CINXE.COM
Search results for: flushing efficiency
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: flushing efficiency</title> <meta name="description" content="Search results for: flushing efficiency"> <meta name="keywords" content="flushing efficiency"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="flushing efficiency" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="flushing efficiency"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6624</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: flushing efficiency</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6624</span> Improving the Performance of DBE Structure in Pressure Flushing Using Submerged Vanes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sepideh%20Beiramipour">Sepideh Beiramipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Haghjouei"> Hadi Haghjouei</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Qaderi"> Kourosh Qaderi</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Rahimpour"> Majid Rahimpour</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20M.%20Ahmadi"> Mohammad M. Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sameh%20A.%20Kantoush"> Sameh A. Kantoush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reservoir sedimentation is one of the main challenges by which the reservoir behind the dam is filled with sediments transferred through the river flow. Pressure flushing method is an effective way to drain the deposited sediments of the reservoirs through the bottom outlet. So far, several structural methods have been proposed to increase the efficiency of pressure flushing. The aim of this study is to increase the performance of Dendritic Bottomless Extended (DBE) structure on the efficiency of pressurized sediment flushing using submerged vanes. For this purpose, the physical model of the dam reservoir with dimensions of 7.5 m in length, 3.5 m in width, and 1.8 m in height in the hydraulic and water structures research laboratory of Shahid Bahonar University of Kerman was used. In order to investigate the influence of submerged vanes on the performance of DBE structure in pressure flushing, the best arrangement and geometric parameters of the vanes were selected and combined with the DBE structure. The results showed that the submerged vanes significantly increased the performance of the DBE structure so that the volume of the sediment flushing cone with the combination of two structures increased by 3.7 times compared to the DBE structure test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dendritic%20bottomless%20extended%20structure" title="dendritic bottomless extended structure">dendritic bottomless extended structure</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency" title=" flushing efficiency"> flushing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title=" sedimentation"> sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=sediment%20flushing" title=" sediment flushing"> sediment flushing</a> </p> <a href="https://publications.waset.org/abstracts/141430/improving-the-performance-of-dbe-structure-in-pressure-flushing-using-submerged-vanes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141430.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6623</span> Flushing Model for Artificial Islands in the Persian Gulf</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sawsan%20Eissa">Sawsan Eissa</a>, <a href="https://publications.waset.org/abstracts/search?q=Momen%20Gharib"> Momen Gharib</a>, <a href="https://publications.waset.org/abstracts/search?q=Omnia%20Kabbany"> Omnia Kabbany</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrodynamics" title="hydrodynamics">hydrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing"> flushing</a>, <a href="https://publications.waset.org/abstracts/search?q=delft%203d" title=" delft 3d"> delft 3d</a>, <a href="https://publications.waset.org/abstracts/search?q=Persian%20Gulf" title=" Persian Gulf"> Persian Gulf</a>, <a href="https://publications.waset.org/abstracts/search?q=artificial%20islands." title=" artificial islands."> artificial islands.</a> </p> <a href="https://publications.waset.org/abstracts/182437/flushing-model-for-artificial-islands-in-the-persian-gulf" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">59</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6622</span> Bed Evolution under One-Episode Flushing in a Truck Sewer in Paris, France</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gashin%20Shahsavari">Gashin Shahsavari</a>, <a href="https://publications.waset.org/abstracts/search?q=Gilles%20Arnaud-Fassetta"> Gilles Arnaud-Fassetta</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberto%20Campisano"> Alberto Campisano</a>, <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Bertilotti"> Roberto Bertilotti</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabien%20Riou"> Fabien Riou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sewer deposits have been identified as a major cause of dysfunctions in combined sewer systems regarding sewer management, which induces different negative consequents resulting in poor hydraulic conveyance, environmental damages as well as worker’s health. In order to overcome the problematics of sedimentation, flushing has been considered as the most operative and cost-effective way to minimize the sediments impacts and prevent such challenges. Flushing, by prompting turbulent wave effects, can modify the bed form depending on the hydraulic properties and geometrical characteristics of the conduit. So far, the dynamics of the bed-load during high-flow events in combined sewer systems as a complex environment is not well understood, mostly due to lack of measuring devices capable to work in the “hostile” in combined sewer system correctly. In this regards, a one-episode flushing issue from an opening gate valve with weir function was carried out in a trunk sewer in Paris to understanding its cleansing efficiency on the sediments (thickness: 0-30 cm). During more than 1h of flushing within 5 m distance in downstream of this flushing device, a maximum flowrate and a maximum level of water have been recorded at 5 m in downstream of the gate as 4.1 m3/s and 2.1 m respectively. This paper is aimed to evaluate the efficiency of this type of gate for around 1.1 km (from the point -50 m to +1050 m in downstream from the gate) by (i) determining bed grain-size distribution and sediments evolution through the sewer channel, as well as their organic matter content, and (ii) identifying sections that exhibit more changes in their texture after the flush. For the first one, two series of sampling were taken from the sewer length and then analyzed in laboratory, one before flushing and second after, at same points among the sewer channel. Hence, a non-intrusive sampling instrument has undertaken to extract the sediments smaller than the fine gravels. The comparison between sediments texture after the flush operation and the initial state, revealed the most modified zones by the flush effect, regarding the sewer invert slope and hydraulic parameters in the zone up to 400 m from the gate. At this distance, despite the increase of sediment grain-size rages, D50 (median grain-size) varies between 0.6 mm and 1.1 mm compared to 0.8 mm and 10 mm before and after flushing, respectively. Overall, regarding the sewer channel invert slope, results indicate that grains smaller than sands (< 2 mm) are more transported to downstream along about 400 m from the gate: in average 69% before against 38% after the flush with more dispersion of grain-sizes distributions. Furthermore, high effect of the channel bed irregularities on the bed material evolution has been observed after the flush. