Full size image" aria-label="Full size image figure 9" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>In order to investigate the plasmonic effect on the PBG and sensitivity of the proposed structure, the behavior of the PC structure without the plasmonic section has been investigated and compared to the proposed sensor structure. The 1D PC structure used in this paper is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig10">10</a>a. The geometrical parameters of this topology have been already explained. In Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig10">10</a>b, the transmission spectrum of the 1D PC structure obtained using the FDTD method has been compared to the transmission spectrum of the total proposed sensor topology. As seen in this figure, the plasmonic structure causes the PBG to shift to higher wavelengths with higher transmission values at its PBG’s edges which are more desirable.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-10" data-title="Figure 10"><figure><figcaption><b id="Fig10" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 10</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/10" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig10_HTML.png?as=webp"><img aria-describedby="Fig10" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig10_HTML.png" alt="figure 10" loading="lazy" width="685" height="890"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-10-desc"><p>(<b>a</b>) 3D topology of the used PC structure in the proposed biosensor I. (<b>b</b>) Transmission spectra of the PC structure and biosensor I. (<b>c</b>,<b>d</b>) Transmission spectra of the proposed biosensor I for n = 1 and n = 1.01 in different wavelength ranges.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/10" data-track-dest="link:Figure10 Full size image" aria-label="Full size image figure 10" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>By changing the refractive index of air layers from 1 to 1.01, the shift of its transmittance curve has also been investigated. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig10">10</a>c,d show this case. As can be seen, the shift of the low PBG edge is equal to 6.1 nm. Based on the obtained results, the sensitivity value for the 1D PC is equal to 610 nm/RIU. Based on the obtained results, it can be concluded that the plasmonic structure also increases the sensitivity value of the proposed sensor. Accordingly, adding a plasmonic structure improves the sensing performance of the proposed structure.</p></div></div></section><section data-title="Design of the proposed biosensor II"><div class="c-article-section" id="Sec4-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec4">Design of the proposed biosensor II</h2><div class="c-article-section__content" id="Sec4-content"><p>To achieve higher transmittance values in the PBG’s edges, tapered resonators are added to the proposed biosensor I. The topology of the proposed biosensor II is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig11">11</a>a. The value of the geometrical parameter of “d” is equal to 265 nm. Other parameters have been already explained. The transmission spectrum of the proposed biosensor II is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig11">11</a>b and it is also compared with the transmission spectrum of the biosensor I. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig11">11</a>b shows that the transmittance value in the low edge of the PBG (952.4 nm) increases (from 33.8 to 60.6%). Increasing the transmittance value in this PBG edge provides a biosensor with more transmittance value. It is because of the more coupling strength between MIM plasmonic waveguides and the central PC structure in this topology. As known, there is a trade-off between designing parameters of sensor structures. Increasing the coupling effect between MIM plasmonic waveguides and PC leads to slower sharpness in transition from the maximum transmittance to the minimum transmittance. Accordingly, it can be caused that the sensitivity of biosensor II is slightly lower than the sensitivity of biosensor I.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-11" data-title="Figure 11"><figure><figcaption><b id="Fig11" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 11</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/11" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig11_HTML.png?as=webp"><img aria-describedby="Fig11" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig11_HTML.png" alt="figure 11" loading="lazy" width="685" height="793"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-11-desc"><p>(<b>a</b>) 3D topology of the proposed biosensor II. (<b>b</b>) Transmission spectra of the proposed biosensor I and biosensor II.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/11" data-track-dest="link:Figure11 Full size image" aria-label="Full size image figure 11" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Due to the appropriate view of the magnitude of H<sub>z</sub>, the field profile of <span class="mathjax-tex">\(\left|{\mathrm{H}}_{\mathrm{z}}\right|\)</span> for the proposed biosensor II has also been investigated. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig12">12</a> shows this case. As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig12">12</a>a,c, the incident light at the wavelengths of the PBG’s edges (λ<sub>A'</sub> = 952.4 and λ<sub>C'</sub> = 2074 nm) can pass through the structure. Also, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig12">12</a>b shows the field profile of <span class="mathjax-tex">\(\left|{\mathrm{H}}_{\mathrm{z}}\right|\)</span> for λ<sub>B'</sub> = 1500 nm, which cannot be transmitted to the output port. It is because this wavelength is located at the PBG region.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-12" data-title="Figure 12"><figure><figcaption><b id="Fig12" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 12</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/12" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig12_HTML.png?as=webp"><img aria-describedby="Fig12" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig12_HTML.png" alt="figure 12" loading="lazy" width="685" height="988"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-12-desc"><p>Field profile of <span class="mathjax-tex">\(\left|{H}_{z}\right|\)</span> for the proposed biosensor II at the wavelength of (<b>a</b>) λ<sub>A'</sub>, (<b>b</b>) λ<sub>B'</sub>, (<b>c</b>) λ<sub>C'</sub>.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/12" data-track-dest="link:Figure12 Full size image" aria-label="Full size image figure 12" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To verify the operation mechanism of the proposed biosensor II, the shift of its transmittance curve has also been investigated by changing the refractive index of the analyte from 1 to 1.01. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig13">13</a>a shows this change in the transmittance curve of biosensor II. As expected, a high-frequency shift occurs in the low PBG’s edge, while the high PBG’s edge experiences a little frequency shift. The zoomed view of the low PBG's edge is shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig13">13</a>b. As seen in this figure, the shift of the low PBG’s edge is equal to 7.143 nm. It is worth mentioning that the obtained sensitivity, Q-factor, and FOM values for the proposed biosensor II are 714.3 nm/RIU<sup>−1</sup>, 80.16, and 60.1 RIU<sup>−1</sup>, respectively.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-13" data-title="Figure 13"><figure><figcaption><b id="Fig13" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 13</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/13" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig13_HTML.png?as=webp"><img aria-describedby="Fig13" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig13_HTML.png" alt="figure 13" loading="lazy" width="685" height="263"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-13-desc"><p>Transmission spectra of the proposed biosensor II for n = 1 and n = 1.01 in different wavelength ranges.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/13" data-track-dest="link:Figure13 Full size image" aria-label="Full size image figure 13" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>Similar to the previous sensor structure (biosensor I), the shift of the transmittance curve for biosensor II is considered by changing the refractive index of its analyte from 1 to 1.01 in steps of 0.001. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig14">14</a>a shows these changes. The relationship between the refractive index increasing and the resonance wavelength shifting is also shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig14">14</a>b. The fitted linear function on the data points of this figure shows that the slope of this curve is lower than the previous case (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig8">8</a>b). This difference is not too much.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-14" data-title="Figure 14"><figure><figcaption><b id="Fig14" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 14</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/14" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig14_HTML.png?as=webp"><img aria-describedby="Fig14" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig14_HTML.png" alt="figure 14" loading="lazy" width="685" height="286"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-14-desc"><p>(<b>a</b>) Transmission spectra of the proposed biosensor II for refractive index changes from 1 to 1.005 in steps of 0.001. (<b>b</b>) Relationship between the wavelength of the PBG’s low edge and different values of the refractive index.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/14" data-track-dest="link:Figure14 Full size image" aria-label="Full size image figure 14" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>To investigate the effect of some geometrical parameters of the proposed biosensor II on its transmission spectrum, the “a<sub>1</sub>”, “W<sub>2</sub>”, “number of the GaAs layers (N)”, and “d” parameters have been swept. The first three parameters are related to the 1D PC structure, and the last parameter is related to tapered resonators. As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig15">15</a>a, by increasing the “a<sub>1</sub>” value from 78 to 82 nm, the low PBG edge shifts to higher wavelengths. Consequently, by changing the geometrical parameter of “a<sub>1</sub>”, the wavelength of the low PBG edge can be tuned. The transmission spectra of the proposed biosensor II as a function of W<sub>2</sub> are also shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig15">15</a>b. As seen in this figure, increasing W<sub>2</sub> corresponds to a lower sensing wavelength (the wavelength of the low PBG edge). Thereafter, the number of the GaAs layers is changed from 7 to 11 layers (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig15">15</a>c). It can be seen that increasing “N” shifts the low PBG edge to higher wavelengths. Also, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig15">15</a>d shows the transmission spectra of biosensor II for different values of “d”. As seen in this figure, when the value of “d” is increased, the location of the low PBG edge is almost constant.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-15" data-title="Figure 15"><figure><figcaption><b id="Fig15" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 15</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/15" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig15_HTML.png?as=webp"><img aria-describedby="Fig15" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig15_HTML.png" alt="figure 15" loading="lazy" width="685" height="535"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-15-desc"><p>Transmission spectra of the proposed biosensor II for different values of (<b>a</b>) a<sub>1</sub>, (<b>b</b>) W<sub>2</sub>, (<b>c</b>) N, and (<b>d</b>) d.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/15" data-track-dest="link:Figure15 Full size image" aria-label="Full size image figure 15" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>At the next step, the important characteristic values of the biosensor II (transmittance value of the low PBG edge and FOM) for different values of “a<sub>1</sub>”, “W<sub>2</sub>”, “N”, and “d” have also been investigated to provide a better view of how such geometrical parameters changes affect the operation of the biosensor II. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a> shows these changes. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a>a,e show that by increasing the “a<sub>1</sub>” value, the transmittance value increases initially and then decreases, and the FOM value is almost constant from a<sub>1</sub> = 78 to 80 nm and then decreases. Accordingly, the value of 80 nm (with the highest transmittance value and a relatively high FOM value) is the best choice. Another parameter whose variation has been investigated is the “W<sub>2</sub>” parameter (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a>b,f). As seen, increasing the “W<sub>2</sub>” value corresponds to higher transmittance and FOM values. On the other hand, the total size of the biosensor II increases by increasing the “W<sub>2</sub>” value. It should be that there is a trade-off between designing parameters of a sensor structure. Consequently, the medium value of 250 nm has been selected for the “W<sub>2</sub>” parameter.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-16" data-title="Figure 16"><figure><figcaption><b id="Fig16" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 16</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/16" rel="nofollow"><picture><img aria-describedby="Fig16" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig16_HTML.png" alt="figure 16" loading="lazy" width="685" height="443"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-16-desc"><p>Relationship between the maximum transmission value of the low PBG edge and different values of (<b>a</b>) a<sub>1</sub>, (<b>b</b>) W<sub>2</sub>, (<b>c</b>) N, and (<b>d</b>) d. Relationship between the FOM value of the proposed biosensor II and different values of (<b>e</b>) a<sub>1</sub>, (<b>f</b>) W<sub>2</sub>, (<b>g</b>) N, and (<b>h</b>) d.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/16" data-track-dest="link:Figure16 Full size image" aria-label="Full size image figure 16" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>The next parameter is the number of GaAs layers (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a>c,g). As seen, when the “N” parameter is increased, the transmittance and FOM values decrease and increase, respectively. Similar to the previous parameter (“W<sub>2</sub>” parameter), increasing “N” causes the total size of the biosensor II to increase. Accordingly, to create a trade-off between different design parameters, the value of N = 9 has been selected. Finally, the last parameter is “d” (Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a>d,h). As seen in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig16">16</a>d, by increasing “d”, the transmittance value increases initially and then decreases. The highest transmittance value occurs at d = 265 nm. On the other hand, such variations of the “d” parameter cause the FOM value to decrease initially and then increase. As discussed before, the purpose of adding tapered resonators is to increase the transmittance value. Because the proposed biosensor I has a high FOM value. Therefore, the value of 265 nm, which corresponds to the highest transmittance value, has been chosen to design the proposed biosensor II.</p></div></div></section><section data-title="Biosensors application"><div class="c-article-section" id="Sec5-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec5">Biosensors application</h2><div class="c-article-section__content" id="Sec5-content"><p>After reviewing the performance of the designed sensor structures using air as the insulator material of the analyte, their behavior is also investigated for a special application. One of the attractive subjects in bio-optics is measuring the tissues’ refractive index. In this section, it is shown that the proposed structures can be used for the detection of basal cell cancer. It is because the used wavelengths of the proposed sensors (the PBGs’ low edges) are located at the NIR. On the other hand, in Ref.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="Mishchenko, M. I. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, SPIE Press, Bellingham, WA (2007) Hardbound, ISBN 0-8194-6433-3, xl+ 841 pp. J. Quant. Spectrosc. Radiat. Transf. 110, 528 (2009)." href="/articles/s41598-022-09213-w#ref-CR69" id="ref-link-section-d121634187e4841">69</a></sup>, the refractive index of human cells has been comprehensively measured and reported at this frequency range. The human skin tissue can be modeled using a mixture of water and organic compounds. Because this tissue is composed of approximately 70% water and 30% protein<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 69" title="Mishchenko, M. I. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, SPIE Press, Bellingham, WA (2007) Hardbound, ISBN 0-8194-6433-3, xl+ 841 pp. J. Quant. Spectrosc. Radiat. Transf. 110, 528 (2009)." href="/articles/s41598-022-09213-w#ref-CR69" id="ref-link-section-d121634187e4845">69</a></sup>. The refractive indices of different sections of a cell for NIR are estimated as follows: cytoplasm: 1.36–1.375, extracellular fluid: 1.35–1.36, nucleus: 1.38–1.41, and melanin: 1.6–1.7. Since cancerous cells have more protein in their cytoplasm, they have a higher refractive index value<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="Yaroslavsky, A. N. et al. High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644–646 (2012)." href="/articles/s41598-022-09213-w#ref-CR70" id="ref-link-section-d121634187e4849">70</a></sup>. The refractive indices of the cytoplasm for normal and cancerous basal cells are equal to 1.36 and 1.38, respectively<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 70" title="Yaroslavsky, A. N. et al. High-contrast mapping of basal cell carcinomas. Opt. Lett. 37, 644–646 (2012)." href="/articles/s41598-022-09213-w#ref-CR70" id="ref-link-section-d121634187e4853">70</a></sup>. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="/articles/s41598-022-09213-w#Fig17">17</a> shows the transmission spectra of the proposed biosensors for these refractive indices (refractive indices of normal and cancerous cells). As seen in this figure, the wavelengths of low PBGs’ edges are steel located at the NIR for the refractive indices of normal and cancerous cells. Consequently, the proposed structures can be easily used for the detection of basal cell cancer. Also, enough contrast between normal and cancerous cells in both cases causes the proposed sensors can be good candidates for this application.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-17" data-title="Figure 17"><figure><figcaption><b id="Fig17" class="c-article-section__figure-caption" data-test="figure-caption-text">Figure 17</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/17" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig17_HTML.png?as=webp"><img aria-describedby="Fig17" src="//media.springernature.com/lw685/springer-static/image/art%3A10.1038%2Fs41598-022-09213-w/MediaObjects/41598_2022_9213_Fig17_HTML.png" alt="figure 17" loading="lazy" width="685" height="494"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-17-desc"><p>(<b>a</b>,<b>b</b>) Transmission spectra of the proposed biosensor I for normal (n = 1.36) and cancerous (n = 1.38) cells in different wavelength ranges. (<b>c</b>,<b>d</b>) Transmission spectra of the proposed biosensor II for normal (n = 1.36) and cancerous (n = 1.38) cells in different wavelength ranges.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="article-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/articles/s41598-022-09213-w/figures/17" data-track-dest="link:Figure17 Full size image" aria-label="Full size image figure 17" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div></div></div></section><section data-title="Discussions and comparisons"><div class="c-article-section" id="Sec6-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec6">Discussions and comparisons</h2><div class="c-article-section__content" id="Sec6-content"><p>As mentioned before, the FDTD method has been used to design the proposed structures. Also, the fabrication procedure of the proposed structures is similar to what is discussed in Ref.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 71" title="Aparna, U., Mruthyunjaya, H. &amp; Kumar, M. S. Plasmonic wavelength demultiplexer with mode conversion capabilities. Plasmonics 13, 511–517 (2018)." href="/articles/s41598-022-09213-w#ref-CR71" id="ref-link-section-d121634187e4900">71</a></sup>. It is worth mentioning that there are some potential challenges in their fabrication process. The first one is the efficient coupling of light to the plasmonic waveguides. Using gratings or the Kretschmann prism configurations is usually suggested for this challenge. The tarnishing of silver which changes its refractive index is the second challenge. Accordingly, the fabrication procedure should be performed in a chamber emptied from air.</p><p>To provide a better view of the obtained results, the proposed biosensors have been compared with other reported works in recent years. Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="/articles/s41598-022-09213-w#Tab1">1</a> shows some main characteristics of sensors for comparison. In this table, the year of the papers’ publication, the topology type of the sensors, the spectrum type of their transmission spectra, sensing wavelengths (<span class="mathjax-tex">\({\lambda }_{r}\)</span>), the Q-factor, sensitivity, and FOM have been compared.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1 Performance comparisons between the proposed sensors and other works.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/articles/s41598-022-09213-w/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div><p>As seen in this table, the topology type of some published works is plasmonic structure<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Khani, S. &amp; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)." href="/articles/s41598-022-09213-w#ref-CR22" id="ref-link-section-d121634187e5544">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A. &amp; Yasrebi, N. Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16, 1–9 (2021)." href="/articles/s41598-022-09213-w#ref-CR23" id="ref-link-section-d121634187e5547">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e5550">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Rakhshani, M. R. Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct. Fundam. Appl. 43, 100883 (2021)." href="/articles/s41598-022-09213-w#ref-CR44" id="ref-link-section-d121634187e5553">44</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Su, C. &amp; Zhu, J. Novel SPR sensor based on MIM-based waveguide and an asymmetric cross-shaped resonator. Plasmonics 16, 769–775 (2021)." href="#ref-CR72" id="ref-link-section-d121634187e5556">72</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Danaie, M. &amp; Shahzadi, A. Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453–1465 (2019)." href="#ref-CR73" id="ref-link-section-d121634187e5556_1">73</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Wu, C. et al. Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13, 251–257 (2018)." href="/articles/s41598-022-09213-w#ref-CR74" id="ref-link-section-d121634187e5559">74</a></sup> and the topology type of some others is PC<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Danaie, M. &amp; Kiani, B. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct. Fundam. Appl. 31, 89–98 (2018)." href="/articles/s41598-022-09213-w#ref-CR75" id="ref-link-section-d121634187e5563">75</a></sup>. As discussed before, each of these topologies has some advantages and some disadvantages. In this paper, in order to benefit from the advantages of both topologies, the combination of them has been used. Another comparison parameter is the spectrum type of the transmission spectra. As seen, most of them have a Lorentzian spectrum<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Khani, S. &amp; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct. 156, 106970 (2021)." href="/articles/s41598-022-09213-w#ref-CR22" id="ref-link-section-d121634187e5567">22</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A. &amp; Yasrebi, N. Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16, 1–9 (2021)." href="/articles/s41598-022-09213-w#ref-CR23" id="ref-link-section-d121634187e5570">23</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e5573">42</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 44" title="Rakhshani, M. R. Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. Photonics Nanostruct. Fundam. Appl. 43, 100883 (2021)." href="/articles/s41598-022-09213-w#ref-CR44" id="ref-link-section-d121634187e5576">44</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 73" title="Danaie, M. &amp; Shahzadi, A. Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14, 1453–1465 (2019)." href="/articles/s41598-022-09213-w#ref-CR73" id="ref-link-section-d121634187e5579">73</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 75" title="Danaie, M. &amp; Kiani, B. Design of a label-free photonic crystal refractive index sensor for biomedical applications. Photonics Nanostruct. Fundam. Appl. 31, 89–98 (2018)." href="/articles/s41598-022-09213-w#ref-CR75" id="ref-link-section-d121634187e5582">75</a></sup>. Although such a spectrum has some advantages such as symmetrical shape, it has some drawbacks for sensing applications. The first one is that their edges cannot be very sharp. It is because this issue may lead to fabrication errors in real experimental situations. On the other hand, most of these spectra are multi-mode, while using multi-mode spectra for designing sensors is not desirable. It is because these modes may interfere with each other by changing the refractive index of their analytes. Other types of spectra that have been used for sensing applications are Fano-resonance<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 72" title="Su, C. &amp; Zhu, J. Novel SPR sensor based on MIM-based waveguide and an asymmetric cross-shaped resonator. Plasmonics 16, 769–775 (2021)." href="/articles/s41598-022-09213-w#ref-CR72" id="ref-link-section-d121634187e5586">72</a></sup> and EIT-like resonance<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 74" title="Wu, C. et al. Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. Plasmonics 13, 251–257 (2018)." href="/articles/s41598-022-09213-w#ref-CR74" id="ref-link-section-d121634187e5590">74</a></sup>. In this paper, the PBG transmission spectrum, which is less common in other published works, is used for sensing applications. This type of spectrum has different advantages. First, the sharp edges of PBGs are good candidates for sensing. The second one is that there is a long distance between two PBG edges. This causes that when the low PBG is used for sensing, it does not have an overlapping with the high PBG edge by changing the refractive index of the analyte. For this reason, the proposed structure can be used for a wide wavelength range. The other parameter is the sensing wavelength. As seen, the sensing wavelengths of the proposed sensors are located in the NIR which are suitable to use for biosensing applications. The other parameter is Q-factor. As seen, the Q-factors of the proposed structures are neither very low nor very high. It is because the low Q-factor decreases the FOM and the high Q-factor increases the effect of lithography error in the fabrication process. The last parameters are sensitivity and FOM. As discussed before, the most comprehensive parameter for the comparison of sensors’ operation is the FOM parameter. For example, the sensor designed in Ref.<sup><a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 42" title="Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. Opt. Commun. 505, 127534 (2021)." href="/articles/s41598-022-09213-w#ref-CR42" id="ref-link-section-d121634187e5595">42</a></sup> has the most sensitivity in the comparison table, while its FOM value is low. As seen, the proposed biosensor I is among the highest FOM sensors.</p></div></div></section><section data-title="Conclusion"><div class="c-article-section" id="Sec7-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Sec7">Conclusion</h2><div class="c-article-section__content" id="Sec7-content"><p>In this paper, two novel biosensors based on a 1D PC and plasmonic structures were proposed. The combination of PC and plasmonic structures causes a suitable balance between different designing parameters can be obtained. The FDTD simulation has been used for numerical investigation of the designed structures. The obtained results show that the sensitivity values of 718.6 and 714.3 nm/RIU have been achieved for the designed biosensors I and II, respectively. The sharp PBG edges of the biosensors’ transmission spectra result in high sensitivity detections. The proposed structures could find potential for bio-optical sensing applications such as cancer cell detection.</p></div></div></section> </div> <div> <section data-title="Data availability"><div class="c-article-section" id="data-availability-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="data-availability">Data availability</h2><div class="c-article-section__content" id="data-availability-content"> <p>The calculated results during the current study are available from the corresponding author on reasonable request.</p> </div></div></section><div id="MagazineFulltextArticleBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="Bib1">References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">Abbasi, H., Hayati, M., Kazimierczuk, M. K. &amp; Sekiya, H. Design of class-E M amplifier with consideration of parasitic non-linear capacitances and on-state resistance. <i>IET Power Electron.</i> <b>13</b>, 3065–3071 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1049/iet-pel.2020.0253" data-track-item_id="10.1049/iet-pel.2020.0253" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1049%2Fiet-pel.2020.0253" aria-label="Article reference 1" data-doi="10.1049/iet-pel.2020.0253">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 1" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20of%20class-E%20M%20amplifier%20with%20consideration%20of%20parasitic%20non-linear%20capacitances%20and%20on-state%20resistance&amp;journal=IET%20Power%20Electron.&amp;doi=10.1049%2Fiet-pel.2020.0253&amp;volume=13&amp;pages=3065-3071&amp;publication_year=2020&amp;author=Abbasi%2CH&amp;author=Hayati%2CM&amp;author=Kazimierczuk%2CMK&amp;author=Sekiya%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Foo, C. Y., Lim, H. N., Mahdi, M. A., Wahid, M. H. &amp; Huang, N. M. Three-dimensional printed electrode and its novel applications in electronic devices. <i>Sci. Rep.</i> <b>8</b>, 1–11 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-018-25861-3" data-track-item_id="10.1038/s41598-018-25861-3" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-018-25861-3" aria-label="Article reference 2" data-doi="10.1038/s41598-018-25861-3">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 2" href="http://scholar.google.com/scholar_lookup?&amp;title=Three-dimensional%20printed%20electrode%20and%20its%20novel%20applications%20in%20electronic%20devices&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-018-25861-3&amp;volume=8&amp;pages=1-11&amp;publication_year=2018&amp;author=Foo%2CCY&amp;author=Lim%2CHN&amp;author=Mahdi%2CMA&amp;author=Wahid%2CMH&amp;author=Huang%2CNM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Farmani, A., Mir, A. &amp; Irannejad, M. 2D-FDTD simulation of ultra-compact multifunctional logic gates with nonlinear photonic crystal. <i>JOSA B</i> <b>36</b>, 811–818 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/JOSAB.36.000811" data-track-item_id="10.1364/JOSAB.36.000811" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FJOSAB.36.000811" aria-label="Article reference 3" data-doi="10.1364/JOSAB.36.000811">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2019JOSAB..36..811F" aria-label="ADS reference 3">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXkslKnur8%3D" aria-label="CAS reference 3">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 3" href="http://scholar.google.com/scholar_lookup?&amp;title=2D-FDTD%20simulation%20of%20ultra-compact%20multifunctional%20logic%20gates%20with%20nonlinear%20photonic%20crystal&amp;journal=JOSA%20B&amp;doi=10.1364%2FJOSAB.36.000811&amp;volume=36&amp;pages=811-818&amp;publication_year=2019&amp;author=Farmani%2CA&amp;author=Mir%2CA&amp;author=Irannejad%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Zaky, Z. A., Ahmed, A. M., Shalaby, A. S. &amp; Aly, A. H. Refractive index gas sensor based on the Tamm state in a one-dimensional photonic crystal: Theoretical optimisation. <i>Sci. Rep.</i> <b>10</b>, 1–9 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-66427-6" data-track-item_id="10.1038/s41598-020-66427-6" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-66427-6" aria-label="Article reference 4" data-doi="10.1038/s41598-020-66427-6">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 4" href="http://scholar.google.com/scholar_lookup?&amp;title=Refractive%20index%20gas%20sensor%20based%20on%20the%20Tamm%20state%20in%20a%20one-dimensional%20photonic%20crystal%3A%20Theoretical%20optimisation&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-020-66427-6&amp;volume=10&amp;pages=1-9&amp;publication_year=2020&amp;author=Zaky%2CZA&amp;author=Ahmed%2CAM&amp;author=Shalaby%2CAS&amp;author=Aly%2CAH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Khani, S., Danaie, M. &amp; Rezaei, P. Hybrid all-optical infrared metal-insulator-metal plasmonic switch incorporating photonic crystal bandgap structures. <i>Photonics Nanostruct. Fundam. Appl.</i> <b>40</b>, 100802 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.photonics.2020.100802" data-track-item_id="10.1016/j.photonics.2020.100802" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.photonics.2020.100802" aria-label="Article reference 5" data-doi="10.1016/j.photonics.2020.100802">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="http://scholar.google.com/scholar_lookup?&amp;title=Hybrid%20all-optical%20infrared%20metal-insulator-metal%20plasmonic%20switch%20incorporating%20photonic%20crystal%20bandgap%20structures&amp;journal=Photonics%20Nanostruct.%20Fundam.%20Appl.&amp;doi=10.1016%2Fj.photonics.2020.100802&amp;volume=40&amp;publication_year=2020&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Joannopoulos, J. D., Villeneuve, P. R. &amp; Fan, S. Photonic crystals: Putting a new twist on light. <i>Nature</i> <b>386</b>, 143–149 (1997).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/386143a0" data-track-item_id="10.1038/386143a0" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2F386143a0" aria-label="Article reference 6" data-doi="10.1038/386143a0">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=1997Natur.386..143J" aria-label="ADS reference 6">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DyaK2sXhvFSls7o%3D" aria-label="CAS reference 6">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 6" href="http://scholar.google.com/scholar_lookup?&amp;title=Photonic%20crystals%3A%20Putting%20a%20new%20twist%20on%20light&amp;journal=Nature&amp;doi=10.1038%2F386143a0&amp;volume=386&amp;pages=143-149&amp;publication_year=1997&amp;author=Joannopoulos%2CJD&amp;author=Villeneuve%2CPR&amp;author=Fan%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Aly, A. H., Zaky, Z. A., Shalaby, A. S., Ahmed, A. M. &amp; Vigneswaran, D. Theoretical study of hybrid multifunctional one-dimensional photonic crystal as a flexible blood sugar sensor. <i>Phys. Scr.</i> <b>95</b>, 035510 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1088/1402-4896/ab53f5" data-track-item_id="10.1088/1402-4896/ab53f5" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1088%2F1402-4896%2Fab53f5" aria-label="Article reference 7" data-doi="10.1088/1402-4896/ab53f5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvVyjsbvP" aria-label="CAS reference 7">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 7" href="http://scholar.google.com/scholar_lookup?&amp;title=Theoretical%20study%20of%20hybrid%20multifunctional%20one-dimensional%20photonic%20crystal%20as%20a%20flexible%20blood%20sugar%20sensor&amp;journal=Phys.%20Scr.&amp;doi=10.1088%2F1402-4896%2Fab53f5&amp;volume=95&amp;publication_year=2020&amp;author=Aly%2CAH&amp;author=Zaky%2CZA&amp;author=Shalaby%2CAS&amp;author=Ahmed%2CAM&amp;author=Vigneswaran%2CD"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Yan, H. <i>et al.</i> One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. <i>Opt. Lett.</i> <b>41</b>, 5466–5469 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OL.41.005466" data-track-item_id="10.1364/OL.41.005466" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOL.41.005466" aria-label="Article reference 8" data-doi="10.1364/OL.41.005466">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2016OptL...41.5466Y" aria-label="ADS reference 8">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXisVKgtL3O" aria-label="CAS reference 8">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=27906214" aria-label="PubMed reference 8">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 8" href="http://scholar.google.com/scholar_lookup?&amp;title=One-dimensional%20photonic%20crystal%20slot%20waveguide%20for%20silicon-organic%20hybrid%20electro-optic%20modulators&amp;journal=Opt.%20Lett.&amp;doi=10.1364%2FOL.41.005466&amp;volume=41&amp;pages=5466-5469&amp;publication_year=2016&amp;author=Yan%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Khani, S., Danaie, M. &amp; Rezaei, P. Plasmonic all-optical metal–insulator–metal switches based on silver nano-rods, comprehensive theoretical analysis and design guidelines. <i>J. Comput. Electron.</i> <b>20</b>, 442–457 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s10825-020-01638-8" data-track-item_id="10.1007/s10825-020-01638-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s10825-020-01638-8" aria-label="Article reference 9" data-doi="10.1007/s10825-020-01638-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXks12jug%3D%3D" aria-label="CAS reference 9">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 9" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmonic%20all-optical%20metal%E2%80%93insulator%E2%80%93metal%20switches%20based%20on%20silver%20nano-rods%2C%20comprehensive%20theoretical%20analysis%20and%20design%20guidelines&amp;journal=J.%20Comput.%20Electron.&amp;doi=10.1007%2Fs10825-020-01638-8&amp;volume=20&amp;pages=442-457&amp;publication_year=2021&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Neutens, P., Van Dorpe, P., De Vlaminck, I., Lagae, L. &amp; Borghs, G. Electrical detection of confined gap plasmons in metal–insulator–metal waveguides. <i>Nat. Photonics</i> <b>3</b>, 283–286 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nphoton.2009.47" data-track-item_id="10.1038/nphoton.2009.47" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnphoton.2009.47" aria-label="Article reference 10" data-doi="10.1038/nphoton.2009.47">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2009NaPho...3..283N" aria-label="ADS reference 10">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXlt1Smu7s%3D" aria-label="CAS reference 10">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 10" href="http://scholar.google.com/scholar_lookup?&amp;title=Electrical%20detection%20of%20confined%20gap%20plasmons%20in%20metal%E2%80%93insulator%E2%80%93metal%20waveguides&amp;journal=Nat.%20Photonics&amp;doi=10.1038%2Fnphoton.2009.47&amp;volume=3&amp;pages=283-286&amp;publication_year=2009&amp;author=Neutens%2CP&amp;author=Dorpe%2CP&amp;author=Vlaminck%2CI&amp;author=Lagae%2CL&amp;author=Borghs%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Genet, C. &amp; Ebbesen, T. W. Light in tiny holes. <i>Nanosci. Technol. Collect. Rev. Nat. J.</i> 205–212. <a href="https://doi.org/10.1142/9789814287005_0021" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1142/9789814287005_0021">https://doi.org/10.1142/9789814287005_0021</a> (2010).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Kiani, S., Rezaei, P. &amp; Fakhr, M. An overview of interdigitated microwave resonance sensors for liquid samples permittivity detection. <i>Interdigit. Sens. Prog. Last Two Decades</i>. 153–197. <a href="https://doi.org/10.1007/978-3-030-62684-6_7" data-track="click_references" data-track-action="external reference" data-track-value="external reference" data-track-label="10.1007/978-3-030-62684-6_7">https://doi.org/10.1007/978-3-030-62684-6_7</a> (2021).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Kiani, S., Rezaei, P., Karami, M. &amp; Sadeghzadeh, R. Substrate integrated waveguide quasi-elliptic bandpass filter with parallel coupled microstrip resonator. <i>Electron. Lett.</i> <b>54</b>, 667–668 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1049/el.2018.0170" data-track-item_id="10.1049/el.2018.0170" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1049%2Fel.2018.0170" aria-label="Article reference 13" data-doi="10.1049/el.2018.0170">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018ElL....54..667K" aria-label="ADS reference 13">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 13" href="http://scholar.google.com/scholar_lookup?&amp;title=Substrate%20integrated%20waveguide%20quasi-elliptic%20bandpass%20filter%20with%20parallel%20coupled%20microstrip%20resonator&amp;journal=Electron.%20Lett.&amp;doi=10.1049%2Fel.2018.0170&amp;volume=54&amp;pages=667-668&amp;publication_year=2018&amp;author=Kiani%2CS&amp;author=Rezaei%2CP&amp;author=Karami%2CM&amp;author=Sadeghzadeh%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Muhammed Shafi, K. T., Ansari, M. A. H., Jha, A. K. &amp; Akhtar, M. J. Design of SRR-based microwave sensor for characterization of magnetodielectric substrates. <i>IEEE Microw. Wirel. Compon. Lett.</i> <b>27</b>, 524–526 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/LMWC.2017.2690873" data-track-item_id="10.1109/LMWC.2017.2690873" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FLMWC.2017.2690873" aria-label="Article reference 14" data-doi="10.1109/LMWC.2017.2690873">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 14" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20of%20SRR-based%20microwave%20sensor%20for%20characterization%20of%20magnetodielectric%20substrates&amp;journal=IEEE%20Microw.%20Wirel.%20Compon.%20Lett.&amp;doi=10.1109%2FLMWC.2017.2690873&amp;volume=27&amp;pages=524-526&amp;publication_year=2017&amp;author=Muhammed%20Shafi%2CKT&amp;author=Ansari%2CMAH&amp;author=Jha%2CAK&amp;author=Akhtar%2CMJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Khani, S. &amp; Hayati, M. Compact microstrip lowpass filter with wide stopband and sharp roll-off. <i>Microw. J.</i> <b>60</b>, 86–92 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="http://scholar.google.com/scholar_lookup?&amp;title=Compact%20microstrip%20lowpass%20filter%20with%20wide%20stopband%20and%20sharp%20roll-off&amp;journal=Microw.%20J.&amp;volume=60&amp;pages=86-92&amp;publication_year=2017&amp;author=Khani%2CS&amp;author=Hayati%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Kamari, M., Hayati, M. &amp; Khosravi, S. Tunable infrared wide band-stop plasmonic filter using T-shaped resonators. <i>Mater. Sci. Semicond. Process.</i> <b>133</b>, 105983 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.mssp.2021.105983" data-track-item_id="10.1016/j.mssp.2021.105983" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.mssp.2021.105983" aria-label="Article reference 16" data-doi="10.1016/j.mssp.2021.105983">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXht1als77E" aria-label="CAS reference 16">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="http://scholar.google.com/scholar_lookup?&amp;title=Tunable%20infrared%20wide%20band-stop%20plasmonic%20filter%20using%20T-shaped%20resonators&amp;journal=Mater.%20Sci.%20Semicond.%20Process.&amp;doi=10.1016%2Fj.mssp.2021.105983&amp;volume=133&amp;publication_year=2021&amp;author=Kamari%2CM&amp;author=Hayati%2CM&amp;author=Khosravi%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Wang, A. &amp; Dan, Y. Mid-infrared plasmonic multispectral filters. <i>Sci. Rep.</i> <b>8</b>, 1–7 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018NatSR...8....9W" aria-label="ADS reference 17">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="http://scholar.google.com/scholar_lookup?&amp;title=Mid-infrared%20plasmonic%20multispectral%20filters&amp;journal=Sci.%20Rep.&amp;volume=8&amp;pages=1-7&amp;publication_year=2018&amp;author=Wang%2CA&amp;author=Dan%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Khani, S., Danaie, M. &amp; Rezaei, P. Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. <i>Opt. Commun.</i> <b>420</b>, 147–156 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2018.03.047" data-track-item_id="10.1016/j.optcom.2018.03.047" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2018.03.047" aria-label="Article reference 18" data-doi="10.1016/j.optcom.2018.03.047">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OptCo.420..147K" aria-label="ADS reference 18">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXmsl2gu7g%3D" aria-label="CAS reference 18">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 18" href="http://scholar.google.com/scholar_lookup?&amp;title=Realization%20of%20single-mode%20plasmonic%20bandpass%20filters%20using%20improved%20nanodisk%20resonators&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2018.03.047&amp;volume=420&amp;pages=147-156&amp;publication_year=2018&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Dizaj, L. S., Abbasian, K. &amp; Nurmohammadi, T. A three-core hybrid plasmonic polarization splitter designing based on the hybrid plasmonic waveguide for utilizing in optical integrated circuits. <i>Plasmonics</i> <b>15</b>, 2213–2221 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-020-01249-w" data-track-item_id="10.1007/s11468-020-01249-w" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-020-01249-w" aria-label="Article reference 19" data-doi="10.1007/s11468-020-01249-w">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20three-core%20hybrid%20plasmonic%20polarization%20splitter%20designing%20based%20on%20the%20hybrid%20plasmonic%20waveguide%20for%20utilizing%20in%20optical%20integrated%20circuits&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-020-01249-w&amp;volume=15&amp;pages=2213-2221&amp;publication_year=2020&amp;author=Dizaj%2CLS&amp;author=Abbasian%2CK&amp;author=Nurmohammadi%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Chang, K.-W. &amp; Huang, C.-C. Ultrashort broadband polarization beam splitter based on a combined hybrid plasmonic waveguide. <i>Sci. Rep.</i> <b>6</b>, 1–11 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXntFalsbg%3D" aria-label="CAS reference 20">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultrashort%20broadband%20polarization%20beam%20splitter%20based%20on%20a%20combined%20hybrid%20plasmonic%20waveguide&amp;journal=Sci.%20Rep.&amp;volume=6&amp;pages=1-11&amp;publication_year=2016&amp;author=Chang%2CK-W&amp;author=Huang%2CC-C"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Omidniaee, A., Karimi, S. &amp; Farmani, A. Surface plasmon resonance-based SiO<sub>2</sub> kretschmann configuration biosensor for the detection of blood glucose. <i>SILICON</i> <b>10</b>, 1–10 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 21" href="http://scholar.google.com/scholar_lookup?