CINXE.COM

Search results for: whey proteins

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: whey proteins</title> <meta name="description" content="Search results for: whey proteins"> <meta name="keywords" content="whey proteins"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="whey proteins" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="whey proteins"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1094</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: whey proteins</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1094</span> Recovery of Proteins from EDAM Whey Using Membrane Ultrafiltration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Yelles-Allam">F. Yelles-Allam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Nouani"> A. A. Nouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Algeria, whey is discarded without any treatment and this causes not only pollution problem, but also a loss in nutritive components of milk. In this paper, characterization of EDAM whey, which is resulted from pasteurised mixture of cow’s milk and skim milk, and recovery of whey protein by ultrafiltration / diafiltration, was studied. The physical-chemical analysis of whey has emphasized on its pollutant and nutritive characteristics. In fact, its DBO5 and DCO are 49.33, and 127.71 gr of O2/l of whey respectively. It contains: fat (1,90±0,1 gr/l), lactose (47.32±1,57 gr/l), proteins (8.04±0,2 gr/l) and ashes (5,20±0,15 gr/l), calcium (0,48±0,04 gr/l), Na (1.104gr/l), K (1.014 gr/l), Mg (0.118 gr/l) and P (0.482 gr/l). Ultrafiltration was carried out in a polyetersulfone membrane with a cut-off of 10K. Its hydraulic intrinsic resistance and permeability are respectively: 2.041.1012 m-1 and 176,32 l/h.m2 at PTM of 1 bar. The retentate obtained at FC6, contains 16,33g/l of proteins and 70,25 g/l of dry matter. The retention rate of protein is 97, 7% and the decrease in DBO5 and DCO are at 18.875 g /l and 42.818 g/l respectively. Diafiltration performed on protein concentrates allowed the complete removal of lactose and minerals. The ultrafiltration of the whey before the disposal is an alternative for Algéria dairy industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diafiltration" title="diafiltration">diafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=DBO" title=" DBO"> DBO</a>, <a href="https://publications.waset.org/abstracts/search?q=DCO" title=" DCO"> DCO</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafiltration" title=" ultrafiltration"> ultrafiltration</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/46499/recovery-of-proteins-from-edam-whey-using-membrane-ultrafiltration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">256</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1093</span> Recovery of Value-Added Whey Proteins from Dairy Effluent Using Aqueous Two-Phase System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Perumalsamy%20Muthiah">Perumalsamy Muthiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Murugesan%20Thanapalan"> Murugesan Thanapalan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The remains of cheese production contain nutritional value added proteins viz., α-Lactalbumin, β-Lactoglobulin representing 80- 90% of the total volume of milk entering the process. Although several possibilities for cheese-whey exploitation have been assayed, approximately half of world cheese-whey production is not treated but is discarded as effluent. It is necessary to develop an effective and environmentally benign extraction process for the recovery of value added cheese whey proteins. Recently aqueous two phase system (ATPS) have emerged as potential separation process, particularly in the field of biotechnology due to the mild conditions of the process, short processing time, and ease of scale-up. In order to design an ATPS process for the recovery of cheese whey proteins, development of phase diagram and the effect of system parameters such as pH, types and the concentrations of the phase forming components, temperature, etc., on the partitioning of proteins were addressed in order to maximize the recovery of proteins. Some of the practical problems encountered in the application of aqueous two-phase systems for the recovery of Cheese whey proteins were also discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20two-phase%20system" title="aqueous two-phase system">aqueous two-phase system</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20diagram" title=" phase diagram"> phase diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=extraction" title=" extraction"> extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese%20whey" title=" cheese whey"> cheese whey</a> </p> <a href="https://publications.waset.org/abstracts/71016/recovery-of-value-added-whey-proteins-from-dairy-effluent-using-aqueous-two-phase-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1092</span> Dissociation of Hydrophobic Interactions in Whey Protein Polymers: Molecular Characterization Using Dilute Solution Viscometry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20S.%20Eissa">Ahmed S. Eissa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey represents about 85-95% of the milk volume and about 55% of milk nutrients. Whey proteins are of special importance in formulated foods due to their rich nutritional and functional benefits. Whey proteins form large polymers upon heating to a temperature greater than the denaturation temperature. Hydrophobic interactions play an important role in building whey protein polymers. In this study, dissociation of hydrophobic interactions of whey protein polymers was done by adding Sodium Dodecyl Sulphonate (SDS). At low SDS concentrations, protein polymers were dissociated to smaller chains, as revealed by dilution solution viscometry (DSV). Interestingly, at higher SDS concentrations, polymer molecules got larger in size. Intrinsic viscosity was increased to many folds when raising the SDS concentration from 0.5% to 2%. Complex molecular arrangement leads to the formation of larger macromolecules, due to micelle formation. The study opens a venue for manipulating and enhancing whey protein functional properties by manipulating the hydrophobic interactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title="whey proteins">whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20interactions" title=" hydrophobic interactions"> hydrophobic interactions</a>, <a href="https://publications.waset.org/abstracts/search?q=SDS" title=" SDS"> SDS</a> </p> <a href="https://publications.waset.org/abstracts/81422/dissociation-of-hydrophobic-interactions-in-whey-protein-polymers-molecular-characterization-using-dilute-solution-viscometry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81422.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1091</span> Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Akbari">Zahra Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Farzin%20Zokaee"> Farzin Zokaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Talat%20Ghomashchi"> Talat Ghomashchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey%20treatment" title="whey treatment">whey treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20industry" title=" dairy industry"> dairy industry</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=protein" title=" protein"> protein</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral" title=" mineral"> mineral</a> </p> <a href="https://publications.waset.org/abstracts/33426/protein-and-mineral-removal-from-dairy-waste-water-using-precipitation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">415</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1090</span> Aptitude of a Lactococcus Strain to Grow on Whey Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Souid%20Wafa">Souid Wafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Boudjenah-Haroun%20Saliha"> Boudjenah-Haroun Saliha</a>, <a href="https://publications.waset.org/abstracts/search?q=Khacef%20Linda"> Khacef Linda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, we focused on the valuation of discharges from the dairy industry. Whey is by-product of dairy industry, which is a formidable pollution factor and contains components (lactose, minerals and proteins) with high nutritional value. Whey is an excellent culture medium for microorganisms. The objective of our work is to investigate the ability of a lactic strain (of the genus Lactococcus) to grow in culture media based on whey of cattle and camels and comparing it with that recorded on M17 as indicator medium. In this study we isolated from a local sample of camel milk a lactic strain (S1).the strain had positive Gram shaped, cocci form and catalase (-). The strain has been purified by the method of streaks on M17 medium. Phenotypic identification allows us to classify this strain in the species: Lactococcus lactis subsp. Cremoris. We subsequently tested the ability of this strain to grow in cattle whey medium and camel whey, both media were deproteinized and unsupplemented. The obtained results revealed that: The cattle and camel whey are appropriate media for the growth of the strain Lactococcus lactis subsp cremoris but is more adapted to grow on a medium rich in lactose as the camel whey. In fact, after 48h and at initial pH 6.8 this strain acidified more camel whey (pH 3.99) than cattle whey (pH 4.8). And biomass produced in the camel whey is 1.50g /1 by contributing to the cattle whey which is 1g / l. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cremoris" title="cremoris">cremoris</a>, <a href="https://publications.waset.org/abstracts/search?q=dairy%20industry" title=" dairy industry"> dairy industry</a>, <a href="https://publications.waset.org/abstracts/search?q=Lactococcus%20lactis%20subsp" title=" Lactococcus lactis subsp"> Lactococcus lactis subsp</a>, <a href="https://publications.waset.org/abstracts/search?q=medium" title=" medium"> medium</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/40949/aptitude-of-a-lactococcus-strain-to-grow-on-whey-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">363</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1089</span> Effects of Certain Natural Food Additives (Pectin, Gelatin and Whey Proteins) on the Qualities of Fermented Milk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20Cheriguene">Abderrahim Cheriguene</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatiha%20Arioui"> Fatiha Arioui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The experimental study focuses on the extraction of pectin, whey protein and gelatin, and the study of their functional properties. Microbiological, physicochemical and sensory approach integrated has been implanted to study the effect of the incorporation of these natural food additives in the matrix of a fermented milk type set yogurt, to study the stability of the product during the periods of fermentation and post-acidification over a period of 21 days at 4°C. Pectin was extracted in hot HCl solution. Thermo-precipitation was carried out to obtain the whey proteins while the gelatin was extracted by hydrolysis of the collagen from bovine ossein. The fermented milk was prepared by varying the concentration of the incorporated additives. The measures and controls carried performed periodically on fermented milk experimental tests were carried out: pH, acidity, viscosity, the enumeration of Streptococcus thermophilus, cohesiveness, adhesiveness, taste, aftertaste, whey exudation, and odor. It appears that the acidity, viscosity, and number of Streptococcus thermophilus increased with increasing concentration of additive added in the experimental tests. Indeed, it seems clear that the quality of fermented milk and storability is more improved than the incorporation rate is high. The products showed a better test and a firmer texture limiting the whey exudation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fermented%20milk" title="fermented milk">fermented milk</a>, <a href="https://publications.waset.org/abstracts/search?q=pectin" title=" pectin"> pectin</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title=" whey proteins"> whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=functional%20properties" title=" functional properties"> functional properties</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=valorization" title=" valorization"> valorization</a> </p> <a href="https://publications.waset.org/abstracts/112954/effects-of-certain-natural-food-additives-pectin-gelatin-and-whey-proteins-on-the-qualities-of-fermented-milk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112954.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1088</span> Design of New Baby Food Product Using Whey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Henri%20El%20Zakhem">Henri El Zakhem</a>, <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Dahdah"> Anthony Dahdah</a>, <a href="https://publications.waset.org/abstracts/search?q=Lara%20Frangieh"> Lara Frangieh</a>, <a href="https://publications.waset.org/abstracts/search?q=Jessica%20Koura"> Jessica Koura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the removal of whey produced in the dairy processes has been the most important problem in the dairy industry. Every year, about 47% of the 115 million tons of whey produced world-wide are disposed in the environment. Whey is a nutritious liquid, containing whey proteins (β-lactoglobulin, α-lactalbumin, immunoglobulin-G, proteose pepton), lactose, vitamins (B5, B2, C, and B6), minerals (Calcium, Magnesium, Phosphorous, Potassium, Chloride, and Sodium), and trace elements (Zinc, Iron, Iodine, and Copper). The first objective was to increase the economical and commercial value of whey which is considered as by-product. The second objective of this study was to formulate a new baby food with good nutritional, sensory and storage properties and acceptable to consumers using the cheese whey. The creation of the new product must pass through the following stages: idea stage, development stage which includes the business planning and the product development prototype, packaging stage, production stage, test marketing stage, quality control/sanitation. Three types of whey-based food were selected and prepared by mixing whey and apple, whey and banana as well as whey, apple, and banana.To compile with the recommended dietary allowances (RDA) and adequate intakes (AI) for vitamins and minerals, each sample is formed from 114g of sliced and smashed fruits mixed with 8 mL of whey. Mixtures are heated to 72oC for 15 seconds, and filled in pasteurized jars. Jars were conserved at 4oC. Following the experimental part, sensory evaluation made by an experienced panel took place. Hedonic tests results show that the mixture of whey, apple, and banana has the most delicious and sweetness taste followed by the mixture of whey and banana, and finally the mixture of whey and apple. This study was concluded with a managerial and engineering study that reveals that the project is economically profitable to be executed in Lebanon. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baby%20food" title="baby food">baby food</a>, <a href="https://publications.waset.org/abstracts/search?q=by-product" title=" by-product"> by-product</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese%20whey" title=" cheese whey"> cheese whey</a>, <a href="https://publications.waset.org/abstracts/search?q=formulation" title=" formulation"> formulation</a> </p> <a href="https://publications.waset.org/abstracts/76691/design-of-new-baby-food-product-using-whey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76691.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1087</span> Nutritional Potential and Functionality of Whey Powder Influenced by Different Processing Temperature and Storage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarmina%20Gillani">Zarmina Gillani</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuzhat%20Huma"> Nuzhat Huma</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysha%20Sameen"> Aysha Sameen</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulazim%20Hussain%20Bukhari"> Mulazim Hussain Bukhari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is an excellent food ingredient owing to its high nutritive value and its functional properties. However, composition of whey varies depending on composition of milk, processing conditions, processing method, and its whey protein content. The aim of this study was to prepare a whey powder from raw whey and to determine the influence of different processing temperatures (160 and 180 &deg;C) on the physicochemical, functional properties during storage of 180 days and on whey protein denaturation. Results have shown that temperature significantly (P &lt; 0.05) affects the pH, acidity, non-protein nitrogen (NPN), protein total soluble solids, fat and lactose contents. Significantly (p &lt; 0.05) higher foaming capacity (FC), foam stability (FS), whey protein nitrogen index (WPNI), and a lower turbidity and solubility index (SI) were observed in whey powder processed at 160 &deg;C compared to whey powder processed at 180 &deg;C. During storage of 180 days, slow but progressive changes were noticed on the physicochemical and functional properties of whey powder. Reverse phase-HPLC analysis revealed a significant (P &lt; 0.05) effect of temperature on whey protein contents. Denaturation of &beta;-Lactoglobulin is followed by &alpha;-lacalbumin, casein glycomacropeptide (CMP/GMP), and bovine serum albumin (BSA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey%20powder" title="whey powder">whey powder</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=denaturation" title=" denaturation"> denaturation</a>, <a href="https://publications.waset.org/abstracts/search?q=reverse%20phase" title=" reverse phase"> reverse phase</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a> </p> <a href="https://publications.waset.org/abstracts/71225/nutritional-potential-and-functionality-of-whey-powder-influenced-by-different-processing-temperature-and-storage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1086</span> Development and Evaluation of Whey-Based Drink: An Approach to Protect Environmental Pollution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zarmina%20Gillani">Zarmina Gillani</a>, <a href="https://publications.waset.org/abstracts/search?q=Mulazim%20Hussain%20Bukhari"> Mulazim Hussain Bukhari</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuzhat%20Huma"> Nuzhat Huma</a>, <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Qayyum"> Aqsa Qayyum</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is a valuable by-product of dairy industry comprising of precious nutrients lactose, protein, vitamins and minerals for the human food but considered as a pollutant due to its biological activity. So, there is a need to develop nutritious whey products to overcome the problem of environmental pollution. This project was planned to develop a whey drink at different pasteurization temperatures and its quality was evaluated during storage. The result indicated that pH, acidity, total soluble solids and lactose content changed significantly (p < 0.01) due to lactic acid production during storage. Non-significant (p > 0.05) effects were detected on the protein and ash content of whey drink. Fat and viscosity changed significantly with respect to storage only. Sensory evaluation of whey drink revealed that both treatments remained acceptable while whey drink pasteurized at 75°C/30 minutes (WD2) gained more sensory score compared to whey drink pasteurized at 65°C/30minutes (WD1). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pasteurization" title="pasteurization">pasteurization</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory%20evaluation" title=" sensory evaluation"> sensory evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/73891/development-and-evaluation-of-whey-based-drink-an-approach-to-protect-environmental-pollution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">271</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1085</span> Antibacterial and Anti-Biofilm Activity of Papain Hydrolysed Camel Milk Whey and Its Fractions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Abdel-Hamid">M. Abdel-Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Saporito"> P. Saporito</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20V.%20Mateiu"> R. V. Mateiu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Osman"> A. Osman</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Romeih"> E. Romeih</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Jenssen"> H. Jenssen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Camel milk whey (CMW) was hydrolyzed with papain from Carica papaya and fractionated by size exclusion chromatography (SEC). The antibacterial and anti-biofilm activity of the CMW, Camel milk whey hydrolysate (CMWH) and the obtained SEC-fractions was assessed against Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA). SEC-F2 (fraction 2) exhibited antibacterial effectiveness against MRSA and P. aeruginosa with the minimum inhibitory concentration of 0.31 and 0.156 mg/ml, respectively. Furthermore, SEC-F2 significantly decreased biofilm biomass by 71% and 83 % for MRSA and P. aeruginosa in a crystal violet microplate assay. Scanning electron microscopy showed that the SEC-F2 caused changes in the treated bacterial cells. Additionally, LC/MS analysis was used to characterize the peptides of SEC-F2. Two major peptides were detected in SEC-F2 having masses of 414.05 Da and 456.06 Da. In conclusion, this study has demonstrated that hydrolysis of CMW with papain generates small and extremely potent antibacterial and anti-biofilm peptides against both MRSA and P. aeruginosa. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=camel%20milk" title="camel milk">camel milk</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20proteins" title=" whey proteins"> whey proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20peptide" title=" antibacterial peptide"> antibacterial peptide</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-biofilm" title=" anti-biofilm"> anti-biofilm</a> </p> <a href="https://publications.waset.org/abstracts/90413/antibacterial-and-anti-biofilm-activity-of-papain-hydrolysed-camel-milk-whey-and-its-fractions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90413.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1084</span> Application of Microparticulated Whey Proteins in Reduced-Fat Yogurt through Hot-Extrusion: Influence on Physicochemical and Sensory Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20K.%20Hossain">M. K. Hossain</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Keidel"> J. Keidel</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Hensel"> O. Hensel</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Diakite"> M. Diakite</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fat reduced dairy products are holding a potential market due to health reason. Due to less creamy, and pleasantness, reduced and/or low-fat dairy products are getting less consumer acceptance whereas the fat molecule provides smooth, creamy and a pleasant mouthfeel in dairy products especially yogurt & ice cream. This study was aimed to investigate whether the application of microparticulated whey proteins (MWPs) processed by extrusion cooking, the reduced fat yogurt can achieve similar or higher creaminess compared to whole milk (3.8% fat) and skimmed milk (0.5% fat) yogurt. Full cream and skimmed milk were used to prepare natural stirred yogurt, as well as the dry matter content, also adjusted up to 16% with skimmed milk powder. Whey protein concentrates (WPC80) were used to produce MWPs in particle size of d50 > 5 µm, d50 3<5 µm and d50 < 3 µm through the hot-extrusion process with a screw speed of 400, 600 and 1000 rpm respectively. Furthermore, the commercially available microparticulated whey protein called Simplesse® was also applied in order to compare with extruded MWPs. The rheological and sensory properties of yogurt were assessed, and data were analyzed statistically. The applications of extruded MWPs with 600 and 1000 rpm were achieved significantly (p < 0.05) higher creaminess and preference compared to the whole and skimmed milk yogurt whereas, 400 rpm got lower preference. On the other hand, Simplesse® obtained the lowest creaminess and preference compared to other yogurts, although the contribution of dry matter in yogurt was same as extruded MWPs. The creaminess and viscosities were strongly (r = 0.62) correlated, furthermore, the viscosity from sensory evaluation and the dynamic viscosity of yogurt was also significantly (r = 0.72) correlated which clarifies that the performance of sensory panelists as well as the quality of the products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microparticulation" title="microparticulation">microparticulation</a>, <a href="https://publications.waset.org/abstracts/search?q=hot-extrusion" title=" hot-extrusion"> hot-extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced-fat%20yogurt" title=" reduced-fat yogurt"> reduced-fat yogurt</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20concentrate" title=" whey protein concentrate"> whey protein concentrate</a> </p> <a href="https://publications.waset.org/abstracts/106590/application-of-microparticulated-whey-proteins-in-reduced-fat-yogurt-through-hot-extrusion-influence-on-physicochemical-and-sensory-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1083</span> Utilization of Whey for the Production of β-Galactosidase Using Yeast and Fungal Culture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rupinder%20Kaur">Rupinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Parmjit%20S.%20Panesar"> Parmjit S. Panesar</a>, <a href="https://publications.waset.org/abstracts/search?q=Ram%20S.%20Singh"> Ram S. Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is the lactose rich by-product of the dairy industry, having good amount of nutrient reservoir. Most abundant nutrients are lactose, soluble proteins, lipids and mineral salts. Disposing of whey by most of milk plants which do not have proper pre-treatment system is the major issue. As a result of which, there can be significant loss of potential food and energy source. Thus, whey has been explored as the substrate for the synthesis of different value added products such as enzymes. β-galactosidase is one of the important enzymes and has become the major focus of research due to its ability to catalyze both hydrolytic as well as transgalactosylation reaction simultaneously. The enzyme is widely used in dairy industry as it catalyzes the transformation of lactose to glucose and galactose, making it suitable for the lactose intolerant people. The enzyme is intracellular in both bacteria and yeast, whereas for molds, it has an extracellular location. The present work was carried to utilize the whey for the production of β-galactosidase enzyme using both yeast and fungal cultures. The yeast isolate Kluyveromyces marxianus WIG2 and various fungal strains have been used in the present study. Different disruption techniques have also been investigated for the extraction of the enzyme produced intracellularly from yeast cells. Among the different methods tested for the disruption of yeast cells, SDS-chloroform showed the maximum β-galactosidase activity. In case of the tested fungal cultures, Aureobasidium pullulans NCIM 1050, was observed to be the maximum extracellular enzyme producer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-galactosidase" title="β-galactosidase">β-galactosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=fungus" title=" fungus"> fungus</a>, <a href="https://publications.waset.org/abstracts/search?q=yeast" title=" yeast"> yeast</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/26112/utilization-of-whey-for-the-production-of-v-galactosidase-using-yeast-and-fungal-culture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">325</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1082</span> Effect