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bed-load%20evolution" title="bed-load evolution">bed-load evolution</a>, <a href="https://publications.waset.org/abstracts/search?q=combined%20sewer%20systems" title=" combined sewer systems"> combined sewer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency" title=" flushing efficiency"> flushing efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sediments%20transport" title=" sediments transport "> sediments transport </a> </p> <a href="https://publications.waset.org/abstracts/28069/bed-evolution-under-one-episode-flushing-in-a-truck-sewer-in-paris-france" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">403</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6621</span> Overcoming the Problems Affecting Drip Irrigation System through the Design of an Efficient Filtration and Flushing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Stephen%20A.%20Akinlabi">Stephen A. Akinlabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Esther%20T.%20Akinlabi"> Esther T. Akinlabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The drip irrigation system is one of the important areas that affect the livelihood of farmers directly. The use of drip irrigation system has been the most efficient system compared to the other types of irrigations systems because the drip irrigation helps to save water and increase the productivity of crops. But like any other system, it can be considered inefficient when the filters and the emitters get clogged while in operation. The efficiency of the entire system is reduced when the emitters are clogged and blocked. This consequently impact and affect the farm operations which may result in scarcity of farm products and increase the demand. This design work focuses on how to overcome some of the challenges affecting drip irrigation system through the design of an efficient filtration and flushing system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drip%20irrigation%20system" title="drip irrigation system">drip irrigation system</a>, <a href="https://publications.waset.org/abstracts/search?q=filters" title=" filters"> filters</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20texture" title=" soil texture"> soil texture</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20engineering%20design" title=" mechanical engineering design"> mechanical engineering design</a>, <a href="https://publications.waset.org/abstracts/search?q=analysis" title=" analysis"> analysis</a> </p> <a href="https://publications.waset.org/abstracts/5838/overcoming-the-problems-affecting-drip-irrigation-system-through-the-design-of-an-efficient-filtration-and-flushing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6620</span> Optimization of the Administration of Intravenous Medication by Reduction of the Residual Volume, Taking User-Friendliness, Cost Efficiency, and Safety into Account</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Poukens">A. Poukens</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Sluyts"> I. Sluyts</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Krings"> A. Krings</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Swartenbroekx"> J. Swartenbroekx</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Geeroms"> D. Geeroms</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Poukens"> J. Poukens</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction and Objectives: It has been known for many years that with the administration of intravenous medication, a rather significant part of the planned to be administered infusion solution, the residual volume ( the volume that remains in the IV line and or infusion bag), does not reach the patient and is wasted. This could possibly result in under dosage and diminished therapeutic effect. Despite the important impact on the patient, the reduction of residual volume lacks attention. An optimized and clearly stated protocol concerning the reduction of residual volume in an IV line is necessary for each hospital. As described in my Master’s thesis, acquiring the degree of Master in Hospital Pharmacy, administration of intravenous medication can be optimized by reduction of the residual volume. Herewith effectiveness, user-friendliness, cost efficiency and safety were taken into account. Material and Methods: By usage of a literature study and an online questionnaire sent out to all Flemish hospitals and hospitals in the Netherlands (province Limburg), current flush methods could be mapped out. In laboratory research, possible flush methods aiming to reduce the residual volume were measured. Furthermore, a self-developed experimental method to reduce the residual volume was added to the study. The current flush methods and the self-developed experimental method were compared to each other based on cost efficiency, user-friendliness and safety. Results: There is a major difference between the Flemish and the hospitals in the Netherlands (Province Limburg) concerning the approach and method of flushing IV lines after administration of intravenous medication. The residual volumes were measured and laboratory research showed that if flushing was done minimally 1-time equivalent to the residual volume, 95 percent of glucose would be flushed through. Based on the comparison, it became clear that flushing by use of a pre-filled syringe would be the most cost-efficient, user-friendly and safest method. According to laboratory research, the self-developed experimental method is feasible and has the advantage that the remaining fraction of the medication can be administered to the patient in unchanged concentration without dilution. Furthermore, this technique can be applied regardless of the level of the residual volume. Conclusion and Recommendations: It is recommendable to revise the current infusion systems and flushing methods in most hospitals. Aside from education of the hospital staff and alignment on a uniform substantiated protocol, an optimized and clear policy on the reduction of residual volume is necessary for each hospital. It is recommended to flush all IV lines with rinsing fluid with at least the equivalent volume of the residual volume. Further laboratory and clinical research for the self-developed experimental method are needed before this method can be implemented clinically in a broader setting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=intravenous%20medication" title="intravenous medication">intravenous medication</a>, <a href="https://publications.waset.org/abstracts/search?q=infusion%20therapy" title=" infusion therapy"> infusion therapy</a>, <a href="https://publications.waset.org/abstracts/search?q=IV%20flushing" title=" IV flushing"> IV flushing</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20volume" title=" residual volume"> residual volume</a> </p> <a href="https://publications.waset.org/abstracts/148808/optimization-of-the-administration-of-intravenous-medication-by-reduction-of-the-residual-volume-taking-user-friendliness-cost-efficiency-and-safety-into-account" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6619</span> Treatment of Greywater at Household by Using Ceramic Tablet Membranes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20T.