CINXE.COM

Search results for: seismic records

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: seismic records</title> <meta name="description" content="Search results for: seismic records"> <meta name="keywords" content="seismic records"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="seismic records" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="seismic records"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1861</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: seismic records</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1861</span> Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robespierre%20Chavez">Robespierre Chavez</a>, <a href="https://publications.waset.org/abstracts/search?q=Eden%20Bojorquez"> Eden Bojorquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alfredo%20Reyes-Salazar"> Alfredo Reyes-Salazar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irregular%20steel%20frames" title="irregular steel frames">irregular steel frames</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20interstory%20drifts" title=" maximum interstory drifts"> maximum interstory drifts</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response" title=" seismic response"> seismic response</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20records" title=" seismic records"> seismic records</a> </p> <a href="https://publications.waset.org/abstracts/42693/comparison-of-the-seismic-response-of-planar-regular-and-irregular-steel-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42693.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1860</span> Seismic Reliability of Two-DegreE-of-Freedom Systems with Supplemental Damping</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.D.%20Garc%C3%ADa-Soto">A.D. García-Soto</a>, <a href="https://publications.waset.org/abstracts/search?q=Miguel%20Jaimes"> Miguel Jaimes</a>, <a href="https://publications.waset.org/abstracts/search?q=J.G.%20Vald%C3%A9s-V%C3%A1zquez"> J.G. Valdés-Vázquez</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Hern%C3%A1ndez-Mart%C3%ADnez"> A. Hernández-Martínez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic reliability of two-degree-of-freedom (2DOF) systems with and without supplemental damping are computed. The used records are scaled from realistic records using standard incremental dynamic Analysis (IDA). The total normalized shear base is computed for both cases using different scaling factors, and it is considered as the demand. The seismic reliability is computed using codified design to stipulate the capacity and, after some assumptions, applying the first-order reliability method (FORM). The 2DOF considered can be thought as structures with non-linear behavior, with and without seismic protection, subjected to earthquake activity in Mexico City. It is found that the reliability of 2DOF structures retrofitted with supplemental damper at its first story is generally higher than the reliability of 2DOF structures without supplemental damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=2DOF%20structures" title="2DOF structures">2DOF structures</a>, <a href="https://publications.waset.org/abstracts/search?q=IDA" title=" IDA"> IDA</a>, <a href="https://publications.waset.org/abstracts/search?q=FORM" title=" FORM"> FORM</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a> </p> <a href="https://publications.waset.org/abstracts/126842/seismic-reliability-of-two-degree-of-freedom-systems-with-supplemental-damping" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1859</span> Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Castaldo">Paolo Castaldo</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Palazzo"> Bruno Palazzo</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Lodato"> Laura Lodato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FP%20devices" title="FP devices">FP devices</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reliability" title=" seismic reliability"> seismic reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20robustness" title=" seismic robustness"> seismic robustness</a>, <a href="https://publications.waset.org/abstracts/search?q=seizure" title=" seizure"> seizure</a> </p> <a href="https://publications.waset.org/abstracts/55083/seizure-effects-of-fp-bearings-on-the-seismic-reliability-of-base-isolated-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55083.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1858</span> Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jose%20Ruiz">Jose Ruiz</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Velasquez"> Jose Velasquez</a>, <a href="https://publications.waset.org/abstracts/search?q=Holger%20Lovon"> Holger Lovon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragility%20functions" title="fragility functions">fragility functions</a>, <a href="https://publications.waset.org/abstracts/search?q=university%20buildings" title=" university buildings"> university buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20assessment" title=" loss assessment"> loss assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=Montecarlo%20simulation" title=" Montecarlo simulation"> Montecarlo simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=latin%20hypercube" title=" latin hypercube"> latin hypercube</a> </p> <a href="https://publications.waset.org/abstracts/106519/seismic-loss-assessment-for-peruvian-university-buildings-with-simulated-fragility-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106519.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1857</span> &#039;Performance-Based&#039; Seismic Methodology and Its Application in Seismic Design of Reinforced Concrete Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jelena%20R.%20Pejovi%C4%87">Jelena R. Pejović</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20N.%20Serdar"> Nina N. Serdar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an analysis of the “Performance-Based” seismic design method, in order to overcome the perceived disadvantages and limitations of the existing seismic design approach based on force, in engineering practice. Bearing in mind, the specificity of the earthquake as a load and the fact that the seismic resistance of the structures solely depends on its behaviour in the nonlinear field, traditional seismic design approach based on force and linear analysis is not adequate. “Performance-Based” seismic design method is based on nonlinear analysis and can be used in everyday engineering practice. This paper presents the application of this method to eight-story high reinforced concrete building with combined structural system (reinforced concrete frame structural system in one direction and reinforced concrete ductile wall system in other direction). The nonlinear time-history analysis is performed on the spatial model of the structure using program Perform 3D, where the structure is exposed to forty real earthquake records. For considered building, large number of results were obtained. It was concluded that using this method we could, with a high degree of reliability, evaluate structural behavior under earthquake. It is obtained significant differences in the response of structures to various earthquake records. Also analysis showed that frame structural system had not performed well at the effect of earthquake records on soil like sand and gravel, while a ductile wall system had a satisfactory behavior on different types of soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ductile%20wall" title="ductile wall">ductile wall</a>, <a href="https://publications.waset.org/abstracts/search?q=frame%20system" title=" frame system"> frame system</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20time-history%20analysis" title=" nonlinear time-history analysis"> nonlinear time-history analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20methodology" title=" performance-based methodology"> performance-based methodology</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20building" title=" RC building"> RC building</a> </p> <a href="https://publications.waset.org/abstracts/45616/performance-based-seismic-methodology-and-its-application-in-seismic-design-of-reinforced-concrete-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45616.