CINXE.COM
Search results for: travelling salesman problem
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: travelling salesman problem</title> <meta name="description" content="Search results for: travelling salesman problem"> <meta name="keywords" content="travelling salesman problem"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="travelling salesman problem" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="travelling salesman problem"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 7256</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: travelling salesman problem</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7256</span> Comparative Analysis of Two Different Ant Colony Optimization Algorithm for Solving Travelling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Joshi">Sourabh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Tarun%20Sharma"> Tarun Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Anurag%20Sharma"> Anurag Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant Colony Optimization is heuristic Algorithm which has been proven a successful technique applied on number of combinatorial optimization problems. Two variants of Ant Colony Optimization algorithm named Ant System and Max-Min Ant System are implemented in MATLAB to solve travelling Salesman Problem and the results are compared. In, this paper both systems are analyzed by solving the some Travelling Salesman Problem and depict which system solve the problem better in term of cost and time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ant%20Colony%20Optimization" title="Ant Colony Optimization">Ant Colony Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Travelling%20Salesman%20Problem" title=" Travelling Salesman Problem"> Travelling Salesman Problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ant%20System" title=" Ant System"> Ant System</a>, <a href="https://publications.waset.org/abstracts/search?q=Max-Min%20Ant%20System" title=" Max-Min Ant System"> Max-Min Ant System</a> </p> <a href="https://publications.waset.org/abstracts/18457/comparative-analysis-of-two-different-ant-colony-optimization-algorithm-for-solving-travelling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">483</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7255</span> Roullete Wheel Selection Mechanism for Solving Travelling Salesman Problem in Ant Colony Optimization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sourabh%20Joshi">Sourabh Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetinder%20Kaur"> Geetinder Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarabjit%20Kaur"> Sarabjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Gulwatanpreet%20Singh"> Gulwatanpreet Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Mannan"> Geetika Mannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we have use an algorithm that able to obtain an optimal solution to travelling salesman problem from a huge search space, quickly. This algorithm is based upon the ant colony optimization technique and employees roulette wheel selection mechanism. To illustrate it more clearly, a program has been implemented which is based upon this algorithm, that presents the changing process of route iteration in a more intuitive way. In the event, we had find the optimal path between hundred cities and also calculate the distance between two cities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony" title="ant colony">ant colony</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem" title=" travelling salesman problem"> travelling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=roulette%20wheel%20selection" title=" roulette wheel selection"> roulette wheel selection</a> </p> <a href="https://publications.waset.org/abstracts/15736/roullete-wheel-selection-mechanism-for-solving-travelling-salesman-problem-in-ant-colony-optimization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15736.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7254</span> Order Picking Problem: An Exact and Heuristic Algorithms for the Generalized Travelling Salesman Problem With Geographical Overlap Between Clusters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Farzaneh%20Rajabighamchi">Farzaneh Rajabighamchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Stan%20van%20Hoesel"> Stan van Hoesel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christof%20Defryn"> Christof Defryn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The generalized traveling salesman problem (GTSP) is an extension of the traveling salesman problem (TSP) where the set of nodes is partitioned into clusters, and the salesman must visit exactly one node per cluster. In this research, we apply the definition of the GTSP to an order picker routing problem with multiple locations per product. As such, each product represents a cluster and its corresponding nodes are the locations at which the product can be retrieved. To pick a certain product item from the warehouse, the picker needs to visit one of these locations during its pick tour. As all products are scattered throughout the warehouse, the product clusters not separated geographically. We propose an exact LP model as well as heuristic and meta-heuristic solution algorithms for the order picking problem with multiple product locations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=warehouse%20optimization" title="warehouse optimization">warehouse optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=order%20picking%20problem" title=" order picking problem"> order picking problem</a>, <a href="https://publications.waset.org/abstracts/search?q=generalised%20travelling%20salesman%20problem" title=" generalised travelling salesman problem"> generalised travelling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a> </p> <a href="https://publications.waset.org/abstracts/151459/order-picking-problem-an-exact-and-heuristic-algorithms-for-the-generalized-travelling-salesman-problem-with-geographical-overlap-between-clusters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151459.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7253</span> Discrete Group Search Optimizer for the Travelling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raed%20Alnajjar">Raed Alnajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Zakree"> Mohd Zakree</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nazri"> Ahmad Nazri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we apply Discrete Group Search Optimizer (DGSO) for solving Traveling Salesman Problem (TSP). The DGSO is a nature inspired optimization algorithm that imitates the animal behavior, especially animal searching behavior. The proposed DGSO uses a vector representation and some discrete operators, such as destruction, construction, differential evolution, swap and insert. The TSP is a well-known hard combinatorial optimization problem, which seeks to find the shortest path among numbers of cities. The performance of the proposed DGSO is evaluated and tested on benchmark instances which listed in LIBTSP dataset. The experimental results show that the performance of the proposed DGSO is comparable with the other methods in the state of the art for some instances. The results show that DGSO outperform Ant Colony System (ACS) in some instances whilst outperform other metaheuristic in most instances. In addition to that, the new results obtained a number of optimal solutions and some best known results. DGSO was able to obtain feasible and good quality solution across all dataset. