CINXE.COM

Search results for: epoxidation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: epoxidation</title> <meta name="description" content="Search results for: epoxidation"> <meta name="keywords" content="epoxidation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="epoxidation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="epoxidation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 16</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: epoxidation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Dioxomolybdenum (VI) Schiff Base Complex Supported on Magnetic Nanoparticles as a Green Nanocatalysis in Epoxidation of Olefins</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abolfazl%20Bezaatpour">Abolfazl Bezaatpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Khatami"> Sahar Khatami</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fe3O4 nanoparticles were prepared by the co-precipitation method and silica was then coated on the magnetic nanoparticles followed by modification with (3-aminopropyl) trimethoxysilane. Then, dioxomolybdenum(VI) Schiff base complex of N,N′-bis(5-chloromethyl-salicylidine)-1,2-phenylenediamine) was immobilized on the surface of magnetic nanoparticles as a heterogeneous catalyst. The catalyst was identified by scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM), X-ray diffraction, IR spectroscopy, diffuse reflectance spectra and atomic absorption spectroscopy techniques. The catalyst shows excellent catalytic activity in epoxidation of olefins using tert-butylhydroperoxide in 1,2-dichloroethane. In this report, the supported complex exhibited 100% selectivity for epoxidation with 100% conversion for cyclooctene. Nanocatalyst can be easily recovered by a magnetic field and reused for subsequent reactions for at least 5 times with less deterioration in catalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dioxomolybdenum%20%28VI%29" title="dioxomolybdenum (VI)">dioxomolybdenum (VI)</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocatalysis" title=" nanocatalysis"> nanocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=Schiff%20base" title=" Schiff base"> Schiff base</a> </p> <a href="https://publications.waset.org/abstracts/22289/dioxomolybdenum-vi-schiff-base-complex-supported-on-magnetic-nanoparticles-as-a-green-nanocatalysis-in-epoxidation-of-olefins" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">632</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Evaluation of Esters Production by Oleic Acid Epoxidation Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Flavio%20A.%20F.%20%20Da%20Ponte">Flavio A. F. Da Ponte</a>, <a href="https://publications.waset.org/abstracts/search?q=Jackson%20Q.%20Malveira"> Jackson Q. Malveira</a>, <a href="https://publications.waset.org/abstracts/search?q=Monica%20C.%20G.%20Albuquerque"> Monica C. G. Albuquerque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years a worldwide interest in renewable resources from the biomass has spurred the industry. In this work the chemical structure of oleic acid chains was modified by homogeneous and heterogeneous catalysis in order to produce esters. The homogeneous epoxidation was carried out at H2O2 to oleic acid unsaturation molar ratio of 20:1. The reaction temperature was 338 K and reaction time 16 h. Formic acid was used as catalyst. For heterogeneous catalysis reaction temperature was 343 K and reaction time 24 h. The esters production was carried out by heterogeneous catalysis of the epoxidized oleic acid and butanol using Mg/SBA-15 as catalyst. The resulting products were confirmed by NMR (1H and 13C) and FTIR spectroscopy. The products were characterized before and after each reaction. The catalysts were characterized by X-ray diffraction, X-ray fluorescence, thermogravimetric analysis (TGA) and BET surface areas. The results were satisfactory for the bioproducts formed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acid%20oleic" title="acid oleic">acid oleic</a>, <a href="https://publications.waset.org/abstracts/search?q=bioproduct" title=" bioproduct"> bioproduct</a>, <a href="https://publications.waset.org/abstracts/search?q=esters" title=" esters"> esters</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a> </p> <a href="https://publications.waset.org/abstracts/51353/evaluation-of-esters-production-by-oleic-acid-epoxidation-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">356</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Epoxidation of Cycloalkenes Using Bead Shape Ti-Al-Beta Zeolite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Asgar%20Pour">Zahra Asgar Pour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two types of Ti-Al-containing zeolitic beads with an average diameter of 450 to 750 µm and hierarchical porosity were synthesized using a hard template method and tested as heterogeneous catalysts in the epoxidation of cycloalkenes (i.e. cyclohexene and cis-cyclooctene) with aqueous hydrogen peroxide (H₂O₂) or tert-butyl hydroperoxide(TBHP) as the oxidant agent. The first type of zeolitic beads was prepared by hydrothermal treatment of a primarygel (containing the Si, Ti, and Al precursors) in the presence of porous anion-exchange resin beads as the hard shaping template. After calcination, these beads (Ti-Al-Beta-HDT-B) consisted of both crystalline zeolite Beta and an amorphous silicate phase. The second type of zeolitic beads (Ti-Beta-PS-deAl-14.4-B) was obtained by post-synthesis dealumination of Al-containing zeolite Beta beads using 14.4 M HNO₃, followed by Ti grafting (3 wt% per gram of zeolite). The prepared materials were characterised by means of XRD, N2-physisorption, UV-vis, XRF, SEM, and TEM and tested as heterogeneous epoxidation catalysts. This post-synthetically prepared catalyst demonstrated higher activity (cyclohexene conversion of 22.7 % and epoxide selectivity of 33.5 %) after 5 h at60 °C, which emanates from the crystalline structure and higher degrees of hydrophobicity. In addition, the post-synthetically prepared beads were prone to partial Ti leaching in the presence of H₂O₂, whereas they showed to be resistant against Ti leaching using tert-butyl hydroperoxide as the oxidant agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title="epoxidation">epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=structured%20catalysts" title=" structured catalysts"> structured catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20porosity" title=" hierarchical porosity"> hierarchical porosity</a>, <a href="https://publications.waset.org/abstracts/search?q=bead-shape%20catalysts" title=" bead-shape catalysts"> bead-shape catalysts</a> </p> <a href="https://publications.waset.org/abstracts/154577/epoxidation-of-cycloalkenes-using-bead-shape-ti-al-beta-zeolite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Hierarchical Zeolites as Catalysts for Cyclohexene Epoxidation Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Agnieszka%20Feliczak-Guzik">Agnieszka Feliczak-Guzik</a>, <a href="https://publications.waset.org/abstracts/search?q=Paulina%20Szczyglewska"> Paulina Szczyglewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Izabela%20Nowak"> Izabela Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A catalyst-assisted oxidation reaction is one of the key reactions exploited by various industries. Their conductivity yields essential compounds and intermediates, such as alcohols, epoxides, aldehydes, ketones, and organic acids. Researchers are devoting more and more attention to developing active and selective materials that find application in many catalytic reactions, such as cyclohexene epoxidation. This reaction yields 1,2-epoxycyclohexane and 1,2-diols as the main products. These compounds are widely used as intermediates in the perfume industry and synthesizing drugs and lubricants. Hence, our research aimed to use hierarchical zeolites modified with transition metal ions, e.g., Nb, V, and Ta, in the epoxidation reaction of cyclohexene using microwaveheating. Hierarchical zeolites are materials with secondary porosity, mainly in the mesoporous range, compared to microporous zeolites. In the course of the research, materials based on two commercial zeolites, with Faujasite (FAU) and Zeolite Socony Mobil-5 (ZSM-5) structures, were synthesized and characterized by various techniques, such as X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and low-temperature nitrogen adsorption/desorption isotherms. The materials obtained were then used in a cyclohexene epoxidation reaction, which was carried out as follows: catalyst (0.02 g), cyclohexene (0.1 cm3), acetonitrile (5 cm3) and dihydrogen peroxide (0.085 cm3) were placed in a suitable glass reaction vessel with a magnetic stirrer inside in a microwave reactor. Reactions were carried out at 45° C for 6 h (samples were taken every 1 h). The reaction mixtures were filtered to separate the liquid products from the solid catalyst and then transferred to 1.5 cm3 vials for chromatographic analysis. The test techniques confirmed the acquisition of additional secondary porosity while preserving the structure of the commercial zeolite (XRD and low-temperature nitrogen adsorption/desorption isotherms). The results of the activity of the hierarchical catalyst modified with niobium in the cyclohexene epoxidation reaction indicate that the conversion of cyclohexene, after 6 h of running the process, is about 70%. As the main product of the reaction, 2-cyclohexanediol was obtained (selectivity > 80%). In addition to the mentioned product, adipic acid, cyclohexanol, cyclohex-2-en-1-one, and 1,2-epoxycyclohexane were also obtained. Furthermore, in a blank test, no cyclohexene conversion was obtained after 6 h of reaction. Acknowledgments The work was carried out within the project “Advanced biocomposites for tomorrow’s economy BIOG-NET,” funded by the Foundation for Polish Science from the European Regional Development Fund (POIR.04.04.00-00-1792/18-00. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title="epoxidation">epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20reactions" title=" oxidation reactions"> oxidation reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20zeolites" title=" hierarchical zeolites"> hierarchical zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/162758/hierarchical-zeolites-as-catalysts-for-cyclohexene-epoxidation-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">78</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> An Evaluation of the Impact of Epoxidized Neem Seed Azadirachta indica Oil on the Mechanical Properties of Polystyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salihu%20Takuma">Salihu Takuma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neem seed oil has high contents of unsaturated fatty acids which can be converted to epoxy fatty acids. The vegetable oil – based epoxy material are sustainable, renewable and biodegradable materials replacing petrochemical – based epoxy materials in some applications. Polystyrene is highly brittle with limited mechanical applications. Raw neem seed oil was obtained from National Research Institute for Chemical Technology (NARICT), Zaria, Nigeria. The oil was epoxidized at 60 0C for three (3) hours using formic acid generated in situ. The epoxidized oil was characterized using Fourier Transform Infrared spectroscopy (FTIR). The disappearance of C = C stretching peak around 3011.7 cm-1and formation of a new absorption peak around 943 cm-1 indicate the success of epoxidation. The epoxidized oil was blended with pure polystyrene in different weight percent compositions using solution casting in chloroform. The tensile properties of the blends demonstrated that the addition of 5 wt % ENO to PS led to an increase in elongation at break, but a decrease in tensile strength and modulus. This is in accordance with the common rule that plasticizers can decrease the tensile strength of the polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradable" title="biodegradable">biodegradable</a>, <a href="https://publications.waset.org/abstracts/search?q=elongation%20at%20break" title=" elongation at break"> elongation at break</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy%20fatty%20acids" title=" epoxy fatty acids"> epoxy fatty acids</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable" title=" sustainable"> sustainable</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength%20and%20modulus" title=" tensile strength and modulus"> tensile strength and modulus</a> </p> <a href="https://publications.waset.org/abstracts/70061/an-evaluation-of-the-impact-of-epoxidized-neem-seed-azadirachta-indica-oil-on-the-mechanical-properties-of-polystyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70061.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Synthesis, Characterization, and Catalytic Application of Modified Hierarchical Zeolites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Feliczak%20Guzik">A. Feliczak Guzik</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Nowak"> I. Nowak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Zeolites, classified as microporous materials, are a large group of crystalline aluminosilicate materials commonly used in the chemical industry. These materials are characterized by large specific surface area, high adsorption capacity, hydrothermal and thermal stability. However, the micropores present in them impose strong mass transfer limitations, resulting in low catalytic performance. Consequently, mesoporous (hierarchical) zeolites have attracted considerable attention from researchers. These materials possess additional porosity in the mesopore size region (2-50 nm according to IUPAC). Mesoporous zeolites, based on commercial MFI-type zeolites modified with silver, were synthesized as follows: 0.5 g of zeolite was dispersed in a mixture containing CTABr (template), water, ethanol, and ammonia under ultrasound for 30 min at 65°C. The silicon source, which was tetraethyl orthosilicate, was then added and stirred for 4 h. After this time, silver(I) nitrate was added. In a further step, the whole mixture was filtered and washed with water: ethanol mixture. The template was removed by calcination at 550°C for 5h. All the materials obtained were characterized by the following techniques: X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, FTIR spectroscopy. X-ray diffraction and low-temperature nitrogen adsorption/desorption isotherms revealed additional secondary porosity. Moreover, the structure of the commercial zeolite was preserved during most of the material syntheses. The aforementioned materials were used in the epoxidation reaction of cyclohexene using conventional heating and microwave radiation heating. The composition of the reaction mixture was analyzed every 1 h by gas chromatography. As a result, about 60% conversion of cyclohexene and high selectivity to the desired reaction products i.e., 1,2-epoxy cyclohexane and 1,2-cyclohexane diol, were obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20application" title="catalytic application">catalytic application</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=hierarchical%20zeolites" title=" hierarchical zeolites"> hierarchical zeolites</a>, <a href="https://publications.waset.org/abstracts/search?q=synthesis" title=" synthesis"> synthesis</a> </p> <a href="https://publications.waset.org/abstracts/148892/synthesis-characterization-and-catalytic-application-of-modified-hierarchical-zeolites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Efficiently Dispersed MnOx on Mesoporous 3D Cubic Support for Cyclohexene Epoxidation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Imran">G. Imran</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pandurangan"> A. Pandurangan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxides constitute important