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">366</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1856</span> Seismic Performance of Concrete Moment Resisting Frames in Western Canada</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Naghshineh">Ali Naghshineh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Bagchi"> Ashutosh Bagchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Performance-based seismic design concepts are increasingly being adopted in various jurisdictions. While the National Building Code of Canada (NBCC) is not fully performance-based, it provides some features of a performance-based code, such as displacement control and objective-based solutions. Performance evaluation is an important part of a performance-based design. In this paper, the seismic performance of a set of code-designed 4, 8 and 12 story moment resisting concrete frames located in Victoria, BC, in the western part of Canada at different hazard levels namely, SLE (Service Level Event), DLE (Design Level Event) and MCE (Maximum Considered Event) has been studied. The seismic performance of these buildings has been evaluated based on FEMA 356 and ATC 72 procedures, and the nonlinear time history analysis. Pushover analysis has been used to investigate the different performance levels of these buildings and adjust their design based on the corresponding target displacements. Since pushover analysis ignores the higher mode effects, nonlinear dynamic time history using a set of ground motion records has been performed. Different types of ground motion records, such as crustal and subduction earthquake records have been used for the dynamic analysis to determine their effects. Results obtained from push over analysis on inter-story drift, displacement, shear and overturning moment are compared to those from the dynamic analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance." title="seismic performance.">seismic performance.</a>, <a href="https://publications.waset.org/abstracts/search?q=performance-based%20design" title=" performance-based design"> performance-based design</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20moment%20resisting%20frame" title=" concrete moment resisting frame"> concrete moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=crustal%20earthquakes" title=" crustal earthquakes"> crustal earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=subduction%20earthquakes" title=" subduction earthquakes"> subduction earthquakes</a> </p> <a href="https://publications.waset.org/abstracts/67195/seismic-performance-of-concrete-moment-resisting-frames-in-western-canada" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67195.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">264</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1855</span> Evaluating Probable Bending of Frames for Near-Field and Far-Field Records</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Saaly">Majid Saaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Tavousi%20Tafreshi"> Shahriar Tavousi Tafreshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Nazari%20Afshar"> Mehdi Nazari Afshar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most reinforced concrete structures are designed only under heavy loads have large transverse reinforcement spacing values, and therefore suffer severe failure after intense ground movements. The main goal of this paper is to compare the shear- and axial failure of concrete bending frames available in Tehran using incremental dynamic analysis under near- and far-field records. For this purpose, IDA analyses of 5, 10, and 15-story concrete structures were done under seven far-fault records and five near-faults records. The results show that in two-dimensional models of short-rise, mid-rise and high-rise reinforced concrete frames located on Type-3 soil, increasing the distance of the transverse reinforcement can increase the maximum inter-story drift ratio values up to 37%. According to the existing results on 5, 10, and 15-story reinforced concrete models located on Type-3 soil, records with characteristics such as fling-step and directivity create maximum drift values between floors more than far-fault earthquakes. The results indicated that in the case of seismic excitation modes under earthquake encompassing directivity or fling-step, the probability values of failure and failure possibility increasing rate values are much smaller than the corresponding values of far-fault earthquakes. However, in near-fault frame records, the probability of exceedance occurs at lower seismic intensities compared to far-fault records. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDA" title="IDA">IDA</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20curve" title=" failure curve"> failure curve</a>, <a href="https://publications.waset.org/abstracts/search?q=directivity" title=" directivity"> directivity</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20floor%20drift" title=" maximum floor drift"> maximum floor drift</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluating%20probable%20bending%20of%20frames" title=" evaluating probable bending of frames"> evaluating probable bending of frames</a>, <a href="https://publications.waset.org/abstracts/search?q=near-field%20and%20far-field%20earthquake%20records" title=" near-field and far-field earthquake records"> near-field and far-field earthquake records</a> </p> <a href="https://publications.waset.org/abstracts/149698/evaluating-probable-bending-of-frames-for-near-field-and-far-field-records" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149698.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1854</span> Calculation of Instrumental Results of the Tohoku Earthquake, Japan (Mw 9.0) on March 11, 2011 and Other Destructive Earthquakes during Seismic Hazard Assessment </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20K.%20Karapetyan">J. K. Karapetyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper seismological-statistical analysis of actual instrumental data on the main tremor of the Great Japan earthquake 11.03.2011 is implemented for finding out the dependence between maximal values of peak ground accelerations (PGA) and epicentric distances. A number of peculiarities of manifestation of accelerations' maximum values at the interval of long epicentric distances are revealed which do not correspond with current scales of seismic intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title="earthquakes">earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=instrumental%20records" title=" instrumental records"> instrumental records</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20hazard" title=" seismic hazard"> seismic hazard</a>, <a href="https://publications.waset.org/abstracts/search?q=Japan" title=" Japan"> Japan</a> </p> <a href="https://publications.waset.org/abstracts/19025/calculation-of-instrumental-results-of-the-tohoku-earthquake-japan-mw-90-on-march-11-2011-and-other-destructive-earthquakes-during-seismic-hazard-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1853</span> Effects of Ground Motion Characteristics on Damage of RC Buildings: A Detailed Investiagation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Elassaly">Mohamed Elassaly</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The damage status of RC buildings is greatly influenced by the characteristics of the imposed ground motion. Peak Ground Acceleration and frequency contents are considered the main two factors that affect ground motion characteristics; hence, affecting the seismic response of RC structures and consequently their damage state. A detailed investigation on the combined effects of these two factors on damage assessment of RC buildings, is carried out. Twenty one earthquake records are analyzed and arranged into three groups, according to their frequency contents. These records are used in an investigation to define the expected damage state that would be attained by RC buildings, if subjected to varying ground motion characteristics. The damage assessment is conducted through examining drift ratios and damage indices of the overall structure and the significant structural components of RC building. Base and story shear of RC building model, are also investigated, for cases when the model is subjected to the chosen twenty one earthquake records. Nonlinear dynamic analyses are performed on a 2-dimensional model of a 12-story R.C. building. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20content" title=" frequency content"> frequency content</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20motion" title=" ground motion"> ground motion</a>, <a href="https://publications.waset.org/abstracts/search?q=PGA" title=" PGA"> PGA</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20building" title=" RC building"> RC building</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a> </p> <a href="https://publications.waset.org/abstracts/18914/effects-of-ground-motion-characteristics-on-damage-of-rc-buildings-a-detailed-investiagation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1852</span> Effects of Viscoelastic and Viscous Links on Seismic Pounding Mitigation in Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Reza%20Mirzagoltabar%20Roshan">Ali Reza Mirzagoltabar Roshan</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ahmadi%20Taleshian"> H. Ahmadi Taleshian</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Eliasi"> A. Eliasi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of viscous and viscoelastic dampers as an efficient technique for seismic pounding mitigation. To aim that, 15 steel frame models with different numbers of stories and bays and also with different types of ductility were analyzed under 10 different earthquake records for assigned values of link damping and stiffness and the most suitable values of damper parameters (damping and stiffness) are presented. Moreover, it is demonstrated that viscous dampers can perform as efficiently as viscoelastic alternative with a more economical aspect for pounding mitigation purposes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjacent%20buildings" title="adjacent buildings">adjacent buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=separation%20distance" title=" separation distance"> separation distance</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20pounding%20mitigation" title=" seismic pounding mitigation"> seismic pounding mitigation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20link" title=" viscoelastic link"> viscoelastic link</a> </p> <a href="https://publications.waset.org/abstracts/68289/effects-of-viscoelastic-and-viscous-links-on-seismic-pounding-mitigation-in-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1851</span> Application of Post-Stack and Pre-Stack Seismic Inversion for Prediction of Hydrocarbon Reservoirs in a Persian Gulf Gas Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nastaran%20Moosavi">Nastaran Moosavi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Mokhtari"> Mohammad Mokhtari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic inversion is a technique which has been in use for years and its main goal is to estimate and to model physical characteristics of rocks and fluids. Generally, it is a combination of seismic and well-log data. Seismic inversion can be carried out through different methods; we have conducted and compared post-stack and pre- stack seismic inversion methods on real data in one of the fields in the Persian Gulf. Pre-stack seismic inversion can transform seismic data to rock physics such as P-impedance, S-impedance and density. While post- stack seismic inversion can just estimate P-impedance. Then these parameters can be used in reservoir identification. Based on the results of inverting seismic data, a gas reservoir was detected in one of Hydrocarbon oil fields in south of Iran (Persian Gulf). By comparing post stack and pre-stack seismic inversion it can be concluded that the pre-stack seismic inversion provides a more reliable and detailed information for identification and prediction of hydrocarbon reservoirs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=density" title="density">density</a>, <a href="https://publications.waset.org/abstracts/search?q=p-impedance" title=" p-impedance"> p-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=s-impedance" title=" s-impedance"> s-impedance</a>, <a href="https://publications.waset.org/abstracts/search?q=post-stack%20seismic%20inversion" title=" post-stack seismic inversion"> post-stack seismic inversion</a>, <a href="https://publications.waset.org/abstracts/search?q=pre-stack%20seismic%20inversion" title=" pre-stack seismic inversion"> pre-stack seismic inversion</a> </p> <a href="https://publications.waset.org/abstracts/54295/application-of-post-stack-and-pre-stack-seismic-inversion-for-prediction-of-hydrocarbon-reservoirs-in-a-persian-gulf-gas-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54295.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1850</span> Soil-Structure Interaction in Stiffness and Strength Degrading Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Enrique%20Bazan-Zurita">Enrique Bazan-Zurita</a>, <a href="https://publications.waset.org/abstracts/search?q=Sittipong%20Jarernprasert"> Sittipong Jarernprasert</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacobo%20Bielak"> Jacobo Bielak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inelastic" title="inelastic">inelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic" title=" seismic"> seismic</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=foundation" title=" foundation"> foundation</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction" title=" interaction"> interaction</a> </p> <a href="https://publications.waset.org/abstracts/7045/soil-structure-interaction-in-stiffness-and-strength-degrading-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">286</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1849</span> Seismic Hazard Assessment of Offshore Platforms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20D.%20Konstandakopoulou">F. D. Konstandakopoulou</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20A.%20Papagiannopoulos"> G. A. Papagiannopoulos</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20G.%20Pnevmatikos"> N. G. Pnevmatikos</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20D.%20Hatzigeorgiou"> G. D. Hatzigeorgiou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper examines the effects of pile-soil-structure interaction on the dynamic response of offshore platforms under the action of near-fault earthquakes. Two offshore platforms models are investigated, one with completely fixed supports and one with piles which are clamped into deformable layered soil. The soil deformability for the second model is simulated using non-linear springs. These platform models are subjected to near-fault seismic ground motions. The role of fault mechanism on platforms&rsquo; response is additionally investigated, while the study also examines the effects of different angles of incidence of seismic records on the maximum response of each platform. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hazard%20analysis" title="hazard analysis">hazard analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=offshore%20platforms" title=" offshore platforms"> offshore platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=safety" title=" safety"> safety</a> </p> <a href="https://publications.waset.org/abstracts/102575/seismic-hazard-assessment-of-offshore-platforms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1848</span> The Effect of Connections Form on Seismic Behavior of Portal Frames</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kiavash%20Heidarzadeh">Kiavash Heidarzadeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The seismic behavior of portal frames is mainly based on the shape of their joints. In these structures, vertical and inclined connections are the two general forms of connections. The shapes of connections can make differences in seismic responses of portal frames. Hence, in this paper, for the first step, the non-linear performance of portal frames with vertical and inclined connections has been investigated by monotonic analysis. Also, the effect of section sizes is considered in this analysis. For comparison, hysteresis curves have been evaluated for two model frames with different forms of connections. Each model has three various sizes of the column and beam. Other geometrical parameters have been considered constant. In the second step, for every model, an appropriate size of sections has been selected from the previous step. Next, the seismic behavior of each model has been analyzed by the time history method under three near-fault earthquake records. Finite element ABAQUS software is used for simulation and analysis of samples. Outputs show that connections form can impact on reaction forces of portal frames under earthquake loads. Also, it is understood that the load capacity in frames with vertical connections is more than the frames with inclined connections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=inclined%20connections" title="inclined connections">inclined connections</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonic" title=" monotonic"> monotonic</a>, <a href="https://publications.waset.org/abstracts/search?q=portal%20frames" title=" portal frames"> portal frames</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20behavior" title=" seismic behavior"> seismic behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20history" title=" time history"> time history</a>, <a href="https://publications.waset.org/abstracts/search?q=vertical%20connections" title=" vertical connections"> vertical connections</a> </p> <a href="https://publications.waset.org/abstracts/130423/the-effect-of-connections-form-on-seismic-behavior-of-portal-frames" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1847</span> Seismic Active Zones and Mechanism of Earthquakes in Northern Egypt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Awad%20Hassoup">Awad Hassoup</a>, <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Abdallah"> Sayed Abdallah</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Dahy"> Mohamed Dahy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Northern Egypt is known to be seismically active from the past several thousand years, based on the historical records and documents of eyewitnesses on one- hand and instrumental records on the other hand. Instrumental, historical and pre- historical seismicity data indicate that large destructive earthquakes have occurred quite frequently in the investigated area. The interaction of the African, Arabian, Eurasian plates and Sinai sub-plate is the main factor behind the seismicity of northern part of Egypt. All earthquakes occur at shallow depth and are concentrated at four seismic zones, these zones including the Gulfs of Suez and Aqaba, around the entrance of the Gulf of Suez and the fourth one is located at the south- west of great Cairo (Dahshour area). The seismicity map of the previous zones shows that the activity is coincide with the major tectonic trends of the Suez rift, Aqaba rift with their connection with the great rift system of the Red Sea and Gulf of Suez- Cairo- Alexandria trend. On the other hand, the focal mechanisms of some earthquakes occurred inside the studied area and having small to moderate size show a variety of patterns. The most predominant type is normal faulting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Northern%20Egypt" title="Northern Egypt">Northern Egypt</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20active%20zone" title=" seismic active zone"> seismic active zone</a>, <a href="https://publications.waset.org/abstracts/search?q=seismicity" title=" seismicity"> seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=focal%20mechanism" title=" focal mechanism"> focal mechanism</a> </p> <a href="https://publications.waset.org/abstracts/36663/seismic-active-zones-and-mechanism-of-earthquakes-in-northern-egypt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1846</span> The Relations between Seismic Results and Groundwater near the Gokpinar Damp Area, Denizli, Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmud%20Gungor">Mahmud Gungor</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Aydin"> Ali Aydin</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdal%20Akyol"> Erdal Akyol</a>, <a href="https://publications.waset.org/abstracts/search?q=Suat%20Tasdelen"> Suat Tasdelen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of geotechnical characteristics of near-surface material and the effects of the groundwater is very important problem in such as site studies. For showing the relations between seismic data and groundwater we selected about 25 km2 as the study area. It has been presented which is a detailed work of seismic data and groundwater depths of Gokpinar Damp area. Seismic waves velocity (Vp and Vs) are very important parameters showing the soil properties. The seismic records were used the method of the multichannel analysis of surface waves near area of Gokpinar Damp area. Sixty sites in this area have been investigated with survey lines about 60 m in length. MASW (Multichannel analysis of surface wave) method has been used to generate one-dimensional shear wave velocity profile at locations. These shear wave velocities are used to estimate equivalent shear wave velocity in the study area at every 2 and 5 m intervals up to a depth of 45 m. Levels of equivalent shear wave velocity of soil are used the classified of the study area. After the results of the study, it must be considered as components of urban planning and building design of Gokpinar Damp area, Denizli and the application and use of these results should be required and enforced by municipal authorities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20data" title="seismic data">seismic data</a>, <a href="https://publications.waset.org/abstracts/search?q=Gokpinar%20Damp" title=" Gokpinar Damp"> Gokpinar Damp</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20planning" title=" urban planning"> urban planning</a>, <a href="https://publications.waset.org/abstracts/search?q=Denizli" title=" Denizli"> Denizli</a> </p> <a href="https://publications.waset.org/abstracts/37756/the-relations-between-seismic-results-and-groundwater-near-the-gokpinar-damp-area-denizli-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37756.