%20Ahmed">Abdelkader T. Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Greywater is any wastewater draining from a household including kitchen sinks and bathroom tubs, except toilet wastes. Although this used water may contain grease, food particles, hair, and any number of other impurities, it may still be suitable for reuse after treatment. Greywater reusing serves two purposes including reduction the amount of freshwater needed to supply a household, and reduction the amount of wastewater entering sewer systems. This study aims to investigate and design a simple and cheap unit to treat the greywater in household via using ceramic membranes and reuse it in supplying water for toilet flushing. The study include an experimental program for manufacturing several tablet ceramic membranes from clay and sawdust with three different mixtures. The productivity and efficiency of these ceramic membranes were investigated by chemical and physical tests for greywater before and after filtration through these membranes. Then a treatment unit from this ceramic membrane was designed based on the experimental results of lab tests. Results showed that increase sawdust percent with the mixture increase the flow rate and productivity of treated water but decrease in the same time the water quality. The efficiency of the new ceramic membrane reached 95%. The treatment unit save 0.3 m3/day water for toilet flushing without need to consume them from the fresh water supply network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ceramic%20membranes" title="ceramic membranes">ceramic membranes</a>, <a href="https://publications.waset.org/abstracts/search?q=filtration" title=" filtration"> filtration</a>, <a href="https://publications.waset.org/abstracts/search?q=greywater" title=" greywater"> greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment "> wastewater treatment </a> </p> <a href="https://publications.waset.org/abstracts/39192/treatment-of-greywater-at-household-by-using-ceramic-tablet-membranes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6618</span> Solar Pond: Some Issues in Their Management and Mathematical Description</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Abdullah">A. A. Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20A.%20Lindsay"> K. A. Lindsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The management of a salt-gradient is investigated with respect to the interaction between the solar pond and its associated evaporation pond. Issues considered are the impact of precipitation and the operation of the flushing system with particular reference to the case in which the flushing fluid is pure water. Results suggest that a management strategy based on a flushing system that simply replaces evaporation losses of water from the solar pond and evaporation pond will be optimally efficient. Such a management strategy will maintain the operational viability of a salt-gradient solar pond as a reservoir of cheap heat while simultaneously ensuring that the associated evaporation pond can feed the storage zone of the solar pond with sufficient saturated brine to balance the effect of salt diffusion. Other findings are, first, that once near saturation is achieved in the evaporation pond, the efficacy of the proposed management strategy is relatively insensitive to both the size of the evaporation pond or its depth, and second, small changes in the extraction of heat from the storage zone of a salt-gradient solar pond have an amplified effect on the temperature of that zone. The possibility of boiling of the storage zone cannot be ignored in a well-configured salt-gradient solar pond. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aqueous%20sodium%20chloride" title="aqueous sodium chloride">aqueous sodium chloride</a>, <a href="https://publications.waset.org/abstracts/search?q=constitutive%20expression" title=" constitutive expression"> constitutive expression</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20pond" title=" solar pond"> solar pond</a>, <a href="https://publications.waset.org/abstracts/search?q=salt-gradient" title=" salt-gradient"> salt-gradient</a> </p> <a href="https://publications.waset.org/abstracts/42081/solar-pond-some-issues-in-their-management-and-mathematical-description" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6617</span> Quality Evaluation of Treated Ballast Seawater for Potential Reuse</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Muhamad">Siti Nur Muhamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Abu%20Ubaidah%20Amir"> Mohamad Abu Ubaidah Amir</a>, <a href="https://publications.waset.org/abstracts/search?q=Adenen%20Shuhada%20Abdul%20Aziz"> Adenen Shuhada Abdul Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=Siti%20Sarah%20Mohd%20Isnan"> Siti Sarah Mohd Isnan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ainul%20Husna%20Abdul%20Rahman"> Ainul Husna Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nur%20Afiqah%20Rosly"> Nur Afiqah Rosly</a>, <a href="https://publications.waset.org/abstracts/search?q=Roshamida%20Abd%20Jamil"> Roshamida Abd Jamil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The International Convention for the Control and Management of Ships’ Ballast Water and Sediments (BWM Convention) will commencing on 8 September 2017 after ratified by 51 States in September 2016. However, there is no value recovered for the treated ballast water as it simply discharged during de-ballasting. In order to evaluate value creation of treated ballast water, three seawater applications which are seawater toilet flushing, cooling tower and desalination was studied and compared with treated ballast seawater. An exploratory study was conducted in Singapore as a case study as this country is facing water scarcity issues and a busy port in the world which received more than 28 billion m3 of ballast water in 2015. Surprisingly the treatment technology between seawater toilet flushing and ballast water management has similarity as both applications use screening and disinfection process and quality standard and analysis between treated ballast water with seawater applications found that seawater toilet flushing have the same quality parameter with treated ballast water. Thus, the treated ballast water can replace the raw seawater for seawater desalination. As such, with reduction of cost for screen unit, desalination water can exceed water production by NEWater in Singapore as the cost can recover the energy needed for desalination. It can conclude that treated ballast water has high recovery value and can be reused in seawater application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20treatment" title="ballast water treatment">ballast water treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=desalination" title=" desalination"> desalination</a>, <a href="https://publications.waset.org/abstracts/search?q=BWM%20convention" title=" BWM convention"> BWM convention</a>, <a href="https://publications.waset.org/abstracts/search?q=ballast%20water%20management" title=" ballast water management"> ballast water management</a> </p> <a href="https://publications.waset.org/abstracts/64168/quality-evaluation-of-treated-ballast-seawater-for-potential-reuse" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6616</span> Investigating Reservior Sedimentation Control in the Conservation of Water </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mosupi%20Ratshaa">Mosupi Ratshaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite years of diligent study, sedimentation is still undoubtedly the most severe technical problem faced by the dam industry. The problem of sedimentation build-up and its removal should be the focus as an approach to remedy this. The world's reservoirs lose about 1% of their storage capacity yearly to sedimentation, what this means is that 1% of water that could be stored is lost the world-over. The increase in population means that the need for water also increases and, therefore, the loss due to sedimentation is of great concern especially to the conservation of water. When it comes to reservoir sedimentation, the thought of water conservation comes with soil conservation since this increasing sediment that takes the volume meant for water is being lost from dry land. For this reason, reservoir sediment control is focused on reducing sediment entering the reservoir and reducing sediment within the reservoir. There are many problems with sediment control such as the difficulty to predict settling patterns, inability to greatly reduce the sediment volume entering the river flow which increases the reservoirs trap efficiency just to mention a few. Notably reservoirs are habitats for flora and fauna, the process of removing sediment from these reservoirs damages this ecosystem so there is an ethical point to be considered in this section. This paper looks at the methods used to control the sedimentation of reservoirs and their effects to the ecosystem in the aim of reducing water losses due to sedimentation. Various control measures which reduce sediment entering the reservoir such as Sabo dams or Check dams along with measures which emphasize the reduction in built-up settled sediment such as flushing will be reviewed all with the prospect of conservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sedimentation" title="sedimentation">sedimentation</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=ecosystem" title=" ecosystem"> ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing "> flushing </a> </p> <a href="https://publications.waset.org/abstracts/35796/investigating-reservior-sedimentation-control-in-the-conservation-of-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35796.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">336</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6615</span> Development of an Integrated Framework for Life-Cycle Economic, Environmental and Human Health Impact Assessment for Reclaimed Water Use in Water Systems of Various Scales</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Yao%20Wang">Yu-Yao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Meng%20Hu"> Xiao-Meng Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Joanne%20Yeung"> Joanne Yeung</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao-Yan%20Li"> Xiao-Yan Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high private cost and unquantified external cost limit the development of reclaimed water. In this study, an integrated framework comprising life cycle assessment (LCA), quantitative microbial risk assessment (QMRA), and life cycle costing (LCC) was developed to evaluate both costs of reclaimed water supply in water systems of various scales. LCA assesses the environmental impacts, and QMRA estimates the associated pathogenic impacts. These impacts are monetized as external costs and analyzed with the private cost by LCC to count the total life cycle cost. The framework evaluated the Hong Kong urban water system in the baseline scenario (BS) and five wastewater reuse scenarios (RS). They are RSI: substituting freshwater for toilet flushing only, RSII: substituting both freshwater and seawater for toilet flushing, RSIII: using reclaimed water for all non-potable uses, RSIV: using reclaimed water for all non-potable uses and indirect potable uses, and RSV: non-potable use and indirect potable use by conveying 100% reclaimed water to recharge the reservoirs. The results show that substituting freshwater and seawater for toilet flushing has the least total life cycle cost, exhibiting that it is the most cost-effective option for Hong Kong. Meanwhile, the evaluation results show that the external cost of each scenario is comparable to the corresponding private cost, indicating the importance of the inclusion of comprehensive external cost evaluation in private cost assessment of water systems with reclaimed water supply. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20assessment" title="life cycle assessment">life cycle assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=life%20cycle%20costing" title=" life cycle costing"> life cycle costing</a>, <a href="https://publications.waset.org/abstracts/search?q=quantitative%20microbial%20risk%20assessment" title=" quantitative microbial risk assessment"> quantitative microbial risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20reclamation" title=" water reclamation"> water reclamation</a>, <a href="https://publications.waset.org/abstracts/search?q=reclaimed%20water" title=" reclaimed water"> reclaimed water</a>, <a href="https://publications.waset.org/abstracts/search?q=alternative%20water%20resources" title=" alternative water resources"> alternative water resources</a> </p> <a href="https://publications.waset.org/abstracts/158569/development-of-an-integrated-framework-for-life-cycle-economic-environmental-and-human-health-impact-assessment-for-reclaimed-water-use-in-water-systems-of-various-scales" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158569.