intermediates for the production of fine and bulk chemicals as well as valuable building blocks for the synthesis of a variety of bioactive molecules. Manganese oxides are used as selective catalyst for various redox type reactions and also effectively used in the field of catalytic disposal of pollutants. Non-toxic, cost efficient factor and more over existence of wide range of oxidation state (+2 to +7) makes catalyst more interesting for both academic research and industrial applications. However, the serious drawback lying is the lower surface area. Exceedingly dispersed manganese oxide grafted over mesoporous solid material KIT-6 through ALD (Atomic Layer Deposition) technique effectively catalyze cyclohexene with H2O2 (30% in water) to corresponding epoxides. Highly selective epoxide >99% with 55.7% conversion of cyclohexene was achieved using huge dispersed active sites of MnOx species containing catalysts. Various weight percent such as (1, 3, 5, 7 & 10 wt %) of manganese (II) acetylacetonate complex was employed as Mn source to post-graft via active silanol groups of KIT-6 and are designated as (Mn-G-KIT-6). XRD, N2 sorption, HR-TEM, DRS-UV-VIS, EPR and H2-TPR were employed for structural and textural properties. Immense Mn species of about 95% proportion on silica matrix obtained was evident from ICP-OES.The resulting materials exhibited Type IV adsorption isotherms indiacting mesopore in nanorange. Si-KIT-6 and Mn-G-KIT-6 materials exhibited surface area of 519-289 m2/g and with decrease in pore volume of 0.96-0.49 cm3/g with pore diameter ranging 7.9- 7.2 with increase in wt%. DRS-UV-VIS spectroscopy and EPR studies reveal that manganese coexists as Mn2+/3+ species as extra-framework sites and frame-work sites that result in dispersion on surface of silica matrix of KIT-6 and incorporated manganese sites with silanol groups along with small sized MnO cluster, evident from HR-TEM which increase with Mn content. Conventional production of epoxides by the intramolecular etherification of chlorohydrins formed by the reaction of alkenes with hypochlorous acid is the major drawbacks obtained recently. The most efficient synthesis of oxiranes (epoxides) is obtained by mesoporous catalysts (Mn-G-KIT-6) are presented here and discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ALD" title="ALD">ALD</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidation" title=" epoxidation"> epoxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous" title=" mesoporous"> mesoporous</a>, <a href="https://publications.waset.org/abstracts/search?q=MnOx" title=" MnOx"> MnOx</a> </p> <a href="https://publications.waset.org/abstracts/43630/efficiently-dispersed-mnox-on-mesoporous-3d-cubic-support-for-cyclohexene-epoxidation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Lipase-Mediated Formation of Peroxyoctanoic Acid Used in Catalytic Epoxidation of α-Pinene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Wijayati">N. Wijayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Kusoro%20Siadi"> Kusoro Siadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hanny%20Wijaya"> Hanny Wijaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Maggy%20Thenawijjaja%20Suhartono"> Maggy Thenawijjaja Suhartono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work describes the lipase-mediated synthesis of α-pinene oxide at ambient temperature. The immobilized lipase from Pseudomonas aeruginosa is used to generate peroxyoctanoic acid directly from octanoic acid and hydrogen peroxide. The peroxy acid formed is then applied for in situ oxidation of α-pinene. High conversion of α-pinene to α-pinene oxide (approximately 78%) was achieved when using 0,1 g enzim lipase, 6 mmol H2O2, dan 5 mmol octanoic acid. Various parameters affecting the conversion of α-pinene to α pinene oxide were studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Pinene%3B%20P.%20aeruginosa%3B%20Octanoic%20acid" title="α-Pinene; P. aeruginosa; Octanoic acid ">α-Pinene; P. aeruginosa; Octanoic acid </a> </p> <a href="https://publications.waset.org/abstracts/8404/lipase-mediated-formation-of-peroxyoctanoic-acid-used-in-catalytic-epoxidation-of-a-pinene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Synthesis of Epoxidized Castor Oil Using a Sulphonated Polystyrene Type Cation Exchange Resin and Its Blend Preparation with Epoxy Resin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Sudha">G. S. Sudha</a>, <a href="https://publications.waset.org/abstracts/search?q=Smita%20Mohanty"> Smita Mohanty</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20K.