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1845</span> Introduction of the Harmfulness of the Seismic Signal in the Assessment of the Performance of Reinforced Concrete Frame Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kahil%20Amar">Kahil Amar</a>, <a href="https://publications.waset.org/abstracts/search?q=Boukais%20Said"> Boukais Said</a>, <a href="https://publications.waset.org/abstracts/search?q=Kezmane%20Ali"> Kezmane Ali</a>, <a href="https://publications.waset.org/abstracts/search?q=Hannachi%20Naceur%20Eddine"> Hannachi Naceur Eddine</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamizi%20Mohand"> Hamizi Mohand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principle of the seismic performance evaluation methods is to provide a measure of capability for a building or set of buildings to be damaged by an earthquake. The common objective of many of these methods is to supply classification criteria. The purpose of this study is to present a method for assessing the seismic performance of structures, based on Pushover method, we are particularly interested in reinforced concrete frame structures, which represent a significant percentage of damaged structures after a seismic event. The work is based on the characterization of seismic movement of the various earthquake zones in terms of PGA and PGD that is obtained by means of SIMQK_GR and PRISM software and the correlation between the points of performance and the scalar characterizing the earthquakes will be developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title="seismic performance">seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover%20method" title=" pushover method"> pushover method</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization%20of%20seismic%20motion" title=" characterization of seismic motion"> characterization of seismic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=harmfulness%20of%20the%20seismic" title=" harmfulness of the seismic"> harmfulness of the seismic</a> </p> <a href="https://publications.waset.org/abstracts/29929/introduction-of-the-harmfulness-of-the-seismic-signal-in-the-assessment-of-the-performance-of-reinforced-concrete-frame-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1844</span> Seismic Design Approach for Areas with Low Seismicity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mogens%20Saberi">Mogens Saberi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The following article focuses on a new seismic design approach for Denmark. Denmark is located in a low seismic zone and up till now a general and very simplified approach has been used to accommodate the effect of seismic loading. The current used method is presented and it is found that the approach is on the unsafe side for many building types in Denmark. The damages during time due to earth quake is presented and a seismic map for Denmark is developed and presented. Furthermore, a new design approach is suggested and compared to the existing one. The new approach is relatively simple but captures the effect of seismic loading more realistic than the existing one. The new approach is believed to the incorporated in the Danish Deign Code for building structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=low%20seismicity" title="low seismicity">low seismicity</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20design%20approach" title=" new design approach"> new design approach</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquakes" title=" earthquakes"> earthquakes</a>, <a href="https://publications.waset.org/abstracts/search?q=Denmark" title=" Denmark"> Denmark</a> </p> <a href="https://publications.waset.org/abstracts/59411/seismic-design-approach-for-areas-with-low-seismicity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1843</span> Residual Analysis and Ground Motion Prediction Equation Ranking Metrics for Western Balkan Strong Motion Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manuela%20Villani">Manuela Villani</a>, <a href="https://publications.waset.org/abstracts/search?q=Anila%20Xhahysa"> Anila Xhahysa</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Brooks"> Christopher Brooks</a>, <a href="https://publications.waset.org/abstracts/search?q=Marco%20Pagani"> Marco Pagani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The geological structure of Western Balkans is strongly affected by the collision between Adria microplate and the southwestern Euroasia margin, resulting in a considerably active seismic region. The Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project (BSHAP) (2007-2011, 2012-2015) by NATO supported the preparation of new seismic hazard maps of the Western Balkan, but when inspecting the seismic hazard models produced later by these countries on a national scale, significant differences in design PGA values are observed in the border, for instance, North Albania-Montenegro, South Albania- Greece, etc. Considering the fact that the catalogues were unified and seismic sources were defined within BSHAP framework, obviously, the differences arise from the Ground Motion Prediction Equations selection, which are generally the component with highest impact on the seismic hazard assessment. At the time of the project, a modest database was present, namely 672 three-component records, whereas nowadays, this strong motion database has increased considerably up to 20,939 records with Mw ranging in the interval 3.7-7 and epicentral distance distribution from 0.47km to 490km. Statistical analysis of the strong motion database showed the lack of recordings in the moderate-to-large magnitude and short distance ranges; therefore, there is need to re-evaluate the Ground Motion Prediction Equation in light of the recently updated database and the new generations of GMMs. In some cases, it was observed that some events were more extensively documented in one database than the other, like the 1979 Montenegro earthquake, with a considerably larger number of records in the BSHAP Analogue SM database when compared to ESM23. Therefore, the strong motion flat-file provided from the Harmonization of Seismic Hazard Maps in the Western Balkan Countries Project was merged with the ESM23 database for the polygon studied in this project. After performing the preliminary residual analysis, the candidate GMPE-s were identified. This process was done using the GMPE performance metrics available within the SMT in the OpenQuake Platform. The Likelihood Model and Euclidean Distance Based Ranking (EDR) were used. Finally, for this study, a GMPE logic tree was selected and following the selection of candidate GMPEs, model weights were assigned using the average sample log-likelihood approach of Scherbaum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=residual%20analysis" title="residual analysis">residual analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=GMPE" title=" GMPE"> GMPE</a>, <a href="https://publications.waset.org/abstracts/search?q=western%20balkan" title=" western balkan"> western balkan</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20motion" title=" strong motion"> strong motion</a>, <a href="https://publications.waset.org/abstracts/search?q=openquake" title=" openquake"> openquake</a> </p> <a href="https://publications.waset.org/abstracts/167447/residual-analysis-and-ground-motion-prediction-equation-ranking-metrics-for-western-balkan-strong-motion-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167447.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1842</span> Study on Seismic Response Feature of Multi-Span Bridges Crossing Fault</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingxin%20Hui">Yingxin Hui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding seismic response feature of the bridges crossing fault is the basis of the seismic fortification. Taking a multi-span bridge crossing active fault under construction as an example, the seismic ground motions at bridge site were generated following hybrid simulation methodology. Multi-support excitations displacement input models and nonlinear time history analysis was used to calculate seismic response of structures, and the results were compared with bridge in the near-fault region. The results showed that the seismic response features of bridges crossing fault were different from the bridges in the near-fault region. The design according to the bridge in near-fault region would cause the calculation results with insecurity and non-reasonable if the effect of cross the fault was ignored. The design of seismic fortification should be based on seismic response feature, which could reduce the adverse effect caused by the structure damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bridge%20engineering" title="bridge engineering">bridge engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20response%20feature" title=" seismic response feature"> seismic response feature</a>, <a href="https://publications.waset.org/abstracts/search?q=across%20faults" title=" across faults"> across faults</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=fling%20step" title=" fling step"> fling