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">121</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6614</span> Numerical Methodology to Support the Development of a Double Chamber Syringe</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Louren%C3%A7o%20Bastos">Lourenço Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Filipa%20Carneiro"> Filipa Carneiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Vale"> Bruno Vale</a>, <a href="https://publications.waset.org/abstracts/search?q=Rita%20Marques%20Joana%20Silva"> Rita Marques Joana Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Freitas"> Ricardo Freitas</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%82ngelo%20Marques"> Ângelo Marques</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Cortez"> Sara Cortez</a>, <a href="https://publications.waset.org/abstracts/search?q=Alberta%20Coelho"> Alberta Coelho</a>, <a href="https://publications.waset.org/abstracts/search?q=Pedro%20Parreira"> Pedro Parreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Sousa"> Liliana Sousa</a>, <a href="https://publications.waset.org/abstracts/search?q=Anabela%20Salgueiro"> Anabela Salgueiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Bruno%20Silva"> Bruno Silva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The process of flushing is considered to be an adequate technique to reduce the risk of infection during the clinical practice of venous catheterization. Nonetheless, there is still a lack of adhesion to this method, in part due to the complexity of this procedure. The project SeringaDuo aimed to develop an innovative double-chamber syringe for intravenous sequential administration of drugs and serums. This device served the purpose of improving the adherence to the practice, through the reduction of manipulations needed, which also improves patient safety, and though the promotion of flushing practice by health professionals, by simplifying this task. To assist on the development of this innovative syringe, a numerical methodology was developed and validated in order to predict the syringe’s mechanical and flow behavior during the fluids’ loading and administration phases, as well as to allow the material behavior evaluation during its production. For this, three commercial numerical simulation software was used, namely ABAQUS, ANSYS/FLUENT, and MOLDFLOW. This methodology aimed to evaluate the concepts feasibility and to optimize the geometries of the syringe’s components, creating this way an iterative process for product development based on numerical simulations, validated by the production of prototypes. Through this methodology, it was possible to achieve a final design that fulfils all the characteristics and specifications defined. This iterative process based on numerical simulations is a powerful tool for product development that allows obtaining fast and accurate results without the strict need for prototypes. An iterative process can be implemented, consisting of consecutive constructions and evaluations of new concepts, to obtain an optimized solution, which fulfils all the predefined specifications and requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Venous%20catheterization" title="Venous catheterization">Venous catheterization</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing" title=" flushing"> flushing</a>, <a href="https://publications.waset.org/abstracts/search?q=syringe" title=" syringe"> syringe</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/122369/numerical-methodology-to-support-the-development-of-a-double-chamber-syringe" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122369.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6613</span> Comprehensive Assessment of Energy Efficiency within the Production Process </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Kreitlein">S. Kreitlein</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Eder"> N. Eder</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Franke"> J. Franke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The importance of energy efficiency within the production process increases steadily. Unfortunately, so far no tools for a comprehensive assessment of energy efficiency within the production process exist. Therefore the Institute for Factory Automation and Production Systems of the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency: EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state of the art as well as the developed approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency%20value" title=" energy efficiency value"> energy efficiency value</a>, <a href="https://publications.waset.org/abstracts/search?q=energetic%20process%20efficiency" title=" energetic process efficiency"> energetic process efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=production" title=" production"> production</a> </p> <a href="https://publications.waset.org/abstracts/23200/comprehensive-assessment-of-energy-efficiency-within-the-production-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23200.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">733</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6612</span> Effect of Lullabies on Babies Stress and Relaxation Symptoms in the Neonatal Intensive Care Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meltem%20%20K%C3%BCrt%C3%BCnc%C3%BC">Meltem Kürtüncü</a>, <a href="https://publications.waset.org/abstracts/search?q=I%C5%9F%C4%B1n%20Alkan"> Işın Alkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objective: This study was carried out with an experimental design in order to determine whether the lullaby, which was listened from mother’s voice and a stranger’s voice to the babies born at term and hospitalized in neonatal intensive care unit, had an effect on stress and relaxation symptoms of the infants. Method: Data from the study were obtained from 90 newborn babies who were hospitalized in Neonatal Intensive Care Unit of Zonguldak Maternity And Children Hospital between September 2015-January 2016 and who met the eligibility criteria. Lullaby concert was performed by choosing one of the suitable care hours. Stress and relaxation symptoms were recorded by the researcher on “Newborn response follow-up form” at pre-care and post-care. Results: After lullaby concert when stress symptoms compared to infants in the experimental and control groups before the care was not detected statistically significant difference between crying, contraction, facial grimacing, flushing, cyanosis and the rates of increase in temperature. After care, crying, contractions, facial grimacing, flushing, and restlessness revealed a statistically significant difference between the groups, but as the cyanosis and temperature increased stress responses did not result in a significant difference between the groups. In the control group babies the crying, contraction, facial grimacing, flushing, and restlessness behaviors rates were found to be significantly higher than experimental group babies. After lullaby concert when relaxation symptoms compared to infants in the experimental and control groups before the care, eye contact rates who listen to lullaby from mother’s voice was found to be significantly higher than infants who listen to lullaby from stranger’s voice and infants in the control group. After care as eye contact, smiling, sucking/searching, yawning, non-crying and sleep behaviors relaxation symptoms revealed statistically significant results. In the control group, these behaviors were found statistically lower degree than the experimental groups. Conclusion: Lullaby concerts as masking the ambient noise, reducing the stress symptoms and increasing the relaxation symptoms, and also for soothing and stimulant affects, due to ease the transition to the sleep state should be preferred in the neonatal intensive care units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lullaby" title="lullaby">lullaby</a>, <a href="https://publications.waset.org/abstracts/search?q=mother%20voice" title=" mother voice"> mother voice</a>, <a href="https://publications.waset.org/abstracts/search?q=relaxation" title=" relaxation"> relaxation</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/64813/effect-of-lullabies-on-babies-stress-and-relaxation-symptoms-in-the-neonatal-intensive-care-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">230</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6611</span> An Output Oriented Super-Efficiency Model for Considering Time Lag Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanshuang%20Zhang">Yanshuang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Jeong"> Byungho Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There exists some time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in calculating efficiency of decision making units (DMU). Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. This problem can be resolved a super-efficiency model. However, a super efficiency model sometimes causes infeasibility problem. This paper suggests an output oriented super-efficiency model for efficiency evaluation under the consideration of time lag effect. A case example using a long term research project is given to compare the suggested model with the MpO model <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=Super-efficiency" title=" Super-efficiency"> Super-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Time%20Lag" title=" Time Lag"> Time Lag</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20activities" title=" research activities"> research activities</a> </p> <a href="https://publications.waset.org/abstracts/21208/an-output-oriented-super-efficiency-model-for-considering-time-lag-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6610</span> Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Huleihil">Mahmoud Huleihil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetohydrodynamic%20generator" title="magnetohydrodynamic generator">magnetohydrodynamic generator</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20efficiency" title=" electrical efficiency"> electrical efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20power" title=" maximum power"> maximum power</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20efficiency" title=" maximum efficiency"> maximum efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20engine" title=" heat engine"> heat engine</a> </p> <a href="https://publications.waset.org/abstracts/103498/power-efficiency-characteristics-of-magnetohydrodynamic-thermodynamic-gas-cycle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103498.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6609</span> Fin Efficiency of Helical Fin with Fixed Fin Tip Temperature Boundary Condition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richard%20G.%20Carranza">Richard G. Carranza</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Ospina"> Juan Ospina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The fin efficiency for a helical fin with a fixed fin tip (or arbitrary) temperature boundary condition is presented. Firstly, the temperature profile throughout the fin is determined via an energy balance around the fin itself. Secondly, the fin efficiency is formulated by integrating across the entire surface of the helical fin. An analytical expression for the fin efficiency is presented and compared with the literature for accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=fin" title=" fin"> fin</a>, <a href="https://publications.waset.org/abstracts/search?q=heat" title=" heat"> heat</a>, <a href="https://publications.waset.org/abstracts/search?q=helical" title=" helical"> helical</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer" title=" transfer"> transfer</a> </p> <a href="https://publications.waset.org/abstracts/24252/fin-efficiency-of-helical-fin-with-fixed-fin-tip-temperature-boundary-condition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">684</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6608</span> Performance of Environmental Efficiency of Energy Consumption in OPEC Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Fathi">Bahram Fathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Khodaparast%20Mashhadi"> Mahdi Khodaparast Mashhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masuod%20Homayounifar"> Masuod Homayounifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Global awareness on energy security and climate change has created much interest in assessing energy efficiency performance. A number of previous studies have contributed to evaluate energy efficiency performance using different analytical techniques among which data envelopment analysis (DEA) has recently received increasing attention. Most of DEA-related energy efficiency studies do not consider undesirable outputs such as CO2 emissions in their modeling framework, which may lead to biased energy efficiency values. Within a joint production frame work of desirable and undesirable outputs, in this paper we construct energy efficiency performance index for measuring energy efficiency performance by using environmental DEA model with CO2 emissions. We finally apply the index proposed to assess the energy efficiency performance in OPEC over time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=OPEC" title=" OPEC"> OPEC</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/40892/performance-of-environmental-efficiency-of-energy-consumption-in-opec-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6607</span> Maximizing the Efficiency of Knowledge Management Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tori%20Reddy%20Dodla">Tori Reddy Dodla</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Ann%20Jones"> Laura Ann Jones</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this study was to propose strategies to improve the efficiency of Knowledge Management Systems (KMS). This study highlights best practices from various industries to create an overall summary of Knowledge Management (KM) and efficiency in organizational performance. Results indicated eleven best practices for maximizing the efficiency of organizational KMS that can be divided into four categories: Designing the KMS, Identifying Case Studies, Implementing the KMS, and Promoting adoption and usage. Our findings can be used as a foundation for scholars to conduct further research on KMS efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20efficiency" title=" knowledge management efficiency"> knowledge management efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management%20systems" title=" knowledge management systems"> knowledge management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20performance" title=" organizational performance"> organizational performance</a> </p> <a href="https://publications.waset.org/abstracts/165236/maximizing-the-efficiency-of-knowledge-management-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/165236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6606</span> A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yanshuang%20Zhang">Yanshuang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Byungho%20Jeong"> Byungho Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DEA" title="DEA">DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=super-efficiency" title=" super-efficiency"> super-efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=time%20lag" title=" time lag"> time lag</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-periods%20input" title=" multi-periods input"> multi-periods input</a> </p> <a href="https://publications.waset.org/abstracts/13008/a-super-efficiency-model-for-evaluating-efficiency-in-the-presence-of-time-lag-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6605</span> Assessment of Tidal Influence in Spatial and Temporal Variations of Water Quality in Masan Bay, Korea</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20J.