of Whey Based Film Coatings on Various Properties of Kashar Cheese</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hawbash%20Jalil">Hawbash Jalil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of whey protein based films on various properties of kashar cheese were examined. In the study, edible film solutions based on whey protein isolate, whey protein isolate + transglutaminase enzyme and whey protein isolate + chitosan were produced and Kashar cheese samples were coated with these films by dipping method and stored at +4 ºC for 60 days. Chemical, microbiological and textural analyzes were carried out on samples at 0, 30 and 60 days of storage. As a result of the study, the highest dry matter and total nitrogen values were obtained from uncoated control samples This is an indication that the coatings limit water vapor permeability. The highest acidity and pH values obtained from the samples as storage results were 3.33% and 5.86%, respectively, in the control group samples. Both acidity and pH rise in these groups, is a consequence of the buffering of pH changes of hydrolsis products which are as a result of proteolysis occurring in the sample. Nitrogen changes and lipolysis values, which are indicative of the degree of hydrolysis of proteins and triglycerides in kashar cheese, were generally higher in the control group This result is due to limiting the micro organism reproduction by limiting the gas passage of the coatings. Hardness and chewiness values of the textural properties of the samples were significantly reduced in uncoated control samples compared to the coated samples due to maturation. The chitosan film coatings used in the study limited the development of mold yeast until the 30th day but after that did not yield successful results in this respect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=edible%20film" title=" edible film"> edible film</a>, <a href="https://publications.waset.org/abstracts/search?q=transglutaminase" title=" transglutaminase"> transglutaminase</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein" title=" whey protein"> whey protein</a> </p> <a href="https://publications.waset.org/abstracts/85896/effect-of-whey-based-film-coatings-on-various-properties-of-kashar-cheese" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1081</span> Effect of Resveratrol and Ascorbic Acid on the Stability of Alfa-Tocopherol in Whey Protein Isolate Stabilized O/W Emulsions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lei%20Wang">Lei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yingzhou%20Ni"> Yingzhou Ni</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20Bakry"> Amr M. Bakry</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Cheng"> Hao Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Liang"> Li Liang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food proteins have been widely used as carrier materials because of their multiple functional properties. In this study, alfa-tocopherol was encapsulated in the oil phase of an oil-in-water emulsion stabilized with whey protein isolate (WPI). The influence of WPI concentration and resveratrol or ascorbic acid on the decomposition of alfa-tocopherol in the emulsion during storage is discussed. Decomposition decreased as WPI concentrations increased. Decomposition was delayed at ascorbic acid/WPI molar ratios lower than 5 but was promoted at higher ratios. Resveratrol partitioned into the oil-water interface by binding to WPI and its cis-isomer is believed to have contributed most of the protective effect of this polyphenol. These results suggest the possibility of using the emulsifying and ligand-binging properties of WPI to produce carriers for simultaneous encapsulation of alfa-tocopherol and resveratrol in a single emulsion system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stability" title="stability">stability</a>, <a href="https://publications.waset.org/abstracts/search?q=alfa-tocopherol" title=" alfa-tocopherol"> alfa-tocopherol</a>, <a href="https://publications.waset.org/abstracts/search?q=resveratrol" title=" resveratrol"> resveratrol</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolate" title=" whey protein isolate"> whey protein isolate</a> </p> <a href="https://publications.waset.org/abstracts/32495/effect-of-resveratrol-and-ascorbic-acid-on-the-stability-of-alfa-tocopherol-in-whey-protein-isolate-stabilized-ow-emulsions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32495.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">528</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1080</span> Chitosan-Whey Protein Isolate Core-Shell Nanoparticles as Delivery Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Yadollahi">Zahra Yadollahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marjan%20Motiei"> Marjan Motiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20Kazantseva"> Natalia Kazantseva</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Saha"> Petr Saha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chitosan (CS)-whey protein isolate (WPI) core-shell nanoparticles were synthesized through self-assembly of whey protein isolated polyanions and chitosan polycations in the presence of tripolyphosphate (TPP) as a crosslinker. The formation of this type of nanostructures with narrow particle size distribution is crucial for developing delivery systems since the functional characteristics highly depend on their sizes. To achieve this goal, the nanostructure was optimized by varying the concentrations of WPI, CS, and TPP in the reaction mixture. The chemical characteristics, surface morphology, and particle size of the nanoparticles were evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey%20protein%20isolated" title="whey protein isolated">whey protein isolated</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=delivery%20system" title=" delivery system"> delivery system</a> </p> <a href="https://publications.waset.org/abstracts/157111/chitosan-whey-protein-isolate-core-shell-nanoparticles-as-delivery-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1079</span> Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fengmei%20Li">Fengmei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Xu"> Li Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=Guoliang%20Xia"> Guoliang Xia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20mitten%20crab" title="Chinese mitten crab">Chinese mitten crab</a>, <a href="https://publications.waset.org/abstracts/search?q=Eriocheir%20sinensis" title=" Eriocheir sinensis"> Eriocheir sinensis</a>, <a href="https://publications.waset.org/abstracts/search?q=cloning" title=" cloning"> cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=double%20WAP%20domain-containing%20protein" title=" double WAP domain-containing protein "> double WAP domain-containing protein </a> </p> <a href="https://publications.waset.org/abstracts/4040/molecular-cloning-and-identification-of-a-double-wap-domain-containing-protein-3-gene-from-chinese-mitten-crab-eriocheir-sinensis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4040.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1078</span> Effect of Whey Proteins and Caffeic Acid Interactions on Antioxidant Activity and Protein Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tassia%20Batista%20Pessato">Tassia Batista Pessato</a>, <a href="https://publications.waset.org/abstracts/search?q=Francielli%20Pires%20Ribeiro%20Morais"> Francielli Pires Ribeiro Morais</a>, <a href="https://publications.waset.org/abstracts/search?q=Fernanda%20Guimaraes%20Drummond%20Silva"> Fernanda Guimaraes Drummond Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Flavia%20Maria%20Netto"> Flavia Maria Netto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Proteins and phenolic compounds can interact mainly by hydrophobic interactions. Those interactions may lead to structural changes in both molecules, which in turn could affect positively or negatively their functional and nutritional properties. Here, the structural changes of whey proteins (WPI) due to interaction with caffeic acid (CA) were investigated by intrinsic and extrinsic fluorescence. The effects of protein-phenolic compounds interactions on the total phenolic content and antioxidant activity were also assessed. The WPI-CA complexes were obtained by mixture of WPI and CA stock solutions in deionized water. The complexation was carried out at room temperature during 60 min, using 0.1 M NaOH to adjust pH at 7.0. The WPI concentration was fixed at 5 mg/mL, whereas the CA concentration varied in order to obtain four different WPI:CA molar relations (1:1; 2:1; 5:1; 10:1). WPI and phenolic solutions were used as controls. Intrinsic fluorescence spectra of the complexes (mainly due to Trp fluorescence emission) were obtained at λex = 280 nm and the emission intensities were measured from 290 to 500 nm. Extrinsic fluorescence was obtained as the measure of protein surface hydrophobicity (S0) using ANS as a fluorescence probe. Total phenolic content was determined by Folin-Ciocalteau and the antioxidant activity by FRAP and ORAC methods. Increasing concentrations of CA resulted in decreasing of WPI intrinsic fluorescence. The emission band of WPI red shifted from 332 to 354 nm as the phenolic concentration increased, which is related to the exposure of Trp residue to the more