step</a> </p> <a href="https://publications.waset.org/abstracts/19709/study-on-seismic-response-feature-of-multi-span-bridges-crossing-fault" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1841</span> Vibration-Based Structural Health Monitoring of a 21-Story Building with Tuned Mass Damper in Seismic Zone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=David%20Ugalde">David Ugalde</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20Castillo"> Arturo Castillo</a>, <a href="https://publications.waset.org/abstracts/search?q=Leopoldo%20Breschi"> Leopoldo Breschi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tuned Mass Dampers (TMDs) are an effective system for mitigating vibrations in building structures. These dampers have traditionally focused on the protection of high-rise buildings against earthquakes and wind loads. The Camara Chilena de la Construction (CChC) building, built in 2018 in Santiago, Chile, is a 21-story RC wall building equipped with a 150-ton TMD and instrumented with six permanent accelerometers, offering an opportunity to monitor the dynamic response of this damped structure. This paper presents the system identification of the CChC building using power spectral density plots of ambient vibration and two seismic events (5.5 Mw and 6.7 Mw). Linear models of the building with and without the TMD are used to compute the theoretical natural periods through modal analysis and simulate the response of the building through response history analysis. Results show that natural periods obtained from both ambient vibrations and earthquake records are quite similar to the theoretical periods given by the modal analysis of the building model. Some of the experimental periods are noticeable by simple inspection of the earthquake records. The accelerometers in the first story better captured the modes related to the building podium while the upper accelerometers clearly captured the modes related to the tower. The earthquake simulation showed smaller accelerations in the model with TMD that are similar to that measured by the accelerometers. It is concluded that the system identification through power spectral density shows consistency with the expected dynamic properties. The structural health monitoring of the CChC building confirms the advantages of seismic protection technologies such as TMDs in seismic prone areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=system%20identification" title="system identification">system identification</a>, <a href="https://publications.waset.org/abstracts/search?q=tuned%20mass%20damper" title=" tuned mass damper"> tuned mass damper</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20buildings" title=" wall buildings"> wall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20protection" title=" seismic protection "> seismic protection </a> </p> <a href="https://publications.waset.org/abstracts/106271/vibration-based-structural-health-monitoring-of-a-21-story-building-with-tuned-mass-damper-in-seismic-zone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/106271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1840</span> Study of Seismic Damage Reinforced Concrete Frames in Variable Height with Logistic Statistic Function Distribution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Zarfam">P. Zarfam</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mansouri%20Baghbaderani"> M. Mansouri Baghbaderani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In seismic design, the proper reaction to the earthquake and the correct and accurate prediction of its subsequent effects on the structure are critical. Choose a proper probability distribution, which gives a more realistic probability of the structure's damage rate, is essential in damage discussions. With the development of design based on performance, analytical method of modal push over as an inexpensive, efficacious, and quick one in the estimation of the structures' seismic response is broadly used in engineering contexts. In this research three concrete frames of 3, 6, and 13 stories are analyzed in non-linear modal push over by 30 different earthquake records by OpenSEES software, then the detriment indexes of roof's displacement and relative displacement ratio of the stories are calculated by two parameters: peak ground acceleration and spectra acceleration. These indexes are used to establish the value of damage relations with log-normal distribution and logistics distribution. Finally the value of these relations is compared and the effect of height on the mentioned damage relations is studied, too. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modal%20pushover%20analysis" title="modal pushover analysis">modal pushover analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete%20structure" title=" concrete structure"> concrete structure</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20damage" title=" seismic damage"> seismic damage</a>, <a href="https://publications.waset.org/abstracts/search?q=log-normal%20distribution" title=" log-normal distribution"> log-normal distribution</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20distribution" title=" logistic distribution"> logistic distribution</a> </p> <a href="https://publications.waset.org/abstracts/38163/study-of-seismic-damage-reinforced-concrete-frames-in-variable-height-with-logistic-statistic-function-distribution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38163.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1839</span> Seismic Performance Evaluation of Existing Building Using Structural Information Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byungmin%20Cho">Byungmin Cho</a>, <a href="https://publications.waset.org/abstracts/search?q=Dongchul%20Lee"> Dongchul Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Taejin%20Kim"> Taejin Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Minhee%20Lee"> Minhee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The procedure for the seismic retrofit of existing buildings includes the seismic evaluation. In the evaluation step, it is assessed whether the buildings have satisfactory performance against seismic load. Based on the results of that, the buildings are upgraded. To evaluate seismic performance of the buildings, it usually goes through the model transformation from elastic analysis to inelastic analysis. However, when the data is not delivered through the interwork, engineers should manually input the data. In this process, since it leads to inaccuracy and loss of information, the results of the analysis become less accurate. Therefore, in this study, the process for the seismic evaluation of existing buildings using structural information modeling is suggested. This structural information modeling makes the work economic and accurate. To this end, it is determined which part of the process could be computerized through the investigation of the process for the seismic evaluation based on ASCE 41. The structural information modeling process is developed to apply to the seismic evaluation using Perform 3D program usually used for the nonlinear response history analysis. To validate this process, the seismic performance of an existing building is investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=existing%20building" title="existing building">existing building</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20information%20modeling" title=" structural information modeling"> structural information modeling</a> </p> <a href="https://publications.waset.org/abstracts/31008/seismic-performance-evaluation-of-existing-building-using-structural-information-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1838</span> Strong Ground Motion Characteristics Revealed by Accelerograms in Ms8.0 Wenchuan Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jie%20Su">Jie Su</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhenghua%20Zhou"> Zhenghua