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20group%20search%20optimizer%20%28DGSO%29%3B%20Travelling%20salesman%20problem%20%28TSP%29%3B%20Variable%20neighborhood%20search%28VNS%29" title="discrete group search optimizer (DGSO); Travelling salesman problem (TSP); Variable neighborhood search(VNS)">discrete group search optimizer (DGSO); Travelling salesman problem (TSP); Variable neighborhood search(VNS)</a> </p> <a href="https://publications.waset.org/abstracts/36200/discrete-group-search-optimizer-for-the-travelling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7252</span> On the Application of Heuristics of the Traveling Salesman Problem for the Task of Restoring the DNA Matrix</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Melnikova"> Elena Melnikova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traveling salesman problem (TSP) is a well-known optimization problem that seeks to find the shortest possible route that visits a set of points and returns to the starting point. In this paper, we apply some heuristics of the TSP for the task of restoring the DNA matrix. This restoration problem is often considered in biocybernetics. For it, we must recover the matrix of distances between DNA sequences if not all the elements of the matrix under consideration are known at the input. We consider the possibility of using this method in the testing of distance calculation algorithms between a pair of DNAs to restore the partially filled matrix. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=DNA%20matrix" title=" DNA matrix"> DNA matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=partially%20filled%20matrix" title=" partially filled matrix"> partially filled matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a> </p> <a href="https://publications.waset.org/abstracts/172868/on-the-application-of-heuristics-of-the-traveling-salesman-problem-for-the-task-of-restoring-the-dna-matrix" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172868.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">150</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7251</span> Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Kostrzewa">Daniel Kostrzewa</a>, <a href="https://publications.waset.org/abstracts/search?q=Henryk%20Josi%C5%84ski"> Henryk Josiński</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=expanded%20invasive%20weed%20optimization%20algorithm%20%28exIWO%29" title="expanded invasive weed optimization algorithm (exIWO)">expanded invasive weed optimization algorithm (exIWO)</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem%20%28TSP%29" title=" traveling salesman problem (TSP)"> traveling salesman problem (TSP)</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20approach" title=" heuristic approach"> heuristic approach</a>, <a href="https://publications.waset.org/abstracts/search?q=inversion%20operator" title=" inversion operator"> inversion operator</a> </p> <a href="https://publications.waset.org/abstracts/9442/evaluation-of-the-exiwo-algorithm-based-on-the-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">835</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7250</span> Block Based Imperial Competitive Algorithm with Greedy Search for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meng-Hui%20Chen">Meng-Hui Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiao-Wei%20Yu"> Chiao-Wei Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Pei-Chann%20Chang"> Pei-Chann Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Imperial competitive algorithm (ICA) simulates a multi-agent algorithm. Each agent is like a kingdom has its country, and the strongest country in each agent is called imperialist, others are colony. Countries are competitive with imperialist which in the same kingdom by evolving. So this country will move in the search space to find better solutions with higher fitness to be a new imperialist. The main idea in this paper is using the peculiarity of ICA to explore the search space to solve the kinds of combinational problems. Otherwise, we also study to use the greed search to increase the local search ability. To verify the proposed algorithm in this paper, the experimental results of traveling salesman problem (TSP) is according to the traveling salesman problem library (TSPLIB). The results show that the proposed algorithm has higher performance than the other known methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title="traveling salesman problem">traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20chromosomes" title=" artificial chromosomes"> artificial chromosomes</a>, <a href="https://publications.waset.org/abstracts/search?q=greedy%20search" title=" greedy search"> greedy search</a>, <a href="https://publications.waset.org/abstracts/search?q=imperial%20competitive%20algorithm" title=" imperial competitive algorithm"> imperial competitive algorithm</a> </p> <a href="https://publications.waset.org/abstracts/10392/block-based-imperial-competitive-algorithm-with-greedy-search-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10392.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7249</span> Impact of Population Size on Symmetric Travelling Salesman Problem Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wafa%27%20Alsharafat">Wafa' Alsharafat</a>, <a href="https://publications.waset.org/abstracts/search?q=Suhila%20Farhan%20Abu-Owida"> Suhila Farhan Abu-Owida </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Genetic algorithm (GA) is a powerful evolutionary searching technique that is used successfully to solve and optimize problems in different research areas. Genetic Algorithm (GA) considered as one of optimization methods used to solve Travel salesman Problem (TSP). The feasibility of GA in finding a TSP solution is dependent on GA operators; encoding method, population size, termination criteria, in general. In specific, crossover and its probability play a significant role in finding possible solutions for Symmetric TSP (STSP). In addition, the crossover should be determined and enhanced in term reaching optimal or at least near optimal. In this paper, we spot the light on using a modified crossover method called modified sequential constructive crossover and its impact on reaching optimal solution. To justify the relevance of a parameter value in solving the TSP, a set comparative analysis conducted on different crossover methods values. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=crossover" title=" crossover"> crossover</a>, <a href="https://publications.waset.org/abstracts/search?q=mutation" title=" mutation"> mutation</a>, <a href="https://publications.waset.org/abstracts/search?q=TSP" title=" TSP"> TSP</a> </p> <a href="https://publications.waset.org/abstracts/81306/impact-of-population-size-on-symmetric-travelling-salesman-problem-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81306.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7248</span> Solving the Pseudo-Geometric Traveling Salesman Problem with the “Union Husk” Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boris%20Melnikov">Boris Melnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ye%20Zhang"> Ye Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitrii%20Chaikovskii"> Dmitrii Chaikovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study explores the pseudo-geometric version of the extensively researched Traveling Salesman Problem (TSP), proposing a novel generalization of existing algorithms which are traditionally confined to the geometric version. By adapting the "onion husk" method and introducing auxiliary algorithms, this research fills a notable gap in the existing literature. Through computational experiments using randomly generated data, several metrics were analyzed to validate the proposed approach's efficacy. Preliminary results align with expected outcomes, indicating a promising advancement in TSP solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization%20problems" title="optimization problems">optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithms" title=" heuristic algorithms"> heuristic algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=%E2%80%9Conion%20husk%E2%80%9D%20algorithm" title=" “onion husk” algorithm"> “onion husk” algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-geometric%20version" title=" pseudo-geometric version"> pseudo-geometric version</a> </p> <a href="https://publications.waset.org/abstracts/172842/solving-the-pseudo-geometric-traveling-salesman-problem-with-the-union-husk-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7247</span> An Algorithm of Set-Based Particle Swarm Optimization with Status Memory for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Hino">Takahiro Hino</a>, <a href="https://publications.waset.org/abstracts/search?q=Michiharu%20Maeda"> Michiharu Maeda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Particle swarm optimization (PSO) is an optimization approach that achieves the social model of bird flocking and fish schooling. PSO works in continuous space and can solve continuous optimization problem with high quality. Set-based particle swarm optimization (SPSO) functions in discrete space by using a set. SPSO can solve combinatorial optimization problem with high quality and is successful to apply to the large-scale problem. In this paper, we present an algorithm of SPSO with status memory to decide the position based on the previous position for solving traveling salesman problem (TSP). In order to show the effectiveness of our approach. We examine SPSOSM for TSP compared to the existing algorithms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization%20problems" title="combinatorial optimization problems">combinatorial optimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=particle%20swarm%20optimization" title=" particle swarm optimization"> particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=set-based%20particle%20swarm%20optimization" title=" set-based particle swarm optimization"> set-based particle swarm optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a> </p> <a href="https://publications.waset.org/abstracts/47282/an-algorithm-of-set-based-particle-swarm-optimization-with-status-memory-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">552</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7246</span> An Improved Genetic Algorithm for Traveling Salesman Problem with Precedence Constraint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20F.%20F.%20Ab%20Rashid">M. F. F. Ab Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20N.%20Mohd%20Rose"> A. N. Mohd Rose</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20M.%20Z.%20Nik%20Mohamed"> N. M. Z. Nik Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20S.%20Wan%20Harun"> W. S. Wan Harun</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Che%20Ghani"> S. A. Che Ghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traveling salesman problem with precedence constraint (TSPPC) is one of the most complex problems in combinatorial optimization. The existing algorithms to solve TSPPC cost large computational time to find the optimal solution. The purpose of this paper is to present an efficient genetic algorithm that guarantees optimal solution with less number of generations and iterations time. Unlike the existing algorithm that generates priority factor as chromosome, the proposed algorithm directly generates sequence of solution as chromosome. As a result, the proposed algorithm is capable of generating optimal solution with smaller number of generations and iteration time compare to existing algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title="traveling salesman problem">traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=sequencing" title=" sequencing"> sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=precedence%20constraint" title=" precedence constraint"> precedence constraint</a> </p> <a href="https://publications.waset.org/abstracts/15486/an-improved-genetic-algorithm-for-traveling-salesman-problem-with-precedence-constraint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">560</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7245</span> An Improved Method to Compute Sparse Graphs for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20Wang">Y. Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Traveling salesman problem (TSP) is NP-hard in combinatorial optimization. The research shows the algorithms for TSP on the sparse graphs have the shorter computation time than those for TSP according to the complete graphs. We present an improved iterative algorithm to compute the sparse graphs for TSP by frequency graphs computed with frequency quadrilaterals. The iterative algorithm is enhanced by adjusting two parameters of the algorithm. The computation time of the algorithm is <em>O</em>(<em>CN</em><sub>max</sub><em>n</em><sup>2</sup>) where <em>C</em> is the iterations, <em>N</em><sub>max</sub> is the maximum number of frequency quadrilaterals containing each edge and <em>n</em> is the scale of TSP. The experimental results showed the computed sparse graphs generally have less than 5<em>n</em> edges for most of these Euclidean instances. Moreover, the maximum degree and minimum degree of the vertices in the sparse graphs do not have much difference. Thus, the computation time of the methods to resolve the TSP on these sparse graphs will be greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20quadrilateral" title="frequency quadrilateral">frequency quadrilateral</a>, <a href="https://publications.waset.org/abstracts/search?q=iterative%20algorithm" title=" iterative algorithm"> iterative algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=sparse%20graph" title=" sparse graph"> sparse graph</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a> </p> <a href="https://publications.waset.org/abstracts/82737/an-improved-method-to-compute-sparse-graphs-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82737.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">233</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7244</span> Development of Algorithms for Solving and Analyzing Special Problems Transports Type</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitri%20Terzi">Dmitri Terzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title="traveling salesman problem">traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20construction%20algorithm" title=" solution construction algorithm"> solution construction algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20hulls" title=" convex hulls"> convex hulls</a>, <a href="https://publications.waset.org/abstracts/search?q=optimality%20verification" title=" optimality verification"> optimality verification</a> </p> <a href="https://publications.waset.org/abstracts/179041/development-of-algorithms-for-solving-and-analyzing-special-problems-transports-type" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">73</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7243</span> A Variable Neighborhood Search with Tabu Conditions for the Roaming Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Masoud%20Shahmanzari">Masoud Shahmanzari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this paper is to present a Variable Neighborhood Search (VNS) with Tabu Search (TS) conditions for the Roaming Salesman Problem (RSP). The RSP is a special case of the well-known traveling salesman problem (TSP) where a set of cities with time-dependent rewards and a set of campaign days are given. Each city can be visited on any day and a subset of cities can be visited multiple times. The goal is to determine an optimal campaign schedule consist of daily open/closed tours that visit some cities and maximizes the total net benefit while respecting daily maximum tour duration constraints and the necessity to return campaign base frequently. This problem arises in several real-life applications and particularly in election logistics where depots are not fixed. We formulate the problem as a mixed integer linear programming (MILP), in which we capture as many real-world aspects of the RSP as possible. We also present a hybrid metaheuristic algorithm based on a VNS with TS conditions. The initial feasible solution is constructed via a new matheuristc approach based on the decomposition of the original problem. Next, this solution is improved in terms of the collected rewards using the proposed local search procedure. We consider a set of 81 cities in Turkey and a campaign of 30 days as our largest instance. Computational results on real-world instances show that the developed algorithm could find near-optimal solutions effectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=routing" title=" routing"> routing</a>, <a href="https://publications.waset.org/abstracts/search?q=election%20logistics" title=" election logistics"> election logistics</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a> </p> <a href="https://publications.waset.org/abstracts/162992/a-variable-neighborhood-search-with-tabu-conditions-for-the-roaming-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162992.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">92</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7242</span> Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Roy">Arindam Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Madhushree%20Das"> Madhushree Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Apurba%20Manna"> Apurba Manna</a>, <a href="https://publications.waset.org/abstracts/search?q=Samir%20Maity"> Samir Maity</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20four-dimensional%20traveling%20salesman%20problem%20%28MO4DTSP%29" title="multi-objective four-dimensional traveling salesman problem (MO4DTSP)">multi-objective four-dimensional traveling salesman problem (MO4DTSP)</a>, <a href="https://publications.waset.org/abstracts/search?q=decomposition" title=" decomposition"> decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=NSGA-II" title=" NSGA-II"> NSGA-II</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT-based%20transport%20system" title=" IoT-based transport system"> IoT-based transport system</a>, <a href="https://publications.waset.org/abstracts/search?q=customer%20satisfaction" title=" customer satisfaction"> customer satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/158289/multi-objective-four-dimensional-traveling-salesman-problem-in-an-iot-based-transport-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">110</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7241</span> A Second Order Genetic Algorithm for Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Toathom">T. Toathom</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Munlin"> M. Munlin</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Sugunnasil"> P. Sugunnasil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20population" title=" initial population"> initial population</a>, <a href="https://publications.waset.org/abstracts/search?q=chromosomes%20encoding" title=" chromosomes encoding"> chromosomes encoding</a> </p> <a href="https://publications.waset.org/abstracts/42491/a-second-order-genetic-algorithm-for-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7240</span> Comparison of Heuristic Methods for Solving Traveling Salesman Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regita%20P.%20Permata">Regita P. Permata</a>, <a href="https://publications.waset.org/abstracts/search?q=Ulfa%20S.