&amp;title=Surface%20plasmon%20resonance-based%20SiO2%20kretschmann%20configuration%20biosensor%20for%20the%20detection%20of%20blood%20glucose&amp;journal=SILICON&amp;volume=10&amp;pages=1-10&amp;publication_year=2021&amp;author=Omidniaee%2CA&amp;author=Karimi%2CS&amp;author=Farmani%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Khani, S. &amp; Hayati, M. An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. <i>Superlattices Microstruct.</i> <b>156</b>, 106970 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.spmi.2021.106970" data-track-item_id="10.1016/j.spmi.2021.106970" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.spmi.2021.106970" aria-label="Article reference 22" data-doi="10.1016/j.spmi.2021.106970">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVWhurfI" aria-label="CAS reference 22">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 22" href="http://scholar.google.com/scholar_lookup?&amp;title=An%20ultra-high%20sensitive%20plasmonic%20refractive%20index%20sensor%20using%20an%20elliptical%20resonator%20and%20MIM%20waveguide&amp;journal=Superlattices%20Microstruct.&amp;doi=10.1016%2Fj.spmi.2021.106970&amp;volume=156&amp;publication_year=2021&amp;author=Khani%2CS&amp;author=Hayati%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A. &amp; Yasrebi, N. Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. <i>Plasmonics</i> <b>16</b>, 1–9 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-021-01395-9" data-track-item_id="10.1007/s11468-021-01395-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-021-01395-9" aria-label="Article reference 23" data-doi="10.1007/s11468-021-01395-9">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 23" href="http://scholar.google.com/scholar_lookup?&amp;title=Double-ring%20resonator%20plasmonic%20refractive%20index%20sensor%20utilizing%20dual-band%20unidirectional%20reflectionless%20propagation%20effect&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-021-01395-9&amp;volume=16&amp;pages=1-9&amp;publication_year=2021&amp;author=Amoosoltani%2CN&amp;author=Mehrabi%2CK&amp;author=Zarifkar%2CA&amp;author=Farmani%2CA&amp;author=Yasrebi%2CN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Khani, S., Farmani, A. &amp; Mir, A. Reconfigurable and scalable 2, 4-and 6-channel plasmonics demultiplexer utilizing symmetrical rectangular resonators containing silver nano-rod defects with FDTD method. <i>Sci. Rep.</i> <b>11</b>, 1–13 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-021-93167-y" data-track-item_id="10.1038/s41598-021-93167-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-021-93167-y" aria-label="Article reference 24" data-doi="10.1038/s41598-021-93167-y">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="http://scholar.google.com/scholar_lookup?&amp;title=Reconfigurable%20and%20scalable%202%2C%204-and%206-channel%20plasmonics%20demultiplexer%20utilizing%20symmetrical%20rectangular%20resonators%20containing%20silver%20nano-rod%20defects%20with%20FDTD%20method&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-021-93167-y&amp;volume=11&amp;pages=1-13&amp;publication_year=2021&amp;author=Khani%2CS&amp;author=Farmani%2CA&amp;author=Mir%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="25."><p class="c-article-references__text" id="ref-CR25">Asgari, S. &amp; Fabritius, T. Tunable mid-infrared graphene plasmonic cross-shaped resonator for demultiplexing application. <i>Appl. Sci.</i> <b>10</b>, 1193 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.3390/app10031193" data-track-item_id="10.3390/app10031193" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.3390%2Fapp10031193" aria-label="Article reference 25" data-doi="10.3390/app10031193">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXht12jtLfL" aria-label="CAS reference 25">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 25" href="http://scholar.google.com/scholar_lookup?&amp;title=Tunable%20mid-infrared%20graphene%20plasmonic%20cross-shaped%20resonator%20for%20demultiplexing%20application&amp;journal=Appl.%20Sci.&amp;doi=10.3390%2Fapp10031193&amp;volume=10&amp;publication_year=2020&amp;author=Asgari%2CS&amp;author=Fabritius%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="26."><p class="c-article-references__text" id="ref-CR26">Liang, S. <i>et al.</i> Plasmonic slow light waveguide with hyperbolic metamaterials claddings. <i>J. Opt.</i> <b>20</b>, 065001 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1088/2040-8986/aabc18" data-track-item_id="10.1088/2040-8986/aabc18" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1088%2F2040-8986%2Faabc18" aria-label="Article reference 26" data-doi="10.1088/2040-8986/aabc18">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018JOpt...20f5001L" aria-label="ADS reference 26">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 26" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmonic%20slow%20light%20waveguide%20with%20hyperbolic%20metamaterials%20claddings&amp;journal=J.%20Opt.&amp;doi=10.1088%2F2040-8986%2Faabc18&amp;volume=20&amp;publication_year=2018&amp;author=Liang%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="27."><p class="c-article-references__text" id="ref-CR27">Akhavan, A., Ghafoorifard, H., Abdolhosseini, S. &amp; Habibiyan, H. Metal–insulator–metal waveguide-coupled asymmetric resonators for sensing and slow light applications. <i>IET Optoelectron.</i> <b>12</b>, 220–227 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1049/iet-opt.2018.0028" data-track-item_id="10.1049/iet-opt.2018.0028" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1049%2Fiet-opt.2018.0028" aria-label="Article reference 27" data-doi="10.1049/iet-opt.2018.0028">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 27" href="http://scholar.google.com/scholar_lookup?&amp;title=Metal%E2%80%93insulator%E2%80%93metal%20waveguide-coupled%20asymmetric%20resonators%20for%20sensing%20and%20slow%20light%20applications&amp;journal=IET%20Optoelectron.&amp;doi=10.1049%2Fiet-opt.2018.0028&amp;volume=12&amp;pages=220-227&amp;publication_year=2018&amp;author=Akhavan%2CA&amp;author=Ghafoorifard%2CH&amp;author=Abdolhosseini%2CS&amp;author=Habibiyan%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="28."><p class="c-article-references__text" id="ref-CR28">Jafari, D., Danaie, M., Rezaei, P. &amp; Nurmohammadi, T. A novel variable-length header extraction scheme based on ring laser for all-optical packet switching network. <i>Opt. Quantum Electron.</i> <b>2021</b>(53), 1–9 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVCnsr7O" aria-label="CAS reference 28">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 28" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20novel%20variable-length%20header%20extraction%20scheme%20based%20on%20ring%20laser%20for%20all-optical%20packet%20switching%20network&amp;journal=Opt.%20Quantum%20Electron.&amp;volume=2021&amp;issue=53&amp;pages=1-9&amp;publication_year=2021&amp;author=Jafari%2CD&amp;author=Danaie%2CM&amp;author=Rezaei%2CP&amp;author=Nurmohammadi%2CT"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="29."><p class="c-article-references__text" id="ref-CR29">Mbarak, H., Ghahrizjani, R. T., Hamidi, S., Mohajerani, E. &amp; Zaatar, Y. Reversible and tunable photochemical switch based on plasmonic structure. <i>Sci. Rep.</i> <b>10</b>, 1–7 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-62058-z" data-track-item_id="10.1038/s41598-020-62058-z" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-62058-z" aria-label="Article reference 29" data-doi="10.1038/s41598-020-62058-z">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 29" href="http://scholar.google.com/scholar_lookup?&amp;title=Reversible%20and%20tunable%20photochemical%20switch%20based%20on%20plasmonic%20structure&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-020-62058-z&amp;volume=10&amp;pages=1-7&amp;publication_year=2020&amp;author=Mbarak%2CH&amp;author=Ghahrizjani%2CRT&amp;author=Hamidi%2CS&amp;author=Mohajerani%2CE&amp;author=Zaatar%2CY"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="30."><p class="c-article-references__text" id="ref-CR30">Khani, S., Danaie, M. &amp; Rezaei, P. Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. <i>Superlattices Microstruct.</i> <b>141</b>, 106481 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.spmi.2020.106481" data-track-item_id="10.1016/j.spmi.2020.106481" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.spmi.2020.106481" aria-label="Article reference 30" data-doi="10.1016/j.spmi.2020.106481">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXltleqt7Y%3D" aria-label="CAS reference 30">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 30" href="http://scholar.google.com/scholar_lookup?&amp;title=Compact%20and%20low-power%20all-optical%20surface%20plasmon%20switches%20with%20isolated%20pump%20and%20data%20waveguides%20and%20a%20rectangular%20cavity%20containing%20nano-silver%20strips&amp;journal=Superlattices%20Microstruct.&amp;doi=10.1016%2Fj.spmi.2020.106481&amp;volume=141&amp;publication_year=2020&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="31."><p class="c-article-references__text" id="ref-CR31">Khani, S., Danaie, M. &amp; Rezaei, P. Realization of a plasmonic optical switch using improved nano-disk resonators with Kerr-type nonlinearity: A theoretical and numerical study on challenges and solutions. <i>Opt. Commun.</i> <b>477</b>, 126359 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2020.126359" data-track-item_id="10.1016/j.optcom.2020.126359" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2020.126359" aria-label="Article reference 31" data-doi="10.1016/j.optcom.2020.126359">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1CrtLfN" aria-label="CAS reference 31">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 31" href="http://scholar.google.com/scholar_lookup?&amp;title=Realization%20of%20a%20plasmonic%20optical%20switch%20using%20improved%20nano-disk%20resonators%20with%20Kerr-type%20nonlinearity%3A%20A%20theoretical%20and%20numerical%20study%20on%20challenges%20and%20solutions&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2020.126359&amp;volume=477&amp;publication_year=2020&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="32."><p class="c-article-references__text" id="ref-CR32">Rezaei, M. H., Zarifkar, A. &amp; Miri, M. Ultra-compact electro-optical graphene-based plasmonic multi-logic gate with high extinction ratio. <i>Opt. Mater.</i> <b>84</b>, 572–578 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optmat.2018.07.043" data-track-item_id="10.1016/j.optmat.2018.07.043" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optmat.2018.07.043" aria-label="Article reference 32" data-doi="10.1016/j.optmat.2018.07.043">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OptMa..84..572R" aria-label="ADS reference 32">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVSqtrrF" aria-label="CAS reference 32">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 32" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultra-compact%20electro-optical%20graphene-based%20plasmonic%20multi-logic%20gate%20with%20high%20extinction%20ratio&amp;journal=Opt.%20Mater.&amp;doi=10.1016%2Fj.optmat.2018.07.043&amp;volume=84&amp;pages=572-578&amp;publication_year=2018&amp;author=Rezaei%2CMH&amp;author=Zarifkar%2CA&amp;author=Miri%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="33."><p class="c-article-references__text" id="ref-CR33">Kewes, G. <i>et al.</i> A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. <i>Sci. Rep.</i> <b>6</b>, 1–10 (2016).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/srep28877" data-track-item_id="10.1038/srep28877" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fsrep28877" aria-label="Article reference 33" data-doi="10.1038/srep28877">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 33" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20realistic%20fabrication%20and%20design%20concept%20for%20quantum%20gates%20based%20on%20single%20emitters%20integrated%20in%20plasmonic-dielectric%20waveguide%20structures&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fsrep28877&amp;volume=6&amp;pages=1-10&amp;publication_year=2016&amp;author=Kewes%2CG"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="34."><p class="c-article-references__text" id="ref-CR34">Jafari, D., Danaie, M. &amp; Orouji, A. A. Ultra-fast two-bit all-optical analog to digital convertor based on surface plasmons and kerr-type nonlinear cavity. <i>Plasmonics</i> <b>16</b>, 1–8 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-021-01474-x" data-track-item_id="10.1007/s11468-021-01474-x" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-021-01474-x" aria-label="Article reference 34" data-doi="10.1007/s11468-021-01474-x">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 34" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultra-fast%20two-bit%20all-optical%20analog%20to%20digital%20convertor%20based%20on%20surface%20plasmons%20and%20kerr-type%20nonlinear%20cavity&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-021-01474-x&amp;volume=16&amp;pages=1-8&amp;publication_year=2021&amp;author=Jafari%2CD&amp;author=Danaie%2CM&amp;author=Orouji%2CAA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="35."><p class="c-article-references__text" id="ref-CR35">Khani, S., Danaie, M. &amp; Rezaei, P. Fano Resonance using surface plasmon polaritons in a nano-disk resonator coupled to perpendicular waveguides for amplitude modulation applications. <i>Plasmonics</i> <b>16</b>, 1–18 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-021-01447-0" data-track-item_id="10.1007/s11468-021-01447-0" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-021-01447-0" aria-label="Article reference 35" data-doi="10.1007/s11468-021-01447-0">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 35" href="http://scholar.google.com/scholar_lookup?&amp;title=Fano%20Resonance%20using%20surface%20plasmon%20polaritons%20in%20a%20nano-disk%20resonator%20coupled%20to%20perpendicular%20waveguides%20for%20amplitude%20modulation%20applications&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-021-01447-0&amp;volume=16&amp;pages=1-18&amp;publication_year=2021&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="36."><p class="c-article-references__text" id="ref-CR36">Melikyan, A. <i>et al.</i> High-speed plasmonic phase modulators. <i>Nat. Photonics</i> <b>8</b>, 229–233 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/nphoton.2014.9" data-track-item_id="10.1038/nphoton.2014.9" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fnphoton.2014.9" aria-label="Article reference 36" data-doi="10.1038/nphoton.2014.9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2014NaPho...8..229M" aria-label="ADS reference 36">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXisFOgtrs%3D" aria-label="CAS reference 36">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 36" href="http://scholar.google.com/scholar_lookup?&amp;title=High-speed%20plasmonic%20phase%20modulators&amp;journal=Nat.%20Photonics&amp;doi=10.1038%2Fnphoton.2014.9&amp;volume=8&amp;pages=229-233&amp;publication_year=2014&amp;author=Melikyan%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="37."><p class="c-article-references__text" id="ref-CR37">Khosravi, S. &amp; Hayati, M. Dual-wide band plasmonic filter based on nanocomposite media. <i>Opt. Eng.</i> <b>59</b>, 095107 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1117/1.OE.59.9.095107" data-track-item_id="10.1117/1.OE.59.9.095107" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1117%2F1.OE.59.9.095107" aria-label="Article reference 37" data-doi="10.1117/1.OE.59.9.095107">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2020OptEn..59i5107K" aria-label="ADS reference 37">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFWnsrbN" aria-label="CAS reference 37">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 37" href="http://scholar.google.com/scholar_lookup?&amp;title=Dual-wide%20band%20plasmonic%20filter%20based%20on%20nanocomposite%20media&amp;journal=Opt.%20Eng.&amp;doi=10.1117%2F1.OE.59.9.095107&amp;volume=59&amp;publication_year=2020&amp;author=Khosravi%2CS&amp;author=Hayati%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="38."><p class="c-article-references__text" id="ref-CR38">Khani, S., Danaie, M. &amp; Rezaei, P. All-optical plasmonic switches based on asymmetric directional couplers incorporating Bragg gratings. <i>Plasmonics</i> <b>15</b>, 869–879 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-019-01106-5" data-track-item_id="10.1007/s11468-019-01106-5" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-019-01106-5" aria-label="Article reference 38" data-doi="10.1007/s11468-019-01106-5">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVygu77I" aria-label="CAS reference 38">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 38" href="http://scholar.google.com/scholar_lookup?&amp;title=All-optical%20plasmonic%20switches%20based%20on%20asymmetric%20directional%20couplers%20incorporating%20Bragg%20gratings&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-019-01106-5&amp;volume=15&amp;pages=869-879&amp;publication_year=2020&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="39."><p class="c-article-references__text" id="ref-CR39">Khatami, S. A., Rezaei, P., Danaie, M. &amp; Daroonkola, A. H. Photonic crystal 180° ring-shaped hybrid: From microwave to optics. <i>IEEE Photonics Technol. Lett.</i> <b>33</b>, 1165–1168 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/LPT.2021.3109633" data-track-item_id="10.1109/LPT.2021.3109633" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1109%2FLPT.2021.3109633" aria-label="Article reference 39" data-doi="10.1109/LPT.2021.3109633">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2021IPTL...33.1165K" aria-label="ADS reference 39">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXisFCjs7fL" aria-label="CAS reference 39">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 39" href="http://scholar.google.com/scholar_lookup?&amp;title=Photonic%20crystal%20180%C2%B0%20ring-shaped%20hybrid%3A%20From%20microwave%20to%20optics&amp;journal=IEEE%20Photonics%20Technol.%20Lett.&amp;doi=10.1109%2FLPT.2021.3109633&amp;volume=33&amp;pages=1165-1168&amp;publication_year=2021&amp;author=Khatami%2CSA&amp;author=Rezaei%2CP&amp;author=Danaie%2CM&amp;author=Daroonkola%2CAH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="40."><p class="c-article-references__text" id="ref-CR40">Tavousi, A., Rakhshani, M. &amp; Mansouri-Birjandi, M. High sensitivity label-free refractometer based biosensor applicable to glycated hemoglobin detection in human blood using all-circular photonic crystal ring resonators. <i>Opt. Commun.</i> <b>429</b>, 166–174 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2018.08.019" data-track-item_id="10.1016/j.optcom.2018.08.019" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2018.08.019" aria-label="Article reference 40" data-doi="10.1016/j.optcom.2018.08.019">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OptCo.429..166T" aria-label="ADS reference 40">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFKqsbnN" aria-label="CAS reference 40">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 40" href="http://scholar.google.com/scholar_lookup?&amp;title=High%20sensitivity%20label-free%20refractometer%20based%20biosensor%20applicable%20to%20glycated%20hemoglobin%20detection%20in%20human%20blood%20using%20all-circular%20photonic%20crystal%20ring%20resonators&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2018.08.019&amp;volume=429&amp;pages=166-174&amp;publication_year=2018&amp;author=Tavousi%2CA&amp;author=Rakhshani%2CM&amp;author=Mansouri-Birjandi%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="41."><p class="c-article-references__text" id="ref-CR41">Hajshahvaladi, L., Kaatuzian, H. &amp; Danaie, M. A high-sensitivity refractive index biosensor based on Si nanorings coupled to plasmonic nanohole arrays for glucose detection in water solution. <i>Opt. Commun.</i> <b>502</b>, 127421 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2021.127421" data-track-item_id="10.1016/j.optcom.2021.127421" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2021.127421" aria-label="Article reference 41" data-doi="10.1016/j.optcom.2021.127421">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXitVShur3M" aria-label="CAS reference 41">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 41" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20high-sensitivity%20refractive%20index%20biosensor%20based%20on%20Si%20nanorings%20coupled%20to%20plasmonic%20nanohole%20arrays%20for%20glucose%20detection%20in%20water%20solution&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2021.127421&amp;volume=502&amp;publication_year=2022&amp;author=Hajshahvaladi%2CL&amp;author=Kaatuzian%2CH&amp;author=Danaie%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="42."><p class="c-article-references__text" id="ref-CR42">Khani, S. &amp; Hayati, M. Optical sensing in single-mode filters base on surface plasmon H-shaped cavities. <i>Opt. Commun.</i> <b>505</b>, 127534 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2021.127534" data-track-item_id="10.1016/j.optcom.2021.127534" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2021.127534" aria-label="Article reference 42" data-doi="10.1016/j.optcom.2021.127534">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 42" href="http://scholar.google.com/scholar_lookup?&amp;title=Optical%20sensing%20in%20single-mode%20filters%20base%20on%20surface%20plasmon%20H-shaped%20cavities&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2021.127534&amp;volume=505&amp;publication_year=2021&amp;author=Khani%2CS&amp;author=Hayati%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="43."><p class="c-article-references__text" id="ref-CR43">Hajshahvaladi, L., Kaatuzian, H. &amp; Danaie, M. Design of a hybrid photonic-plasmonic crystal refractive index sensor for highly sensitive and high-resolution sensing applications. <i>Phys. Lett. A</i> <b>420</b>, 127754 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.physleta.2021.127754" data-track-item_id="10.1016/j.physleta.2021.127754" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.physleta.2021.127754" aria-label="Article reference 43" data-doi="10.1016/j.physleta.2021.127754">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1CitLzK" aria-label="CAS reference 43">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 43" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20of%20a%20hybrid%20photonic-plasmonic%20crystal%20refractive%20index%20sensor%20for%20highly%20sensitive%20and%20high-resolution%20sensing%20applications&amp;journal=Phys.%20Lett.%20A&amp;doi=10.1016%2Fj.physleta.2021.127754&amp;volume=420&amp;publication_year=2021&amp;author=Hajshahvaladi%2CL&amp;author=Kaatuzian%2CH&amp;author=Danaie%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="44."><p class="c-article-references__text" id="ref-CR44">Rakhshani, M. R. Wide-angle perfect absorber using a 3D nanorod metasurface as a plasmonic sensor for detecting cancerous cells and its tuning with a graphene layer. <i>Photonics Nanostruct. Fundam. Appl.</i> <b>43</b>, 100883 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.photonics.2020.100883" data-track-item_id="10.1016/j.photonics.2020.100883" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.photonics.2020.100883" aria-label="Article reference 44" data-doi="10.1016/j.photonics.2020.100883">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 44" href="http://scholar.google.com/scholar_lookup?