Zhou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yushi%20Wang"> Yushi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongyi%20Li"> Yongyi Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ground motion characteristics, which are given by the analysis of acceleration records, underlie the formulation and revision of the seismic design code of structural engineering. China Digital Strong Motion Network had recorded a lot of accelerograms of main shock from 478 permanent seismic stations, during the Ms8.0 Wenchuan earthquake on 12th May, 2008. These accelerograms provided a large number of essential data for the analysis of ground motion characteristics of the event. The spatial distribution characteristics, rupture directivity effect, hanging-wall and footwall effect had been studied based on these acceleration records. The results showed that the contours of horizontal peak ground acceleration and peak velocity were approximately parallel to the seismogenic fault which demonstrated that the distribution of the ground motion intensity was obviously controlled by the spatial extension direction of the seismogenic fault. Compared with the peak ground acceleration (PGA) recorded on the sites away from which the front of the fault rupture propagates, the PGA recorded on the sites toward which the front of the fault rupture propagates had larger amplitude and shorter duration, which indicated a significant rupture directivity effect. With the similar fault distance, the PGA of the hanging-wall is apparently greater than that of the foot-wall, while the peak velocity fails to observe this rule. Taking account of the seismic intensity distribution of Wenchuan Ms8.0 earthquake, the shape of strong ground motion contours was significantly affected by the directional effect in the regions with Chinese seismic intensity level VI ~ VIII. However, in the regions whose Chinese seismic intensity level are equal or greater than VIII, the mutual positional relationship between the strong ground motion contours and the surface outcrop trace of the fault was evidently influenced by the hanging-wall and foot-wall effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hanging-wall%20and%20foot-wall%20effect" title="hanging-wall and foot-wall effect">hanging-wall and foot-wall effect</a>, <a href="https://publications.waset.org/abstracts/search?q=peak%20ground%20acceleration" title=" peak ground acceleration"> peak ground acceleration</a>, <a href="https://publications.waset.org/abstracts/search?q=rupture%20directivity%20effect" title=" rupture directivity effect"> rupture directivity effect</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20ground%20motion" title=" strong ground motion"> strong ground motion</a> </p> <a href="https://publications.waset.org/abstracts/66315/strong-ground-motion-characteristics-revealed-by-accelerograms-in-ms80-wenchuan-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1837</span> Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asad%20Naeem">Asad Naeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Jinkoo%20Kim"> Jinkoo Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofit" title="seismic retrofit">seismic retrofit</a>, <a href="https://publications.waset.org/abstracts/search?q=spring%20viscous%20damper" title=" spring viscous damper"> spring viscous damper</a>, <a href="https://publications.waset.org/abstracts/search?q=shaking%20table%20test" title=" shaking table test"> shaking table test</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20resistant%20structures" title=" earthquake resistant structures"> earthquake resistant structures</a> </p> <a href="https://publications.waset.org/abstracts/97455/shaking-table-test-and-seismic-performance-evaluation-of-spring-viscous-damper-cable-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97455.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1836</span> Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Salek%20Faramarzi">Mohammadreza Salek Faramarzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Touraj%20Taghikhany"> Touraj Taghikhany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=IDA" title="IDA">IDA</a>, <a href="https://publications.waset.org/abstracts/search?q=near-fault" title=" near-fault"> near-fault</a>, <a href="https://publications.waset.org/abstracts/search?q=probabilistic%20performance%20assessment" title=" probabilistic performance assessment"> probabilistic performance assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20fragility" title=" seismic fragility"> seismic fragility</a>, <a href="https://publications.waset.org/abstracts/search?q=strongback%20system" title=" strongback system"> strongback system</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/129719/seismic-fragility-assessment-of-strongback-steel-braced-frames-subjected-to-near-field-earthquakes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1835</span> Application of Seismic Isolators in Kutahya City Hospital Project Utilizing Double Friction Pendulum Type Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaan%20Yamanturk">Kaan Yamanturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Cihan%20Dogruoz"> Cihan Dogruoz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic isolators have been utilized around the world to protect the structures, nonstructural components and contents from the damaging effects of earthquakes. In Structural Engineering, seismic isolation is used for protecting buildings and its vibration-sensitive contents from earthquakes. Seismic isolation is a passive control system that lowers effective earthquake forces by utilizing flexible bearings. One of the most significant isolation systems is seismic isolators. In this paper, double pendulum type Teflon coated seismic isolators utilized in a city hospital project by Guris Construction and Engineering Co. Inc, located in Kutahya, Turkey, have been investigated. Totally, 498 seismic isolators were applied in the project. These isolators are double friction pendulum type seismic isolation devices. The review of current practices is also examined in this study. The focus of this study is related to the application of passive seismic isolation systems for buildings as practiced in Kutahya City Hospital Project. Based on the study, the acceleration at the top floor will be 0.18 g and it will decrease 0.01 g in every floor. Therefore, seismic isolators are very important for buildings located in earthquake zones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=maximum%20considered%20earthquake" title="maximum considered earthquake">maximum considered earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=moment%20resisting%20frame" title=" moment resisting frame"> moment resisting frame</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20isolator" title=" seismic isolator"> seismic isolator</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20design" title=" seismic design"> seismic design</a> </p> <a href="https://publications.waset.org/abstracts/109879/application-of-seismic-isolators-in-kutahya-city-hospital-project-utilizing-double-friction-pendulum-type-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1834</span> Response Analysis of a Steel Reinforced Concrete High-Rise Building during the 2011 Tohoku Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Naohiro%20Nakamura">Naohiro Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Takuya%20Kinoshita"> Takuya Kinoshita</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Fukuyama"> Hiroshi Fukuyama</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2011 off The Pacific Coast of Tohoku Earthquake caused considerable damage to wide areas of eastern Japan. A large number of earthquake observation records were obtained at various places. To design more earthquake-resistant buildings and improve earthquake disaster prevention, it is necessary to utilize these data to analyze and evaluate the behavior of a building during an earthquake. This paper presents an earthquake response simulation analysis (hereafter a seismic response analysis) that was conducted