CINXE.COM

Search results for: convective

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: convective</title> <meta name="description" content="Search results for: convective"> <meta name="keywords" content="convective"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="convective" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="convective"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 186</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: convective</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">186</span> Convective Boiling of CO₂ in Macro and Mini-Channels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adonis%20Menezes">Adonis Menezes</a>, <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20Passos"> Julio C. Passos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work deals with the theoretical and experimental investigation of the convective boiling of CO₂ in macro and mini-channels. A review of the state of the art of convective boiling studies in mini-channels and conventional channels for operating with CO₂ was carried out, with special attention to the flow patterns and pressure drop maps in single-phase and two-phase flows. To carry out an experimental analysis of the convective boiling of CO₂, a properly instrumented experimental bench was built, which allows a parametric analysis for different thermodynamic conditions, such as mass velocities between 200 and 1300 kg/(m².s), pressures between 20 and 70bar, temperature monitoring at the entrance of the mini-channels, heat flow and pressure drop in the test section. The visualization of flow patterns was possible with the use of a high-speed CMOS camera. The results obtained are in line with those found in the literature, both for flow patterns and for the heat transfer coefficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title="carbon dioxide">carbon dioxide</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boiling" title=" convective boiling"> convective boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82" title=" CO₂"> CO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=mini-channels" title=" mini-channels"> mini-channels</a> </p> <a href="https://publications.waset.org/abstracts/136203/convective-boiling-of-co2-in-macro-and-mini-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">185</span> Tropical Squall Lines in Brazil: A Methodology for Identification and Analysis Based on ISCCP Tracking Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=W.%20A.%20Gon%C3%A7alves">W. A. Gonçalves</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20P.%20Souza"> E. P. Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20R.%20Alc%C3%A2ntara"> C. R. Alcântara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ISCCP-Tracking database offers an opportunity to study physical and morphological characteristics of Convective Systems based on geostationary meteorological satellites. This database contains 26 years of tracking of Convective Systems for the entire globe. Then, Tropical Squall Lines which occur in Brazil are certainly within the database. In this study, we propose a methodology for identification of these systems based on the ISCCP-Tracking database. A physical and morphological characterization of these systems is also shown. The proposed methodology is firstly based on the year of 2007. The Squall Lines were subjectively identified by visually analyzing infrared images from GOES-12. Based on this identification, the same systems were identified within the ISCCP-Tracking database. It is known, and it was also observed that the Squall Lines which occur on the north coast of Brazil develop parallel to the coast, influenced by the sea breeze. In addition, it was also observed that the eccentricity of the identified systems was greater than 0.7. Then, a methodology based on the inclination (based on the coast) and eccentricity (greater than 0.7) of the Convective Systems was applied in order to identify and characterize Tropical Squall Lines in Brazil. These thresholds were applied back in the ISCCP-Tracking database for the year of 2007. It was observed that other systems, which were not Squall Lines, were also identified. Then, we decided to call all systems identified by the inclination and eccentricity thresholds as Linear Convective Systems, instead of Squall Lines. After this step, the Linear Convective Systems were identified and characterized for the entire database, from 1983 to 2008. The physical and morphological characteristics of these systems were compared to those systems which did not have the required inclination and eccentricity to be called Linear Convective Systems. The results showed that the convection associated with the Linear Convective Systems seems to be more intense and organized than in the other systems. This affirmation is based on all ISCCP-Tracking variables analyzed. This type of methodology, which explores 26 years of satellite data by an objective analysis, was not previously explored in the literature. The physical and morphological characterization of the Linear Convective Systems based on 26 years of data is of a great importance and should be used in many branches of atmospheric sciences. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=squall%20lines" title="squall lines">squall lines</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20systems" title=" convective systems"> convective systems</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20convective%20systems" title=" linear convective systems"> linear convective systems</a>, <a href="https://publications.waset.org/abstracts/search?q=ISCCP-Tracking" title=" ISCCP-Tracking"> ISCCP-Tracking</a> </p> <a href="https://publications.waset.org/abstracts/68608/tropical-squall-lines-in-brazil-a-methodology-for-identification-and-analysis-based-on-isccp-tracking-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">184</span> Quadratic Convective Flow of a Micropolar Fluid in a Non-Darcy Porous Medium with Convective Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Ramreddy">Ch. Ramreddy</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Naveen"> P. Naveen</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Srinivasacharya"> D. Srinivasacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the present study is to investigate the effect of nonlinear temperature and concentration on the mixed convective flow of micropolar fluid over an inclined flat plate in a non-Darcy porous medium in the presence of convective boundary condition. In order to analyze all the essential features, the transformed nonlinear conservation equations are worked out numerically by spectral method. By insisting the comparison between vertical, horizontal and inclined plates, the physical quantities of the flow and its characteristics are exhibited graphically and quantitatively with various parameters. An increase in the coupling number and inclination of angle tend to decrease the skin friction, mass transfer rate and the reverse change is there in wall couple stress and heat transfer rate. The nominal effect on the wall couple stress and skin friction is encountered whereas the significant effect on the local heat and mass transfer rates are found for high enough values of Biot number. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title="convective boundary condition">convective boundary condition</a>, <a href="https://publications.waset.org/abstracts/search?q=micropolar%20fluid" title=" micropolar fluid"> micropolar fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=non-darcy%20porous%20medium" title=" non-darcy porous medium"> non-darcy porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20convection" title=" non-linear convection"> non-linear convection</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/54749/quadratic-convective-flow-of-a-micropolar-fluid-in-a-non-darcy-porous-medium-with-convective-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">183</span> Convective Brinkman-Forchiemer Extended Flow through Channel Filled with Porous Material: An Approximate Analytical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Basant%20K.%20Jha">Basant K. Jha</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Kaurangini"> M. L. Kaurangini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An approximate analytical solution is presented for convective flow in a horizontal channel filled with porous material. The Brinkman-Forchheimer extension of Darcy equation is utilized to model the fluid flow while the energy equation is utilized to model temperature distribution in the channel. The solutions were obtained utilizing the newly suggested technique and compared with those obtained from an implicit finite-difference solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=approximate%20analytical" title="approximate analytical">approximate analytical</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20flow" title=" convective flow"> convective flow</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20material" title=" porous material"> porous material</a>, <a href="https://publications.waset.org/abstracts/search?q=Brinkman-Forchiemer" title=" Brinkman-Forchiemer"> Brinkman-Forchiemer</a> </p> <a href="https://publications.waset.org/abstracts/17934/convective-brinkman-forchiemer-extended-flow-through-channel-filled-with-porous-material-an-approximate-analytical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">182</span> Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enes%20Yasa">Enes Yasa</a>, <a href="https://publications.waset.org/abstracts/search?q=Guven%20Fidan"> Guven Fidan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CFD%20in%20buildings" title="CFD in buildings">CFD in buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20convective%20heat%20transfer%20coefficients" title=" external convective heat transfer coefficients"> external convective heat transfer coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20facades" title=" building facades"> building facades</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20modelling" title="thermal modelling">thermal modelling</a> </p> <a href="https://publications.waset.org/abstracts/25092/analysis-and-modeling-of-the-buildings-facades-in-terms-of-different-convection-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">181</span> Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaoula%20Hidouri">Khaoula Hidouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Benhmidene"> Ali Benhmidene</a>, <a href="https://publications.waset.org/abstracts/search?q=Bechir%20Chouachi"> Bechir Chouachi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20coefficient" title=" convective heat coefficient"> convective heat coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=SSD%20model" title=" SSD model"> SSD model</a>, <a href="https://publications.waset.org/abstracts/search?q=SSDHPmodel" title=" SSDHPmodel"> SSDHPmodel</a> </p> <a href="https://publications.waset.org/abstracts/71813/comparative-study-of-experimental-and-theoretical-convective-evaporative-for-two-model-distiller" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">180</span> Thermal Hydraulic Analysis of Sub-Channels of Pressurized Water Reactors with Hexagonal Array: A Numerical Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Asif%20Ullah">Md. Asif Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20R.%20Sarkar"> M. A. R. Sarkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper illustrates 2-D and 3-D simulations of sub-channels of a Pressurized Water Reactor (PWR) having hexagonal array of fuel rods. At a steady state, the temperature of outer surface of the cladding of fuel rod is kept about 1200°C. The temperature of this isothermal surface is taken as boundary condition for simulation. Water with temperature of 290°C is given as a coolant inlet to the primary water circuit which is pressurized upto 157 bar. Turbulent flow of pressurized water is used for heat removal. In 2-D model, temperature, velocity, pressure and Nusselt number distributions are simulated in a vertical sectional plane through the sub-channels of a hexagonal fuel rod assembly. Temperature, Nusselt number and Y-component of convective heat flux along a line in this plane near the end of fuel rods are plotted for different Reynold’s number. A comparison between X-component and Y-component of convective heat flux in this vertical plane is analyzed. Hexagonal fuel rod assembly has three types of sub-channels according to geometrical shape whose boundary conditions are different too. In 3-D model, temperature, velocity, pressure, Nusselt number, total heat flux magnitude distributions for all the three sub-channels are studied for a suitable Reynold’s number. A horizontal sectional plane is taken from each of the three sub-channels to study temperature, velocity, pressure, Nusselt number and convective heat flux distribution in it. Greater values of temperature, Nusselt number and Y-component of convective heat flux are found for greater Reynold’s number. X-component of convective heat flux is found to be non-zero near the bottom of fuel rod and zero near the end of fuel rod. This indicates that the convective heat transfer occurs totally along the direction of flow near the outlet. As, length to radius ratio of sub-channels is very high, simulation for a short length of the sub-channels are done for graphical interface advantage. For the simulations, Turbulent Flow (K-Є ) module and Heat Transfer in Fluids (ht) module of COMSOL MULTIPHYSICS 5.0 are used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sub-channels" title="sub-channels">sub-channels</a>, <a href="https://publications.waset.org/abstracts/search?q=Reynold%E2%80%99s%20number" title=" Reynold’s number"> Reynold’s number</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt%20number" title=" Nusselt number"> Nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/40384/thermal-hydraulic-analysis-of-sub-channels-of-pressurized-water-reactors-with-hexagonal-array-a-numerical-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">179</span> Effect of Channel Cross Section Shape on Convective Heat Transfer Coefficient of Nanofluid Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Salimpour">Mohammad Reza Salimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Dehshiri"> Amir Dehshiri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. We check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20shape" title=" cross-sectional shape"> cross-sectional shape</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a> </p> <a href="https://publications.waset.org/abstracts/9657/effect-of-channel-cross-section-shape-on-convective-heat-transfer-coefficient-of-nanofluid-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">178</span> Effect of Shrinkage on Heat and Mass Transfer Parameters of Solar Dried Potato Samples of Variable Diameter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kshanaprava%20Dhalsamant">Kshanaprava Dhalsamant</a>, <a href="https://publications.waset.org/abstracts/search?q=Punyadarshini%20P.