%20Nuraini"> Ulfa S. Nuraini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traveling Salesman Problem (TSP) is the most studied problem in combinatorial optimization. In simple language, TSP can be described as a problem of finding a minimum distance tour to a city, starting and ending in the same city, and exactly visiting another city. In product distribution, companies often get problems in determining the minimum distance that affects the time allocation. In this research, we aim to apply TSP heuristic methods to simulate nodes as city coordinates in product distribution. The heuristics used are sub tour reversal, nearest neighbor, farthest insertion, cheapest insertion, nearest insertion, and arbitrary insertion. We have done simulation nodes using Euclidean distances to compare the number of cities and processing time, thus we get optimum heuristic method. The results show that the optimum heuristic methods are farthest insertion and nearest insertion. These two methods can be recommended to solve product distribution problems in certain companies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Euclidean" title="Euclidean">Euclidean</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristics" title=" heuristics"> heuristics</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=TSP" title=" TSP"> TSP</a> </p> <a href="https://publications.waset.org/abstracts/129149/comparison-of-heuristic-methods-for-solving-traveling-salesman-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129149.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7239</span> Adapting the Chemical Reaction Optimization Algorithm to the Printed Circuit Board Drilling Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taisir%20Eldos">Taisir Eldos</a>, <a href="https://publications.waset.org/abstracts/search?q=Aws%20Kanan"> Aws Kanan</a>, <a href="https://publications.waset.org/abstracts/search?q=Waleed%20Nazih"> Waleed Nazih</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Khatatbih"> Ahmad Khatatbih</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical Reaction Optimization (CRO) is an optimization metaheuristic inspired by the nature of chemical reactions as a natural process of transforming the substances from unstable to stable states. Starting with some unstable molecules with excessive energy, a sequence of interactions takes the set to a state of minimum energy. Researchers reported successful application of the algorithm in solving some engineering problems, like the quadratic assignment problem, with superior performance when compared with other optimization algorithms. We adapted this optimization algorithm to the Printed Circuit Board Drilling Problem (PCBDP) towards reducing the drilling time and hence improving the PCB manufacturing throughput. Although the PCBDP can be viewed as instance of the popular Traveling Salesman Problem (TSP), it has some characteristics that would require special attention to the transactions that explore the solution landscape. Experimental test results using the standard CROToolBox are not promising for practically sized problems, while it could find optimal solutions for artificial problems and small benchmarks as a proof of concept. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20algorithms" title="evolutionary algorithms">evolutionary algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction%20optimization" title=" chemical reaction optimization"> chemical reaction optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman" title=" traveling salesman"> traveling salesman</a>, <a href="https://publications.waset.org/abstracts/search?q=board%20drilling" title=" board drilling"> board drilling</a> </p> <a href="https://publications.waset.org/abstracts/20797/adapting-the-chemical-reaction-optimization-algorithm-to-the-printed-circuit-board-drilling-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7238</span> Multi-Objective Optimization for the Green Vehicle Routing Problem: Approach to Case Study of the Newspaper Distribution Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Julio%20C.%20Ferreira">Julio C. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20T.%20A.%20Steiner"> Maria T. A. Steiner</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to present a solution procedure referred to here as the Multi-objective Optimization for Green Vehicle Routing Problem (MOOGVRP) to provide solutions for a case study. The proposed methodology consists of three stages to resolve Scenario A. Stage 1 consists of the “treatment” of data; Stage 2 consists of applying mathematical models of the p-Median Capacitated Problem (with the objectives of minimization of distances and homogenization of demands between groups) and the Asymmetric Traveling Salesman Problem (with the objectives of minimizing distances and minimizing time). The weighted method was used as the multi-objective procedure. In Stage 3, an analysis of the results is conducted, taking into consideration the environmental aspects related to the case study, more specifically with regard to fuel consumption and air pollutant emission. This methodology was applied to a (partial) database that addresses newspaper distribution in the municipality of Curitiba, Paraná State, Brazil. The preliminary findings for Scenario A showed that it was possible to improve the distribution of the load, reduce the mileage and the greenhouse gas by 17.32% and the journey time by 22.58% in comparison with the current scenario. The intention for future works is to use other multi-objective techniques and an expanded version of the database and explore the triple bottom line of sustainability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asymmetric%20Traveling%20Salesman%20Problem" title="Asymmetric Traveling Salesman Problem">Asymmetric Traveling Salesman Problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Green%20Vehicle%20Routing%20Problem" title=" Green Vehicle Routing Problem"> Green Vehicle Routing Problem</a>, <a href="https://publications.waset.org/abstracts/search?q=Multi-objective%20Optimization" title=" Multi-objective Optimization"> Multi-objective Optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=p-Median%20Capacitated%20Problem" title=" p-Median Capacitated Problem"> p-Median Capacitated Problem</a> </p> <a href="https://publications.waset.org/abstracts/125906/multi-objective-optimization-for-the-green-vehicle-routing-problem-approach-to-case-study-of-the-newspaper-distribution-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">111</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7237</span> Optimizing Logistics for Courier Organizations with Considerations of Congestions and Pickups: A Courier Delivery System in Amman as Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nader%20A.%20Al%20Theeb">Nader A. Al Theeb</a>, <a href="https://publications.waset.org/abstracts/search?q=Zaid%20Abu%20Manneh"> Zaid Abu Manneh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Al-Qadi"> Ibrahim Al-Qadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Traveling salesman problem (TSP) is a combinatorial integer optimization problem that asks "What is the optimal route for a vehicle to traverse in order to deliver requests to a given set of customers?”