hydrophilic environment and unfolding of protein structure. In general, the complexes presented lower S0 values than WPI, suggesting that CA hindered ANS binding to hydrophobic sites of WPI. The total phenolic content in the complexes was lower than the sum of two compounds isolated. WPI showed negligible AA measured by FRAP. However, as the relative concentration of CA increased in the complexes, the FRAP values enhanced, indicating that AA measure by this technique comes mainly from CA. In contrast, the WPI ORAC value (82.3 ± 1.5 µM TE/g) suggest that its AA is related to the capacity of H+ transfer. The complexes exhibited no important improvement of AA measured by ORAC in relation to the isolated components, suggesting complexation partially suppressed AA of the compounds. The results hereby presented indicate that interaction of WPI and CA occurred, and this interaction caused a structural change in the proteins. The complexation can either hide or expose antioxidant sites of both components. In conclusion, although the CA can undergo an AA suppression due to the interaction with proteins, the AA of WPI could be enhanced due to protein unfolding and exposure of antioxidant sites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioactive%20properties" title="bioactive properties">bioactive properties</a>, <a href="https://publications.waset.org/abstracts/search?q=milk%20proteins" title=" milk proteins"> milk proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20acids" title=" phenolic acids"> phenolic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=protein-phenolic%20compounds%20complexation" title=" protein-phenolic compounds complexation"> protein-phenolic compounds complexation</a> </p> <a href="https://publications.waset.org/abstracts/57218/effect-of-whey-proteins-and-caffeic-acid-interactions-on-antioxidant-activity-and-protein-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">549</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1077</span> Beneficial Effects of Whey Protein Concentrate in Venous Thrombosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Tokajuk">Anna Tokajuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Zakrzeska"> Agnieszka Zakrzeska</a>, <a href="https://publications.waset.org/abstracts/search?q=Ewa%20Chabielska"> Ewa Chabielska</a>, <a href="https://publications.waset.org/abstracts/search?q=Halina%20Car"> Halina Car</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Whey is a by-product generated mainly in the production of cheese and casein. Powder forms of whey are used widely in the food industry as well as a high-protein food for infants, for convalescents, by athletes and especially by bodybuilders to increase muscle mass during exercise. Whey protein concentrate-80 (WPC-80) is a source of bioactive peptides with beneficial effects on the cardiovascular system. It is known that whey proteins health beneficial properties include antidiabetic, blood pressure lowering, improving cardiovascular system function, antibacterial, antiviral and other effects. To study its influence on the development of thrombosis, venous thrombosis model was performed according to the protocol featured by Reyers with modification by Chabielska and Gromotowicz. Male Wistar-Crl: WI (Han) rats from researched groups were supplemented with two doses of WPC-80 (0.3 or 0.5 g/kg) for 7, 14 or 21 days and after these periods, one-hour venous thrombosis model was performed. Control group received 0.9 % NaCl solution and was sham operated. The statistical significance of results was computed by Mann – Whitney’s test. We observed that thrombus weight was decreased in animals obtaining WPC-8080 and that was statistically significant in 14 and 21-day supplemented groups. Blood count parameters did not differ significantly in rats with and without thrombosis induction whether they were fed with WPC-80 or not. Moreover, the number of platelets (PLT) was within the normal range in each group. The examined coagulation parameters in rats of the control groups were within normal limits. After WPC-80 supplementation there was the tendency to prolonged activated partial thromboplastin time (aPTT), but in comparison, the results did not turn out significant. In animals that received WPC-80 0.3 g·kg-1 for 21 days with and without induced thrombosis, prothrombin time (PT) and an international normalized ratio (INR) was somewhat decreased, remaining within the normal range, but the nature and significance of this observation are beyond the framework of the current study. Additionally, fibrinogen and thrombin time (TT) did not differ significantly between groups. Therefore the exact effect of WPC-80 on coagulation system is still elusive and requires further thorough research including mechanisms of action. Determining the potential clinical application of WPC-80 requires the selection of the optimal dose and duration of supplementation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antithrombotic" title="antithrombotic">antithrombotic</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=venous%20thrombosis" title=" venous thrombosis"> venous thrombosis</a>, <a href="https://publications.waset.org/abstracts/search?q=WPC-80" title=" WPC-80"> WPC-80</a> </p> <a href="https://publications.waset.org/abstracts/105571/beneficial-effects-of-whey-protein-concentrate-in-venous-thrombosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105571.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">118</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1076</span> Whey Protein in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zyrah%20Lou%20R.%20Samar">Zyrah Lou R. Samar</a>, <a href="https://publications.waset.org/abstracts/search?q=Genecarlo%20Liwanag"> Genecarlo Liwanag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 2 Diabetes Mellitus is the more prevalent type, caused by a combination of insulin resistance and inadequate insulin response to hyperglycemia1. Aside from pharmacologic interventions, medical nutrition therapy is an integral part of the management of patients with Type 2 Diabetes Mellitus. Whey protein, which is one of the best protein sources, has been investigated for its applicability in improving glycemic control in patients with Type 2 Diabetes Mellitus. This systematic review and meta-analysis was conducted to measure the magnitude of the effect of whey protein on glycemic control in type 2 diabetes mellitus. The aim of this review is to evaluate the efficacy and safety of whey protein in patients with type 2 diabetes mellitus. Methods: A systematic electronic search for studies in the PubMed and Cochrane Collaboration database was done. Included in this review were randomized controlled trials of whey protein enrolling patients with type 2 diabetes mellitus. Three reviewers independently searched, assessed, and extracted data from the individual studies. Results: A systematic literature search on online databases such as Cochrane Central Registry, PubMed, and Herdin Plus was conducted in April to September 2021 to identify eligible studies. The search yielded 21 randomized controlled trials after removing duplicates. Only 5 articles were included after reviewing the full text, which met the criteria for selection. Conclusion: Whey protein supplementation significantly reduced fasting blood glucose. However, it did not reduce post-prandial blood glucose, HbA1c level, and weight when compared with the placebo. There has been a considerate heterogeneity across all studies, which may have contributed/confounded its effects. A larger sample size and better inclusion, and a more specific study may be included in the future reviews. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=whey%20protein" title="whey protein">whey protein</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes" title=" diabetes"> diabetes</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrition" title=" nutrition"> nutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=fasting%20blood%20sugar" title=" fasting blood sugar"> fasting blood sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=postprandial%20glucose" title=" postprandial glucose"> postprandial glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=HbA1c" title=" HbA1c"> HbA1c</a>, <a href="https://publications.waset.org/abstracts/search?q=weight%20reduction" title=" weight reduction"> weight reduction</a> </p> <a href="https://publications.waset.org/abstracts/154317/whey-protein-in-type-2-diabetes-mellitus-a-systematic-review-and-meta-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1075</span> Production of Biosurfactant by Pseudomonas luteola on a Reject from the Production of Anti-scorpion Serum</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Radia%20Chemlal">Radia Chemlal</a>, <a href="https://publications.waset.org/abstracts/search?q=Youcef%20Hamidi"> Youcef Hamidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nabil%20Mameri"> Nabil Mameri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the production of biosurfactant by the Pseudomonas luteola strain on three different culture media (semi-synthetic medium M1, whey, and pharmaceutical reject) in the presence of gasoil. The monitoring of bacterial growth by measuring the optical density at 600 nm by spectrophotometer and the surface tension clearly showed the ability of Pseudomonas luteola to produce biosurfactants at various conditions of the culture medium. The biosurfactant produced in the pharmaceutical reject medium generated a decrease in the surface tension with a percentage of 19.4% greater than the percentage obtained when using whey which is 7.0%. The pharmaceutical rejection is diluted at various percentages ranging from 5% to 100% in order to study the effect of the concentration on the biosurfactant production. The best result inducing the great reduction of the surface tension value is obtained at the dilution of 30% with the pharmaceutical reject. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosurfactant" title="biosurfactant">biosurfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudomonas%20luteola" title=" pseudomonas luteola"> pseudomonas luteola</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a>, <a href="https://publications.waset.org/abstracts/search?q=antiscorpionic%20serum" title=" antiscorpionic serum"> antiscorpionic serum</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20oil" title=" gas oil"> gas oil</a> </p> <a href="https://publications.waset.org/abstracts/159333/production-of-biosurfactant-by-pseudomonas-luteola-on-a-reject-from-the-production-of-anti-scorpion-serum" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159333.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1074</span> Effect of Whey Protein Based Edible Coating on the Moisture Loss and Sensory Attributes of Fresh Mutton</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Belgheisi">Saba Belgheisi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food packaging, is an important discipline in the area of food technology, concerns preservation and protection of foods. The objective of this research was to determine of the effect of whey protein based edible coating on the moisture loss and sensory attributes of fresh mutton after 0, 1, 3 and 5 days at 5° C. The moisture content, moisture loss and sensory attributes (juiciness, color and odor) of the coated and uncoated samples were analyzed. The results showed that, moisture content, moisture loss, juiciness and color of the coated and uncoated samples have significant differences (p < 0.05) at the intervals of 0 to 1 and 1 to 3 days of storage. But no significant difference was observed at interval time 3 to 5 days of storage (p > 0.05). Also, there was no significant differences in the odor values of the coated and uncoated samples (p > 0.05). Therefore, the coated samples had consistently more moisture, juiciness and colored values than uncoated samples after 3 days at 5° C. So, whey protein edible coating could enhance product presentation and eliminate the need for placing absorbent pads at the bottom of the trays. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coating" title="coating">coating</a>, <a href="https://publications.waset.org/abstracts/search?q=whey%20protein" title=" whey protein"> whey protein</a>, <a href="https://publications.waset.org/abstracts/search?q=mutton" title=" mutton"> mutton</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a>, <a href="https://publications.waset.org/abstracts/search?q=sensory" title=" sensory "> sensory </a> </p> <a href="https://publications.waset.org/abstracts/21747/effect-of-whey-protein-based-edible-coating-on-the-moisture-loss-and-sensory-attributes-of-fresh-mutton" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">461</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1073</span> Preliminary Study on Milk Composition and Milk Protein Polymorphism in the Algerian Local Sheep&#039;s Breeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ameur%20Ameur">A. Ameur Ameur</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Chougrani"> F. Chougrani</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Halbouche"> M. Halbouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to characterize the sheep's milk, we analyzed and compared, in a first stage of our work, the physical and chemical characteristics in two Algerian sheep breeds: Hamra race and race Ouled Djellal breeding at the station the experimental ITELV Ain Hadjar (Saïda Province). Analyses are performed by Ekomilk Ultra-analyzer (EON TRADING LLC, USA), they focused on the pH, density, freezing, fat, total protein, solids-the total dry extract. The results obtained for these parameters showed no significant differences between the two breeds studied. The second stage of this work was the isolation and characterization of milk proteins. For this, we used the precipitation of caseins phi [pH 4.6]. For this, we used the precipitation of caseins Phi (pH 4.6). After extraction, purification and assay, both casein and serum protein fractions were then assayed by the Bradford method and controlled by polyacrylamide gel electrophoresis (PAGE) in the different conditions (native, in the presence of urea and in the presence of SDS). The electrophoretic pattern of milk samples showed the presence similarities of four major caseins variants (αs1-, αs2-β-and k-casein) and two whey proteins (β-lactoglobulin, α-lactalbumin) of two races Hamra and Ouled Djellal. But compared to bovine milk, they have helped to highlight some peculiarities as related to serum proteins (α La β Lg) as caseins, including αs1-Cn. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamra" title="Hamra">Hamra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouled%20Djellal" title=" Ouled Djellal"> Ouled Djellal</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20polymorphism" title=" protein polymorphism"> protein polymorphism</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20breeds" title=" sheep breeds "> sheep breeds </a> </p> <a href="https://publications.waset.org/abstracts/26968/preliminary-study-on-milk-composition-and-milk-protein-polymorphism-in-the-algerian-local-sheeps-breeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">557</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1072</span> From Biowaste to Biobased Products: Life Cycle Assessment of VALUEWASTE Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9s%20Lara%20Guill%C3%A9n">Andrés Lara Guillén</a>, <a href="https://publications.waset.org/abstracts/search?q=Jos%C3%A9%20M.%20Soriano%20Disla"> José M. Soriano Disla</a>, <a href="https://publications.waset.org/abstracts/search?q=Gemma%20Castej%C3%B3n%20Mart%C3%ADnez"> Gemma Castejón Martínez</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Fern%C3%A1ndez-Guti%C3%A9rrez"> David Fernández-Gutiérrez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide population is exponentially increasing, which causes a rising demand for food, energy and non-renewable resources. These demands must be attended to from a circular economy point of view. Under this approach, the obtention of strategic products from biowaste is crucial for the society to keep the current lifestyle reducing the environmental and social issues linked to the lineal economy. This is the main objective of the VALUEWASTE project. VALUEWASTE is about valorizing urban biowaste into proteins for food and feed and biofertilizers, closing the loop of this waste stream. In order to achieve this objective, the project validates three value chains, which begin with the anaerobic digestion of the biowaste. From the anaerobic digestion, three by-products are obtained: i) methane that is used by microorganisms, which will be transformed into microbial proteins; ii) digestate that is used by black soldier fly, producing insect proteins; and iii) a nutrient-rich effluent, which will be transformed into biofertilizers. VALUEWASTE is an innovative solution, which combines different technologies to valorize entirely the biowaste. However, it is also required to demonstrate that the solution is greener than other traditional technologies (baseline systems). On one hand, the proteins from microorganisms and insects will be compared with other reference protein production systems (gluten, whey and soybean). On the other hand, the biofertilizers will be compared to the production of mineral fertilizers (ammonium sulphate and synthetic struvite). Therefore, the aim of this study is to provide that biowaste valorization can reduce the environmental impacts linked to both traditional proteins manufacturing processes and mineral fertilizers, not only at a pilot-scale but also at an industrial one. In the present study, both baseline system and VALUEWASTE solution are evaluated through the Environmental Life Cycle Assessment (E-LCA). The E-LCA is based on the standards ISO 14040 and 14044. The Environmental Footprint methodology was the one used in this study to evaluate the environmental impacts. The results for the baseline cases show that the food proteins coming from whey have the highest environmental impact on ecosystems compared to the other proteins sources: 7.5 and 15.9 folds higher than soybean and gluten, respectively. Comparing feed soybean and gluten, soybean has an environmental impact on human health 195.1 folds higher. In the case of biofertilizers, synthetic struvite has higher impacts than ammonium sulfate: 15.3 (ecosystems) and 11.8 (human health) fold, respectively. The results shown in the present study will be used as a reference to demonstrate the better environmental performance of the bio-based products obtained through the VALUEWASTE solution. Other originalities that the E-LCA performed in the VALUEWASTE project provides are the diverse direct implications on investment and policies. On one hand, better environmental performance will serve to remove the barriers linked to these kinds of technologies, boosting the investment that is backed by the E-LCA. On the other hand, it will be a germ to design new policies fostering these types of solutions to achieve two of the key targets of the European Community: being self-sustainable and carbon neutral. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title="anaerobic digestion">anaerobic digestion</a>, <a href="https://publications.waset.org/abstracts/search?q=biofertilizers" title=" biofertilizers"> biofertilizers</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20economy" title=" circular economy"> circular economy</a>, <a href="https://publications.waset.org/abstracts/search?q=nutrients%20recovery" title=" nutrients recovery"> nutrients recovery</a> </p> <a href="https://publications.waset.org/abstracts/147155/from-biowaste-to-biobased-products-life-cycle-assessment-of-valuewaste-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1071</span> Culture Medium Design Based on Whey for the Growth and Bacteriocin Production of Strains of Pediococcus pentosaceus </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carolina%20Gutierrez-Cortes">Carolina Gutierrez-Cortes</a>, <a href="https://publications.waset.org/abstracts/search?q=Hector%20Suarez"> Hector Suarez</a>, <a href="https://publications.waset.org/abstracts/search?q=Gustavo%20Buitrago"> Gustavo Buitrago</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bacteriocins are antimicrobial peptides produced by bacteria as a competitive strategy for substrate and habitat. Those peptides have a potential use as food biopreservatives due to their antimicrobial activity against foodborne pathogens, avoiding the use of additives that can be harmful to consumers. The industrial production of bacteriocins is currently expensive; one of the options to be competitive is the development of economic culture media, for example, with the use of agro-industrial wastes such as whey. This study evaluated the growth and production of bacteriocins from four strains: Pediococcus pentosaceus 63, Pediococcus pentosaceus 145, Pediococcus pentosaceus 146 and Pediococcus pentosaceus 147 isolated from ‘minas cheese’ (artisanal cheese made from raw milk in the state of Minas Gerais, Brazil) in order to select a strain with growth at high rates and higher antimicrobial activity against Listeria monocytogenes 104 after incubation on the culture medium designed with whey and other components. The media used were: MRS broth, modified MRS broth (using different sources of carbon and nitrogen and different amounts of micronutrients) and a culture medium designed by a factorial design using whey and other components. The final biomass concentrations of the four strains in MRS broth after 24 hours of incubation were very similar 9.25, 9.33, 9.25 and 9.22 (log CFU/mL) for P. pentosaceus 63, P. pentosaceus 145, P. pentosaceus 146 and P. pentosaceus 147 respectively. In the same assays, antimicrobial activity of 3200 AU/mL for the first three and of 12800 AU/mL for P. pentosaceus 147 were obtained. Culture of P. pentosaceus 63 on modified MRS broth, showed the effect of some sources of carbon on the activity of bacteriocin, obtaining 12800 AU/mL with dextrose and 25600 AU/mL with maltose. Cultures of P. pentosaceus 145, 146 and 147 with these same sugars presented activity of 12800 AU/mL. It was observed that the modified MRS medium using whey increased the antimicrobial activity of the strains at 16000, 6400, 16000 and 19200 AU/mL for each strain respectively, keeping the biomass at values close to 9 log units. About nitrogen sources, it was observed that the combination of peptone (10 g /L), meat extract (10 g/L) and yeast extract (5 g/L) promoted the highest activity (12800 AU/mL), and in all cases MgSO4, MnSO4, K2HPO4 and ammonium citrate at low concentrations adversely affected bacteriocin production. Because P. pentosaceus 147 showed the highest antimicrobial activity in the presence of whey, it was used to evaluate the culture medium (peptone (10 g/L), meat extract (8 g/L), yeast extract (2 g/L), Tween® 80 (1 g/L), ammonium citrate (2 g/L), sodium acetate (5 g/L), MgSO4 (0.2 g/L), MnSO4 (0.04 g/L)). With the designed medium added with whey, 9.34 log units of biomass concentration and 19200 AU/mL were achieved for P. pentosaceus 147. The above suggest that the new medium promotes the antimicrobial activity of P. pentosaceus 147 allowing the use of an economic medium using whey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title="antimicrobial activity">antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteriocins" title=" bacteriocins"> bacteriocins</a>, <a href="https://publications.waset.org/abstracts/search?q=pediococcus" title=" pediococcus"> pediococcus</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/75800/culture-medium-design-based-on-whey-for-the-growth-and-bacteriocin-production-of-strains-of-pediococcus-pentosaceus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75800.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">226</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1070</span> Effect of Different Salts on Pseudomonas taetrolens’ Ability to Lactobionic Acid Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Sarenkova">I. Sarenkova</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ciprovica"> I. Ciprovica</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Cinkmanis"> I. Cinkmanis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lactobionic acid is a disaccharide formed from gluconic acid and galactose, and produced by oxidation of lactose. Productivity of lactobionic acid by microbial synthesis can be affected by various factors, and one of them is a presence of potassium, magnesium and manganese ions. In order to extend lactobionic acid production efficiency, it is necessary to increase the yield of lactobionic acid by optimising the fermentation conditions and available substrates for <em>Pseudomonas taetrolens</em> growth. The object of the research was to determinate the application of K<sub>2</sub>HPO<sub>4</sub>, MnSO<sub>4</sub>, MgSO<sub>4</sub> &times; 7H<sub>2</sub>O salts in different concentration for effective lactose oxidation to lactobionic acid by <em>Pseudomonas taetrolens</em>. <em>Pseudomonas taetrolens</em> NCIB 9396 (NCTC, England) and <em>Pseudomonas taetrolens</em> DSM 21104 (DSMZ, Germany) were used for the study. The acid whey was used as the study object. The content of lactose in whey samples was determined using MilcoScan<sup>TM</sup> Mars (Foss, Denmark) and high performance liquid chromatography (Shimadzu LC 20 Prominence, Japan). The content of lactobionic acid in whey samples was determined using the high performance liquid chromatography. The impact of studied salts differs, Mn<sup>2+</sup> and Mg<sup>2+</sup> ions enhanced fermentation instead of K<sup>+</sup> ions. Results approved that Mn<sup>2+</sup> and Mg<sup>2+ </sup>ions are necessary for <em>Pseudomonas taetrolens</em> growth. The study results will help to improve the effectiveness of lactobionic acid production with <em>Pseudomonas taetrolens</em> NCIB 9396 and DSM 21104. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lactobionic%20acid" title="lactobionic acid">lactobionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=lactose%20oxidation" title=" lactose oxidation"> lactose oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=Pseudomonas%20taetrolens" title=" Pseudomonas taetrolens"> Pseudomonas taetrolens</a>, <a href="https://publications.waset.org/abstracts/search?q=whey" title=" whey"> whey</a> </p> <a href="https://publications.waset.org/abstracts/103914/effect-of-different-salts-on-pseudomonas-taetrolens-ability-to-lactobionic-acid-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1069</span> Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behnam%20Mahdiyan%20Nasl">Behnam Mahdiyan Nasl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas" title="biogas">biogas</a>, <a href="https://publications.waset.org/abstracts/search?q=cheese%20whey" title=" cheese whey"> cheese whey</a>, <a href="https://publications.waset.org/abstracts/search?q=cattle%20manure" title=" cattle manure"> cattle manure</a>, <a href="https://publications.waset.org/abstracts/search?q=energy" title=" energy"> energy</a> </p> <a href="https://publications.waset.org/abstracts/87784/investigation-of-the-effects-of-the-whey-addition-on-the-biogas-production-of-a-reactor-using-cattle-manure-for-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1068</span> Computational Screening of Secretory Proteins with Brain-Specific Expression in Glioblastoma Multiforme</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumera">Sumera</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanila%20Amber"> Sanila Amber</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatima%20Javed%20Mirza"> Fatima Javed Mirza</a>, <a href="https://publications.waset.org/abstracts/search?q=Amjad%20Ali"> Amjad Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Saadia%20Zahid"> Saadia Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glioblastoma multiforme (GBM) is a widely spread and fatal primary brain tumor with an increased risk of relapse in spite of aggressive treatment. The current procedures for GBM diagnosis include invasive procedures i.e. resection or biopsy, to acquire tumor mass. Implementation of negligibly invasive tests as a potential diagnostic technique and biofluid-based monitoring of GBM stresses on discovering biomarkers in CSF and blood. Therefore, we performed a comprehensive in silico analysis to identify potential circulating biomarkers for GBM. Initially, six gene and protein databases were utilized to mine brain-specific proteins. The resulting proteins were filtered using a channel of five tools to predict the secretory proteins. Subsequently, the expression profile of the secreted proteins was verified in the brain and blood using two databases. Additional verification of the resulting proteins was done using Plasma Proteome Database (PPD) to confirm their presence in blood. The final set of proteins was searched in literature for their relationship with GBM, keeping a special emphasis on secretome proteome. 