%20Tripathy"> Punyadarshini P. Tripathy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanker%20L.%20Shrivastava"> Shanker L. Shrivastava</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Potato is chosen as the food product for carrying out the natural convection mixed-mode solar drying experiments since they are easily available and globally consumed. The convective heat and mass transfer coefficients along with effective diffusivity were calculated considering both shrinkage and without shrinkage for the potato cylinders of different geometry (8, 10 and 13 mm diameters and a constant length of 50 mm). The convective heat transfer coefficient (hc) without considering shrinkage effect were 24.28, 18.69, 15.89 W/m2˚C and hc considering shrinkage effect were 37.81, 29.21, 25.72 W/m2˚C for 8, 10 and 13 mm diameter samples respectively. Similarly, the effective diffusivity (Deff) without considering shrinkage effect were 3.20×10-9, 4.82×10-9, 2.48×10-8 m2/s and Deff considering shrinkage effect were 1.68×10-9, 2.56×10-9, 1.34×10-8 m2/s for 8, 10 and 13 mm diameter samples respectively and the mass transfer coefficient (hm) without considering the shrinkage effect were 5.16×10-7, 2.93×10-7, 2.59×10-7 m/s and hm considering shrinkage effect were 3.71×10-7, 2.04×10-7, 1.80×10-7 m/s for 8, 10 and 13 mm diameter samples respectively. Increased values of hc were obtained by considering shrinkage effect in all diameter samples because shrinkage results in decreasing diameter with time achieving in enhanced rate of water loss. The average values of Deff determined without considering the shrinkage effect were found to be almost double that with shrinkage effect. The reduction in hm values is due to the fact that with increasing sample diameter, the exposed surface area per unit mass decreases, resulting in a slower moisture removal. It is worth noting that considering shrinkage effect led to overestimation of hc values in the range of 55.72-61.86% and neglecting the shrinkage effect in the mass transfer analysis, the values of Deff and hm are overestimated in the range of 85.02-90.27% and 39.11-45.11%, respectively, for the range of sample diameter investigated in the present study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=shrinkage" title="shrinkage">shrinkage</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer%20coefficient" title=" convective heat transfer coefficient"> convective heat transfer coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=effectivive%20diffusivity" title=" effectivive diffusivity"> effectivive diffusivity</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20mass%20transfer%20coefficient" title=" convective mass transfer coefficient"> convective mass transfer coefficient</a> </p> <a href="https://publications.waset.org/abstracts/83081/effect-of-shrinkage-on-heat-and-mass-transfer-parameters-of-solar-dried-potato-samples-of-variable-diameter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">177</span> Utilizing Waste Heat from Thermal Power Plants to Generate Power by Modelling an Atmospheric Vortex Engine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Nabeel%20Khan">Mohammed Nabeel Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Perisamy"> C. Perisamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Convective vortices are normal highlights of air that ingest lower-entropy-energy at higher temperatures than they dismiss higher-entropy-energy to space. By means of the thermodynamic proficiency, it has been anticipated that the force of convective vortices relies upon the profundity of the convective layer. The atmospheric vortex engine is proposed as a gadget for delivering mechanical energy by methods for artificially produced vortex. The task of the engine is in view of the certainties that the environment is warmed from the base and cooled from the top. By generation of the artificial vortex, it is planned to take out the physical solar updraft tower and decrease the capital of the solar chimney power plants. The study shows the essentials of the atmospheric vortex engine, furthermore, audits the cutting edge in subject. Moreover, the study talks about a thought on using the solar energy as heat source to work the framework. All in all, the framework is attainable and promising for electrical power production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AVE" title="AVE">AVE</a>, <a href="https://publications.waset.org/abstracts/search?q=atmospheric%20vortex%20engine" title=" atmospheric vortex engine"> atmospheric vortex engine</a>, <a href="https://publications.waset.org/abstracts/search?q=atmosphere" title=" atmosphere"> atmosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=updraft" title=" updraft"> updraft</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/102553/utilizing-waste-heat-from-thermal-power-plants-to-generate-power-by-modelling-an-atmospheric-vortex-engine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102553.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">176</span> Performance Analysis of Air Conditioning System Working on the Vapour Compression Refrigeration Cycle under Magnetohydrodynamic Influence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20S.%20Mane">Nikhil S. Mane</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukund%20L.%20Harugade"> Mukund L. Harugade</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20V.%20Hargude"> Narayan V. Hargude</a>, <a href="https://publications.waset.org/abstracts/search?q=Vishal%20P.%20Patil"> Vishal P. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fluids exposed to magnetic field can enhance the convective heat transfer by inducing secondary convection currents due to Lorentz force. The use of magnetohydrodynamic (MHD) forces in power generation and mass transfer is increasing steadily but its application to enhance the convective currents in fluids needed to be explored. The enhancement in convective heat transfer using MHD forces can be employed in heat exchangers, cooling of molten metal, vapour compression refrigeration (VCR) systems etc. The effective increase in the convective heat transfer without any additional energy consumption will lead to the energy efficient heat exchanging devices. In this work, the effect of MHD forces on the performance of air conditioning system working on the VCR system is studied. The refrigerant in VCR system is exposed to the magnetic field which influenced the flow of refrigerant. The different intensities of magnets are used on the different liquid refrigerants and investigation on performance of split air conditioning system is done under different loading conditions. The results of this research work show that the application of magnet on refrigerant flow has positive influence on the coefficient of performance (COP) of split air conditioning system. It is also observed that with increasing intensity of magnetic force the COP of split air conditioning system also increases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamics" title="magnetohydrodynamics">magnetohydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20enhancement" title=" heat transfer enhancement"> heat transfer enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=VCRS" title=" VCRS"> VCRS</a>, <a href="https://publications.waset.org/abstracts/search?q=air%20conditioning" title=" air conditioning"> air conditioning</a>, <a href="https://publications.waset.org/abstracts/search?q=refrigeration" title=" refrigeration"> refrigeration</a> </p> <a href="https://publications.waset.org/abstracts/81030/performance-analysis-of-air-conditioning-system-working-on-the-vapour-compression-refrigeration-cycle-under-magnetohydrodynamic-influence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">175</span> Comparative Effects of Convective Drying on the Qualities of Some Leafy Vegetables</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Iyiola%20Olusola%20Oluwaleye">Iyiola Olusola Oluwaleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Samson%20A.