using data recorded during the main earthquake (hereafter the main shock) as well as the earthquakes before and after it. The data were obtained at a high-rise steel-reinforced concrete (SRC) building in the bay area of Tokyo. We first give an overview of the building, along with the characteristics of the earthquake motion and the building during the main shock. The data indicate that there was a change in the natural period before and after the earthquake. Next, we present the results of our seismic response analysis. First, the analysis model and conditions are shown, and then, the analysis result is compared with the observational records. Using the analysis result, we then study the effect of soil-structure interaction on the response of the building. By identifying the characteristics of the building during the earthquake (i.e., the 1st natural period and the 1st damping ratio) by the Auto-Regressive eXogenous (ARX) model, we compare the analysis result with the observational records so as to evaluate the accuracy of the response analysis. In this study, a lumped-mass system SR model was used to conduct a seismic response analysis using observational data as input waves. The main results of this study are as follows: 1) The observational records of the 3/11 main shock put it between a level 1 and level 2 earthquake. The result of the ground response analysis showed that the maximum shear strain in the ground was about 0.1% and that the possibility of liquefaction occurring was low. 2) During the 3/11 main shock, the observed wave showed that the eigenperiod of the building became longer; this behavior could be generally reproduced in the response analysis. This prolonged eigenperiod was due to the nonlinearity of the superstructure, and the effect of the nonlinearity of the ground seems to have been small. 3) As for the 4/11 aftershock, a continuous analysis in which the subject seismic wave was input after the 3/11 main shock was input was conducted. The analyzed values generally corresponded well with the observed values. This means that the effect of the nonlinearity of the main shock was retained by the building. It is important to consider this when conducting the response evaluation. 4) The first period and the damping ratio during a vibration were evaluated by an ARX model. Our results show that the response analysis model in this study is generally good at estimating a change in the response of the building during a vibration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ARX%20model" title="ARX model">ARX model</a>, <a href="https://publications.waset.org/abstracts/search?q=response%20analysis" title=" response analysis"> response analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=SRC%20building" title=" SRC building"> SRC building</a>, <a href="https://publications.waset.org/abstracts/search?q=the%202011%20off%20the%20Pacific%20Coast%20of%20Tohoku%20Earthquake" title=" the 2011 off the Pacific Coast of Tohoku Earthquake"> the 2011 off the Pacific Coast of Tohoku Earthquake</a> </p> <a href="https://publications.waset.org/abstracts/85411/response-analysis-of-a-steel-reinforced-concrete-high-rise-building-during-the-2011-tohoku-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1833</span> Assessment of Records Management in Registry Department of Kebbi State University of Science and Technology, Aliero Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Murtala%20Aminu">Murtala Aminu</a>, <a href="https://publications.waset.org/abstracts/search?q=Salisu%20Adamu%20Aliero"> Salisu Adamu Aliero</a>, <a href="https://publications.waset.org/abstracts/search?q=Adamu%20Muhammed"> Adamu Muhammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Records are a vital asset in ensuring that the institution is governed effectively and efficiently, and is accountable to its staff, students and the community that it serves. The major purpose of this study was to assess record management of the registry department of Kebbi state University of science and technology Aliero. To be able to achieve this objective, research questions were formulated and answers obtained, which centered on records creation, record management policy, challenges facing records management. The review of related literature revealed that there is need for records to be properly managed and in doing so there is need for good records management policy that clearly spells out the various programs required for effective records management. Survey research method was used involving questionnaire, and observation. The findings revealed that the registry department of the University still has a long way to go with respect to day-today records management. The study recommended provision for adequate, modern, safe and functional storage facilities, sufficient and regular funding, recruitment of trained personnel, on the job training for existing staff, computerization of all units records, and uninterrupted power supply to all parts of the unit as a means of ensuring proper records management. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=records" title="records">records</a>, <a href="https://publications.waset.org/abstracts/search?q=management" title=" management"> management</a>, <a href="https://publications.waset.org/abstracts/search?q=records%20management%20policy" title=" records management policy"> records management policy</a>, <a href="https://publications.waset.org/abstracts/search?q=registry" title=" registry"> registry</a> </p> <a href="https://publications.waset.org/abstracts/83567/assessment-of-records-management-in-registry-department-of-kebbi-state-university-of-science-and-technology-aliero-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83567.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1832</span> Study on Seismic Assessment of Earthquake-Damaged Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fu-Pei%20Hsiao">Fu-Pei Hsiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Fung-Chung%20Tu"> Fung-Chung Tu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chien-Kuo%20Chiu"> Chien-Kuo Chiu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, to develop a method for detailed assesses of post-earthquake seismic performance for RC buildings in Taiwan, experimental data for several column specimens with various failure modes (flexural failure, flexural-shear failure, and shear failure) are used to derive reduction factors of seismic capacity for specified damage states. According to the damage states of RC columns and their corresponding seismic reduction factors suggested by experimental data, this work applies the detailed seismic performance assessment method to identify the seismic capacity of earthquake-damaged RC buildings. Additionally, a post-earthquake emergent assessment procedure is proposed that can provide the data needed for decision about earthquake-damaged buildings in a region with high seismic hazard. Finally, three actual earthquake-damaged school buildings in Taiwan are used as a case study to demonstrate application of the proposed assessment method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=seismic%20assessment" title="seismic assessment">seismic assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20reduction%20factor" title=" seismic reduction factor"> seismic reduction factor</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20seismic%20ratio" title=" residual seismic ratio"> residual seismic ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=post-earthquake" title=" post-earthquake"> post-earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a> </p> <a href="https://publications.waset.org/abstracts/43183/study-on-seismic-assessment-of-earthquake-damaged-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43183.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=62">62</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=63">63</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=seismic%20records&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10