&amp;title=Wide-angle%20perfect%20absorber%20using%20a%203D%20nanorod%20metasurface%20as%20a%20plasmonic%20sensor%20for%20detecting%20cancerous%20cells%20and%20its%20tuning%20with%20a%20graphene%20layer&amp;journal=Photonics%20Nanostruct.%20Fundam.%20Appl.&amp;doi=10.1016%2Fj.photonics.2020.100883&amp;volume=43&amp;publication_year=2021&amp;author=Rakhshani%2CMR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="45."><p class="c-article-references__text" id="ref-CR45">Sharma, A. K. Plasmonic biosensor for detection of hemoglobin concentration in human blood: Design considerations. <i>J. Appl. Phys.</i> <b>114</b>, 044701 (2013).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1063/1.4816272" data-track-item_id="10.1063/1.4816272" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1063%2F1.4816272" aria-label="Article reference 45" data-doi="10.1063/1.4816272">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2013JAP...114d4701S" aria-label="ADS reference 45">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 45" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmonic%20biosensor%20for%20detection%20of%20hemoglobin%20concentration%20in%20human%20blood%3A%20Design%20considerations&amp;journal=J.%20Appl.%20Phys.&amp;doi=10.1063%2F1.4816272&amp;volume=114&amp;publication_year=2013&amp;author=Sharma%2CAK"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="46."><p class="c-article-references__text" id="ref-CR46">Dinish, U., Balasundaram, G., Chang, Y. T. &amp; Olivo, M. Sensitive multiplex detection of serological liver cancer biomarkers using SERS-active photonic crystal fiber probe. <i>J. Biophotonics</i> <b>7</b>, 956–965 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1002/jbio.201300084" data-track-item_id="10.1002/jbio.201300084" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1002%2Fjbio.201300084" aria-label="Article reference 46" data-doi="10.1002/jbio.201300084">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVyisLjF" aria-label="CAS reference 46">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=23963680" aria-label="PubMed reference 46">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 46" href="http://scholar.google.com/scholar_lookup?&amp;title=Sensitive%20multiplex%20detection%20of%20serological%20liver%20cancer%20biomarkers%20using%20SERS-active%20photonic%20crystal%20fiber%20probe&amp;journal=J.%20Biophotonics&amp;doi=10.1002%2Fjbio.201300084&amp;volume=7&amp;pages=956-965&amp;publication_year=2014&amp;author=Dinish%2CU&amp;author=Balasundaram%2CG&amp;author=Chang%2CYT&amp;author=Olivo%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="47."><p class="c-article-references__text" id="ref-CR47">Chen, J. <i>et al.</i> High-quality temperature sensor based on the plasmonic resonant absorber. <i>Plasmonics</i> <b>14</b>, 279–283 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-018-0802-7" data-track-item_id="10.1007/s11468-018-0802-7" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-018-0802-7" aria-label="Article reference 47" data-doi="10.1007/s11468-018-0802-7">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlanurzE" aria-label="CAS reference 47">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 47" href="http://scholar.google.com/scholar_lookup?&amp;title=High-quality%20temperature%20sensor%20based%20on%20the%20plasmonic%20resonant%20absorber&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-018-0802-7&amp;volume=14&amp;pages=279-283&amp;publication_year=2019&amp;author=Chen%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="48."><p class="c-article-references__text" id="ref-CR48">Liu, C. <i>et al.</i> Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing. <i>Opt. Express</i> <b>26</b>, 9039–9049 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OE.26.009039" data-track-item_id="10.1364/OE.26.009039" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOE.26.009039" aria-label="Article reference 48" data-doi="10.1364/OE.26.009039">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OExpr..26.9039L" aria-label="ADS reference 48">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlKhtLzM" aria-label="CAS reference 48">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=29715862" aria-label="PubMed reference 48">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 48" href="http://scholar.google.com/scholar_lookup?&amp;title=Symmetrical%20dual%20D-shape%20photonic%20crystal%20fibers%20for%20surface%20plasmon%20resonance%20sensing&amp;journal=Opt.%20Express&amp;doi=10.1364%2FOE.26.009039&amp;volume=26&amp;pages=9039-9049&amp;publication_year=2018&amp;author=Liu%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="49."><p class="c-article-references__text" id="ref-CR49">Nickpay, M.-R., Danaie, M. &amp; Shahzadi, A. Highly sensitive THz refractive index sensor based on folded split-ring metamaterial graphene resonators. <i>Plasmonics</i>. <b>17</b>(1), 237–248 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-021-01512-8" data-track-item_id="10.1007/s11468-021-01512-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-021-01512-8" aria-label="Article reference 49" data-doi="10.1007/s11468-021-01512-8">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 49" href="http://scholar.google.com/scholar_lookup?&amp;title=Highly%20sensitive%20THz%20refractive%20index%20sensor%20based%20on%20folded%20split-ring%20metamaterial%20graphene%20resonators&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-021-01512-8&amp;volume=17&amp;issue=1&amp;pages=237-248&amp;publication_year=2021&amp;author=Nickpay%2CMR&amp;author=Danaie%2CM&amp;author=Shahzadi%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="50."><p class="c-article-references__text" id="ref-CR50">Nasirifar, R., Danaie, M. &amp; Dideban, A. Surface plasmon resonance biosensor using inverted graded index optical fiber. <i>Photonics Nanostruct. Fundam. Appl.</i> <b>44</b>, 100916 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.photonics.2021.100916" data-track-item_id="10.1016/j.photonics.2021.100916" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.photonics.2021.100916" aria-label="Article reference 50" data-doi="10.1016/j.photonics.2021.100916">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 50" href="http://scholar.google.com/scholar_lookup?&amp;title=Surface%20plasmon%20resonance%20biosensor%20using%20inverted%20graded%20index%20optical%20fiber&amp;journal=Photonics%20Nanostruct.%20Fundam.%20Appl.&amp;doi=10.1016%2Fj.photonics.2021.100916&amp;volume=44&amp;publication_year=2021&amp;author=Nasirifar%2CR&amp;author=Danaie%2CM&amp;author=Dideban%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="51."><p class="c-article-references__text" id="ref-CR51">El Shamy, R. S., Khalil, D. &amp; Swillam, M. A. Mid infrared optical gas sensor using plasmonic Mach-Zehnder interferometer. <i>Sci. Rep.</i> <b>10</b>, 1–9 (2020).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-020-57538-1" data-track-item_id="10.1038/s41598-020-57538-1" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-020-57538-1" aria-label="Article reference 51" data-doi="10.1038/s41598-020-57538-1">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 51" href="http://scholar.google.com/scholar_lookup?&amp;title=Mid%20infrared%20optical%20gas%20sensor%20using%20plasmonic%20Mach-Zehnder%20interferometer&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-020-57538-1&amp;volume=10&amp;pages=1-9&amp;publication_year=2020&amp;author=Shamy%2CRS&amp;author=Khalil%2CD&amp;author=Swillam%2CMA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="52."><p class="c-article-references__text" id="ref-CR52">Khonina, S., Kazanskiy, N., Butt, M., Kaźmierczak, A. &amp; Piramidowicz, R. Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO<sub>2</sub> gas. <i>Opt. Express</i> <b>29</b>, 16584–16594 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OE.423141" data-track-item_id="10.1364/OE.423141" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOE.423141" aria-label="Article reference 52" data-doi="10.1364/OE.423141">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2021OExpr..2916584K" aria-label="ADS reference 52">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVKhsbrJ" aria-label="CAS reference 52">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=34154218" aria-label="PubMed reference 52">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 52" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmonic%20sensor%20based%20on%20metal-insulator-metal%20waveguide%20square%20ring%20cavity%20filled%20with%20functional%20material%20for%20the%20detection%20of%20CO2%20gas&amp;journal=Opt.%20Express&amp;doi=10.1364%2FOE.423141&amp;volume=29&amp;pages=16584-16594&amp;publication_year=2021&amp;author=Khonina%2CS&amp;author=Kazanskiy%2CN&amp;author=Butt%2CM&amp;author=Ka%C5%BAmierczak%2CA&amp;author=Piramidowicz%2CR"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="53."><p class="c-article-references__text" id="ref-CR53">Pang, S., Huo, Y., Xie, Y. &amp; Hao, L. Tunable electromagnetically induced transparency-like in plasmonic stub waveguide with cross resonator. <i>Plasmonics</i> <b>12</b>, 1161–1168 (2017).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-016-0371-6" data-track-item_id="10.1007/s11468-016-0371-6" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-016-0371-6" aria-label="Article reference 53" data-doi="10.1007/s11468-016-0371-6">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC28XhsV2isbzP" aria-label="CAS reference 53">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 53" href="http://scholar.google.com/scholar_lookup?&amp;title=Tunable%20electromagnetically%20induced%20transparency-like%20in%20plasmonic%20stub%20waveguide%20with%20cross%20resonator&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-016-0371-6&amp;volume=12&amp;pages=1161-1168&amp;publication_year=2017&amp;author=Pang%2CS&amp;author=Huo%2CY&amp;author=Xie%2CY&amp;author=Hao%2CL"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="54."><p class="c-article-references__text" id="ref-CR54">Khajemiri, Z., Lee, D., Hamidi, S. M. &amp; Kim, D.-S. Rectangular plasmonic interferometer for high sensitive glycerol sensor. <i>Sci. Rep.</i> <b>9</b>, 1–7 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-018-37499-2" data-track-item_id="10.1038/s41598-018-37499-2" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-018-37499-2" aria-label="Article reference 54" data-doi="10.1038/s41598-018-37499-2">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXnsVaqu7o%3D" aria-label="CAS reference 54">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 54" href="http://scholar.google.com/scholar_lookup?&amp;title=Rectangular%20plasmonic%20interferometer%20for%20high%20sensitive%20glycerol%20sensor&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-018-37499-2&amp;volume=9&amp;pages=1-7&amp;publication_year=2019&amp;author=Khajemiri%2CZ&amp;author=Lee%2CD&amp;author=Hamidi%2CSM&amp;author=Kim%2CD-S"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="55."><p class="c-article-references__text" id="ref-CR55">Al Mahmud, R., Faruque, M. O. &amp; Sagor, R. H. A highly sensitive plasmonic refractive index sensor based on triangular resonator. <i>Opt. Commun.</i> <b>483</b>, 126634 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2020.126634" data-track-item_id="10.1016/j.optcom.2020.126634" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2020.126634" aria-label="Article reference 55" data-doi="10.1016/j.optcom.2020.126634">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXisVOrtrfI" aria-label="CAS reference 55">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 55" href="http://scholar.google.com/scholar_lookup?&amp;title=A%20highly%20sensitive%20plasmonic%20refractive%20index%20sensor%20based%20on%20triangular%20resonator&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2020.126634&amp;volume=483&amp;publication_year=2021&amp;author=Al%20Mahmud%2CR&amp;author=Faruque%2CMO&amp;author=Sagor%2CRH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="56."><p class="c-article-references__text" id="ref-CR56">Ahmed, A. M. &amp; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. <i>Sci. Rep.</i> <b>9</b>, 1–9 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1038/s41598-019-43440-y" data-track-item_id="10.1038/s41598-019-43440-y" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1038%2Fs41598-019-43440-y" aria-label="Article reference 56" data-doi="10.1038/s41598-019-43440-y">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 56" href="http://scholar.google.com/scholar_lookup?&amp;title=Ultra-high%20sensitive%201D%20porous%20silicon%20photonic%20crystal%20sensor%20based%20on%20the%20coupling%20of%20Tamm%2FFano%20resonances%20in%20the%20mid-infrared%20region&amp;journal=Sci.%20Rep.&amp;doi=10.1038%2Fs41598-019-43440-y&amp;volume=9&amp;pages=1-9&amp;publication_year=2019&amp;author=Ahmed%2CAM&amp;author=Mehaney%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="57."><p class="c-article-references__text" id="ref-CR57">Salih, E. &amp; Ayesh, A. I. Pt-doped armchair graphene nanoribbon as a promising gas sensor for CO and CO<sub>2</sub>: DFT study. <i>Phys. E Low Dimens. Syst. Nanostruct.</i> <b>125</b>, 114418 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.physe.2020.114418" data-track-item_id="10.1016/j.physe.2020.114418" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.physe.2020.114418" aria-label="Article reference 57" data-doi="10.1016/j.physe.2020.114418">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslKqu7vI" aria-label="CAS reference 57">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 57" href="http://scholar.google.com/scholar_lookup?&amp;title=Pt-doped%20armchair%20graphene%20nanoribbon%20as%20a%20promising%20gas%20sensor%20for%20CO%20and%20CO2%3A%20DFT%20study&amp;journal=Phys.%20E%20Low%20Dimens.%20Syst.%20Nanostruct.&amp;doi=10.1016%2Fj.physe.2020.114418&amp;volume=125&amp;publication_year=2021&amp;author=Salih%2CE&amp;author=Ayesh%2CAI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="58."><p class="c-article-references__text" id="ref-CR58">Khani, S., Danaie, M. &amp; Rezaei, P. Tunable single-mode bandpass filter based on metal–insulator–metal plasmonic coupled U-shaped cavities. <i>IET Optoelectron.</i> <b>13</b>, 161–171 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1049/iet-opt.2018.5098" data-track-item_id="10.1049/iet-opt.2018.5098" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1049%2Fiet-opt.2018.5098" aria-label="Article reference 58" data-doi="10.1049/iet-opt.2018.5098">Article</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 58" href="http://scholar.google.com/scholar_lookup?&amp;title=Tunable%20single-mode%20bandpass%20filter%20based%20on%20metal%E2%80%93insulator%E2%80%93metal%20plasmonic%20coupled%20U-shaped%20cavities&amp;journal=IET%20Optoelectron.&amp;doi=10.1049%2Fiet-opt.2018.5098&amp;volume=13&amp;pages=161-171&amp;publication_year=2019&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="59."><p class="c-article-references__text" id="ref-CR59">Khani, S., Danaie, M. &amp; Rezaei, P. Double and triple-wavelength plasmonic demultiplexers based on improved circular nanodisk resonators. <i>Opt. Eng.</i> <b>57</b>, 107102 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1117/1.OE.57.10.107102" data-track-item_id="10.1117/1.OE.57.10.107102" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1117%2F1.OE.57.10.107102" aria-label="Article reference 59" data-doi="10.1117/1.OE.57.10.107102">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OptEn..57j7102K" aria-label="ADS reference 59">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 59" href="http://scholar.google.com/scholar_lookup?&amp;title=Double%20and%20triple-wavelength%20plasmonic%20demultiplexers%20based%20on%20improved%20circular%20nanodisk%20resonators&amp;journal=Opt.%20Eng.&amp;doi=10.1117%2F1.OE.57.10.107102&amp;volume=57&amp;publication_year=2018&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="60."><p class="c-article-references__text" id="ref-CR60">Nasirifar, R., Danaie, M. &amp; Dideban, A. Highly sensitive surface plasmon resonance sensor using perforated optical fiber for biomedical applications. <i>Optik</i> <b>250</b>, 168051 (2022).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.ijleo.2021.168051" data-track-item_id="10.1016/j.ijleo.2021.168051" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.ijleo.2021.168051" aria-label="Article reference 60" data-doi="10.1016/j.ijleo.2021.168051">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2022Optik.250p8051N" aria-label="ADS reference 60">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB38XmvVKqs7g%3D" aria-label="CAS reference 60">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 60" href="http://scholar.google.com/scholar_lookup?&amp;title=Highly%20sensitive%20surface%20plasmon%20resonance%20sensor%20using%20perforated%20optical%20fiber%20for%20biomedical%20applications&amp;journal=Optik&amp;doi=10.1016%2Fj.ijleo.2021.168051&amp;volume=250&amp;publication_year=2022&amp;author=Nasirifar%2CR&amp;author=Danaie%2CM&amp;author=Dideban%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="61."><p class="c-article-references__text" id="ref-CR61">Khani, S., Danaie, M. &amp; Rezaei, P. Size reduction of MIM surface plasmon based optical bandpass filters by the introduction of arrays of silver nano-rods. <i>Phys. E</i> <b>113</b>, 25–34 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.physe.2019.04.015" data-track-item_id="10.1016/j.physe.2019.04.015" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.physe.2019.04.015" aria-label="Article reference 61" data-doi="10.1016/j.physe.2019.04.015">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXpsFWqtL4%3D" aria-label="CAS reference 61">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 61" href="http://scholar.google.com/scholar_lookup?&amp;title=Size%20reduction%20of%20MIM%20surface%20plasmon%20based%20optical%20bandpass%20filters%20by%20the%20introduction%20of%20arrays%20of%20silver%20nano-rods&amp;journal=Phys.%20E&amp;doi=10.1016%2Fj.physe.2019.04.015&amp;volume=113&amp;pages=25-34&amp;publication_year=2019&amp;author=Khani%2CS&amp;author=Danaie%2CM&amp;author=Rezaei%2CP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="62."><p class="c-article-references__text" id="ref-CR62">Farahani, M., Granpayeh, N. &amp; Rezvani, M. Broadband zero reflection plasmonic junctions. <i>JOSA B</i> <b>29</b>, 1722–1730 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/JOSAB.29.001722" data-track-item_id="10.1364/JOSAB.29.001722" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FJOSAB.29.001722" aria-label="Article reference 62" data-doi="10.1364/JOSAB.29.001722">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2012JOSAB..29.1722F" aria-label="ADS reference 62">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1OrsrfN" aria-label="CAS reference 62">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 62" href="http://scholar.google.com/scholar_lookup?&amp;title=Broadband%20zero%20reflection%20plasmonic%20junctions&amp;journal=JOSA%20B&amp;doi=10.1364%2FJOSAB.29.001722&amp;volume=29&amp;pages=1722-1730&amp;publication_year=2012&amp;author=Farahani%2CM&amp;author=Granpayeh%2CN&amp;author=Rezvani%2CM"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="63."><p class="c-article-references__text" id="ref-CR63">Veronis, G. &amp; Fan, S. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. <i>Appl. Phys. Lett.</i> <b>87</b>, 131102 (2005).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1063/1.2056594" data-track-item_id="10.1063/1.2056594" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1063%2F1.2056594" aria-label="Article reference 63" data-doi="10.1063/1.2056594">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2005ApPhL..87m1102V" aria-label="ADS reference 63">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 63" href="http://scholar.google.com/scholar_lookup?&amp;title=Bends%20and%20splitters%20in%20metal-dielectric-metal%20subwavelength%20plasmonic%20waveguides&amp;journal=Appl.%20Phys.%20Lett.&amp;doi=10.1063%2F1.2056594&amp;volume=87&amp;publication_year=2005&amp;author=Veronis%2CG&amp;author=Fan%2CS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="64."><p class="c-article-references__text" id="ref-CR64">Pannipitiya, A., Rukhlenko, I. D., Premaratne, M., Hattori, H. T. &amp; Agrawal, G. P. Improved transmission model for metal-dielectric-metal plasmonic waveguides with stub structure. <i>Opt. Express</i> <b>18</b>, 6191–6204 (2010).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OE.18.006191" data-track-item_id="10.1364/OE.18.006191" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOE.18.006191" aria-label="Article reference 64" data-doi="10.1364/OE.18.006191">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2010OExpr..18.6191P" aria-label="ADS reference 64">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC3cXjvFehsLo%3D" aria-label="CAS reference 64">CAS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=20389642" aria-label="PubMed reference 64">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 64" href="http://scholar.google.com/scholar_lookup?&amp;title=Improved%20transmission%20model%20for%20metal-dielectric-metal%20plasmonic%20waveguides%20with%20stub%20structure&amp;journal=Opt.%20Express&amp;doi=10.1364%2FOE.18.006191&amp;volume=18&amp;pages=6191-6204&amp;publication_year=2010&amp;author=Pannipitiya%2CA&amp;author=Rukhlenko%2CID&amp;author=Premaratne%2CM&amp;author=Hattori%2CHT&amp;author=Agrawal%2CGP"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="65."><p class="c-article-references__text" id="ref-CR65">Taheri, A. N. &amp; Kaatuzian, H. Design and simulation of a nanoscale electro-plasmonic 1× 2 switch based on asymmetric metal–insulator–metal stub filters. <i>Appl. Opt.</i> <b>53</b>, 6546–6553 (2014).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/AO.53.006546" data-track-item_id="10.1364/AO.53.006546" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FAO.53.006546" aria-label="Article reference 65" data-doi="10.1364/AO.53.006546">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2014ApOpt..53.6546T" aria-label="ADS reference 65">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=25322244" aria-label="PubMed reference 65">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 65" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20and%20simulation%20of%20a%20nanoscale%20electro-plasmonic%201%C3%97%202%20switch%20based%20on%20asymmetric%20metal%E2%80%93insulator%E2%80%93metal%20stub%20filters&amp;journal=Appl.%20Opt.&amp;doi=10.1364%2FAO.53.006546&amp;volume=53&amp;pages=6546-6553&amp;publication_year=2014&amp;author=Taheri%2CAN&amp;author=Kaatuzian%2CH"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="66."><p class="c-article-references__text" id="ref-CR66">Collin, R. E. <i>Foundations for Microwave Engineering</i>. (Wiley, 2007).</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="67."><p class="c-article-references__text" id="ref-CR67">Islam, M. S. <i>et al.</i> Sensing of toxic chemicals using polarized photonic crystal fiber in the terahertz regime. <i>Opt. Commun.</i> <b>426</b>, 341–347 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.optcom.2018.05.030" data-track-item_id="10.1016/j.optcom.2018.05.030" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.optcom.2018.05.030" aria-label="Article reference 67" data-doi="10.1016/j.optcom.2018.05.030">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018OptCo.426..341I" aria-label="ADS reference 67">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtVOitLrK" aria-label="CAS reference 67">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 67" href="http://scholar.google.com/scholar_lookup?&amp;title=Sensing%20of%20toxic%20chemicals%20using%20polarized%20photonic%20crystal%20fiber%20in%20the%20terahertz%20regime&amp;journal=Opt.%20Commun.&amp;doi=10.1016%2Fj.optcom.2018.05.030&amp;volume=426&amp;pages=341-347&amp;publication_year=2018&amp;author=Islam%2CMS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="68."