. It is widely used by the package carrier companies’ distribution centers. The main goal of applying the TSP in courier organizations is to minimize the time that it takes for the courier in each trip to deliver or pick up the shipments during a day. In this article, an optimization model is constructed to create a new TSP variant to optimize the routing in a courier organization with a consideration of congestion in Amman, the capital of Jordan. Real data were collected by different methods and analyzed. Then, concert technology - CPLEX was used to solve the proposed model for some random generated data instances and for the real collected data. At the end, results have shown a great improvement in time compared with the current trip times, and an economic study was conducted afterwards to figure out the impact of using such models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travel%20salesman%20problem" title="travel salesman problem">travel salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=congestions" title=" congestions"> congestions</a>, <a href="https://publications.waset.org/abstracts/search?q=pick-up" title=" pick-up"> pick-up</a>, <a href="https://publications.waset.org/abstracts/search?q=integer%20programming" title=" integer programming"> integer programming</a>, <a href="https://publications.waset.org/abstracts/search?q=package%20carriers" title=" package carriers"> package carriers</a>, <a href="https://publications.waset.org/abstracts/search?q=service%20engineering" title=" service engineering"> service engineering</a> </p> <a href="https://publications.waset.org/abstracts/73379/optimizing-logistics-for-courier-organizations-with-considerations-of-congestions-and-pickups-a-courier-delivery-system-in-amman-as-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73379.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7236</span> Detailed Quantum Circuit Design and Evaluation of Grover's Algorithm for the Bounded Degree Traveling Salesman Problem Using the Q# Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wenjun%20Hou">Wenjun Hou</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Perkowski"> Marek Perkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Traveling Salesman problem is famous in computing and graph theory. In short, it asks for the Hamiltonian cycle of the least total weight in a given graph with N nodes. All variations on this problem, such as those with K-bounded-degree nodes, are classified as NP-complete in classical computing. Although several papers propose theoretical high-level designs of quantum algorithms for the Traveling Salesman Problem, no quantum circuit implementation of these algorithms has been created up to our best knowledge. In contrast to previous papers, the goal of this paper is not to optimize some abstract complexity measures based on the number of oracle iterations, but to be able to evaluate the real circuit and time costs of the quantum computer. Using the emerging quantum programming language Q# developed by Microsoft, which runs quantum circuits in a quantum computer simulation, an implementation of the bounded-degree problem and its respective quantum circuit were created. To apply Grover’s algorithm to this problem, a quantum oracle was designed, evaluating the cost of a particular set of edges in the graph as well as its validity as a Hamiltonian cycle. Repeating the Grover algorithm with an oracle that finds successively lower cost each time allows to transform the decision problem to an optimization problem, finding the minimum cost of Hamiltonian cycles. N log₂ K qubits are put into an equiprobablistic superposition by applying the Hadamard gate on each qubit. Within these N log₂ K qubits, the method uses an encoding in which every node is mapped to a set of its encoded edges. The oracle consists of several blocks of circuits: a custom-written edge weight adder, node index calculator, uniqueness checker, and comparator, which were all created using only quantum Toffoli gates, including its special forms, which are Feynman and Pauli X. The oracle begins by using the edge encodings specified by the qubits to calculate each node that this path visits and adding up the edge weights along the way. Next, the oracle uses the calculated nodes from the previous step and check that all the nodes are unique. Finally, the oracle checks that the calculated cost is less than the previously-calculated cost. By performing the oracle an optimal number of times, a correct answer can be generated with very high probability. The oracle of the Grover Algorithm is modified using the recalculated minimum cost value, and this procedure is repeated until the cost cannot be further reduced. This algorithm and circuit design have been verified, using several datasets, to generate correct outputs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20computing" title="quantum computing">quantum computing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20circuit%20optimization" title=" quantum circuit optimization"> quantum circuit optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20algorithms" title=" quantum algorithms"> quantum algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20quantum%20algorithms" title=" hybrid quantum algorithms"> hybrid quantum algorithms</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20programming" title=" quantum programming"> quantum programming</a>, <a href="https://publications.waset.org/abstracts/search?q=Grover%E2%80%99s%20algorithm" title=" Grover’s algorithm"> Grover’s algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=bounded-degree%20TSP" title=" bounded-degree TSP"> bounded-degree TSP</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20cost" title=" minimal cost"> minimal cost</a>, <a href="https://publications.waset.org/abstracts/search?q=Q%23%20language" title=" Q# language"> Q# language</a> </p> <a href="https://publications.waset.org/abstracts/111077/detailed-quantum-circuit-design-and-evaluation-of-grovers-algorithm-for-the-bounded-degree-traveling-salesman-problem-using-the-q-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7235</span> Symbolic Computation and Abundant Travelling Wave Solutions to Modified Burgers' Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Younis">Muhammad Younis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article, the novel (G′/G)-expansion method is successfully applied to construct the abundant travelling wave solutions to the modified Burgers’ equation with the aid of computation. The method is reliable and useful, which gives more general exact travelling wave solutions than the existing methods. These obtained solutions are in the form of hyperbolic, trigonometric and rational functions including solitary, singular and periodic solutions which