%20Nayak"> S. K. Nayak </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Epoxidized oils can replace petroleum derived materials in numerous industrial applications, because of their respectable oxirane oxygen content and high reactivity of oxirane ring. Epoxidized castor oil (ECO) has synthesized in the presence of a sulphonated polystyrene type cation exchange resin. The formation of the oxirane ring was confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The epoxidation reaction was evaluated by Nuclear Magnetic Resonance (NMR) studies. ECO is used as a toughening phase to increase the toughness of petroleum-based epoxy resin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=epoxy%20resin" title="epoxy resin">epoxy resin</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20castor%20oil" title=" epoxidized castor oil"> epoxidized castor oil</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphonated%20polystyrene%20type%20cation%20exchange%20resin" title=" sulphonated polystyrene type cation exchange resin"> sulphonated polystyrene type cation exchange resin</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum%20derived%20materials" title=" petroleum derived materials"> petroleum derived materials</a> </p> <a href="https://publications.waset.org/abstracts/20933/synthesis-of-epoxidized-castor-oil-using-a-sulphonated-polystyrene-type-cation-exchange-resin-and-its-blend-preparation-with-epoxy-resin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20933.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Synthesis of Cardanol Oil Building Blocks for Polymer Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol">Sylvain Caillol</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Uncertainty in terms of price and availability of petroleum, in addition to global political and institutional tendencies toward the principles of sustainable development, urge chemical industry to a sustainable chemistry and particularly the use of renewable resources in order to synthesize biobased chemicals and products. We propose a platform approach for the synthesis of various building blocks from cardanol in one or two-steps syntheses. Cardanol, which is a natural phenol, is issued from Cashew Nutshell Liquid (CNSL), a non-edible renewable resource, co-produced from cashew industry in large commercial volumes. Cardanol is particularly interesting to replace fossil aromatic groups in polymers and materials. Our team studied various routes for the synthesis of cardanol-derived biobased building blocks used after that in polymer syntheses. For example, we used phenolation to dimerize/oligomerize cardanol to propose increase functionality of cardanol. Thio-ene was used to synthesize new reactive amines. Epoxidation and (meth)acrylation were also used to insert oxirane or (meth)acrylate groups in order to synthesize polymers and materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cardanol" title="cardanol">cardanol</a>, <a href="https://publications.waset.org/abstracts/search?q=cashew%20nutshell%20liquid" title=" cashew nutshell liquid"> cashew nutshell liquid</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20ester" title=" vinyl ester"> vinyl ester</a>, <a href="https://publications.waset.org/abstracts/search?q=latex" title=" latex"> latex</a>, <a href="https://publications.waset.org/abstracts/search?q=emulsion" title=" emulsion"> emulsion</a> </p> <a href="https://publications.waset.org/abstracts/40491/synthesis-of-cardanol-oil-building-blocks-for-polymer-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">176</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sihem%20Kadem">Sihem Kadem</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratiba%20Irinislimane"> Ratiba Irinislimane</a>, <a href="https://publications.waset.org/abstracts/search?q=Naima%20Belhaneche"> Naima Belhaneche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alfa%20fiber" title="alfa fiber">alfa fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=biocomposite" title=" biocomposite"> biocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title=" biodegradation"> biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=sunflower%20oil" title=" sunflower oil"> sunflower oil</a> </p> <a href="https://publications.waset.org/abstracts/126344/biodegradation-study-of-a-biocomposite-material-based-on-sunflower-oil-and-alfa-fibers-as-natural-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Composite Materials from Epoxidized Linseed Oil and Lignin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Komartin">R. S. Komartin</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Balanuca"> B. Balanuca</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Stan"> R. Stan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> the last decades, studies about the use of polymeric materials of plant origin, considering environmental concerns, have captured the interest of researchers because these represent an alternative to petroleum-derived materials. Vegetable oils are one of the preferred alternatives for petroleum-based raw materials having long aliphatic chains similar to hydrocarbons which means that can be processed using conventional chemistry. Epoxidized vegetable oils (EVO) are among the most interesting products derived from oil both for their high reactivity (epoxy group) and for the potential to react with compounds from various classes. As in the case of epoxy resins starting from petrochemical raw materials, those obtained from EVO can be crosslinked with different agents to build polymeric networks and can also be reinforced with various additives to improve their thermal and mechanical performances. Among the multitude of known EVO, the most common in industrial practice are epoxidized linseed oils (ELO) and epoxidized soybean oils (ESO), the first with an iodine index over 180, the second having a lower iodine index but being cheaper. On the other hand, lignin (Ln) is the second natural organic material as a spread, whose