><p class="c-article-references__text" id="ref-CR68">Lu, H., Gan, X., Mao, D., Jia, B. &amp; Zhao, J. Flexibly tunable high-quality-factor induced transparency in plasmonic systems. <i>Sci. Rep.</i> <b>8</b>, 1–9 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 68" href="http://scholar.google.com/scholar_lookup?&amp;title=Flexibly%20tunable%20high-quality-factor%20induced%20transparency%20in%20plasmonic%20systems&amp;journal=Sci.%20Rep.&amp;volume=8&amp;pages=1-9&amp;publication_year=2018&amp;author=Lu%2CH&amp;author=Gan%2CX&amp;author=Mao%2CD&amp;author=Jia%2CB&amp;author=Zhao%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="69."><p class="c-article-references__text" id="ref-CR69">Mishchenko, M. I. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, SPIE Press, Bellingham, WA (2007) Hardbound, ISBN 0-8194-6433-3, xl+ 841 pp. <i>J. Quant. Spectrosc. Radiat. Transf.</i> <b>110</b>, 528 (2009).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.jqsrt.2009.02.009" data-track-item_id="10.1016/j.jqsrt.2009.02.009" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.jqsrt.2009.02.009" aria-label="Article reference 69" data-doi="10.1016/j.jqsrt.2009.02.009">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2009JQSRT.110..528M" aria-label="ADS reference 69">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BD1MXlvVaktrw%3D" aria-label="CAS reference 69">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 69" href="http://scholar.google.com/scholar_lookup?&amp;title=V.%20Tuchin%2C%20Tissue%20Optics%3A%20Light%20Scattering%20Methods%20and%20Instruments%20for%20Medical%20Diagnostics%2C%20SPIE%20Press%2C%20Bellingham%2C%20WA%20%282007%29%20Hardbound%2C%20ISBN%200-8194-6433-3%2C%20xl%2B%20841%20pp&amp;journal=J.%20Quant.%20Spectrosc.%20Radiat.%20Transf.&amp;doi=10.1016%2Fj.jqsrt.2009.02.009&amp;volume=110&amp;publication_year=2009&amp;author=Mishchenko%2CMI"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="70."><p class="c-article-references__text" id="ref-CR70">Yaroslavsky, A. N. <i>et al.</i> High-contrast mapping of basal cell carcinomas. <i>Opt. Lett.</i> <b>37</b>, 644–646 (2012).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1364/OL.37.000644" data-track-item_id="10.1364/OL.37.000644" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1364%2FOL.37.000644" aria-label="Article reference 70" data-doi="10.1364/OL.37.000644">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2012OptL...37..644Y" aria-label="ADS reference 70">ADS</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="pubmed reference" data-track-action="pubmed reference" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&amp;db=PubMed&amp;dopt=Abstract&amp;list_uids=22344134" aria-label="PubMed reference 70">PubMed</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 70" href="http://scholar.google.com/scholar_lookup?&amp;title=High-contrast%20mapping%20of%20basal%20cell%20carcinomas&amp;journal=Opt.%20Lett.&amp;doi=10.1364%2FOL.37.000644&amp;volume=37&amp;pages=644-646&amp;publication_year=2012&amp;author=Yaroslavsky%2CAN"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="71."><p class="c-article-references__text" id="ref-CR71">Aparna, U., Mruthyunjaya, H. &amp; Kumar, M. S. Plasmonic wavelength demultiplexer with mode conversion capabilities. <i>Plasmonics</i> <b>13</b>, 511–517 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-017-0537-x" data-track-item_id="10.1007/s11468-017-0537-x" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-017-0537-x" aria-label="Article reference 71" data-doi="10.1007/s11468-017-0537-x">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXisF2mtrg%3D" aria-label="CAS reference 71">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 71" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmonic%20wavelength%20demultiplexer%20with%20mode%20conversion%20capabilities&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-017-0537-x&amp;volume=13&amp;pages=511-517&amp;publication_year=2018&amp;author=Aparna%2CU&amp;author=Mruthyunjaya%2CH&amp;author=Kumar%2CMS"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="72."><p class="c-article-references__text" id="ref-CR72">Su, C. &amp; Zhu, J. Novel SPR sensor based on MIM-based waveguide and an asymmetric cross-shaped resonator. <i>Plasmonics</i> <b>16</b>, 769–775 (2021).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-020-01348-8" data-track-item_id="10.1007/s11468-020-01348-8" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-020-01348-8" aria-label="Article reference 72" data-doi="10.1007/s11468-020-01348-8">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtFKjsLfI" aria-label="CAS reference 72">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 72" href="http://scholar.google.com/scholar_lookup?&amp;title=Novel%20SPR%20sensor%20based%20on%20MIM-based%20waveguide%20and%20an%20asymmetric%20cross-shaped%20resonator&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-020-01348-8&amp;volume=16&amp;pages=769-775&amp;publication_year=2021&amp;author=Su%2CC&amp;author=Zhu%2CJ"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="73."><p class="c-article-references__text" id="ref-CR73">Danaie, M. &amp; Shahzadi, A. Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. <i>Plasmonics</i> <b>14</b>, 1453–1465 (2019).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-019-00926-9" data-track-item_id="10.1007/s11468-019-00926-9" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-019-00926-9" aria-label="Article reference 73" data-doi="10.1007/s11468-019-00926-9">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC1MXpslaisLk%3D" aria-label="CAS reference 73">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 73" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20of%20a%20high-resolution%20metal%E2%80%93insulator%E2%80%93metal%20plasmonic%20refractive%20index%20sensor%20based%20on%20a%20ring-shaped%20Si%20resonator&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-019-00926-9&amp;volume=14&amp;pages=1453-1465&amp;publication_year=2019&amp;author=Danaie%2CM&amp;author=Shahzadi%2CA"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="74."><p class="c-article-references__text" id="ref-CR74">Wu, C. <i>et al.</i> Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators. <i>Plasmonics</i> <b>13</b>, 251–257 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="noopener" data-track-label="10.1007/s11468-017-0506-4" data-track-item_id="10.1007/s11468-017-0506-4" data-track-value="article reference" data-track-action="article reference" href="https://link.springer.com/doi/10.1007/s11468-017-0506-4" aria-label="Article reference 74" data-doi="10.1007/s11468-017-0506-4">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="cas reference" data-track-action="cas reference" href="/articles/cas-redirect/1:CAS:528:DC%2BC2sXht12isL8%3D" aria-label="CAS reference 74">CAS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 74" href="http://scholar.google.com/scholar_lookup?&amp;title=Plasmon-induced%20transparency%20and%20refractive%20index%20sensing%20in%20side-coupled%20stub-hexagon%20resonators&amp;journal=Plasmonics&amp;doi=10.1007%2Fs11468-017-0506-4&amp;volume=13&amp;pages=251-257&amp;publication_year=2018&amp;author=Wu%2CC"> Google Scholar</a>  </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="75."><p class="c-article-references__text" id="ref-CR75">Danaie, M. &amp; Kiani, B. Design of a label-free photonic crystal refractive index sensor for biomedical applications. <i>Photonics Nanostruct. Fundam. Appl.</i> <b>31</b>, 89–98 (2018).</p><p class="c-article-references__links u-hide-print"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1016/j.photonics.2018.06.004" data-track-item_id="10.1016/j.photonics.2018.06.004" data-track-value="article reference" data-track-action="article reference" href="https://doi.org/10.1016%2Fj.photonics.2018.06.004" aria-label="Article reference 75" data-doi="10.1016/j.photonics.2018.06.004">Article</a>  <a data-track="click_references" rel="nofollow noopener" data-track-label="link" data-track-item_id="link" data-track-value="ads reference" data-track-action="ads reference" href="http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&amp;bibcode=2018PhNan..31...89D" aria-label="ADS reference 75">ADS</a>  <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 75" href="http://scholar.google.com/scholar_lookup?&amp;title=Design%20of%20a%20label-free%20photonic%20crystal%20refractive%20index%20sensor%20for%20biomedical%20applications&amp;journal=Photonics%20Nanostruct.%20Fundam.%20Appl.&amp;doi=10.1016%2Fj.photonics.2018.06.004&amp;volume=31&amp;pages=89-98&amp;publication_year=2018&amp;author=Danaie%2CM&amp;author=Kiani%2CB"> Google Scholar</a>  </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41598-022-09213-w?format=refman&amp;flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="author-information">Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff1"><p class="c-article-author-affiliation__address">Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, 67149-67346, Iran</p><p class="c-article-author-affiliation__authors-list">Shiva Khani &amp; Mohsen Hayati</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Shiva-Khani-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Shiva Khani</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Shiva%20Khani" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Shiva%20Khani" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Shiva%20Khani%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Mohsen-Hayati-Aff1"><span class="c-article-authors-search__title u-h3 js-search-name">Mohsen Hayati</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?author=Mohsen%20Hayati" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&amp;term=Mohsen%20Hayati" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&amp;num=10&amp;btnG=Search+Scholar&amp;as_epq=&amp;as_oq=&amp;as_eq=&amp;as_occt=any&amp;as_sauthors=%22Mohsen%20Hayati%22&amp;as_publication=&amp;as_ylo=&amp;as_yhi=&amp;as_allsubj=all&amp;hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="contributions">Contributions</h3><p>Design, analysis, investigation, and writing—original draft preparation: S.K., writing—review and editing: M.H. All authors discussed the results and contributed to the final manuscript.</p><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:mohsen_hayati@yahoo.com">Mohsen Hayati</a>.</p></div></div></section><section data-title="Ethics declarations"><div class="c-article-section" id="ethics-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="ethics">Ethics declarations</h2><div class="c-article-section__content" id="ethics-content"> <h3 class="c-article__sub-heading" id="FPar1">Competing interests</h3> <p>The authors declare no competing interests.</p> </div></div></section><section data-title="Additional information"><div class="c-article-section" id="additional-information-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="additional-information">Additional information</h2><div class="c-article-section__content" id="additional-information-content"><h3 class="c-article__sub-heading">Publisher's note</h3><p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div></div></section><section data-title="Rights and permissions"><div class="c-article-section" id="rightslink-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="rightslink">Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"> <p><b>Open Access</b> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <a href="http://creativecommons.org/licenses/by/4.0/" rel="license">http://creativecommons.org/licenses/by/4.0/</a>.</p> <p class="c-article-rights"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?title=Optical%20biosensors%20using%20plasmonic%20and%20photonic%20crystal%20band-gap%20structures%20for%20the%20detection%20of%20basal%20cell%20cancer&amp;author=Shiva%20Khani%20et%20al&amp;contentID=10.1038%2Fs41598-022-09213-w&amp;copyright=The%20Author%28s%29&amp;publication=2045-2322&amp;publicationDate=2022-03-28&amp;publisherName=SpringerNature&amp;orderBeanReset=true&amp;oa=CC%20BY">Reprints and permissions</a></p></div></div></section><section aria-labelledby="article-info" data-title="About this article"><div class="c-article-section" id="article-info-section"><h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="article-info">About this article</h2><div class="c-article-section__content" id="article-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1038/s41598-022-09213-w" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-09213-w" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this article</h3><p class="c-bibliographic-information__citation">Khani, S., Hayati, M. Optical biosensors using plasmonic and photonic crystal band-gap structures for the detection of basal cell cancer. <i>Sci Rep</i> <b>12</b>, 5246 (2022). https://doi.org/10.1038/s41598-022-09213-w</p><p class="c-bibliographic-information__download-citation u-hide-print"><a data-test="citation-link" data-track="click" data-track-action="download article citation" data-track-label="link" data-track-external="" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1038/s41598-022-09213-w?format=refman&amp;flavour=citation">Download citation<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p><ul class="c-bibliographic-information__list" data-test="publication-history"><li class="c-bibliographic-information__list-item"><p>Received<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2021-12-04">04 December 2021</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Accepted<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-03-09">09 March 2022</time></span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2022-03-28">28 March 2022</time></span></p></li><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--full-width"><p><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1038/s41598-022-09213-w</span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this article</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" type="button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" type="button" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="article-info-list"></div></div></div></div></div></section> </div> <section> <div class="c-article-section js-article-section" id="further-reading-section" data-test="further-reading-section"> <h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="further-reading">This article is cited by</h2> <div class="c-article-section__content js-collapsible-section" id="further-reading-content"> <ul class="c-article-further-reading__list" id="further-reading-list"> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:Photonic Crystal–Based Nanoscale Multipurpose Biosensor for Detection of Brain Tumours, HIV, and Anaemia with High Sensitivity" href="https://doi.org/10.1007/s11468-024-02199-3"> Photonic Crystal–Based Nanoscale Multipurpose Biosensor for Detection of Brain Tumours, HIV, and Anaemia with High Sensitivity </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Elizabeth Caroline Britto</li><li>Bhuvaneshwari Krishnamoorthi</li><li>S. Mohamed Nizar</li> </ul> <p class="c-article-further-reading__journal-title"><i>Plasmonics</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:A Biosensor for the Detection of Anemia Using Metal Ag and Defect Multilayer Photonic Crystal" href="https://doi.org/10.1007/s11468-023-02088-1"> A Biosensor for the Detection of Anemia Using Metal Ag and Defect Multilayer Photonic Crystal </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact c-author-list--truncated u-sans-serif u-mb-4 u-mt-auto"> <li>Sanjeev Sharma</li><li>Manvinder Singh</li><li>Arun Kumar</li> </ul> <p class="c-article-further-reading__journal-title"><i>Plasmonics</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:Design of a MIM sensor using an optical resonator and GMDH algorithm for high efficiency applications" href="https://doi.org/10.1007/s10825-024-02136-x"> Design of a MIM sensor using an optical resonator and GMDH algorithm for high efficiency applications </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact u-sans-serif u-mb-4 u-mt-auto"> <li>Seyed Abed Zonouri</li><li>Mohsen Hayati</li> </ul> <p class="c-article-further-reading__journal-title"><i>Journal of Computational Electronics</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:Multi band square-shaped polarization-insensitive graphene-based perfect absorber" href="https://doi.org/10.1007/s11082-023-06081-0"> Multi band square-shaped polarization-insensitive graphene-based perfect absorber </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact u-sans-serif u-mb-4 u-mt-auto"> <li>Soheil Hadipour</li><li>Pejman Rezaei</li><li>Amirhossein Norouzi-Razani</li> </ul> <p class="c-article-further-reading__journal-title"><i>Optical and Quantum Electronics</i> (2024)</p> </li> <li class="c-article-further-reading__item js-ref-item"> <h3 class="c-article-further-reading__title" data-test="article-title"> <a class="print-link" data-track="click" data-track-action="view further reading article" data-track-label="link:Ultra-compact all optical 4–2 encoder based on micro-cavity resonators" href="https://doi.org/10.1007/s11107-024-01016-5"> Ultra-compact all optical 4–2 encoder based on micro-cavity resonators </a> </h3> <ul data-test="author-list" class="c-author-list c-author-list--compact u-sans-serif u-mb-4 u-mt-auto"> <li>M. Sivasindhu</li><li>P. Samundiswary</li> </ul> <p class="c-article-further-reading__journal-title"><i>Photonic Network Communications</i> (2024)</p> </li> </ul> </div> </div> </section> </div> </article> </main> <aside class="c-article-extras u-hide-print" aria-label="Article navigation" data-component-reading-companion data-container-type="reading-companion" data-track-component="reading companion"> <div class="js-context-bar-sticky-point-desktop" data-track-context="reading companion"> <div class="c-pdf-download u-clear-both js-pdf-download"> <a href="/articles/s41598-022-09213-w.pdf" class="u-button u-button--full-width u-button--primary u-justify-content-space-between c-pdf-download__link" data-article-pdf="true" data-readcube-pdf-url="true" data-test="download-pdf" data-draft-ignore="true" data-track="content_download" data-track-type="article pdf download" data-track-action="download pdf" data-track-label="link" data-track-external download> <span class="c-pdf-download__text">Download PDF</span> <svg aria-hidden="true" focusable="false" width="16" height="16" class="u-icon"><use xlink:href="#icon-download"/></svg> </a> </div> </div> <div class="c-article-associated-content__container"> <section> <h2 class="c-article-associated-content__title u-mb-24">Associated content</h2> <div class="c-article-associated-content__collection collection u-mb-24"> <section> <p class="c-article-associated-content__collection-label u-sans-serif u-text-bold u-mb-8">Collection</p> <h3 class="c-article-associated-content__collection-title u-h3 u-mb-8"> <a href="https://www.nature.com/collections/abddhifijf" class="u-link-inherit" data-track="click" data-track-action="view collection" data-track-category="associated content" data-track-label="collection" data-test="collection-link">Editor’s choice: Biosensors</a> </h3> </section> </div> </section> </div> <script> window.dataLayer = window.dataLayer || []; window.dataLayer[0] = window.dataLayer[0] || {}; window.dataLayer[0].content = window.dataLayer[0].content || {}; window.dataLayer[0].content.associatedContentTypes = "collection"; window.dataLayer[0].content.collections = "abddhifijf"; </script> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"> <div class="u-lazy-ad-wrapper u-mt-16 u-hide" data-component-mpu> <div class="c-ad c-ad--300x250"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-right-2" class="div-gpt-ad advert medium-rectangle js-ad text-center hide-print grade-c-hide" data-ad-type="right" data-test="right-ad" data-pa11y-ignore data-gpt data-gpt-unitpath="/285/scientific_reports/article" data-gpt-sizes="300x250" data-gpt-targeting="type=article;pos=right;artid=s41598-022-09213-w;doi=10.1038/s41598-022-09213-w;subjmeta=624,639,766;kwrd=Optics+and+photonics,Physics"> <noscript> <a href="//pubads.g.doubleclick.net/gampad/jump?iu=/285/scientific_reports/article&amp;sz=300x250&amp;c=-352084731&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41598-022-09213-w%26doi%3D10.1038/s41598-022-09213-w%26subjmeta%3D624,639,766%26kwrd%3DOptics+and+photonics,Physics"> <img data-test="gpt-advert-fallback-img" src="//pubads.g.doubleclick.net/gampad/ad?iu=/285/scientific_reports/article&amp;sz=300x250&amp;c=-352084731&amp;t=pos%3Dright%26type%3Darticle%26artid%3Ds41598-022-09213-w%26doi%3D10.1038/s41598-022-09213-w%26subjmeta%3D624,639,766%26kwrd%3DOptics+and+photonics,Physics" alt="Advertisement" width="300" height="250"></a> </noscript> </div> </div> </div> </div> </div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> <nav class="c-header__dropdown" aria-labelledby="Explore-content" data-test="Explore-content" id="explore" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Explore-content" class="c-header__heading c-header__heading--js-hide">Explore content</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/srep/research-articles" data-track="click" data-track-action="research articles" data-track-label="link" data-test="explore-nav-item"> Research articles </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/news-and-comment" data-track="click" data-track-action="news &amp; comment" data-track-label="link" data-test="explore-nav-item"> News &amp; Comment </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/collections" data-track="click" data-track-action="collections" data-track-label="link" data-test="explore-nav-item"> Collections </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/browse-subjects" data-track="click" data-track-action="subjects" data-track-label="link" data-test="explore-nav-item"> Subjects </a> </li> </ul> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="https://www.facebook.com/scientificreports" data-track="click" data-track-action="facebook" data-track-label="link">Follow us on Facebook </a> </li> <li class="c-header__item"> <a class="c-header__link" href="https://twitter.com/SciReports" data-track="click" data-track-action="twitter" data-track-label="link">Follow us on Twitter </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/my-account/alerts/subscribe-journal?list-id&#x3D;288" rel="nofollow" data-track="click" data-track-action="Sign up for alerts" data-track-external data-track-label="link (mobile dropdown)">Sign up for alerts<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill="#fff"/></svg> </a> </li> <li class="c-header__item c-header__item--hide-lg"> <a class="c-header__link" href="https://www.nature.com/srep.rss" data-track="click" data-track-action="rss feed" data-track-label="link"> <span>RSS feed</span> </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="About-the-journal" id="about-the-journal" data-test="about-the-journal" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="About-the-journal" class="c-header__heading c-header__heading--js-hide">About the journal</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/srep/about" data-track="click" data-track-action="about scientific reports" data-track-label="link"> About Scientific Reports </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/contact" data-track="click" data-track-action="contact" data-track-label="link"> Contact </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/journal-policies" data-track="click" data-track-action="journal policies" data-track-label="link"> Journal policies </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/guide-to-referees" data-track="click" data-track-action="guide to referees" data-track-label="link"> Guide to referees </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/calls-for-papers" data-track="click" data-track-action="calls for papers" data-track-label="link"> Calls for Papers </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/editorschoice" data-track="click" data-track-action="editor&#x27;s choice" data-track-label="link"> Editor&#x27;s Choice </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/highlights" data-track="click" data-track-action="journal highlights" data-track-label="link"> Journal highlights </a> </li> <li class="c-header__item"> <a class="c-header__link" href="/srep/open-access" data-track="click" data-track-action="open access fees and funding" data-track-label="link"> Open Access Fees and Funding </a> </li> </ul> </div> </nav> <nav class="c-header__dropdown" aria-labelledby="Publish-with-us-label" id="publish-with-us" data-test="publish-with-us" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 id="Publish-with-us-label" class="c-header__heading c-header__heading--js-hide">Publish with us</h2> <ul class="c-header__list c-header__list--js-stack"> <li class="c-header__item"> <a class="c-header__link" href="/srep/author-instructions" data-track="click" data-track-action="for authors" data-track-label="link"> For authors </a> </li> <li class="c-header__item"> <a class="c-header__link" data-test="nature-author-services" data-track="nav_language_services" data-track-context="header publish with us dropdown menu" data-track-action="manuscript author services" data-track-label="link manuscript author services" href="https://authorservices.springernature.com/go/sn/?utm_source=For+Authors&utm_medium=Website_Nature&utm_campaign=Platform+Experimentation+2022&utm_id=PE2022"> Language editing services </a> </li> <li class="c-header__item c-header__item--keyline"> <a class="c-header__link" href="https://author-welcome.nature.com/41598" data-track="click_submit_manuscript" data-track-context="submit link in Nature header dropdown menu" data-track-action="submit manuscript" data-track-label="link (publish with us dropdown menu)" data-track-external>Submit manuscript<svg role="img" aria-hidden="true" focusable="false" height="18" viewBox="0 0 18 18" width="18" xmlns="http://www.w3.org/2000/svg"><path d="m15 0c1.1045695 0 2 .8954305 2 2v5.5c0 .27614237-.2238576.5-.5.5s-.5-.22385763-.5-.5v-5.5c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-9v3c0 1.1045695-.8954305 2-2 2h-3v10c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h7.