have many potential applications in physical science and engineering. Some of these solutions are new and some have already been constructed. Additionally, the constraint conditions, for the existence of the solutions are also listed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=traveling%20wave%20solutions" title="traveling wave solutions">traveling wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=NLPDE" title=" NLPDE"> NLPDE</a>, <a href="https://publications.waset.org/abstracts/search?q=computation" title=" computation"> computation</a>, <a href="https://publications.waset.org/abstracts/search?q=integrability" title=" integrability"> integrability</a> </p> <a href="https://publications.waset.org/abstracts/48762/symbolic-computation-and-abundant-travelling-wave-solutions-to-modified-burgers-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7234</span> A Practical Protection Method for Parallel Transmission-Lines Based on the Fault Travelling-Waves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Ebrahimi">Mohammad Reza Ebrahimi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In new restructured power systems, swift fault detection is very important. The parallel transmission-lines are vastly used in this kind of power systems because of high amount of energy transferring. In this paper, a method based on the comparison of two schemes, i.e., i) maximum magnitude of travelling-wave (TW) energy ii) the instants of maximum energy occurrence at the circuits of parallel transmission-line is proposed. Using the travelling-wave of fault in order to faulted line identification this method has noticeable operation time. Moreover, the algorithm can cover for identification of faults as external or internal faults. For an internal fault, the exact location of the fault can be estimated confidently. A lot of simulations have been done with PSCAD/EMTDC to verify the performance of the proposed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=travelling-wave" title="travelling-wave">travelling-wave</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20energy" title=" maximum energy"> maximum energy</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20transmission-line" title=" parallel transmission-line"> parallel transmission-line</a>, <a href="https://publications.waset.org/abstracts/search?q=fault%20location" title=" fault location"> fault location</a> </p> <a href="https://publications.waset.org/abstracts/102538/a-practical-protection-method-for-parallel-transmission-lines-based-on-the-fault-travelling-waves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102538.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7233</span> Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aadiv%20Shah">Aadiv Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=Hari%20Nair"> Hari Nair</a>, <a href="https://publications.waset.org/abstracts/search?q=Vedant%20Mittal"> Vedant Mittal</a>, <a href="https://publications.waset.org/abstracts/search?q=Alice%20Cheeran"> Alice Cheeran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=locust" title="locust">locust</a>, <a href="https://publications.waset.org/abstracts/search?q=NDVI" title=" NDVI"> NDVI</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=path%20planning" title=" path planning"> path planning</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforcement%20learning" title=" reinforcement learning"> reinforcement learning</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/138548/path-planning-for-unmanned-aerial-vehicles-in-constrained-environments-for-locust-elimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138548.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7232</span> The Interdisciplinary Synergy Between Computer Engineering and Mathematics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mitat%20Uysal">Mitat Uysal</a>, <a href="https://publications.waset.org/abstracts/search?q=Aynur%20Uysal"> Aynur Uysal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Computer engineering and mathematics share a deep and symbiotic relationship, with mathematics providing the foundational theories and models for computer engineering advancements. From algorithm development to optimization techniques, mathematics plays a pivotal role in solving complex computational problems. This paper explores key mathematical principles that underpin computer engineering, illustrating their significance through a case study that demonstrates the application of optimization techniques using Python code. The case study addresses the well-known vehicle routing problem (VRP), an extension of the traveling salesman problem (TSP), and solves it using a genetic algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=VRP" title="VRP">VRP</a>, <a href="https://publications.waset.org/abstracts/search?q=TSP" title=" TSP"> TSP</a>, <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title=" genetic algorithm"> genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20engineering" title=" computer engineering"> computer engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/193090/the-interdisciplinary-synergy-between-computer-engineering-and-mathematics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7231</span> A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Tarek">Ahmed Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alveed"> Ahmed Alveed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinate-based%20optimal%20routing" title="coordinate-based optimal routing">coordinate-based optimal routing</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian%20Circuit" title=" Hamiltonian Circuit"> Hamiltonian Circuit</a>, <a href="https://publications.waset.org/abstracts/search?q=heuristic%20algorithm" title=" heuristic algorithm"> heuristic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20routing%20problem" title=" vehicle routing problem"> vehicle routing problem</a> </p> <a href="https://publications.waset.org/abstracts/136218/a-coordinate-based-heuristic-route-search-algorithm-for-delivery-truck-routing-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/136218.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7230</span> ACOPIN: An ACO Algorithm with TSP Approach for Clustering Proteins in Protein Interaction Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamaludin%20Sallim">Jamaludin Sallim</a>, <a href="https://publications.waset.org/abstracts/search?q=Rozlina%20Mohamed"> Rozlina Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Roslina%20Abdul%20Hamid"> Roslina Abdul Hamid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed an Ant Colony Optimization (ACO) algorithm together with Traveling Salesman Problem (TSP) approach to investigate the clustering problem in Protein Interaction Networks (PIN). We named this combination as ACOPIN. The purpose of this work is two-fold. First, to test the efficacy of ACO in clustering PIN and second, to propose the simple generalization of the ACO algorithm that might allow its application in clustering proteins in PIN. We split this paper to three main sections. First, we describe the PIN and clustering proteins in PIN. Second, we discuss the steps involved in each phase of ACO algorithm. Finally, we present some results of the investigation with the clustering patterns. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization%20algorithm" title="ant colony optimization algorithm">ant colony optimization algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=searching%20algorithm" title=" searching algorithm"> searching algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20functional%20module" title=" protein functional module"> protein functional module</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20interaction%20network" title=" protein interaction network "> protein interaction network </a> </p> <a href="https://publications.waset.org/abstracts/22367/acopin-an-aco-algorithm-with-tsp-approach-for-clustering-proteins-in-protein-interaction-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22367.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">611</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7229</span> The Construction of Exact Solutions for the Nonlinear Lattice Equation via Coth and Csch Functions Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerarka">A. Zerarka</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Djoudi"> W. Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The method developed in this work uses a generalised coth and csch funtions method to construct new exact travelling solutions to the nonlinear lattice equation. The technique of the homogeneous balance method is used to handle the appropriated solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coth%20functions" title="coth functions">coth functions</a>, <a href="https://publications.waset.org/abstracts/search?q=csch%20functions" title=" csch functions"> csch functions</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20partial%20differential%20equation" title=" nonlinear partial differential equation"> nonlinear partial differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20solutions" title=" travelling wave solutions"> travelling wave solutions</a> </p> <a href="https://publications.waset.org/abstracts/20374/the-construction-of-exact-solutions-for-the-nonlinear-lattice-equation-via-coth-and-csch-functions-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">662</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7228</span> Ant System with Acoustic Communication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saad%20Bougrine">Saad Bougrine</a>, <a href="https://publications.waset.org/abstracts/search?q=Salma%20Ouchraa"> Salma Ouchraa</a>, <a href="https://publications.waset.org/abstracts/search?q=Belaid%20Ahiod"> Belaid Ahiod</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhakim%20Ameur%20El%20Imrani"> Abdelhakim Ameur El Imrani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ant colony optimization is an ant algorithm framework that took inspiration from foraging behaviour of ant colonies. Indeed, ACO algorithms use a chemical communication, represented by pheromone trails, to build good solutions. However, ants involve different communication channels to interact. Thus, this paper introduces the acoustic communication between ants while they are foraging. This process allows fine and local exploration of search space and permits optimal solution to be improved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acoustic%20communication" title="acoustic communication">acoustic communication</a>, <a href="https://publications.waset.org/abstracts/search?q=ant%20colony%20optimization" title=" ant colony optimization"> ant colony optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=local%20search" title=" local search"> local search</a>, <a href="https://publications.waset.org/abstracts/search?q=traveling%20salesman%20problem" title=" traveling salesman problem"> traveling salesman problem</a> </p> <a href="https://publications.waset.org/abstracts/7857/ant-system-with-acoustic-communication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7857.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7227</span> Using Trip Planners in Developing Proper Transportation Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Grzegorz%20Sierpi%C5%84ski">Grzegorz Sierpiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Ireneusz%20Celi%C5%84ski"> Ireneusz Celiński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Staniek"> Marcin Staniek</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article discusses multi modal mobility in contemporary societies as a main planning and organization issue in the functioning of administrative bodies, a problem which really exists in the space of contemporary cities in terms of shaping modern transport systems. The article presents classification of available resources and initiatives undertaken for developing multi modal mobility. Solutions can be divided into three groups of measures–physical measures in the form of changes of the transport network infrastructure, organizational ones (including transport policy) and information measures. The latter ones include in particular direct support for people travelling in the transport network by providing information about ways of using available means of transport. A special measure contributing to this end is a trip planner. The article compares several selected planners. It includes a short description of the Green Travelling Project, which aims at developing a planner supporting environmentally friendly solutions in terms of transport network operation. The article summarizes preliminary findings of the project. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mobility" title="mobility">mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=modal%20split" title=" modal split"> modal split</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20trip" title=" multimodal trip"> multimodal trip</a>, <a href="https://publications.waset.org/abstracts/search?q=multimodal%20platforms" title=" multimodal platforms"> multimodal platforms</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20transport" title=" sustainable transport"> sustainable transport</a> </p> <a href="https://publications.waset.org/abstracts/15575/using-trip-planners-in-developing-proper-transportation-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15575.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=241">241</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=242">242</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=travelling%20salesman%20problem&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>