%20Adeleye"> Samson A. Adeleye</a>, <a href="https://publications.waset.org/abstracts/search?q=Omojola%20Awogbemi"> Omojola Awogbemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports an investigation of the comparative effects of drying on the quality of some leafy vegetables at three different temperatures namely: 50ᵒC, 60ᵒC and 70ᵒC. The vegetables investigated are spinach (Amaranthus cruentus); water leaf (Talinum triangulare); lettuce (Lactuca satuva); and fluted pumpkin (Telfaria occidentalis). These vegetables are available in abundance during raining season and are commonly consumed by average Nigerians. A convective dryer was used for the drying process at the stipulated temperatures which were maintained with the aid of a thermostat. The vegetable samples after washing was cut into smaller sizes of 0.4 cm-0.5 cm and loaded into the drying cage of the convective dryer. The daily duration of the drying is six hours from 9:00 am to 3:00 pm. The dried samples were thereafter subjected to microbial and proximate analyses. The result of the tests shows that the microbial load decreases as the drying temperature increases. As temperature increases, the moisture content and carbohydrate of all the samples decreases while the crude fiber, ash and protein increases. Percentage fat content decreases as drying temperature increases with the exception of fluted pumpkin. The shelf life of the vegetable samples increase with drying temperature, Spinach has the lowest shelf life followed by Fluted Pumpkin, followed by lettuce while Water Leaf has the highest shelf life at the three drying temperatures of 50ᵒC, 60ᵒC and 70ᵒC respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20drying" title="convective drying">convective drying</a>, <a href="https://publications.waset.org/abstracts/search?q=leafy%20vegetables" title=" leafy vegetables"> leafy vegetables</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=shelf%20life" title=" shelf life"> shelf life</a> </p> <a href="https://publications.waset.org/abstracts/59995/comparative-effects-of-convective-drying-on-the-qualities-of-some-leafy-vegetables" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59995.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">174</span> Numerical Investigation of Electrohydrodynamics: Enhanced Heat Transfer in a Solid Sample</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suwimon%20Saneewong%20Na%20Ayuttaya">Suwimon Saneewong Na Ayuttaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a numerical investigation of electrically driven flow for enhancing convective heat transfer in a channel flow. This study focuses on the electrode arrangements, number of electrode and electrical voltage on Electrohydrodynamics (EHD) and effect of airflow driven on solid sample surface. The inlet airflow and inlet temperature are 0.35 m/s and 60 <sup>o</sup>C, respectively. High electrical voltage is tested in the range of 0-30 kV and number of electrode is tested in the range of 1-5. The numerical results show that electric field intensity is depended on electrical voltage and number of electrode. Increasing number of electrodes is increased shear flow, so swirling flow is increased. The swirling flows from aligned and staggered arrangements are affecting within the solid sample. When electrical voltage is increased, temperature distribution and convective heat transfer on the solid sample are significantly increased due to the electric force much stronger. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrohydrodynamics%20%28EHD%29" title="electrohydrodynamics (EHD)">electrohydrodynamics (EHD)</a>, <a href="https://publications.waset.org/abstracts/search?q=swirling%20flow" title=" swirling flow"> swirling flow</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfer" title=" convective heat transfer"> convective heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20sample" title=" solid sample"> solid sample</a> </p> <a href="https://publications.waset.org/abstracts/47905/numerical-investigation-of-electrohydrodynamics-enhanced-heat-transfer-in-a-solid-sample" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47905.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">173</span> Effects of Convective Momentum Transport on the Cyclones Intensity: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20Davi%20Oliveira%20De%20Moura">José Davi Oliveira De Moura</a>, <a href="https://publications.waset.org/abstracts/search?q=Chou%20Sin%20Chan"> Chou Sin Chan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of convective momentum transport (CMT) on the life of cyclone systems and their organization is analyzed. A case of strong precipitation, in the southeast of Brazil, was simulated using Eta model with two kinds of convective parameterization: Kain-Fritsch without CMT and Kain-fritsch with CMT. Reanalysis data from CFSR were used to compare Eta model simulations. The Wind, mean sea level pressure, rain and temperature are included in analysis. The rain was evaluated by Equitable Threat Score (ETS) and Bias Index; the simulations were compared among themselves to detect the influence of CMT displacement on the systems. The result shows that CMT process decreases the intensity of meso cyclones (higher pressure values on nuclei) and change the positions and production of rain. The decrease of intensity in meso cyclones should be caused by the dissolution of momentum from lower levels from up levels. The rain production and rain distribution were altered because the displacement of the larger systems scales was changed. In addition, the inclusion of CMT process is very important to improve the simulation of life time of meteorological systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convection" title="convection">convection</a>, <a href="https://publications.waset.org/abstracts/search?q=Kain-Fritsch" title=" Kain-Fritsch"> Kain-Fritsch</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum" title=" momentum"> momentum</a>, <a href="https://publications.waset.org/abstracts/search?q=parameterization" title=" parameterization"> parameterization</a> </p> <a href="https://publications.waset.org/abstracts/63535/effects-of-convective-momentum-transport-on-the-cyclones-intensity-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">172</span> Vertical Structure and Frequencies of Deep Convection during Active Periods of the West African Monsoon Season</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balogun%20R.%20Ayodeji">Balogun R. Ayodeji</a>, <a href="https://publications.waset.org/abstracts/search?q=Adefisan%20E.%20Adesanya"> Adefisan E. Adesanya</a>, <a href="https://publications.waset.org/abstracts/search?q=Adeyewa%20Z.%20Debo"> Adeyewa Z. Debo</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20C.