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-7.5c-1.1045695 0-2-.8954305-2-2v-10.17157288c0-.53043297.21071368-1.0391408.58578644-1.41421356l3.82842712-3.82842712c.37507276-.37507276.88378059-.58578644 1.41421356-.58578644zm-.5442863 8.18867991 3.3545404 3.35454039c.2508994.2508994.2538696.6596433.0035959.909917-.2429543.2429542-.6561449.2462671-.9065387-.0089489l-2.2609825-2.3045251.0010427 7.2231989c0 .3569916-.2898381.6371378-.6473715.6371378-.3470771 0-.6473715-.2852563-.6473715-.6371378l-.0010428-7.2231995-2.2611222 2.3046654c-.2531661.2580415-.6562868.2592444-.9065605.0089707-.24295423-.2429542-.24865597-.6576651.0036132-.9099343l3.3546673-3.35466731c.2509089-.25090888.6612706-.25227691.9135302-.00001728zm-.9557137-3.18867991c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm-8.5-3.587-3.587 3.587h2.587c.55228475 0 1-.44771525 1-1zm8.5 1.587c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill="#fff"/></svg> </a> </li> </ul> </div> </nav> <div id="search-menu" class="c-header__dropdown c-header__dropdown--full-width" data-track-component="nature-150-split-header"> <div class="c-header__container"> <h2 class="c-header__visually-hidden">Search</h2> <form class="c-header__search-form" action="/search" method="get" role="search" autocomplete="off" data-test="inline-search"> <label class="c-header__heading" for="keywords">Search articles by subject, keyword or author</label> <div class="c-header__search-layout c-header__search-layout--max-width"> <div> <input type="text" required="" class="c-header__input" id="keywords" name="q" value=""> </div> <div class="c-header__search-layout"> <div> <label for="results-from" class="c-header__visually-hidden">Show results from</label> <select id="results-from" name="journal" class="c-header__select"> <option value="" selected>All journals</option> <option value="srep">This journal</option> </select> </div> <div> <button type="submit" class="c-header__search-button">Search</button> </div> </div> </div> </form> <div class="c-header__flush"> <a class="c-header__link" href="/search/advanced" data-track="click" data-track-action="advanced search" data-track-label="link"> Advanced search </a> </div> <h3 class="c-header__heading c-header__heading--keyline">Quick links</h3> <ul class="c-header__list"> <li><a class="c-header__link" href="/subjects" data-track="click" data-track-action="explore articles by subject" data-track-label="link">Explore articles by subject</a></li> <li><a class="c-header__link" href="/naturecareers" data-track="click" data-track-action="find a job" data-track-label="link">Find a job</a></li> <li><a class="c-header__link" href="/authors/index.html" data-track="click" data-track-action="guide to authors" data-track-label="link">Guide to authors</a></li> <li><a class="c-header__link" href="/authors/editorial_policies/" data-track="click" data-track-action="editorial policies" data-track-label="link">Editorial policies</a></li> </ul> </div> </div> <footer class="composite-layer" itemscope itemtype="http://schema.org/Periodical"> <meta itemprop="publisher" content="Springer Nature"> <div class="u-mt-16 u-mb-16"> <div class="u-container"> <div class="u-display-flex u-flex-wrap u-justify-content-space-between"> <p class="c-meta u-ma-0 u-flex-shrink"> <span class="c-meta__item"> Scientific Reports (<i>Sci Rep</i>) </span> <span class="c-meta__item"> <abbr title="International Standard Serial Number">ISSN</abbr> <span itemprop="onlineIssn">2045-2322</span> (online) </span> </p> </div> </div> </div> <div class="c-footer"> <div class="u-hide-print" data-track-component="footer"> <h2 class="u-visually-hidden">nature.com sitemap</h2> <div class="c-footer__container"> <div class="c-footer__grid c-footer__group--separator"> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">About Nature Portfolio</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/company_info/index.html" data-track="click" data-track-action="about us" data-track-label="link">About us</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/npg_/press_room/press_releases.html" data-track="click" data-track-action="press releases" data-track-label="link">Press releases</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://press.nature.com/" data-track="click" data-track-action="press office" data-track-label="link">Press office</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://support.nature.com/support/home" data-track="click" data-track-action="contact us" data-track-label="link">Contact us</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Discover content</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/siteindex" data-track="click" data-track-action="journals a-z" data-track-label="link">Journals A-Z</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/subjects" data-track="click" data-track-action="article by subject" data-track-label="link">Articles by subject</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.protocols.io/" data-track="click" data-track-action="protocols.io" data-track-label="link">protocols.io</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureindex.com/" data-track="click" data-track-action="nature index" data-track-label="link">Nature Index</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Publishing policies</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/authors/editorial_policies" data-track="click" data-track-action="Nature portfolio policies" data-track-label="link">Nature portfolio policies</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nature-research/open-access" data-track="click" data-track-action="open access" data-track-label="link">Open access</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Author &amp; Researcher services</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/reprints" data-track="click" data-track-action="reprints and permissions" data-track-label="link">Reprints &amp; permissions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/authors/research-data" data-track="click" data-track-action="data research service" data-track-label="link">Research data</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/language-editing/" data-track="click" data-track-action="language editing" data-track-label="link">Language editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://authorservices.springernature.com/scientific-editing/" data-track="click" data-track-action="scientific editing" data-track-label="link">Scientific editing</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://masterclasses.nature.com/" data-track="click" data-track-action="nature masterclasses" data-track-label="link">Nature Masterclasses</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://solutions.springernature.com/" data-track="click" data-track-action="research solutions" data-track-label="link">Research Solutions</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Libraries &amp; institutions</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/tools-services" data-track="click" data-track-action="librarian service and tools" data-track-label="link">Librarian service &amp; tools</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/manage-your-account/librarianportal" data-track="click" data-track-action="librarian portal" data-track-label="link">Librarian portal</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/openresearch/about-open-access/information-for-institutions" data-track="click" data-track-action="open research" data-track-label="link">Open research</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/gp/librarians/recommend-to-your-library" data-track="click" data-track-action="Recommend to library" data-track-label="link">Recommend to library</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Advertising &amp; partnerships</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/digital-advertising/" data-track="click" data-track-action="advertising" data-track-label="link">Advertising</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/" data-track="click" data-track-action="partnerships and services" data-track-label="link">Partnerships &amp; Services</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/media-kits/" data-track="click" data-track-action="media kits" data-track-label="link">Media kits</a> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://partnerships.nature.com/product/branded-content-native-advertising/" data-track-action="branded content" data-track-label="link">Branded content</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Professional development</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/naturecareers/" data-track="click" data-track-action="nature careers" data-track-label="link">Nature Careers</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://conferences.nature.com" data-track="click" data-track-action="nature conferences" data-track-label="link">Nature<span class="u-visually-hidden"> </span> Conferences</a></li> </ul> </div> <div class="c-footer__group"> <h3 class="c-footer__heading u-mt-0">Regional websites</h3> <ul class="c-footer__list"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natafrica" data-track="click" data-track-action="nature africa" data-track-label="link">Nature Africa</a></li> <li class="c-footer__item"><a class="c-footer__link" href="http://www.naturechina.com" data-track="click" data-track-action="nature china" data-track-label="link">Nature China</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nindia" data-track="click" data-track-action="nature india" data-track-label="link">Nature India</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/natitaly" data-track="click" data-track-action="nature Italy" data-track-label="link">Nature Italy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.natureasia.com/ja-jp" data-track="click" data-track-action="nature japan" data-track-label="link">Nature Japan</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/nmiddleeast" data-track="click" data-track-action="nature middle east" data-track-label="link">Nature Middle East</a></li> </ul> </div> </div> </div> <div class="c-footer__container"> <ul class="c-footer__links"> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/privacy" data-track="click" data-track-action="privacy policy" data-track-label="link">Privacy Policy</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/cookies" data-track="click" data-track-action="use of cookies" data-track-label="link">Use of cookies</a></li> <li class="c-footer__item"> <button class="optanon-toggle-display c-footer__link" onclick="javascript:;" data-cc-action="preferences" data-track="click" data-track-action="manage cookies" data-track-label="link">Your privacy choices/Manage cookies </button> </li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/legal-notice" data-track="click" data-track-action="legal notice" data-track-label="link">Legal notice</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/accessibility-statement" data-track="click" data-track-action="accessibility statement" data-track-label="link">Accessibility statement</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.nature.com/info/terms-and-conditions" data-track="click" data-track-action="terms and conditions" data-track-label="link">Terms &amp; Conditions</a></li> <li class="c-footer__item"><a class="c-footer__link" href="https://www.springernature.com/ccpa" data-track="click" data-track-action="california privacy statement" data-track-label="link">Your US state privacy rights</a></li> </ul> </div> </div> <div class="c-footer__container"> <a href="https://www.springernature.com/" class="c-footer__link"> <img src="/static/images/logos/sn-logo-white-ea63208b81.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="c-footer__legal" data-test="copyright">&copy; 2024 Springer Nature Limited</p> </div> </div> <div class="u-visually-hidden" aria-hidden="true"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><defs><path id="a" d="M0 .74h56.72v55.24H0z"/></defs><symbol id="icon-access" viewBox="0 0 18 18"><path d="m14 8c.5522847 0 1 .44771525 1 1v7h2.5c.2761424 0 .5.2238576.5.5v1.5h-18v-1.5c0-.2761424.22385763-.5.5-.5h2.5v-7c0-.55228475.44771525-1 1-1s1 .44771525 1 1v6.9996556h8v-6.9996556c0-.55228475.4477153-1 1-1zm-8 0 2 1v5l-2 1zm6 0v7l-2-1v-5zm-2.42653766-7.59857636 7.03554716 4.92488299c.4162533.29137735.5174853.86502537.226108 1.28127873-.1721584.24594054-.4534847.39241464-.7536934.39241464h-14.16284822c-.50810197 0-.92-.41189803-.92-.92 0-.30020869.1464741-.58153499.39241464-.75369337l7.03554714-4.92488299c.34432015-.2410241.80260453-.2410241 1.14692468 0zm-.57346234 2.03988748-3.65526982 2.55868888h7.31053962z" fill-rule="evenodd"/></symbol><symbol id="icon-account" viewBox="0 0 18 18"><path d="m10.2379028 16.9048051c1.3083556-.2032362 2.5118471-.7235183 3.5294683-1.4798399-.8731327-2.5141501-2.0638925-3.935978-3.7673711-4.3188248v-1.27684611c1.1651924-.41183641 2-1.52307546 2-2.82929429 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.30621883.83480763 2.41745788 2 2.82929429v1.27684611c-1.70347856.3828468-2.89423845 1.8046747-3.76737114 4.3188248 1.01762123.7563216 2.22111275 1.2766037 3.52946833 1.4798399.40563808.0629726.81921174.0951949 1.23790281.0951949s.83226473-.0322223 1.2379028-.0951949zm4.3421782-2.1721994c1.4927655-1.4532925 2.419919-3.484675 2.419919-5.7326057 0-4.418278-3.581722-8-8-8s-8 3.581722-8 8c0 2.2479307.92715352 4.2793132 2.41991895 5.7326057.75688473-2.0164459 1.83949951-3.6071894 3.48926591-4.3218837-1.14534283-.70360829-1.90918486-1.96796271-1.90918486-3.410722 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.44275929-.763842 2.70711371-1.9091849 3.410722 1.6497664.7146943 2.7323812 2.3054378 3.4892659 4.3218837zm-5.580081 3.2673943c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-alert" viewBox="0 0 18 18"><path d="m4 10h2.5c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-3.08578644l-1.12132034 1.1213203c-.18753638.1875364-.29289322.4418903-.29289322.7071068v.1715729h14v-.1715729c0-.2652165-.1053568-.5195704-.2928932-.7071068l-1.7071068-1.7071067v-3.4142136c0-2.76142375-2.2385763-5-5-5-2.76142375 0-5 2.23857625-5 5zm3 4c0 1.1045695.8954305 2 2 2s2-.8954305 2-2zm-5 0c-.55228475 0-1-.4477153-1-1v-.1715729c0-.530433.21071368-1.0391408.58578644-1.4142135l1.41421356-1.4142136v-3c0-3.3137085 2.6862915-6 6-6s6 2.6862915 6 6v3l1.4142136 1.4142136c.3750727.3750727.5857864.8837805.5857864 1.4142135v.1715729c0 .5522847-.4477153 1-1 1h-4c0 1.6568542-1.3431458 3-3 3-1.65685425 0-3-1.3431458-3-3z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-broad" viewBox="0 0 16 16"><path d="m6.10307866 2.97190702v7.69043288l2.44965196-2.44676915c.38776071-.38730439 1.0088052-.39493524 1.38498697-.01919617.38609051.38563612.38643641 1.01053024-.00013864 1.39665039l-4.12239817 4.11754683c-.38616704.3857126-1.01187344.3861062-1.39846576-.0000311l-4.12258206-4.11773056c-.38618426-.38572979-.39254614-1.00476697-.01636437-1.38050605.38609047-.38563611 1.01018509-.38751562 1.4012233.00306241l2.44985644 2.4469734v-8.67638639c0-.54139983.43698413-.98042709.98493125-.98159081l7.89910522-.0043627c.5451687 0 .9871152.44142642.9871152.98595351s-.4419465.98595351-.9871152.98595351z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 14 15)"/></symbol><symbol id="icon-arrow-down" viewBox="0 0 16 16"><path d="m3.28337502 11.5302405 4.03074001 4.176208c.37758093.3912076.98937525.3916069 1.367372-.0000316l4.03091977-4.1763942c.3775978-.3912252.3838182-1.0190815.0160006-1.4001736-.3775061-.39113013-.9877245-.39303641-1.3700683.003106l-2.39538585 2.4818345v-11.6147896l-.00649339-.11662112c-.055753-.49733869-.46370161-.88337888-.95867408-.88337888-.49497246 0-.90292107.38604019-.95867408.88337888l-.00649338.11662112v11.6147896l-2.39518594-2.4816273c-.37913917-.39282218-.98637524-.40056175-1.35419292-.0194697-.37750607.3911302-.37784433 1.0249269.00013556 1.4165479z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-left" viewBox="0 0 16 16"><path d="m4.46975946 3.28337502-4.17620792 4.03074001c-.39120768.37758093-.39160691.98937525.0000316 1.367372l4.1763942 4.03091977c.39122514.3775978 1.01908149.3838182 1.40017357.0160006.39113012-.3775061.3930364-.9877245-.00310603-1.3700683l-2.48183446-2.39538585h11.61478958l.1166211-.00649339c.4973387-.055753.8833789-.46370161.8833789-.95867408 0-.49497246-.3860402-.90292107-.8833789-.95867408l-.1166211-.00649338h-11.61478958l2.4816273-2.39518594c.39282216-.37913917.40056173-.98637524.01946965-1.35419292-.39113012-.37750607-1.02492687-.37784433-1.41654791.00013556z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-right" viewBox="0 0 16 16"><path d="m11.5302405 12.716625 4.176208-4.03074003c.3912076-.37758093.3916069-.98937525-.0000316-1.367372l-4.1763942-4.03091981c-.3912252-.37759778-1.0190815-.38381821-1.4001736-.01600053-.39113013.37750607-.39303641.98772445.003106 1.37006824l2.4818345 2.39538588h-11.6147896l-.11662112.00649339c-.49733869.055753-.88337888.46370161-.88337888.95867408 0 .49497246.38604019.90292107.88337888.95867408l.11662112.00649338h11.6147896l-2.4816273 2.39518592c-.39282218.3791392-.40056175.9863753-.0194697 1.3541929.3911302.3775061 1.0249269.3778444 1.4165479-.0001355z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-sub" viewBox="0 0 16 16"><path d="m7.89692134 4.97190702v7.69043288l-2.44965196-2.4467692c-.38776071-.38730434-1.0088052-.39493519-1.38498697-.0191961-.38609047.3856361-.38643643 1.0105302.00013864 1.3966504l4.12239817 4.1175468c.38616704.3857126 1.01187344.3861062 1.39846576-.0000311l4.12258202-4.1177306c.3861843-.3857298.3925462-1.0047669.0163644-1.380506-.3860905-.38563612-1.0101851-.38751563-1.4012233.0030624l-2.44985643 2.4469734v-8.67638639c0-.54139983-.43698413-.98042709-.98493125-.98159081l-7.89910525-.0043627c-.54516866 0-.98711517.44142642-.98711517.98595351s.44194651.98595351.98711517.98595351z" fill-rule="evenodd"/></symbol><symbol id="icon-arrow-up" viewBox="0 0 16 16"><path d="m12.716625 4.46975946-4.03074003-4.17620792c-.37758093-.39120768-.98937525-.39160691-1.367372.0000316l-4.03091981 4.1763942c-.37759778.39122514-.38381821 1.01908149-.01600053 1.40017357.37750607.39113012.98772445.3930364 1.37006824-.00310603l2.39538588-2.48183446v11.61478958l.00649339.1166211c.055753.4973387.46370161.8833789.95867408.8833789.49497246 0 .90292107-.3860402.95867408-.8833789l.00649338-.1166211v-11.61478958l2.39518592 2.4816273c.3791392.39282216.9863753.40056173 1.3541929.01946965.3775061-.39113012.3778444-1.02492687-.0001355-1.41654791z" fill-rule="evenodd"/></symbol><symbol id="icon-article" viewBox="0 0 18 18"><path d="m13 15v-12.9906311c0-.0073595-.0019884-.0093689.0014977-.0093689l-11.00158888.00087166v13.00506804c0 .5482678.44615281.9940603.99415146.9940603h10.27350412c-.1701701-.2941734-.2675644-.6357129-.2675644-1zm-12 .0059397v-13.00506804c0-.5562408.44704472-1.00087166.99850233-1.00087166h11.00299537c.5510129 0 .9985023.45190985.9985023 1.0093689v2.9906311h3v9.9914698c0 1.1065798-.8927712 2.0085302-1.9940603 2.0085302h-12.01187942c-1.09954652 0-1.99406028-.8927712-1.99406028-1.9940603zm13-9.0059397v9c0 .5522847.4477153 1 1 1s1-.4477153 1-1v-9zm-10-2h7v4h-7zm1 1v2h5v-2zm-1 4h7v1h-7zm0 2h7v1h-7zm0 2h7v1h-7z" fill-rule="evenodd"/></symbol><symbol id="icon-audio" viewBox="0 0 18 18"><path d="m13.0957477 13.5588459c-.195279.1937043-.5119137.193729-.7072234.0000551-.1953098-.193674-.1953346-.5077061-.0000556-.7014104 1.0251004-1.0168342 1.6108711-2.3905226 1.6108711-3.85745208 0-1.46604976-.5850634-2.83898246-1.6090736-3.85566829-.1951894-.19379323-.1950192-.50782531.0003802-.70141028.1953993-.19358497.512034-.19341614.7072234.00037709 1.2094886 1.20083761 1.901635 2.8250555 1.901635 4.55670148 0 1.73268608-.6929822 3.35779608-1.9037571 4.55880738zm2.1233994 2.1025159c-.195234.193749-.5118687.1938462-.7072235.0002171-.1953548-.1936292-.1954528-.5076613-.0002189-.7014104 1.5832215-1.5711805 2.4881302-3.6939808 2.4881302-5.96012998 0-2.26581266-.9046382-4.3883241-2.487443-5.95944795-.1952117-.19377107-.1950777-.50780316.0002993-.70141031s.5120117-.19347426.7072234.00029682c1.7683321 1.75528196 2.7800854 4.12911258 2.7800854 6.66056144 0 2.53182498-1.0120556 4.90597838-2.7808529 6.66132328zm-14.21898205-3.6854911c-.5523759 0-1.00016505-.4441085-1.00016505-.991944v-3.96777631c0-.54783558.44778915-.99194407 1.00016505-.99194407h2.0003301l5.41965617-3.8393633c.44948677-.31842296 1.07413994-.21516983 1.39520191.23062232.12116339.16823446.18629727.36981184.18629727.57655577v12.01603479c0 .5478356-.44778914.9919441-1.00016505.9919441-.20845738 0-.41170538-.0645985-.58133413-.184766l-5.41965617-3.8393633zm0-.991944h2.32084805l5.68047235 4.0241292v-12.01603479l-5.68047235 4.02412928h-2.32084805z" fill-rule="evenodd"/></symbol><symbol id="icon-block" viewBox="0 0 24 24"><path d="m0 0h24v24h-24z" fill-rule="evenodd"/></symbol><symbol id="icon-book" viewBox="0 0 18 18"><path d="m4 13v-11h1v11h11v-11h-13c-.55228475 0-1 .44771525-1 1v10.2675644c.29417337-.1701701.63571286-.2675644 1-.2675644zm12 1h-13c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1h13zm0 3h-13c-1.1045695 0-2-.8954305-2-2v-12c0-1.1045695.8954305-2 2-2h13c.5522847 0 1 .44771525 1 1v14c0 .5522847-.4477153 1-1 1zm-8.5-13h6c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-6c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1 2h4c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-4c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-broad" viewBox="0 0 24 24"><path d="m9.18274226 7.81v7.7999954l2.48162734-2.4816273c.3928221-.3928221 1.0219731-.4005617 1.4030652-.0194696.3911301.3911301.3914806 1.0249268-.0001404 