2145 proteins were firstly mined as brain-specific, out of which 69 proteins were identified as secretory in nature. Verification of expression profile in brain and blood eliminated 58 proteins from the 69 proteins, providing a final list of 11 proteins. Further verification of these 11 proteins further eliminated 2 proteins, giving a final set of nine secretory proteins i.e. OPCML, NPTX1, LGI1, CNTN2, LY6H, SLIT1, CREG2, GDF1 and SERPINI1. Out of these 9 proteins, 7 were found to be linked to GBM, whereas 2 proteins are not investigated in GBM so far. We propose that these secretory proteins can serve as potential circulating biomarker signatures of GBM and will facilitate the development of minimally invasive diagnostic methods and novel therapeutic interventions for GBM. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glioblastoma%20multiforme" title="glioblastoma multiforme">glioblastoma multiforme</a>, <a href="https://publications.waset.org/abstracts/search?q=secretory%20proteins" title=" secretory proteins"> secretory proteins</a>, <a href="https://publications.waset.org/abstracts/search?q=brain%20secretome" title=" brain secretome"> brain secretome</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a> </p> <a href="https://publications.waset.org/abstracts/144723/computational-screening-of-secretory-proteins-with-brain-specific-expression-in-glioblastoma-multiforme" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1067</span> Computing the Similarity and the Diversity in the Species Based on Cronobacter Genome</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Al%20Daoud">E. Al Daoud</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of computing the similarity and the diversity in the species is to trace the process of evolution and to find the relationship between the species and discover the unique, the special, the common and the universal proteins. The proteins of the whole genome of 40 species are compared with the cronobacter genome which is used as reference genome. More than 3 billion pairwise alignments are performed using blastp. Several findings are introduced in this study, for example, we found 172 proteins in cronobacter genome which have insignificant hits in other species, 116 significant proteins in the all tested species with very high score value and 129 common proteins in the plants but have insignificant hits in mammals, birds, fishes, and insects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genome" title="genome">genome</a>, <a href="https://publications.waset.org/abstracts/search?q=species" title=" species"> species</a>, <a href="https://publications.waset.org/abstracts/search?q=blastp" title=" blastp"> blastp</a>, <a href="https://publications.waset.org/abstracts/search?q=conserved%20genes" title=" conserved genes"> conserved genes</a>, <a href="https://publications.waset.org/abstracts/search?q=Cronobacter" title=" Cronobacter"> Cronobacter</a> </p> <a href="https://publications.waset.org/abstracts/82396/computing-the-similarity-and-the-diversity-in-the-species-based-on-cronobacter-genome" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82396.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1066</span> Insights of Interaction Studies between HSP-60, HSP-70 Proteins and HSF-1 in Bubalus bubalis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravinder%20Singh">Ravinder Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=C%20Rajesh"> C Rajesh</a>, <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Badhan"> Saroj Badhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Shailendra%20Mishra"> Shailendra Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ranjit%20Singh%20Kataria"> Ranjit Singh Kataria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Heat shock protein 60 and 70 are crucial chaperones that guide appropriate folding of denatured proteins under heat stress conditions. HSP60 and HSP70 provide assistance in correct folding of a multitude of denatured proteins. The heat shock factors are the family of some transcription factors which controls the regulation of gene expression of proteins involved in folding of damaged or improper folded proteins during stress conditions. Under normal condition heat shock proteins bind with HSF-1 and act as its repressor as well as aids in maintaining the HSF-1’s nonactive and monomeric confirmation. The experimental protein structure for all these proteins in Bubalus bubalis is not known till date. Therefore computational approach was explored to identify three-dimensional structure analysis of all these proteins. In this study, an extensive in silico analysis has been performed including sequence comparison among species to comparative modeling of Bubalus bubalis HSP60, HSP70 and HSF-1 protein. The stereochemical properties of proteins were assessed by utilizing several scrutiny bioinformatics tools to ensure model accuracy. Further docking approach was used to study interactions between Heat shock proteins and HSF-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bubalus%20bubalis" title="Bubalus bubalis">Bubalus bubalis</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20modelling" title=" comparative modelling"> comparative modelling</a>, <a href="https://publications.waset.org/abstracts/search?q=docking" title=" docking"> docking</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20shock%20protein" title=" heat shock protein"> heat shock protein</a> </p> <a href="https://publications.waset.org/abstracts/64431/insights-of-interaction-studies-between-hsp-60-hsp-70-proteins-and-hsf-1-in-bubalus-bubalis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1065</span> Comparative Survival Rates of Yeasts during Freeze-Drying, Traditional Drying and Spray Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Latifa%20Hamoudi-Belarbi">Latifa Hamoudi-Belarbi</a>, <a href="https://publications.waset.org/abstracts/search?q=L%27Hadi%20Nouri"> L&#039;Hadi Nouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Khaled%20Belkacemi"> Khaled Belkacemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of three methods of drying (traditional drying, freeze-drying and spray-drying) on the survival of concentrated cultures of Geotrichum fragrans and Wickerhamomyces anomalus was studied. The survival of yeast cultures was initially compared immediately after freeze-drying using HES 12%(w/v)+Sucrose 7% (w/v) as protectant, traditional drying in dry rice cakes and finally spray-drying with whey proteins. The survival of G. fragrans and W. anomalus was studied during 4 months of storage at 4°C and 25°C, in the darkness, under vacuum and at 0% relative humidity. The results demonstrated that high survival was obtained using traditional method of preservation in rice cakes (60% for G. fragrans and 65% for W. anomalus) and freeze-drying in (68% for G. fragrans and 74% for W. anomalus). However, poor survival was obtained by spray-drying method in whey protein with 20% for G. fragrans and 29% for W. anomalus. During storage at 25°C, yeast cultures of G. fragrans and W. anomalus preserved by traditional and freeze-drying methods showed no significant loss of viable cells up to 3 months of storage. Spray-dried yeast cultures had the greatest loss of viable count during the 4 months of storage at 25°C. During storage at 4°C, preservation of yeasts cultures using traditional method of preservation provided better survival than freeze-drying. This study demonstrated the effectiveness of the traditional method to preserve yeasts cultures compared to the high cost methods like freeze-drying and spray-drying. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title="freeze-drying">freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20drying" title=" traditional drying"> traditional drying</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20drying" title=" spray drying"> spray drying</a>, <a href="https://publications.waset.org/abstracts/search?q=yeasts" title=" yeasts"> yeasts</a> </p> <a href="https://publications.waset.org/abstracts/26630/comparative-survival-rates-of-yeasts-during-freeze-drying-traditional-drying-and-spray-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">490</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=36">36</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=37">37</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=whey%20proteins&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10