use has long been hampered because of the high costs associated with its isolation and purification. In this context, our goal was to obtain new composite materials with satisfactory intermediate properties in terms of stiffness and elasticity using the characteristics of ELO and Ln and choosing the proper curing procedure. In the present study linseed oil (LO) epoxidation was performed using peracetic acid generated in situ. The obtained bio-based epoxy resin derived from linseed oil was used further to produce the new composites byloading Ln in various mass ratios. The resulted ELO-Ln blends were subjected to a dual-curing protocol, namely photochemical and thermal. The new ELO-Ln composites were investigated by FTIR spectrometry, thermal stability, water affinity, and morphology. The positive effect of lignin regarding the thermal stability of the composites could be proved. The results highlight again the still largely unexplored potential of lignin in industrial applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=dual%20curing" title=" dual curing"> dual curing</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxidized%20linseed%20oil" title=" epoxidized linseed oil"> epoxidized linseed oil</a>, <a href="https://publications.waset.org/abstracts/search?q=lignin" title=" lignin"> lignin</a> </p> <a href="https://publications.waset.org/abstracts/142341/composite-materials-from-epoxidized-linseed-oil-and-lignin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> De Novo Design of Functional Metalloproteins for Biocatalytic Reactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ketaki%20D.%20Belsare">Ketaki D. Belsare</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicholas%20F.%20Polizzi"> Nicholas F. Polizzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Lior%20Shtayer"> Lior Shtayer</a>, <a href="https://publications.waset.org/abstracts/search?q=William%20F.%20DeGrado"> William F. DeGrado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nature utilizes metalloproteins to perform chemical transformations with activities and selectivities that have long been the inspiration for design principles in synthetic and biological systems. The chemical reactivities of metalloproteins are directly linked to local environment effects produced by the protein matrix around the metal cofactor. A complete understanding of how the protein matrix provides these interactions would allow for the design of functional metalloproteins. The de novo computational design of proteins have been successfully used in design of active sites that bind metals like di-iron, zinc, copper containing cofactors; however, precisely designing active sites that can bind small molecule ligands (e.g., substrates) along with metal cofactors is still a challenge in the field. The de novo computational design of a functional metalloprotein that contains a purposefully designed substrate binding site would allow for precise control of chemical function and reactivity. Our research strategy seeks to elucidate the design features necessary to bind the cofactor protoporphyrin IX (hemin) in close proximity to a substrate binding pocket in a four helix bundle. First- and second-shell interactions are computationally designed to control orientation, electronic structure, and reaction pathway of the cofactor and substrate. The design began with a parameterized helical backbone that positioned a single histidine residue (as an axial ligand) to receive a second-shell H-bond from a Threonine on the neighboring helix. The metallo-cofactor, hemin was then manually placed in the binding site. A structural feature, pi-bulge was introduced to give substrate access to the protoporphyrin IX. These de novo metalloproteins are currently being tested for their activity towards hydroxylation and epoxidation. The de novo designed protein shows hydroxylation of aniline to 4-aminophenol. This study will help provide structural information of utmost importance in understanding de novo computational design variables impacting the functional activities of a protein. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metalloproteins" title="metalloproteins">metalloproteins</a>, <a href="https://publications.waset.org/abstracts/search?q=protein%20design" title=" protein design"> protein design</a>, <a href="https://publications.waset.org/abstracts/search?q=de%20novo%20protein" title=" de novo protein"> de novo protein</a>, <a href="https://publications.waset.org/abstracts/search?q=biocatalysis" title=" biocatalysis"> biocatalysis</a> </p> <a href="https://publications.waset.org/abstracts/110017/de-novo-design-of-functional-metalloproteins-for-biocatalytic-reactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Preparation and Properties of Chloroacetated Natural Rubber Rubber Foam Using Corn Starch as Curing Agent</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ploenpit%20Boochathum">Ploenpit Boochathum</a>, <a href="https://publications.waset.org/abstracts/search?q=Pitchayanad%20Kaolim"> Pitchayanad Kaolim</a>, <a href="https://publications.waset.org/abstracts/search?q=Phimjutha%20Srisangkaew"> Phimjutha Srisangkaew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In general, rubber foam is produced based on the sulfur curing system. However, the remaining