1.4165479l-4.17620796 4.1762079c-.39120769.3912077-1.02508144.3916069-1.41671995-.0000316l-4.1763942-4.1763942c-.39122514-.3912251-.39767006-1.0190815-.01657798-1.4001736.39113012-.3911301 1.02337106-.3930364 1.41951349.0031061l2.48183446 2.4818344v-8.7999954c0-.54911294.4426881-.99439484.99778758-.99557515l8.00221246-.00442485c.5522847 0 1 .44771525 1 1s-.4477153 1-1 1z" fill-rule="evenodd" transform="matrix(-1 0 0 -1 20.182742 24.805206)"/></symbol><symbol id="icon-calendar" viewBox="0 0 18 18"><path d="m12.5 0c.2761424 0 .5.21505737.5.49047852v.50952148h2c1.1072288 0 2 .89451376 2 2v12c0 1.1072288-.8945138 2-2 2h-12c-1.1072288 0-2-.8945138-2-2v-12c0-1.1072288.89451376-2 2-2h1v1h-1c-.55393837 0-1 .44579254-1 1v3h14v-3c0-.55393837-.4457925-1-1-1h-2v1.50952148c0 .27088381-.2319336.49047852-.5.49047852-.2761424 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.2319336-.49047852.5-.49047852zm3.5 7h-14v8c0 .5539384.44579254 1 1 1h12c.5539384 0 1-.4457925 1-1zm-11 6v1h-1v-1zm3 0v1h-1v-1zm3 0v1h-1v-1zm-6-2v1h-1v-1zm3 0v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-3-2v1h-1v-1zm6 0v1h-1v-1zm-3 0v1h-1v-1zm-5.5-9c.27614237 0 .5.21505737.5.49047852v.50952148h5v1h-5v1.50952148c0 .27088381-.23193359.49047852-.5.49047852-.27614237 0-.5-.21505737-.5-.49047852v-3.01904296c0-.27088381.23193359-.49047852.5-.49047852z" fill-rule="evenodd"/></symbol><symbol id="icon-cart" viewBox="0 0 18 18"><path d="m5 14c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm10 0c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm-10 1c-.55228475 0-1 .4477153-1 1s.44771525 1 1 1 1-.4477153 1-1-.44771525-1-1-1zm10 0c-.5522847 0-1 .4477153-1 1s.4477153 1 1 1 1-.4477153 1-1-.4477153-1-1-1zm-12.82032249-15c.47691417 0 .88746157.33678127.98070211.80449199l.23823144 1.19501025 13.36277974.00045554c.5522847.00001882.9999659.44774934.9999659 1.00004222 0 .07084994-.0075361.14150708-.022474.2107727l-1.2908094 5.98534344c-.1007861.46742419-.5432548.80388386-1.0571651.80388386h-10.24805106c-.59173366 0-1.07142857.4477153-1.07142857 1 0 .5128358.41361449.9355072.94647737.9932723l.1249512.0067277h10.35933776c.2749512 0 .4979349.2228539.4979349.4978051 0 .2749417-.2227336.4978951-.4976753.4980063l-10.35959736.0041886c-1.18346732 0-2.14285714-.8954305-2.14285714-2 0-.6625717.34520317-1.24989198.87690425-1.61383592l-1.63768102-8.19004794c-.01312273-.06561364-.01950005-.131011-.0196107-.19547395l-1.71961253-.00064219c-.27614237 0-.5-.22385762-.5-.5 0-.27614237.22385763-.5.5-.5zm14.53193359 2.99950224h-13.11300004l1.20580469 6.02530174c.11024034-.0163252.22327998-.02480398.33844139-.02480398h10.27064786z"/></symbol><symbol id="icon-chevron-less" viewBox="0 0 10 10"><path d="m5.58578644 4-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 -1 -1 0 9 9)"/></symbol><symbol id="icon-chevron-more" viewBox="0 0 10 10"><path d="m5.58578644 6-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4.00000002c-.39052429.3905243-1.02368927.3905243-1.41421356 0s-.39052429-1.02368929 0-1.41421358z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-chevron-right" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-circle-fill" viewBox="0 0 16 16"><path d="m8 14c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-circle" viewBox="0 0 16 16"><path d="m8 12c2.209139 0 4-1.790861 4-4s-1.790861-4-4-4-4 1.790861-4 4 1.790861 4 4 4zm0 2c-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6 6 2.6862915 6 6-2.6862915 6-6 6z" fill-rule="evenodd"/></symbol><symbol id="icon-citation" viewBox="0 0 18 18"><path d="m8.63593473 5.99995183c2.20913897 0 3.99999997 1.79084375 3.99999997 3.99996146 0 1.40730761-.7267788 2.64486871-1.8254829 3.35783281 1.6240224.6764218 2.8754442 2.0093871 3.4610603 3.6412466l-1.0763845.000006c-.5310008-1.2078237-1.5108121-2.1940153-2.7691712-2.7181346l-.79002167-.329052v-1.023992l.63016577-.4089232c.8482885-.5504661 1.3698342-1.4895187 1.3698342-2.51898361 0-1.65683828-1.3431457-2.99996146-2.99999997-2.99996146-1.65685425 0-3 1.34312318-3 2.99996146 0 1.02946491.52154569 1.96851751 1.36983419 2.51898361l.63016581.4089232v1.023992l-.79002171.329052c-1.25835905.5241193-2.23817037 1.5103109-2.76917113 2.7181346l-1.07638453-.000006c.58561612-1.6318595 1.8370379-2.9648248 3.46106024-3.6412466-1.09870405-.7129641-1.82548287-1.9505252-1.82548287-3.35783281 0-2.20911771 1.790861-3.99996146 4-3.99996146zm7.36897597-4.99995183c1.1018574 0 1.9950893.89353404 1.9950893 2.00274083v5.994422c0 1.10608317-.8926228 2.00274087-1.9950893 2.00274087l-3.0049107-.0009037v-1l3.0049107.00091329c.5490631 0 .9950893-.44783123.9950893-1.00275046v-5.994422c0-.55646537-.4450595-1.00275046-.9950893-1.00275046h-14.00982141c-.54906309 0-.99508929.44783123-.99508929 1.00275046v5.9971821c0 .66666024.33333333.99999036 1 .99999036l2-.00091329v1l-2 .0009037c-1 0-2-.99999041-2-1.99998077v-5.9971821c0-1.10608322.8926228-2.00274083 1.99508929-2.00274083zm-8.5049107 2.9999711c.27614237 0 .5.22385547.5.5 0 .2761349-.22385763.5-.5.5h-4c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm3 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-1c-.27614237 0-.5-.2238651-.5-.5 0-.27614453.22385763-.5.5-.5zm4 0c.2761424 0 .5.22385547.5.5 0 .2761349-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238651-.5-.5 0-.27614453.2238576-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-close" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-collections" viewBox="0 0 18 18"><path d="m15 4c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2h1c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227l-.1166211-.00672773h-1v-1zm-4-3c1.1045695 0 2 .8954305 2 2v9c0 1.1045695-.8954305 2-2 2h-8c-1.1045695 0-2-.8954305-2-2v-9c0-1.1045695.8954305-2 2-2zm0 1h-8c-.51283584 0-.93550716.38604019-.99327227.88337887l-.00672773.11662113v9c0 .5128358.38604019.9355072.88337887.9932723l.11662113.0067277h8c.5128358 0 .9355072-.3860402.9932723-.8833789l.0067277-.1166211v-9c0-.51283584-.3860402-.93550716-.8833789-.99327227zm-1.5 7c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm0-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-5c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-compare" viewBox="0 0 18 18"><path d="m12 3c3.3137085 0 6 2.6862915 6 6s-2.6862915 6-6 6c-1.0928452 0-2.11744941-.2921742-2.99996061-.8026704-.88181407.5102749-1.90678042.8026704-3.00003939.8026704-3.3137085 0-6-2.6862915-6-6s2.6862915-6 6-6c1.09325897 0 2.11822532.29239547 3.00096303.80325037.88158756-.51107621 1.90619177-.80325037 2.99903697-.80325037zm-6 1c-2.76142375 0-5 2.23857625-5 5 0 2.7614237 2.23857625 5 5 5 .74397391 0 1.44999672-.162488 2.08451611-.4539116-1.27652344-1.1000812-2.08451611-2.7287264-2.08451611-4.5460884s.80799267-3.44600721 2.08434391-4.5463015c-.63434719-.29121054-1.34037-.4536985-2.08434391-.4536985zm6 0c-.7439739 0-1.4499967.16248796-2.08451611.45391156 1.27652341 1.10008123 2.08451611 2.72872644 2.08451611 4.54608844s-.8079927 3.4460072-2.08434391 4.5463015c.63434721.2912105 1.34037001.4536985 2.08434391.4536985 2.7614237 0 5-2.2385763 5-5 0-2.76142375-2.2385763-5-5-5zm-1.4162763 7.0005324h-3.16744736c.15614659.3572676.35283837.6927622.58425872 1.0006671h1.99892988c.23142036-.3079049.42811216-.6433995.58425876-1.0006671zm.4162763-2.0005324h-4c0 .34288501.0345146.67770871.10025909 1.0011864h3.79948181c.0657445-.32347769.1002591-.65830139.1002591-1.0011864zm-.4158423-1.99953894h-3.16831543c-.13859957.31730812-.24521946.651783-.31578599.99935097h3.79988742c-.0705665-.34756797-.1771864-.68204285-.315786-.99935097zm-1.58295822-1.999926-.08316107.06199199c-.34550042.27081213-.65446126.58611297-.91825862.93727862h2.00044041c-.28418626-.37830727-.6207872-.71499149-.99902072-.99927061z" fill-rule="evenodd"/></symbol><symbol id="icon-download-file" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.5046024 4c.27614237 0 .5.21637201.5.49209595v6.14827645l1.7462789-1.77990922c.1933927-.1971171.5125222-.19455839.7001689-.0069117.1932998.19329992.1910058.50899492-.0027774.70277812l-2.59089271 2.5908927c-.19483374.1948337-.51177825.1937771-.70556873-.0000133l-2.59099079-2.5909908c-.19484111-.1948411-.19043735-.5151448-.00279066-.70279146.19329987-.19329987.50465175-.19237083.70018565.00692852l1.74638684 1.78001764v-6.14827695c0-.27177709.23193359-.49209595.5-.49209595z" fill-rule="evenodd"/></symbol><symbol id="icon-download" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-editors" viewBox="0 0 18 18"><path d="m8.72592184 2.54588137c-.48811714-.34391207-1.08343326-.54588137-1.72592184-.54588137-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400182l-.79002171.32905522c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274v.9009805h-1v-.9009805c0-2.5479714 1.54557359-4.79153984 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4 1.09079823 0 2.07961816.43662103 2.80122451 1.1446278-.37707584.09278571-.7373238.22835063-1.07530267.40125357zm-2.72592184 14.45411863h-1v-.9009805c0-2.5479714 1.54557359-4.7915398 3.82548288-5.7411543-1.09870406-.71297106-1.82548288-1.95054399-1.82548288-3.3578652 0-2.209139 1.790861-4 4-4s4 1.790861 4 4c0 1.40732121-.7267788 2.64489414-1.8254829 3.3578652 2.2799093.9496145 3.8254829 3.1931829 3.8254829 5.7411543v.9009805h-1v-.9009805c0-2.1155483-1.2760206-4.0125067-3.2099783-4.8180274l-.7900217-.3290552v-1.02400184l.6301658-.40892721c.8482885-.55047139 1.3698342-1.489533 1.3698342-2.51900785 0-1.65685425-1.3431458-3-3-3-1.65685425 0-3 1.34314575-3 3 0 1.02947485.5215457 1.96853646 1.3698342 2.51900785l.6301658.40892721v1.02400184l-.79002171.3290552c-1.93395773.8055207-3.20997829 2.7024791-3.20997829 4.8180274z" fill-rule="evenodd"/></symbol><symbol id="icon-email" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-.0049107 2.55749512v1.44250488l-7 4-7-4v-1.44250488l7 4z" fill-rule="evenodd"/></symbol><symbol id="icon-error" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm2.8630343 4.71100931-2.8630343 2.86303426-2.86303426-2.86303426c-.39658757-.39658757-1.03281091-.39438847-1.4265779-.00062147-.39651227.39651226-.39348876 1.03246767.00062147 1.4265779l2.86303426 2.86303426-2.86303426 2.8630343c-.39658757.3965875-.39438847 1.0328109-.00062147 1.4265779.39651226.3965122 1.03246767.3934887 1.4265779-.0006215l2.86303426-2.8630343 2.8630343 2.8630343c.3965875.3965876 1.0328109.3943885 1.4265779.0006215.3965122-.3965123.3934887-1.0324677-.0006215-1.4265779l-2.8630343-2.8630343 2.8630343-2.86303426c.3965876-.39658757.3943885-1.03281091.0006215-1.4265779-.3965123-.39651227-1.0324677-.39348876-1.4265779.00062147z" fill-rule="evenodd"/></symbol><symbol id="icon-ethics" viewBox="0 0 18 18"><path d="m6.76384967 1.41421356.83301651-.8330165c.77492941-.77492941 2.03133823-.77492941 2.80626762 0l.8330165.8330165c.3750728.37507276.8837806.58578644 1.4142136.58578644h1.3496361c1.1045695 0 2 .8954305 2 2v1.34963611c0 .53043298.2107137 1.03914081.5857864 1.41421356l.8330165.83301651c.7749295.77492941.7749295 2.03133823 0 2.80626762l-.8330165.8330165c-.3750727.3750728-.5857864.8837806-.5857864 1.4142136v1.3496361c0 1.1045695-.8954305 2-2 2h-1.3496361c-.530433 0-1.0391408.2107137-1.4142136.5857864l-.8330165.8330165c-.77492939.7749295-2.03133821.7749295-2.80626762 0l-.83301651-.8330165c-.37507275-.3750727-.88378058-.5857864-1.41421356-.5857864h-1.34963611c-1.1045695 0-2-.8954305-2-2v-1.3496361c0-.530433-.21071368-1.0391408-.58578644-1.4142136l-.8330165-.8330165c-.77492941-.77492939-.77492941-2.03133821 0-2.80626762l.8330165-.83301651c.37507276-.37507275.58578644-.88378058.58578644-1.41421356v-1.34963611c0-1.1045695.8954305-2 2-2h1.34963611c.53043298 0 1.03914081-.21071368 1.41421356-.58578644zm-1.41421356 1.58578644h-1.34963611c-.55228475 0-1 .44771525-1 1v1.34963611c0 .79564947-.31607052 1.55871121-.87867966 2.12132034l-.8330165.83301651c-.38440512.38440512-.38440512 1.00764896 0 1.39205408l.8330165.83301646c.56260914.5626092.87867966 1.3256709.87867966 2.1213204v1.3496361c0 .5522847.44771525 1 1 1h1.34963611c.79564947 0 1.55871121.3160705 2.12132034.8786797l.83301651.8330165c.38440512.3844051 1.00764896.3844051 1.39205408 0l.83301646-.8330165c.5626092-.5626092 1.3256709-.8786797 2.1213204-.8786797h1.3496361c.5522847 0 1-.4477153 1-1v-1.3496361c0-.7956495.3160705-1.5587112.8786797-2.1213204l.8330165-.83301646c.3844051-.38440512.3844051-1.00764896 0-1.39205408l-.8330165-.83301651c-.5626092-.56260913-.8786797-1.32567087-.8786797-2.12132034v-1.34963611c0-.55228475-.4477153-1-1-1h-1.3496361c-.7956495 0-1.5587112-.31607052-2.1213204-.87867966l-.83301646-.8330165c-.38440512-.38440512-1.00764896-.38440512-1.39205408 0l-.83301651.8330165c-.56260913.56260914-1.32567087.87867966-2.12132034.87867966zm3.58698944 11.4960218c-.02081224.002155-.04199226.0030286-.06345763.002542-.98766446-.0223875-1.93408568-.3063547-2.75885125-.8155622-.23496767-.1450683-.30784554-.4531483-.16277726-.688116.14506827-.2349677.45314827-.3078455.68811595-.1627773.67447084.4164161 1.44758575.6483839 2.25617384.6667123.01759529.0003988.03495764.0017019.05204365.0038639.01713363-.0017748.03452416-.0026845.05212715-.0026845 2.4852814 0 4.5-2.0147186 4.5-4.5 0-1.04888973-.3593547-2.04134635-1.0074477-2.83787157-.1742817-.21419731-.1419238-.5291218.0722736-.70340353.2141973-.17428173.5291218-.14192375.7034035.07227357.7919032.97327203 1.2317706 2.18808682 1.2317706 3.46900153 0 3.0375661-2.4624339 5.5-5.5 5.5-.02146768 0-.04261937-.0013529-.06337445-.0039782zm1.57975095-10.78419583c.2654788.07599731.419084.35281842.3430867.61829728-.0759973.26547885-.3528185.419084-.6182973.3430867-.37560116-.10752146-.76586237-.16587951-1.15568824-.17249193-2.5587807-.00064534-4.58547766 2.00216524-4.58547766 4.49928198 0 .62691557.12797645 1.23496.37274865 1.7964426.11035133.2531347-.0053975.5477984-.25853224.6581497-.25313473.1103514-.54779841-.0053975-.65814974-.2585322-.29947131-.6869568-.45606667-1.43097603-.45606667-2.1960601 0-3.05211432 2.47714695-5.50006595 5.59399617-5.49921198.48576182.00815502.96289603.0795037 1.42238033.21103795zm-1.9766658 6.41091303 2.69835-2.94655317c.1788432-.21040373.4943901-.23598862.7047939-.05714545.2104037.17884318.2359886.49439014.0571454.70479387l-3.01637681 3.34277395c-.18039088.1999106-.48669547.2210637-.69285412.0478478l-1.93095347-1.62240047c-.21213845-.17678204-.24080048-.49206439-.06401844-.70420284.17678204-.21213844.49206439-.24080048.70420284-.06401844z" fill-rule="evenodd"/></symbol><symbol id="icon-expand"><path d="M7.498 11.918a.997.997 0 0 0-.003-1.411.995.995 0 0 0-1.412-.003l-4.102 4.102v-3.51A1 1 0 0 0 .98 10.09.992.992 0 0 0 0 11.092V17c0 .554.448 1.002 1.002 1.002h5.907c.554 0 1.002-.45 1.002-1.003 0-.539-.45-.978-1.006-.978h-3.51zm3.005-5.835a.997.997 0 0 0 .003 1.412.995.995 0 0 0 1.411.003l4.103-4.103v3.51a1 1 0 0 0 1.001 1.006A.992.992 0 0 0 18 6.91V1.002A1 1 0 0 0 17 0h-5.907a1.003 1.003 0 0 0-1.002 1.003c0 .539.45.978 1.006.978h3.51z" fill-rule="evenodd"/></symbol><symbol id="icon-explore" viewBox="0 0 18 18"><path d="m9 17c4.418278 0 8-3.581722 8-8s-3.581722-8-8-8-8 3.581722-8 8 3.581722 8 8 8zm0 1c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9zm0-2.5c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5c2.969509 0 5.400504-2.3575119 5.497023-5.31714844.0090007-.27599565.2400359-.49243782.5160315-.48343711.2759957.0090007.4924378.2400359.4834371.51603155-.114093 3.4985237-2.9869632 6.284554-6.4964916 6.284554zm-.29090657-12.99359748c.27587424-.01216621.50937715.20161139.52154336.47748563.01216621.27587423-.20161139.50937715-.47748563.52154336-2.93195733.12930094-5.25315116 2.54886451-5.25315116 5.49456849 0 .27614237-.22385763.5-.5.5s-.5-.22385763-.5-.5c0-3.48142406 2.74307146-6.34074398 6.20909343-6.49359748zm1.13784138 8.04763908-1.2004882-1.20048821c-.19526215-.19526215-.19526215-.51184463 0-.70710678s.51184463-.19526215.70710678 0l1.20048821 1.2004882 1.6006509-4.00162734-4.50670359 1.80268144-1.80268144 4.50670359zm4.10281269-6.50378907-2.6692597 6.67314927c-.1016411.2541026-.3029834.4554449-.557086.557086l-6.67314927 2.6692597 2.66925969-6.67314926c.10164107-.25410266.30298336-.45544495.55708602-.55708602z" fill-rule="evenodd"/></symbol><symbol id="icon-filter" viewBox="0 0 16 16"><path d="m14.9738641 0c.5667192 0 1.0261359.4477136 1.0261359 1 0 .24221858-.0902161.47620768-.2538899.65849851l-5.6938314 6.34147206v5.49997973c0 .3147562-.1520673.6111434-.4104543.7999971l-2.05227171 1.4999945c-.45337535.3313696-1.09655869.2418269-1.4365902-.1999993-.13321514-.1730955-.20522717-.3836284-.20522717-.5999978v-6.99997423l-5.69383133-6.34147206c-.3731872-.41563511-.32996891-1.0473954.09653074-1.41107611.18705584-.15950448.42716133-.2474224.67571519-.2474224zm-5.9218641 8.5h-2.105v6.491l.01238459.0070843.02053271.0015705.01955278-.0070558 2.0532976-1.4990996zm-8.02585008-7.5-.01564945.00240169 5.83249953 6.49759831h2.313l5.836-6.499z"/></symbol><symbol id="icon-home" viewBox="0 0 18 18"><path d="m9 5-6 6v5h4v-4h4v4h4v-5zm7 6.5857864v4.4142136c0 .5522847-.4477153 1-1 1h-5v-4h-2v4h-5c-.55228475 0-1-.4477153-1-1v-4.4142136c-.25592232 0-.51184464-.097631-.70710678-.2928932l-.58578644-.5857864c-.39052429-.3905243-.39052429-1.02368929 0-1.41421358l8.29289322-8.29289322 8.2928932 8.29289322c.3905243.39052429.3905243 1.02368928 0 1.41421358l-.5857864.5857864c-.1952622.1952622-.4511845.2928932-.7071068.2928932zm-7-9.17157284-7.58578644 7.58578644.58578644.5857864 7-6.99999996 7 6.99999996.5857864-.5857864z" fill-rule="evenodd"/></symbol><symbol id="icon-image" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm-3.49645283 10.1752453-3.89407257 6.7495552c.11705545.048464.24538859.0751995.37998328.0751995h10.60290092l-2.4329715-4.2154691-1.57494129 2.7288098zm8.49779013 6.8247547c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v13.98991071l4.50814957-7.81026689 3.08089884 5.33809539 1.57494129-2.7288097 3.5875735 6.2159812zm-3.0059397-11c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2-2-.8954305-2-2 .8954305-2 2-2zm0 1c-.5522847 0-1 .44771525-1 1s.4477153 1 1 1 1-.44771525 1-1-.4477153-1-1-1z" fill-rule="evenodd"/></symbol><symbol id="icon-info" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-institution" viewBox="0 0 18 18"><path d="m7 16.9998189v-2.0003623h4v2.0003623h2v-3.0005434h-8v3.0005434zm-3-10.00181122h-1.52632364c-.27614237 0-.5-.22389817-.5-.50009056 0-.13995446.05863589-.27350497.16166338-.36820841l1.23156713-1.13206327h-2.36690687v12.00217346h3v-2.0003623h-3v-1.0001811h3v-1.0001811h1v-4.00072448h-1zm10 0v2.00036224h-1v4.00072448h1v1.0001811h3v1.0001811h-3v2.0003623h3v-12.00217346h-2.3695309l1.2315671 1.13206327c.2033191.186892.2166633.50325042.0298051.70660631-.0946863.10304615-.2282126.16169266-.3681417.16169266zm3-3.00054336c.5522847 0 1 .44779634 1 1.00018112v13.00235456h-18v-13.00235456c0-.55238478.44771525-1.00018112 1-1.00018112h3.45499992l4.20535144-3.86558216c.19129876-.17584288.48537447-.17584288.67667324 0l4.2053514 3.86558216zm-4 3.00054336h-8v1.00018112h8zm-2 6.00108672h1v-4.00072448h-1zm-1 0v-4.00072448h-2v4.00072448zm-3 0v-4.00072448h-1v4.00072448zm8-4.00072448c.5522847 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.4477153-1.00018112 1-1.00018112zm-12 0c.55228475 0 1 .44779634 1 1.00018112v2.00036226h-2v-2.00036226c0-.55238478.44771525-1.00018112 1-1.00018112zm5.99868798-7.81907007-5.24205601 4.81852671h10.48411203zm.00131202 3.81834559c-.55228475 0-1-.44779634-1-1.00018112s.44771525-1.00018112 1-1.00018112 1 .44779634 1 1.00018112-.44771525 1.00018112-1 1.00018112zm-1 11.00199236v1.0001811h2v-1.0001811z" fill-rule="evenodd"/></symbol><symbol id="icon-location" viewBox="0 0 18 18"><path d="m9.39521328 16.2688008c.79596342-.7770119 1.59208152-1.6299956 2.33285652-2.5295081 1.4020032-1.7024324 2.4323601-3.3624519 2.9354918-4.871847.2228715-.66861448.3364384-1.29323246.3364384-1.8674457 0-3.3137085-2.6862915-6-6-6-3.36356866 0-6 2.60156856-6 6 0 .57421324.11356691 1.19883122.3364384 1.8674457.50313169 1.5093951 1.53348863 3.1694146 2.93549184 4.871847.74077492.8995125 1.53689309 1.7524962 2.33285648 2.5295081.13694479.1336842.26895677.2602648.39521328.3793207.12625651-.1190559.25826849-.2456365.39521328-.3793207zm-.39521328 1.7311992s-7-6-7-11c0-4 3.13400675-7 7-7 3.8659932 0 7 3.13400675 7 7 0 5-7 11-7 11zm0-8c-1.65685425 0-3-1.34314575-3-3s1.34314575-3 3-3c1.6568542 0 3 1.34314575 3 3s-1.3431458 3-3 3zm0-1c1.1045695 0 2-.8954305 2-2s-.8954305-2-2-2-2 .8954305-2 2 .8954305 2 2 2z" fill-rule="evenodd"/></symbol><symbol id="icon-minus" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-newsletter" viewBox="0 0 18 18"><path d="m9 11.8482489 2-1.1428571v-1.7053918h-4v1.7053918zm-3-1.7142857v-2.1339632h6v2.1339632l3-1.71428574v-6.41967746h-12v6.41967746zm10-5.3839632 1.5299989.95624934c.2923814.18273835.4700011.50320827.4700011.8479983v8.44575236c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-8.44575236c0-.34479003.1776197-.66525995.47000106-.8479983l1.52999894-.95624934v-2.75c0-.55228475.44771525-1 1-1h12c.5522847 0 1 .44771525 1 1zm0 1.17924764v3.07075236l-7 4-7-4v-3.07075236l-1 .625v8.44575236c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-8.44575236zm-10-1.92924764h6v1h-6zm-1 2h8v1h-8z" fill-rule="evenodd"/></symbol><symbol id="icon-orcid" viewBox="0 0 18 18"><path d="m9 1c4.418278 0 8 3.581722 8 8s-3.581722 8-8 8-8-3.581722-8-8 3.581722-8 8-8zm-2.90107518 5.2732337h-1.41865256v7.1712107h1.41865256zm4.55867178.02508949h-2.99247027v7.14612121h2.91062487c.7673039 0 1.4476365-.1483432 2.0410182-.445034s1.0511995-.7152915 1.3734671-1.2558144c.3222677-.540523.4833991-1.1603247.4833991-1.85942385 0-.68545815-.1602789-1.30270225-.4808414-1.85175082-.3205625-.54904856-.7707074-.97532211-1.3504481-1.27883343-.5797408-.30351132-1.2413173-.45526471-1.9847495-.45526471zm-.1892674 1.07933542c.7877654 0 1.4143875.22336734 1.8798852.67010873.4654977.44674138.698243 1.05546001.698243 1.82617415 0 .74343221-.2310402 1.34447791-.6931277 1.80315511-.4620874.4586773-1.0750688.6880124-1.8389625.6880124h-1.46810075v-4.98745039zm-5.08652545-3.71099194c-.21825533 0-.410525.08444276-.57681478.25333081-.16628977.16888806-.24943341.36245684-.24943341.58071218 0 .22345188.08314364.41961891.24943341.58850696.16628978.16888806.35855945.25333082.57681478.25333082.233845 0 .43390938-.08314364.60019916-.24943342.16628978-.16628977.24943342-.36375592.24943342-.59240436 0-.233845-.08314364-.43131115-.24943342-.59240437s-.36635416-.24163862-.60019916-.24163862z" fill-rule="evenodd"/></symbol><symbol id="icon-plus" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-print" viewBox="0 0 18 18"><path d="m16.0049107 5h-14.00982141c-.54941618 0-.99508929.4467783-.99508929.99961498v6.00077002c0 .5570958.44271433.999615.99508929.999615h1.00491071v-3h12v3h1.0049107c.5494162 0 .9950893-.4467783.9950893-.999615v-6.00077002c0-.55709576-.4427143-.99961498-.9950893-.99961498zm-2.0049107-1v-2.00208688c0-.54777062-.4519464-.99791312-1.0085302-.99791312h-7.9829396c-.55661731 0-1.0085302.44910695-1.0085302.99791312v2.00208688zm1 10v2.0018986c0 1.103521-.9019504 1.9981014-2.0085302 1.9981014h-7.9829396c-1.1092806 0-2.0085302-.8867064-2.0085302-1.9981014v-2.0018986h-1.00491071c-1.10185739 0-1.99508929-.8874333-1.99508929-1.999615v-6.00077002c0-1.10435686.8926228-1.99961498 1.99508929-1.99961498h1.00491071v-2.00208688c0-1.10341695.90195036-1.99791312 2.0085302-1.99791312h7.9829396c1.1092806 0 2.0085302.89826062 2.0085302 1.99791312v2.00208688h1.0049107c1.1018574 0 1.9950893.88743329 1.9950893 1.99961498v6.00077002c0 1.1043569-.8926228 1.999615-1.9950893 1.999615zm-1-3h-10v5.0018986c0 .5546075.44702548.9981014 1.0085302.9981014h7.9829396c.5565964 0 1.0085302-.4491701 1.0085302-.9981014zm-9 1h8v1h-8zm0 2h5v1h-5zm9-5c-.5522847 0-1-.44771525-1-1s.4477153-1 1-1 1 .44771525 1 1-.4477153 1-1 1z" fill-rule="evenodd"/></symbol><symbol id="icon-search" viewBox="0 0 22 22"><path d="M21.697 20.261a1.028 1.028 0 01.01 1.448 1.034 1.034 0 01-1.448-.01l-4.267-4.267A9.812 9.811 0 010 9.812a9.812 9.811 0 1117.43 6.182zM9.812 18.222A8.41 8.41 0 109.81 1.403a8.41 8.41 0 000 16.82z" fill-rule="evenodd"/></symbol><symbol id="icon-social-facebook" viewBox="0 0 24 24"><path d="m6.00368507 20c-1.10660471 0-2.00368507-.8945138-2.00368507-1.9940603v-12.01187942c0-1.10128908.89451376-1.99406028 