%20Okogbue"> E. C. Okogbue</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Deep convective systems during active periods of the West African monsoon season have not been properly investigated over better temporal and spatial resolution in West Africa. Deep convective systems are investigated over seven climatic zones of the West African sub-region, which are; west-coast rainforest, dry rainforest, Nigeria-Cameroon rainforest, Nigeria savannah, Central African and South Sudan (CASS) Savannah, Sudano-Sahel, and Sahel, using data from Tropical Rainfall Measurement Mission (TRMM) Precipitation Feature (PF) database. The vertical structure of the convective systems indicated by the presence of at least one 40 dBZ and reaching (attaining) at least 1km in the atmosphere showed strong core (highest frequency (%)) of reflectivity values around 2 km which is below the freezing level (4-5km) for all the zones. Echoes are detected above the 15km altitude much more frequently in the rainforest and Savannah zones than the Sudano and Sahel zones during active periods in March-May (MAM), whereas during active periods in June-September (JJAS) the savannahs, Sudano and Sahel zones convections tend to reach higher altitude more frequently than the rainforest zones. The percentage frequencies of deep convection indicated that the occurrences of the systems are within the range of 2.3-2.8% during both March-May (MAM) and June-September (JJAS) active periods in the rainforest and savannah zones. On the contrary, the percentage frequencies were found to be less than 2% in the Sudano and Sahel zones, except during the active-JJAS period in the Sudano zone. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20periods" title="active periods">active periods</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20system" title=" convective system"> convective system</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency" title=" frequency"> frequency</a>, <a href="https://publications.waset.org/abstracts/search?q=reflectivity" title=" reflectivity"> reflectivity</a> </p> <a href="https://publications.waset.org/abstracts/101206/vertical-structure-and-frequencies-of-deep-convection-during-active-periods-of-the-west-african-monsoon-season" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101206.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">171</span> Thermal Instability in Rivlin-Ericksen Elastico-Viscous Nanofluid with Connective Boundary Condition: Effect of Vertical Throughflow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20Saini">Shivani Saini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of vertical throughflow on the onset of convection in Rivlin-Ericksen Elastico-Viscous nanofluid with convective boundary condition is investigated. The flow is stimulated with modified Darcy model under the assumption that the nanoparticle volume fraction is not actively managed on the boundaries. The heat conservation equation is formulated by introducing the convective term of nanoparticle flux. A linear stability analysis based upon normal mode is performed, and an approximate solution of eigenvalue problems is obtained using the Galerkin weighted residual method. Investigation of the dependence of the Rayleigh number on various viscous and nanofluid parameter is performed. It is found that through flow and nanofluid parameters hasten the convection while capacity ratio, kinematics viscoelasticity, and Vadasz number do not govern the stationary convection. Using the convective component of nanoparticle flux, critical wave number is the function of nanofluid parameters as well as the throughflow parameter. The obtained solution provides important physical insight into the behavior of this model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Darcy%20model" title="Darcy model">Darcy model</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20layer" title=" porous layer"> porous layer</a>, <a href="https://publications.waset.org/abstracts/search?q=throughflow" title=" throughflow"> throughflow</a> </p> <a href="https://publications.waset.org/abstracts/100954/thermal-instability-in-rivlin-ericksen-elastico-viscous-nanofluid-with-connective-boundary-condition-effect-of-vertical-throughflow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">170</span> Impure CO₂ Solubility Trapping in Deep Saline Aquifers: Role of Operating Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Mostafa%20Jafari%20Raad">Seyed Mostafa Jafari Raad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hassan%20Hassanzadeh"> Hassan Hassanzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Injection of impurities along with CO₂ into saline aquifers provides an exceptional prospect for low-cost carbon capture and storage technologies and can potentially accelerate large-scale implementation of geological storage of CO₂. We have conducted linear stability analyses and numerical simulations to investigate the effects of permitted impurities in CO₂ streams on the onset of natural convection and dynamics of subsequent convective mixing. We have shown that the rate of dissolution of an impure CO₂ stream with H₂S highly depends on the operating conditions such as temperature, pressure, and composition of impurity. Contrary to findings of previous studies, our results show that an impurity such as H₂S can potentially reduce the onset time of natural convection and can accelerate the subsequent convective mixing. However, at the later times, the rate of convective dissolution is adversely affected by the impurities. Therefore, the injection of an impure CO₂ stream can be engineered to improve the rate of dissolution of CO₂, which leads to higher storage security and efficiency. Accordingly, we have identified the most favorable CO₂ stream compositions based on the geophysical properties of target aquifers. Information related to the onset of natural convection such as the scaling relations and the most favorable operating conditions for CO₂ storage developed in this study are important in proper design, site screening, characterization and safety of geological storage. This information can be used to either identify future geological candidates for acid gas disposal or reviewing the current operating conditions of licensed injection sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20storage" title="CO₂ storage">CO₂ storage</a>, <a href="https://publications.waset.org/abstracts/search?q=solubility%20trapping" title=" solubility trapping"> solubility trapping</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20dissolution" title=" convective dissolution"> convective dissolution</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20efficiency" title=" storage efficiency"> storage efficiency</a> </p> <a href="https://publications.waset.org/abstracts/76894/impure-co2-solubility-trapping-in-deep-saline-aquifers-role-of-operating-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">169</span> Convective Boiling of CO₂/R744 in Macro and Micro-Channels </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adonis%20Menezes">Adonis Menezes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20C.