sulfur in the rubber product waste is burned to sulfur dioxide gas causing the environment pollution. To avoid using sulfur as curing agent in the rubber foam products, this research work proposes non-sulfur curing system by using corn starch as a curing agent. The ether crosslinks were proposed to be produced via the functional bonding between hydroxyl groups of the starch molecules and chloroacetate groups added on the natural rubber molecules. The chloroacetated natural rubber (CNR) latex was prepared via the epoxidation reaction of the concentrated natural rubber latex, subsequently, epoxy rings were attacked by chloroacetic acid to produce hydroxyl groups and chloroacetate groups on the rubber molecules. Foaming agent namely NaHCO3 was selected to add in the CNR latex due to the low decomposition temperature at about 50°C. The appropriate curing temperature was assigned to be 90°C that is above gelatinization temperature; 60-70°C, of starch. The effect of weight ratio of starch, i.e., 0 phr, 3 phr and 5 phr, on the physical properties of CNR rubber foam was investigated. It was found that density reduced from 0.81 g/cm3 for 0 phr to 0.75 g/cm3 for 3 phr and 0.79 g/cm3 for 5 phr. The ability to return to its original thickness after prolonged compressive stresses of CNR rubber foam cured with starch loading of 5 phr was found to be considerably better than that of CNR rubber foam cured with starch 3 phr and CNR rubber foam without addition of starch according to the compression set that was determined to decrease from 66.67% to 40% and 26.67% with the increase loading of starch. The mechanical properties including tensile strength and modulus of CNR rubber foams cured using starch were determined to increase except that the elongation at break was found to decrease. In addition, all mechanical properties of CNR rubber foams cured with the starch 3 phr and 5 phr were found to be slightly different and drastically higher than those of CNR rubber foam without the addition of starch. This research work indicates that starch can be applicable as a curing agent for CNR rubber. This is confirmed by the increase of the elastic modulus (G') of CNR rubber foams that was cured with the starch over the CNR rubber foam without curing agent. This type of rubber foam is believed to be one of the biodegradable and environment-friendly product that can be cured at low temperature of 90°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chloroacetated%20natural%20rubber" title="chloroacetated natural rubber">chloroacetated natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title=" corn starch"> corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=non-sulfur%20curing%20system" title=" non-sulfur curing system"> non-sulfur curing system</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber%20foam" title=" rubber foam"> rubber foam</a> </p> <a href="https://publications.waset.org/abstracts/60241/preparation-and-properties-of-chloroacetated-natural-rubber-rubber-foam-using-corn-starch-as-curing-agent" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60241.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Z.%20A.%20Zaidi">S. Z. A. Zaidi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Crosky"> A. Crosky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.&nbsp; Toughening agents &ndash; polybutylene adiphate-co-terephthalate (PBAT) and ENR50 &ndash; were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=natural%20fibers" title="natural fibers">natural fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20rubber" title=" natural rubber"> natural rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhydroxyalkanoates" title=" polyhydroxyalkanoates"> polyhydroxyalkanoates</a>, <a href="https://publications.waset.org/abstracts/search?q=unidirectional" title=" unidirectional"> unidirectional</a> </p> <a href="https://publications.waset.org/abstracts/55723/high-strength-high-toughness-polyhydroxybutyrate-co-valerate-based-biocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55723.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">290</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.Cifarelli">A.Cifarelli</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Boggioni"> L. Boggioni</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bertini"> F. Bertini</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Magon"> L. Magon</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Pitalieri"> M. Pitalieri</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Losio"> S. Losio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bio-polyols" title="bio-polyols">bio-polyols</a>, <a href="https://publications.waset.org/abstracts/search?q=polyurethane%20foams" title=" polyurethane foams"> polyurethane foams</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20free%20synthesis" title=" solvent free synthesis"> solvent free synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=waterborne-polyurethanes" title=" waterborne-polyurethanes"> waterborne-polyurethanes</a> </p> <a href="https://publications.waset.org/abstracts/124919/expanded-polyurethane-foams-and-waterborne-polyurethanes-from-vegetable-oils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124919.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10