1.99406028-1.99406028h12.01187942c1.1012891 0 1.9940603.89451376 1.9940603 1.99406028v12.01187942c0 1.1012891-.88679 1.9940603-2.0032184 1.9940603h-2.9570132v-6.1960818h2.0797387l.3114113-2.414723h-2.39115v-1.54164807c0-.69911803.1941355-1.1755439 1.1966615-1.1755439l1.2786739-.00055875v-2.15974763l-.2339477-.02492088c-.3441234-.03134957-.9500153-.07025255-1.6293054-.07025255-1.8435726 0-3.1057323 1.12531866-3.1057323 3.19187953v1.78079225h-2.0850778v2.414723h2.0850778v6.1960818z" fill-rule="evenodd"/></symbol><symbol id="icon-social-twitter" viewBox="0 0 24 24"><path d="m18.8767135 6.87445248c.7638174-.46908424 1.351611-1.21167363 1.6250764-2.09636345-.7135248.43394112-1.50406.74870123-2.3464594.91677702-.6695189-.73342162-1.6297913-1.19486605-2.6922204-1.19486605-2.0399895 0-3.6933555 1.69603749-3.6933555 3.78628909 0 .29642457.0314329.58673729.0942985.8617704-3.06469922-.15890802-5.78835241-1.66547825-7.60988389-3.9574208-.3174714.56076194-.49978171 1.21167363-.49978171 1.90536824 0 1.31404706.65223085 2.47224203 1.64236444 3.15218497-.60350999-.0198635-1.17401554-.1925232-1.67222562-.47366811v.04583885c0 1.83355406 1.27302891 3.36609966 2.96411421 3.71294696-.31118484.0886217-.63651445.1329326-.97441718.1329326-.2357461 0-.47149219-.0229194-.69466516-.0672303.47149219 1.5065703 1.83253297 2.6036468 3.44975116 2.632678-1.2651707 1.0160946-2.85724264 1.6196394-4.5891906 1.6196394-.29861172 0-.59093688-.0152796-.88011875-.0504227 1.63450624 1.0726291 3.57548241 1.6990934 5.66104951 1.6990934 6.79263079 0 10.50641749-5.7711113 10.50641749-10.7751859l-.0094298-.48894775c.7229547-.53478659 1.3516109-1.20250585 1.8419628-1.96190282-.6632323.30100846-1.3751855.50422736-2.1217148.59590507z" fill-rule="evenodd"/></symbol><symbol id="icon-social-youtube" viewBox="0 0 24 24"><path d="m10.1415 14.3973208-.0005625-5.19318431 4.863375 2.60554491zm9.963-7.92753362c-.6845625-.73643756-1.4518125-.73990314-1.803375-.7826454-2.518875-.18714178-6.2971875-.18714178-6.2971875-.18714178-.007875 0-3.7861875 0-6.3050625.18714178-.352125.04274226-1.1188125.04620784-1.8039375.7826454-.5394375.56084773-.7149375 1.8344515-.7149375 1.8344515s-.18 1.49597903-.18 2.99138042v1.4024082c0 1.495979.18 2.9913804.18 2.9913804s.1755 1.2736038.7149375 1.8344515c.685125.7364376 1.5845625.7133337 1.9850625.7901542 1.44.1420891 6.12.1859866 6.12.1859866s3.78225-.005776 6.301125-.1929178c.3515625-.0433198 1.1188125-.0467854 1.803375-.783223.5394375-.5608477.7155-1.8344515.7155-1.8344515s.18-1.4954014.18-2.9913804v-1.4024082c0-1.49540139-.18-2.99138042-.18-2.99138042s-.1760625-1.27360377-.7155-1.8344515z" fill-rule="evenodd"/></symbol><symbol id="icon-subject-medicine" viewBox="0 0 18 18"><path d="m12.5 8h-6.5c-1.65685425 0-3 1.34314575-3 3v1c0 1.6568542 1.34314575 3 3 3h1v-2h-.5c-.82842712 0-1.5-.6715729-1.5-1.5s.67157288-1.5 1.5-1.5h1.5 2 1 2c1.6568542 0 3-1.34314575 3-3v-1c0-1.65685425-1.3431458-3-3-3h-2v2h1.5c.8284271 0 1.5.67157288 1.5 1.5s-.6715729 1.5-1.5 1.5zm-5.5-1v-1h-3.5c-1.38071187 0-2.5-1.11928813-2.5-2.5s1.11928813-2.5 2.5-2.5h1.02786405c.46573528 0 .92507448.10843528 1.34164078.31671843l1.13382424.56691212c.06026365-1.05041141.93116291-1.88363055 1.99667093-1.88363055 1.1045695 0 2 .8954305 2 2h2c2.209139 0 4 1.790861 4 4v1c0 2.209139-1.790861 4-4 4h-2v1h2c1.1045695 0 2 .8954305 2 2s-.8954305 2-2 2h-2c0 1.1045695-.8954305 2-2 2s-2-.8954305-2-2h-1c-2.209139 0-4-1.790861-4-4v-1c0-2.209139 1.790861-4 4-4zm0-2v-2.05652691c-.14564246-.03538148-.28733393-.08714006-.42229124-.15461871l-1.15541752-.57770876c-.27771087-.13885544-.583937-.21114562-.89442719-.21114562h-1.02786405c-.82842712 0-1.5.67157288-1.5 1.5s.67157288 1.5 1.5 1.5zm4 1v1h1.5c.2761424 0 .5-.22385763.5-.5s-.2238576-.5-.5-.5zm-1 1v-5c0-.55228475-.44771525-1-1-1s-1 .44771525-1 1v5zm-2 4v5c0 .5522847.44771525 1 1 1s1-.4477153 1-1v-5zm3 2v2h2c.5522847 0 1-.4477153 1-1s-.4477153-1-1-1zm-4-1v-1h-.5c-.27614237 0-.5.2238576-.5.5s.22385763.5.5.5zm-3.5-9h1c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5z" fill-rule="evenodd"/></symbol><symbol id="icon-success" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm3.4860198 4.98163161-4.71802968 5.50657859-2.62834168-2.02300024c-.42862421-.36730544-1.06564993-.30775346-1.42283677.13301307-.35718685.44076653-.29927542 1.0958383.12934879 1.46314377l3.40735508 2.7323063c.42215801.3385221 1.03700951.2798252 1.38749189-.1324571l5.38450527-6.33394549c.3613513-.43716226.3096573-1.09278382-.115462-1.46437175-.4251192-.37158792-1.0626796-.31842941-1.4240309.11873285z" fill-rule="evenodd"/></symbol><symbol id="icon-table" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587l-4.0059107-.001.001.001h-1l-.001-.001h-5l.001.001h-1l-.001-.001-3.00391071.001c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm-11.0059107 5h-3.999v6.9941413c0 .5572961.44630695 1.0058587.99508929 1.0058587h3.00391071zm6 0h-5v8h5zm5.0059107-4h-4.0059107v3h5.001v1h-5.001v7.999l4.0059107.001c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-12.5049107 9c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.2238576.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.2238576-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.2238576.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.2238576-.5-.5s.22385763-.5.5-.5zm-6-2c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-1c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm12 0c.2761424 0 .5.22385763.5.5s-.2238576.5-.5.5h-2c-.2761424 0-.5-.22385763-.5-.5s.2238576-.5.5-.5zm-6 0c.27614237 0 .5.22385763.5.5s-.22385763.5-.5.5h-2c-.27614237 0-.5-.22385763-.5-.5s.22385763-.5.5-.5zm1.499-5h-5v3h5zm-6 0h-3.00391071c-.54871518 0-.99508929.44887827-.99508929 1.00585866v1.99414134h3.999z" fill-rule="evenodd"/></symbol><symbol id="icon-tick-circle" viewBox="0 0 24 24"><path d="m12 2c5.5228475 0 10 4.4771525 10 10s-4.4771525 10-10 10-10-4.4771525-10-10 4.4771525-10 10-10zm0 1c-4.97056275 0-9 4.02943725-9 9 0 4.9705627 4.02943725 9 9 9 4.9705627 0 9-4.0294373 9-9 0-4.97056275-4.0294373-9-9-9zm4.2199868 5.36606669c.3613514-.43716226.9989118-.49032077 1.424031-.11873285s.4768133 1.02720949.115462 1.46437175l-6.093335 6.94397871c-.3622945.4128716-.9897871.4562317-1.4054264.0971157l-3.89719065-3.3672071c-.42862421-.3673054-.48653564-1.0223772-.1293488-1.4631437s.99421256-.5003185 1.42283677-.1330131l3.11097438 2.6987741z" fill-rule="evenodd"/></symbol><symbol id="icon-tick" viewBox="0 0 16 16"><path d="m6.76799012 9.21106946-3.1109744-2.58349728c-.42862421-.35161617-1.06564993-.29460792-1.42283677.12733148s-.29927541 1.04903009.1293488 1.40064626l3.91576307 3.23873978c.41034319.3393961 1.01467563.2976897 1.37450571-.0948578l6.10568327-6.660841c.3613513-.41848908.3096572-1.04610608-.115462-1.4018218-.4251192-.35571573-1.0626796-.30482786-1.424031.11366122z" fill-rule="evenodd"/></symbol><symbol id="icon-update" viewBox="0 0 18 18"><path d="m1 13v1c0 .5522847.44771525 1 1 1h14c.5522847 0 1-.4477153 1-1v-1h-1v-10h-14v10zm16-1h1v2c0 1.1045695-.8954305 2-2 2h-14c-1.1045695 0-2-.8954305-2-2v-2h1v-9c0-.55228475.44771525-1 1-1h14c.5522847 0 1 .44771525 1 1zm-1 0v1h-4.5857864l-1 1h-2.82842716l-1-1h-4.58578644v-1h5l1 1h2l1-1zm-13-8h12v7h-12zm1 1v5h10v-5zm1 1h4v1h-4zm0 2h4v1h-4z" fill-rule="evenodd"/></symbol><symbol id="icon-upload" viewBox="0 0 18 18"><path d="m10.0046024 0c.5497429 0 1.3179837.32258606 1.707238.71184039l4.5763192 4.57631922c.3931386.39313859.7118404 1.16760135.7118404 1.71431368v8.98899651c0 1.1092806-.8945138 2.0085302-1.9940603 2.0085302h-12.01187942c-1.10128908 0-1.99406028-.8926228-1.99406028-1.9950893v-14.00982141c0-1.10185739.88743329-1.99508929 1.99961498-1.99508929zm0 1h-7.00498742c-.55709576 0-.99961498.44271433-.99961498.99508929v14.00982141c0 .5500396.44491393.9950893.99406028.9950893h12.01187942c.5463747 0 .9940603-.4506622.9940603-1.0085302v-8.98899651c0-.28393444-.2150684-.80332809-.4189472-1.0072069l-4.5763192-4.57631922c-.2038461-.20384606-.718603-.41894717-1.0001312-.41894717zm-1.85576936 4.14572769c.19483374-.19483375.51177826-.19377714.70556874.00001334l2.59099082 2.59099079c.1948411.19484112.1904373.51514474.0027906.70279143-.1932998.19329987-.5046517.19237083-.7001856-.00692852l-1.74638687-1.7800176v6.14827687c0 .2717771-.23193359.492096-.5.492096-.27614237 0-.5-.216372-.5-.492096v-6.14827641l-1.74627892 1.77990922c-.1933927.1971171-.51252214.19455839-.70016883.0069117-.19329987-.19329988-.19100584-.50899493.00277731-.70277808z" fill-rule="evenodd"/></symbol><symbol id="icon-video" viewBox="0 0 18 18"><path d="m16.0049107 2c1.1018574 0 1.9950893.89706013 1.9950893 2.00585866v9.98828264c0 1.1078052-.8926228 2.0058587-1.9950893 2.0058587h-14.00982141c-1.10185739 0-1.99508929-.8970601-1.99508929-2.0058587v-9.98828264c0-1.10780515.8926228-2.00585866 1.99508929-2.00585866zm0 1h-14.00982141c-.54871518 0-.99508929.44887827-.99508929 1.00585866v9.98828264c0 .5572961.44630695 1.0058587.99508929 1.0058587h14.00982141c.5487152 0 .9950893-.4488783.9950893-1.0058587v-9.98828264c0-.55729607-.446307-1.00585866-.9950893-1.00585866zm-8.30912922 2.24944486 4.60460462 2.73982242c.9365543.55726659.9290753 1.46522435 0 2.01804082l-4.60460462 2.7398224c-.93655425.5572666-1.69578148.1645632-1.69578148-.8937585v-5.71016863c0-1.05087579.76670616-1.446575 1.69578148-.89375851zm-.67492769.96085624v5.5750128c0 .2995102-.10753745.2442517.16578928.0847713l4.58452283-2.67497259c.3050619-.17799716.3051624-.21655446 0-.39461026l-4.58452283-2.67497264c-.26630747-.15538481-.16578928-.20699944-.16578928.08477139z" fill-rule="evenodd"/></symbol><symbol id="icon-warning" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-checklist-banner" viewBox="0 0 56.69 56.69"><path style="fill:none" d="M0 0h56.69v56.69H0z"/><clipPath id="b"><use xlink:href="#a" style="overflow:visible"/></clipPath><path d="M21.14 34.46c0-6.77 5.48-12.26 12.24-12.26s12.24 5.49 12.24 12.26-5.48 12.26-12.24 12.26c-6.76-.01-12.24-5.49-12.24-12.26zm19.33 10.66 10.23 9.22s1.21 1.09 2.3-.12l2.09-2.32s1.09-1.21-.12-2.3l-10.23-9.22m-19.29-5.92c0-4.38 3.55-7.94 7.93-7.94s7.93 3.55 7.93 7.94c0 4.38-3.55 7.94-7.93 7.94-4.38-.01-7.93-3.56-7.93-7.94zm17.58 12.99 4.14-4.81" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round"/><path d="M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5m14.42-5.2V4.86s0-2.93-2.93-2.93H4.13s-2.93 0-2.93 2.93v37.57s0 2.93 2.93 2.93h15.01M8.26 9.75H28.6M8.26 15.98H28.6m-20.34 6.2h12.5" style="clip-path:url(#b);fill:none;stroke:#01324b;stroke-width:2;stroke-linecap:round;stroke-linejoin:round"/></symbol><symbol id="icon-chevron-down" viewBox="0 0 16 16"><path d="m5.58578644 3-3.29289322-3.29289322c-.39052429-.39052429-.39052429-1.02368927 0-1.41421356s1.02368927-.39052429 1.41421356 0l4 4c.39052429.39052429.39052429 1.02368927 0 1.41421356l-4 4c-.39052429.39052429-1.02368927.39052429-1.41421356 0s-.39052429-1.02368927 0-1.41421356z" fill-rule="evenodd" transform="matrix(0 1 -1 0 11 1)"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h4.99912834v-4.99912834c0-.55276616.44386482-1.00087166 1-1.00087166.55228475 0 1 .44463086 1 1.00087166v4.99912834h4.9991283c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-4.9991283v4.9991283c0 .5527662-.44386482 1.0008717-1 1.0008717-.55228475 0-1-.4446309-1-1.0008717v-4.9991283h-4.99912834c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 10 10"><path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 16 16"><path d="m2.00087166 7h11.99825664c.5527662 0 1.0008717.44386482 1.0008717 1 0 .55228475-.4446309 1-1.0008717 1h-11.99825664c-.55276616 0-1.00087166-.44386482-1.00087166-1 0-.55228475.44463086-1 1.00087166-1z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 16 16"><path d="m2.29679575 12.2772478c-.39658757.3965876-.39438847 1.0328109-.00062148 1.4265779.39651227.3965123 1.03246768.3934888 1.42657791-.0006214l4.27724782-4.27724787 4.2772478 4.27724787c.3965876.3965875 1.0328109.3943884 1.4265779.0006214.3965123-.3965122.3934888-1.0324677-.0006214-1.4265779l-4.27724787-4.2772478 4.27724787-4.27724782c.3965875-.39658757.3943884-1.03281091.0006214-1.42657791-.3965122-.39651226-1.0324677-.39348875-1.4265779.00062148l-4.2772478 4.27724782-4.27724782-4.27724782c-.39658757-.39658757-1.03281091-.39438847-1.42657791-.00062148-.39651226.39651227-.39348875 1.03246768.00062148 1.42657791l4.27724782 4.27724782z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 16 16"><path d="m12.9975267 12.999368c.5467123 0 1.0024733.4478567 1.0024733 1.000316 0 .5563109-.4488226 1.000316-1.0024733 1.000316h-9.99505341c-.54671233 0-1.00247329-.4478567-1.00247329-1.000316 0-.5563109.44882258-1.000316 1.00247329-1.000316zm-4.9975267-11.999368c.55228475 0 1 .44497754 1 .99589209v6.80214418l2.4816273-2.48241149c.3928222-.39294628 1.0219732-.4006883 1.4030652-.01947579.3911302.39125371.3914806 1.02525073-.0001404 1.41699553l-4.17620792 4.17752758c-.39120769.3913313-1.02508144.3917306-1.41671995-.0000316l-4.17639421-4.17771394c-.39122513-.39134876-.39767006-1.01940351-.01657797-1.40061601.39113012-.39125372 1.02337105-.3931606 1.41951349.00310701l2.48183446 2.48261871v-6.80214418c0-.55001601.44386482-.99589209 1-.99589209z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 18 18"><path d="m9 0c4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9zm0 7h-1.5l-.11662113.00672773c-.49733868.05776511-.88337887.48043643-.88337887.99327227 0 .47338693.32893365.86994729.77070917.97358929l.1126697.01968298.11662113.00672773h.5v3h-.5l-.11662113.0067277c-.42082504.0488782-.76196299.3590206-.85696816.7639815l-.01968298.1126697-.00672773.1166211.00672773.1166211c.04887817.4208251.35902055.761963.76398144.8569682l.1126697.019683.11662113.0067277h3l.1166211-.0067277c.4973387-.0577651.8833789-.4804365.8833789-.9932723 0-.4733869-.3289337-.8699473-.7707092-.9735893l-.1126697-.019683-.1166211-.0067277h-.5v-4l-.00672773-.11662113c-.04887817-.42082504-.35902055-.76196299-.76398144-.85696816l-.1126697-.01968298zm0-3.25c-.69035594 0-1.25.55964406-1.25 1.25s.55964406 1.25 1.25 1.25 1.25-.55964406 1.25-1.25-.55964406-1.25-1.25-1.25z" fill-rule="evenodd"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="m19.462 0c1.413 0 2.538 1.184 2.538 2.619v12.762c0 1.435-1.125 2.619-2.538 2.619h-16.924c-1.413 0-2.538-1.184-2.538-2.619v-12.762c0-1.435 1.125-2.619 2.538-2.619zm.538 5.158-7.378 6.258a2.549 2.549 0 0 1 -3.253-.008l-7.369-6.248v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619zm-.538-3.158h-16.924c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 18 18"><path d="m9 11.75c.69035594 0 1.25.5596441 1.25 1.25s-.55964406 1.25-1.25 1.25-1.25-.5596441-1.25-1.25.55964406-1.25 1.25-1.25zm.41320045-7.75c.55228475 0 1.00000005.44771525 1.00000005 1l-.0034543.08304548-.3333333 4c-.043191.51829212-.47645714.91695452-.99654578.91695452h-.15973424c-.52008864 0-.95335475-.3986624-.99654576-.91695452l-.33333333-4c-.04586475-.55037702.36312325-1.03372649.91350028-1.07959124l.04148683-.00259031zm-.41320045 14c-4.97056275 0-9-4.0294373-9-9 0-4.97056275 4.02943725-9 9-9 4.9705627 0 9 4.02943725 9 9 0 4.9705627-4.0294373 9-9 9z" fill-rule="evenodd"/></symbol><symbol id="icon-expand-image" viewBox="0 0 18 18"><path d="m7.49754099 11.9178212c.38955542-.3895554.38761957-1.0207846-.00290473-1.4113089-.39324695-.3932469-1.02238878-.3918247-1.41130883-.0029047l-4.10273549 4.1027355.00055454-3.5103985c.00008852-.5603185-.44832171-1.006032-1.00155062-1.0059446-.53903074.0000852-.97857527.4487442-.97866268 1.0021075l-.00093318 5.9072465c-.00008751.553948.44841131 1.001882 1.00174994 1.0017946l5.906983-.0009331c.5539233-.0000875 1.00197907-.4486389 1.00206646-1.0018679.00008515-.5390307-.45026621-.9784332-1.00588841-.9783454l-3.51010549.0005545zm3.00571741-5.83449376c-.3895554.38955541-.3876196 1.02078454.0029047 1.41130883.393247.39324696 1.0223888.39182478 1.4113089.00290473l4.1027355-4.10273549-.0005546 3.5103985c-.0000885.56031852.4483217 1.006032 1.0015506 1.00594461.5390308-.00008516.9785753-.44874418.9786627-1.00210749l.0009332-5.9072465c.0000875-.553948-.4484113-1.00188204-1.0017499-1.00179463l-5.906983.00093313c-.5539233.00008751-1.0019791.44863892-1.0020665 1.00186784-.0000852.53903074.4502662.97843325 1.0058884.97834547l3.5101055-.00055449z" fill-rule="evenodd"/></symbol><symbol id="icon-github" viewBox="0 0 100 100"><path fill-rule="evenodd" clip-rule="evenodd" d="M48.854 0C21.839 0 0 22 0 49.217c0 21.756 13.993 40.172 33.405 46.69 2.427.49 3.316-1.059 3.316-2.362 0-1.141-.08-5.052-.08-9.127-13.59 2.934-16.42-5.867-16.42-5.867-2.184-5.704-5.42-7.17-5.42-7.17-4.448-3.015.324-3.015.324-3.015 4.934.326 7.523 5.052 7.523 5.052 4.367 7.496 11.404 5.378 14.235 4.074.404-3.178 1.699-5.378 3.074-6.6-10.839-1.141-22.243-5.378-22.243-24.283 0-5.378 1.94-9.778 5.014-13.2-.485-1.222-2.184-6.275.486-13.038 0 0 4.125-1.304 13.426 5.052a46.97 46.97 0 0 1 12.214-1.63c4.125 0 8.33.571 12.213 1.63 9.302-6.356 13.427-5.052 13.427-5.052 2.67 6.763.97 11.816.485 13.038 3.155 3.422 5.015 7.822 5.015 13.2 0 18.905-11.404 23.06-22.324 24.283 1.78 1.548 3.316 4.481 3.316 9.126 0 6.6-.08 11.897-.08 13.526 0 1.304.89 2.853 3.316 2.364 19.412-6.52 33.405-24.935 33.405-46.691C97.707 22 75.788 0 48.854 0z"/></symbol><symbol id="icon-springer-arrow-left"><path d="M15 7a1 1 0 000-2H3.385l2.482-2.482a.994.994 0 00.02-1.403 1.001 1.001 0 00-1.417 0L.294 5.292a1.001 1.001 0 000 1.416l4.176 4.177a.991.991 0 001.4.016 1 1 0 00-.003-1.42L3.385 7H15z"/></symbol><symbol id="icon-springer-arrow-right"><path d="M1 7a1 1 0 010-2h11.615l-2.482-2.482a.994.994 0 01-.02-1.403 1.001 1.001 0 011.417 0l4.176 4.177a1.001 1.001 0 010 1.416l-4.176 4.177a.991.991 0 01-1.4.016 1 1 0 01.003-1.42L12.615 7H1z"/></symbol><symbol id="icon-submit-open" viewBox="0 0 16 17"><path d="M12 0c1.10457 0 2 .895431 2 2v5c0 .276142-.223858.5-.5.5S13 7.276142 13 7V2c0-.512836-.38604-.935507-.883379-.993272L12 1H6v3c0 1.10457-.89543 2-2 2H1v8c0 .512836.38604.935507.883379.993272L2 15h6.5c.276142 0 .5.223858.5.5s-.223858.5-.5.5H2c-1.104569 0-2-.89543-2-2V5.828427c0-.530433.210714-1.039141.585786-1.414213L4.414214.585786C4.789286.210714 5.297994 0 5.828427 0H12Zm3.41 11.14c.250899.250899.250274.659726 0 .91-.242954.242954-.649606.245216-.9-.01l-1.863671-1.900337.001043 5.869492c0 .356992-.289839.637138-.647372.637138-.347077 0-.647371-.285256-.647371-.637138l-.001043-5.869492L9.5 12.04c-.253166.258042-.649726.260274-.9.01-.242954-.242954-.252269-.657731 0-.91l2.942184-2.951303c.250908-.250909.66127-.252277.91353-.000017L15.41 11.14ZM5 1.413 1.413 5H4c.552285 0 1-.447715 1-1V1.413ZM11 3c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Zm0 2c.276142 0 .5.223858.5.5s-.223858.5-.5.5H7.5c-.276142 0-.5-.223858-.5-.5s.223858-.5.5-.5H11Z" fill-rule="nonzero"/></symbol></svg> </div> </footer> <div class="c-site-messages message u-hide u-hide-print c-site-messages--nature-briefing c-site-messages--nature-briefing-email-variant c-site-messages--nature-briefing-redesign-2020 sans-serif " data-component-id="nature-briefing-banner" data-component-expirydays="30" data-component-trigger-scroll-percentage="15" data-track="in-view" data-track-action="in-view" data-track-category="nature briefing" data-track-label="Briefing banner visible: Flagship"> <div class="c-site-messages__banner-large"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__form-container"> <div class="grid grid-12 last"> <div class="grid grid-4"> <img alt="Nature Briefing" src="/static/images/logos/nature-briefing-logo-n150-white-d81c9da3ec.svg" width="250" height="40"> <p class="c-site-messages--nature-briefing__strapline extra-tight-line-height">Sign up for the <em>Nature Briefing</em> newsletter — what matters in science, free to your inbox daily.</p> </div> <div class="grid grid-8 last"> <form action="https://www.nature.com/briefing/briefing" method="post" data-location="banner" data-track="signup_nature_briefing_banner" data-track-action="transmit-form" data-track-category="nature briefing" data-track-label="Briefing banner submit: Flagship"> <input id="briefing-banner-signup-form-input-track-originReferralPoint" type="hidden" name="track_originReferralPoint" value="MainBriefingBanner"> <input id="briefing-banner-signup-form-input-track-formType" type="hidden" name="track_formType" value="DirectEmailBanner"> <input type="hidden" value="false" name="gdpr_tick" id="gdpr_tick_banner"> <input type="hidden" value="false" name="marketing" id="marketing_input_banner"> <input type="hidden" value="false" name="marketing_tick" id="marketing_tick_banner"> <input type="hidden" value="MainBriefingBanner" name="brieferEntryPoint" id="brieferEntryPoint_banner"> <label class="nature-briefing-banner__email-label" for="emailAddress">Email address</label> <div class="nature-briefing-banner__email-wrapper"> <input class="nature-briefing-banner__email-input box-sizing text14" type="email" id="emailAddress" name="emailAddress" value="" placeholder="e.g. jo.smith@university.ac.uk" required data-test-element="briefing-emailbanner-email-input"> <input type="hidden" value="true" name="N:nature_briefing_daily" id="defaultNewsletter_banner"> <button type="submit" class="nature-briefing-banner__submit-button box-sizing text14" data-test-element="briefing-emailbanner-signup-button">Sign up</button> </div> <div class="nature-briefing-banner__checkbox-wrapper grid grid-12 last"> <input class="nature-briefing-banner__checkbox-checkbox" id="gdpr-briefing-banner-checkbox" type="checkbox" name="gdpr" value="true" data-test-element="briefing-emailbanner-gdpr-checkbox" required> <label class="nature-briefing-banner__checkbox-label box-sizing text13 sans-serif block tighten-line-height" for="gdpr-briefing-banner-checkbox">I agree my information will be processed in accordance with the <em>Nature</em> and Springer Nature Limited <a href="https://www.nature.com/info/privacy">Privacy Policy</a>.</label> </div> </form> </div> </div> </div> </div> <div class="c-site-messages__banner-small"> <div class="c-site-messages__close-container"> <button class="c-site-messages__close" data-track="click" data-track-category="nature briefing" data-track-label="Briefing banner dismiss: Flagship"> <svg width="25px" height="25px" focusable="false" aria-hidden="true" viewBox="0 0 25 25" version="1.1" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"> <title>Close banner</title> <defs></defs> <g stroke="none" stroke-width="1" fill="none" fill-rule="evenodd"> <rect opacity="0" x="0" y="0" width="25" height="25"></rect> <path d="M6.29679575,16.2772478 C5.90020818,16.6738354 5.90240728,17.3100587 6.29617427,17.7038257 C6.69268654,18.100338 7.32864195,18.0973145 7.72275218,17.7032043 L12,13.4259564 L16.2772478,17.7032043 C16.6738354,18.0997918 17.3100587,18.0975927 17.7038257,17.7038257 C18.100338,17.3073135 18.0973145,16.671358 17.7032043,16.2772478 L13.4259564,12 L17.7032043,7.72275218 C18.0997918,7.32616461 18.0975927,6.68994127 17.7038257,6.29617427 C17.3073135,5.89966201 16.671358,5.90268552 16.2772478,6.29679575 L12,10.5740436 L7.72275218,6.29679575 C7.32616461,5.90020818 6.68994127,5.90240728 6.29617427,6.29617427 C5.89966201,6.69268654 5.90268552,7.32864195 6.29679575,7.72275218 L10.5740436,12 L6.29679575,16.2772478 Z" fill="#ffffff"></path> </g> </svg> <span class="visually-hidden">Close</span> </button> </div> <div class="c-site-messages__content text14"> <span class="c-site-messages--nature-briefing__strapline strong">Get the most important science stories of the day, free in your inbox.</span> <a class="nature-briefing__link text14 sans-serif" data-track="click" data-track-category="nature briefing" data-track-label="Small-screen banner CTA to site" data-test-element="briefing-banner-link" target="_blank" rel="noreferrer noopener" href="https://www.nature.com/briefing/signup/?brieferEntryPoint=MainBriefingBanner">Sign up for Nature Briefing </a> </div> </div> </div> <noscript> <img hidden src="https://verify.nature.com/verify/nature.png" width="0" height="0" style="display: none" alt=""> </noscript> <script src="//content.readcube.com/ping?doi=10.1038/s41598-022-09213-w&amp;format=js&amp;last_modified=2022-03-28" async></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10