%20Passos"> J. C. Passos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current panorama of technology in heat transfer and the scarcity of information about the convective boiling of CO₂ and hydrocarbon in small diameter channels motivated the development of this work. Among non-halogenated refrigerants, CO₂/ R744 has distinct thermodynamic properties compared to other fluids. The R744 presents significant differences in operating pressures and temperatures, operating at higher values compared to other refrigerants, and this represents a challenge for the design of new evaporators, as the original systems must normally be resized to meet the specific characteristics of the R744, which creates the need for a new design and optimization criteria. To carry out the convective boiling tests of CO₂, an experimental apparatus capable of storing (m= 10kg) of saturated CO₂ at (T = -30 ° C) in an accumulator tank was used, later this fluid was pumped using a positive displacement pump with three pistons, and the outlet pressure was controlled and could reach up to (P = 110bar). This high-pressure saturated fluid passed through a Coriolis type flow meter, and the mass velocities varied between (G = 20 kg/m².s) up to (G = 1000 kg/m².s). After that, the fluid was sent to the first test section of circular cross-section in diameter (D = 4.57mm), where the inlet and outlet temperatures and pressures, were controlled and the heating was promoted by the Joule effect using a source of direct current with a maximum heat flow of (q = 100 kW/m²). The second test section used a cross-section with multi-channels (seven parallel channels) with a square cross-section of (D = 2mm) each; this second test section has also control of temperature and pressure at the inlet and outlet as well as for heating a direct current source was used, with a maximum heat flow of (q = 20 kW/m²). The fluid in a biphasic situation was directed to a parallel plate heat exchanger so that it returns to the liquid state, thus being able to return to the accumulator tank, continuing the cycle. The multi-channel test section has a viewing section; a high-speed CMOS camera was used for image acquisition, where it was possible to view the flow patterns. The experiments carried out and presented in this report were conducted in a rigorous manner, enabling the development of a database on the convective boiling of the R744 in macro and micro channels. The analysis prioritized the processes from the beginning of the convective boiling until the drying of the wall in a subcritical regime. The R744 resurfaces as an excellent alternative to chlorofluorocarbon refrigerants due to its negligible ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) rates, among other advantages. The results found in the experimental tests were very promising for the use of CO₂ in micro-channels in convective boiling and served as a basis for determining the flow pattern map and correlation for determining the heat transfer coefficient in the convective boiling of CO₂. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20boiling" title="convective boiling">convective boiling</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%2FR744" title=" CO₂/R744"> CO₂/R744</a>, <a href="https://publications.waset.org/abstracts/search?q=macro-channels" title=" macro-channels"> macro-channels</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-channels" title=" micro-channels"> micro-channels</a> </p> <a href="https://publications.waset.org/abstracts/134560/convective-boiling-of-co2r744-in-macro-and-micro-channels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134560.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">168</span> Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Amiri">Ahmad Amiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20K.%20Arzani"> Hamed K. Arzani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20N.%20Kazi"> S. N. Kazi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20T.%20Chew"> B. T. Chew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flow" title=" turbulent flow"> turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=forced%20convection%20flow" title=" forced convection flow"> forced convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=annular" title=" annular"> annular</a>, <a href="https://publications.waset.org/abstracts/search?q=annulus" title=" annulus"> annulus</a> </p> <a href="https://publications.waset.org/abstracts/54948/numerical-heat-transfer-performance-of-water-based-graphene-nanoplatelets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">167</span> Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20Aiyesimi">Y. M. Aiyesimi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Abah"> S. O. Abah</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20T.%20Okedayo"> G. T. Okedayo </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title="chemical reaction">chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=double-diffusive" title=" double-diffusive"> double-diffusive</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20plate" title=" stretching plate"> stretching plate</a> </p> <a href="https://publications.waset.org/abstracts/13401/chemical-reaction-effects-on-unsteady-mhd-double-diffusive-free-convective-flow-over-a-vertical-stretching-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">166</span> Thermophysical Properties and Kinetic Study of Dioscorea bulbifera</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Chinagorom%20Nwadike">Emmanuel Chinagorom Nwadike</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Tagbo%20Nwabanne"> Joseph Tagbo Nwabanne</a>, <a href="https://publications.waset.org/abstracts/search?q=Matthew%20Ndubuisi%20Abonyi"> Matthew Ndubuisi Abonyi</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyemazu%20Andrew%20Azaka"> Onyemazu Andrew Azaka</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research focused on the modeling of the convective drying of aerial yam using finite element methods. The thermo-gravimetric analyzer was used to determine the thermal stability of the sample. An aerial yam sample of size 30 x 20 x 4 mm was cut with a mold designed for the purpose and dried in a convective dryer set at 4m/s fan speed and temperatures of 68.58 and 60.56°C. The volume shrinkage of the resultant dried sample was determined by immersing the sample in a toluene solution. The finite element analysis was done with PDE tools in Matlab 2015. Seven kinetic models were employed to model the drying process. The result obtained revealed three regions in the thermogravimetric analysis (TGA) profile of aerial yam. The maximum thermal degradation rates of the sample occurred at 432.7°C. The effective thermal diffusivity of the sample increased as the temperature increased from 60.56°C to 68.58°C. The finite element prediction of moisture content of aerial yam at an air temperature of 68.58°C and 60.56°C shows R² of 0.9663 and 0.9155, respectively. There was a good agreement between the finite element predicted moisture content and the measured moisture content, which is indicative of a highly reliable finite element model developed. The result also shows that the best kinetic model for the aerial yam under the given drying conditions was the Logarithmic model with a correlation coefficient of 0.9991. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20yam" title="aerial yam">aerial yam</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=convective" title=" convective"> convective</a>, <a href="https://publications.waset.org/abstracts/search?q=effective" title=" effective"> effective</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusivity" title=" diffusivity"> diffusivity</a> </p> <a href="https://publications.waset.org/abstracts/148796/thermophysical-properties-and-kinetic-study-of-dioscorea-bulbifera" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">165</span> Magnetohydrodynamic 3D Maxwell Fluid Flow Towards a Horizontal Stretched Surface with Convective Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malika">M. Y. Malika</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzana"> Farzana</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Rehman"> Abdul Rehman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study deals with the steady, 3D MHD boundary layer flow of a non-Newtonian Maxwell fluid flow due to a horizontal surface stretched exponentially in two lateral directions. The temperature at the boundary is assumed to be distributed exponentially and possesses convective boundary conditions. The governing nonlinear system of partial differential equations along with associated boundary conditions is simplified using a suitable transformation and the obtained set of ordinary differential equations is solved through numerical techniques. The effects of important involved parameters associated with fluid flow and heat flux are shown through graphs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=exponentially%20stretched%20surface" title=" exponentially stretched surface"> exponentially stretched surface</a>, <a href="https://publications.waset.org/abstracts/search?q=Maxwell%20fluid" title=" Maxwell fluid"> Maxwell fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20solution" title=" numerical solution"> numerical solution</a> </p> <a href="https://publications.waset.org/abstracts/23186/magnetohydrodynamic-3d-maxwell-fluid-flow-towards-a-horizontal-stretched-surface-with-convective-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23186.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">164</span> On a Transient Magnetohydrodynamics Heat Transfer Within Radiative Porous Channel Due to Convective Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bashiru%20Abdullahi">Bashiru Abdullahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Isah%20Bala%20Yabo"> Isah Bala Yabo</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Yakubu%20Seini"> Ibrahim Yakubu Seini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the steady/transient MHD heat transfer within radiative porous channel due to convective boundary conditions is considered. The solution of the steady-state and that of the transient version were conveyed by Perturbation and Finite difference methods respectively. The heat transfer mechanism of the present work ascertains the influence of Biot number〖(B〗_i1), magnetizing parameter (M), radiation parameter(R), temperature difference, suction/injection(S) Grashof number (Gr) and time (t) on velocity (u), temperature(θ), skin friction(τ), and Nusselt number (Nu). The results established were discussed with the help of a line graph. It was found that the velocity, temperature, and skin friction decay with increasing suction/injection and magnetizing parameters while the Nusselt number upsurges with suction/injection at y = 0 and falls at y =1. The steady-state solution was in perfect agreement with the transient version for a significant value of time t. It is interesting to report that the Biot number has a cogent influence consequently, as its values upsurge the result of the present work slant the extended literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20radiation" title=" thermal radiation"> thermal radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20channel" title=" porous channel"> porous channel</a>, <a href="https://publications.waset.org/abstracts/search?q=MHD" title=" MHD"> MHD</a>, <a href="https://publications.waset.org/abstracts/search?q=transient" title=" transient"> transient</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20boundary%20condition" title=" convective boundary condition"> convective boundary condition</a> </p> <a href="https://publications.waset.org/abstracts/151318/on-a-transient-magnetohydrodynamics-heat-transfer-within-radiative-porous-channel-due-to-convective-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151318.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">163</span> Heat Transfer Correlations for Exhaust Gas Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatih%20Kantas">Fatih Kantas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exhaust systems are key contributors to ground vehicles as a heat source. Understanding heat transfer in exhaust systems is related to defining effective parameter on heat transfer in exhaust system. In this journal, over 20 Nusselt numbers are investigated. This study shows advantages and disadvantages of various Nusselt numbers in different range Re, Pr and pulsating flow amplitude and frequency. Also (CAF) Convective Augmentation Factors are defined to correct standard Nusselt number for geometry and location of exhaust system. Finally, optimum Nusselt number and Convective Augmentation Factors are recommended according to Re, Pr and pulsating flow amplitude and frequency, geometry and location effect of exhaust system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exhaust%20gas%20flow" title="exhaust gas flow">exhaust gas flow</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20correlation" title=" heat transfer correlation"> heat transfer correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=Nusselt" title=" Nusselt"> Nusselt</a>, <a href="https://publications.waset.org/abstracts/search?q=Prandtl" title=" Prandtl"> Prandtl</a>, <a href="https://publications.waset.org/abstracts/search?q=pulsating%20flow" title=" pulsating flow"> pulsating flow</a> </p> <a href="https://publications.waset.org/abstracts/83895/heat-transfer-correlations-for-exhaust-gas-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83895.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">162</span> Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yang-Gyun%20Kim">Yang-Gyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Eun-Taek%20Woo"> Eun-Taek Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Myeong-Gon%20Lee"> Myeong-Gon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Yun-Hyun%20Cho"> Yun-Hyun Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Ho%20Han"> Seung-Ho Han</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wind%20turbine" title="wind turbine">wind turbine</a>, <a href="https://publications.waset.org/abstracts/search?q=axial%20flux%20permanent%20magnet%20%28AFPM%29%20generator" title=" axial flux permanent magnet (AFPM) generator"> axial flux permanent magnet (AFPM) generator</a>, <a href="https://publications.waset.org/abstracts/search?q=conductive-type%20cooling%20system" title=" conductive-type cooling system"> conductive-type cooling system</a> </p> <a href="https://publications.waset.org/abstracts/14914/feasibility-study-on-a-conductive-type-cooling-system-for-an-axial-flux-permanent-magnet-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">161</span> Convective Interactions and Heat Transfer in a Czochralski Melt with a Model Phase Boundary of Two Different Shapes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Faiez">R. Faiez</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mashhoudi"> M. Mashhoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Najafi"> F. Najafi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Implicit in most large-scale numerical analyses of the crystal growth from the melt is the assumption that the shape and position of the phase boundary are determined by the transport phenomena coupled strongly to the melt hydrodynamics. In the present numerical study, the interface shape-effect on the convective interactions in a Czochralski oxide melt is described. It was demonstrated that thermos-capillary flow affects inversely the phase boundaries of distinct shapes. The in homogenity of heat flux and the location of the stagnation point at the crystallization front were investigated. The forced convection effect on the point displacement at the boundary found to be much stronger for the flat plate interface compared to the cone-shaped one with and without the Marangoni flow. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title="computer simulation">computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=fluid%20flow" title=" fluid flow"> fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=interface%20shape" title=" interface shape"> interface shape</a>, <a href="https://publications.waset.org/abstracts/search?q=thermos-capillary%20effect" title=" thermos-capillary effect"> thermos-capillary effect</a> </p> <a href="https://publications.waset.org/abstracts/7920/convective-interactions-and-heat-transfer-in-a-czochralski-melt-with-a-model-phase-boundary-of-two-different-shapes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">160</span> Nanofluid Flow Heat Transfer Through Ducts with Different Cross-Sections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Dehshiri">Amir Dehshiri</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Salimpour"> Mohammad Reza Salimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present article, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. We check the effects of different parameters such as cross-sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20shape" title=" cross-sectional shape"> cross-sectional shape</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a> </p> <a href="https://publications.waset.org/abstracts/2143/nanofluid-flow-heat-transfer-through-ducts-with-different-cross-sections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">159</span> Experimental Analysis of Laminar Nanofluid Flow Convection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20R.%20Salimpour">Mohammad R. Salimpour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we investigate experimental laminar forced convective heat transfer specifications of TiO2/water nanofluids through conduits with different cross sections. Ee check the effects of different parameters such as cross sectional shape, Reynolds number and concentration of nanoparticles in stable suspension on increasing convective heat transfer by designing and assembling of an experimental apparatus. The results demonstrate adding a little amount of nanoparticles to the base fluid, improves heat transfer behavior in conduits. Moreover, conduit with circular cross-section has better performance compared to the square and triangular cross sections. However, conduits with square and triangular cross sections have more relative heat transfer enhancement than conduit with circular cross section. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title="nanofluid">nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=cross-sectional%20shape" title=" cross-sectional shape"> cross-sectional shape</a>, <a href="https://publications.waset.org/abstracts/search?q=TiO2" title=" TiO2"> TiO2</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a> </p> <a href="https://publications.waset.org/abstracts/20434/experimental-analysis-of-laminar-nanofluid-flow-convection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">158</span> Free Convective Flow in a Vertical Cylinder with Heat Sink: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Omokhuale">Emmanuel Omokhuale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A mathematical model is presented to study free convective boundary layer flow in a semi-infinite vertical cylinder with heat sink effect in a porous medium. The governing dimensional governing partial differential equations (PDEs) with corresponding initial and boundary conditions are approximated and solved numerically employing finite difference method (FDM) the implicit type. Stability and convergence of the scheme are also established. Furthermore, the influence of significant physical parameters on the flow characteristics was analysed and shown graphically. The obtained results are benchmarked with previously published works in order to access the accuracy of the numerical method and found to be in good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=free%20convection%20flow" title="free convection flow">free convection flow</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20cylinder" title=" vertical cylinder"> vertical cylinder</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20finite%20difference%20method" title=" implicit finite difference method"> implicit finite difference method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20sink%20and%20porous%20medium" title=" heat sink and porous medium"> heat sink and porous medium</a> </p> <a href="https://publications.waset.org/abstracts/102468/free-convective-flow-in-a-vertical-cylinder-with-heat-sink-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">157</span> Rain Dropsize Distribution from Individual Storms and Variability in Nigeria Topical Region</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akinyemi%20Tomiwa">Akinyemi Tomiwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The microstructure of rainfall is important for predicting and modeling various environmental processes, such as rainfall interception by vegetation, soil erosion, and radar signals in rainfall. This rain microstructure was studied with a vertically pointing Micro Rain Radar (MRR) located at a tropical location in Akure South West Nigeria (7o 15’ N, 5o 15’ E). This research utilizes two years of data (2018 and 2019), and the data obtained comprises rainfall parameters such as Rain rates, radar reflectivity, liquid water content, fall velocity and Drop Size Distribution (DSD) based on vertical profiles. The measurement and variations of rain microstructure of these parameters with heights for different rain types were presented from ground level up to the height of 4800 m at 160 m range gates. It has been found that the convective, stratiform and mixed, which are the three major rain types, have different rain microstructures at different heights and were evaluated in this research. The correlation coefficient and the regression line equation were computed for each rain event. The highest rain rate and liquid water content were observed within the height range of 160-4800. It was found that a good correlation exists between the measured parameters. Hence it shows that specific liquid water content increases with increasing rain rate for both stratiform and convective rain types in this part of the world. The results can be very useful for a better understanding of rain structure over tropical regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rain%20microstructure" title="rain microstructure">rain microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=drop%20size%20distribution" title=" drop size distribution"> drop size distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=rain%20rates" title=" rain rates"> rain rates</a>, <a href="https://publications.waset.org/abstracts/search?q=stratiform" title=" stratiform"> stratiform</a>, <a href="https://publications.waset.org/abstracts/search?q=convective." title=" convective."> convective.</a> </p> <a href="https://publications.waset.org/abstracts/187435/rain-dropsize-distribution-from-individual-storms-and-variability-in-nigeria-topical-region" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">32</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=convective&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10