%20Kim">S. J. Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Yoo"> Y. J. Yoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Slack-tide sampling was carried out at seven stations at high and low tides for a tidal cycle, in summer (7, 8, 9) and fall (10), 2016 to determine the differences of water quality according to tides in Masan Bay. The data were analyzed by Pearson correlation and factor analysis. The mixing state of all the water quality components investigated is well explained by the correlation with salinity (SAL). Turbidity (TURB), dissolved silica (DSi), nitrite and nitrate nitrogen (NNN) and total nitrogen (TN), which find their way into the bay from the streams and have no internal source and sink reaction, showed a strong negative correlation with SAL at low tide, indicating the property of conservative mixing. On the contrary, in summer and fall, dissolved oxygen (DO), hydrogen sulfide (H2S) and chemical oxygen demand with KMnO4 (CODMn) of the surface and bottom water, which were sensitive to an internal source and sink reaction, showed no significant correlation with SAL at high and low tides. The remaining water quality parameters showed a conservative or a non-conservative mixing pattern depending on the mixing characteristics at high and low tides, determined by the functional relationship between the changes of the flushing time and the changes of the characteristics of water quality components of the end-members in the bay. Factor analysis performed on the concentration difference data sets between high and low tides helped in identifying the principal latent variables for them. The concentration differences varied spatially and temporally. Principal factors (PFs) scores plots for each monitoring situation showed high associations of the variations to the monitoring sites. At sampling station 1 (ST1), temperature (TEMP), SAL, DSi, TURB, NNN and TN of the surface water in summer, TEMP, SAL, DSi, DO, TURB, NNN, TN, reactive soluble phosphorus (RSP) and total phosphorus (TP) of the bottom water in summer, TEMP, pH, SAL, DSi, DO, TURB, CODMn, particulate organic carbon (POC), ammonia nitrogen (AMN), NNN, TN and fecal coliform (FC) of the surface water in fall, TEMP, pH, SAL, DSi, H2S, TURB, CODMn, AMN, NNN and TN of the bottom water in fall commonly showed up as the most significant parameters and the large concentration differences between high and low tides. At other stations, the significant parameters showed differently according to the spatial and temporal variations of mixing pattern in the bay. In fact, there is no estuary that always maintains steady-state flow conditions. The mixing regime of an estuary might be changed at any time from linear to non-linear, due to the change of flushing time according to the combination of hydrogeometric properties, inflow of freshwater and tidal action, And furthermore the change of end-member conditions due to the internal sinks and sources makes the occurrence of concentration difference inevitable. Therefore, when investigating the water quality of the estuary, it is necessary to take a sampling method considering the tide to obtain average water quality data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conservative%20mixing" title="conservative mixing">conservative mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=end-member" title=" end-member"> end-member</a>, <a href="https://publications.waset.org/abstracts/search?q=factor%20analysis" title=" factor analysis"> factor analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=flushing%20time" title=" flushing time"> flushing time</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20and%20low%20tide" title=" high and low tide"> high and low tide</a>, <a href="https://publications.waset.org/abstracts/search?q=latent%20variables" title=" latent variables"> latent variables</a>, <a href="https://publications.waset.org/abstracts/search?q=non-conservative%20mixing" title=" non-conservative mixing"> non-conservative mixing</a>, <a href="https://publications.waset.org/abstracts/search?q=slack-tide%20sampling" title=" slack-tide sampling"> slack-tide sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20and%20temporal%20variations" title=" spatial and temporal variations"> spatial and temporal variations</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20and%20bottom%20water" title=" surface and bottom water"> surface and bottom water</a> </p> <a href="https://publications.waset.org/abstracts/105383/assessment-of-tidal-influence-in-spatial-and-temporal-variations-of-water-quality-in-masan-bay-korea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6604</span> The Effect of Subsurface Dam on Saltwater Intrusion in Heterogeneous Coastal Aquifers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antoifi%20Abdoulhalik">Antoifi Abdoulhalik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashraf%20Ahmed"> Ashraf Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Saltwater intrusion (SWI) in coastal aquifers has become a growing threat for many countries around the world. While various control measures have been suggested to mitigate SWI, the construction of subsurface physical barriers remains one of the most effective solutions for this problem. In this work, we used laboratory experiments and numerical simulations to investigate the effectiveness of subsurface dams in heterogeneous layered coastal aquifer with different layering patterns. Four different cases were investigated, including a homogeneous (case H), and three heterogeneous cases in which a low permeability (K) layer was set in the top part of the system (case LH), in the middle part of the system (case HLH) and the bottom part of the system (case HL). Automated image analysis technique was implemented to quantify the main SWI parameters under high spatial and temporal resolution. The method also provides transient salt concentration maps, allowing for the first time clear visualization of the spillage of saline water over the dam (advancing wedge condition) as well as the flushing of residual saline water from the freshwater area (receding wedge condition). The SEAWAT code was adopted for the numerical simulations. The results show that the presence of an overlying layer of low permeability enhanced the ability of the dam to retain the saline water. In such conditions, the rate of saline water spillage and inland extension may considerably be reduced. Conversely, the presence of an underlying low K layer led to a faster increase of saltwater volume on the seaward side of the wall, therefore considerably facilitating the spillage. The results showed that a complete removal of the residual saline water eventually occurred in all the investigated scenarios, with a rate of removal strongly affected by the hydraulic conductivity of the lower part of the aquifer. The data showed that the addition of the underlying low K layer in case HL caused the complete flushing to be almost twice longer than in the homogeneous scenario. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heterogeneous%20coastal%20aquifers" title="heterogeneous coastal aquifers">heterogeneous coastal aquifers</a>, <a href="https://publications.waset.org/abstracts/search?q=laboratory%20experiments" title=" laboratory experiments"> laboratory experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20barriers" title=" physical barriers"> physical barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=seawater%20intrusion%20control" title=" seawater intrusion control"> seawater intrusion control</a> </p> <a href="https://publications.waset.org/abstracts/69006/the-effect-of-subsurface-dam-on-saltwater-intrusion-in-heterogeneous-coastal-aquifers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69006.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6603</span> On the Efficiency of a Double-Cone Gravitational Motor and Generator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barenten%20Suciu">Barenten Suciu</a>, <a href="https://publications.waset.org/abstracts/search?q=Akio%20Miyamura"> Akio Miyamura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, following the study-case of an inclined plane gravitational machine, efficiency of a double-cone gravitational motor and generator is evaluated. Two types of efficiency ratios, called <em>translational efficiency</em> and <em>rotational efficiency</em>, are defined relative to the intended duty of the gravitational machine, which can be either the production of translational kinetic energy, or rotational kinetic energy. One proved that, for pure rolling movement of the double- cone, in the absence of rolling friction, the total mechanical energy is conserved. In such circumstances, as the motion of the double-cone progresses along rails, the translational efficiency decreases and the rotational efficiency increases, in such way that sum of the rotational and translational efficiencies remains unchanged and equal to 1. Results obtained allow a comparison of the gravitational machine with other types of motor-generators, in terms of the achievable efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=efficiency" title="efficiency">efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=gravitational%20motor%20and%20generator" title=" gravitational motor and generator"> gravitational motor and generator</a>, <a href="https://publications.waset.org/abstracts/search?q=rolling%20and%20sliding" title=" rolling and sliding"> rolling and sliding</a>, <a href="https://publications.waset.org/abstracts/search?q=truncated%20double-cone" title=" truncated double-cone"> truncated double-cone</a> </p> <a href="https://publications.waset.org/abstracts/80923/on-the-efficiency-of-a-double-cone-gravitational-motor-and-generator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">289</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6602</span> Water Efficiency: Greywater Recycling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Melissa%20Lubitz">Melissa Lubitz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Water scarcity is one of the crucial challenges of our time. There needs to be a focus on creating a society where people and nature flourish, regardless of climatic conditions. One of the solutions we can look to is decentralized greywater recycling. The vision is simple. Every building has its own water source being greywater from the bath, shower, sink and washing machine. By treating this in the home, you can save 25-45% of potable water use and wastewater production, a reduction in energy consumption and CO2 emissions. This reusable water is clean, and safe to be used for toilet flushing, washing machine, and outdoor irrigation. Companies like Hydraloop have been committed to the greywater recycle-ready building concept for years. This means that drinking water conservation and water reuse are included as standards in the design of all new buildings. Sustainability and renewal go hand in hand. This vision includes not only optimizing water savings and waste reduction but also forging strong partnerships that bring this ambition to life. Together with regulators, municipalities and builders, a sustainable and water-conscious future is pursued. This is an opportunity to be part of a movement that is making a difference. By pushing this initiative forward, we become part of a growing community that resists dehydration, believes in sustainability, and is committed to a living environment at the forefront of change: sustainable living, where saving water is the norm and where we shape the future together. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greywater" title="greywater">greywater</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater%20treatment" title=" wastewater treatment"> wastewater treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20conservation" title=" water conservation"> water conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20water%20society" title=" circular water society"> circular water society</a> </p> <a href="https://publications.waset.org/abstracts/178769/water-efficiency-greywater-recycling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178769.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6601</span> Integrating Data Envelopment Analysis and Variance Inflation Factor to Measure the Efficiency of Decision Making Units</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Kazemi">Mostafa Kazemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahra%20N.%20Farkhani"> Zahra N. Farkhani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper proposes an integrated Data Envelopment Analysis (DEA) and Variance Inflation Factor (VIF) model for measuring the technical efficiency of decision making units. The model is validated using a set of 69% sales representatives’ dairy products. The analysis is done in two stages, in the first stage, VIF technique is used to distinguish independent effective factors of resellers, and in the second stage we used DEA for measuring efficiency for both constant and variable return to scales status. Further DEA is used to examine the utilization of environmental factors on efficiency. Results of this paper indicated an average managerial efficiency of 83% in the whole sales representatives’ dairy products. In addition, technical and scale efficiency were counted 96% and 80% respectively. 38% of sales representative have the technical efficiency of 100% and 72% of the sales representative in terms of managerial efficiency are quite efficient.High levels of relative efficiency indicate a good condition for sales representative efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis%20%28DEA%29" title="data envelopment analysis (DEA)">data envelopment analysis (DEA)</a>, <a href="https://publications.waset.org/abstracts/search?q=relative%20efficiency" title=" relative efficiency"> relative efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=sales%20representatives%E2%80%99%20dairy%20products" title=" sales representatives’ dairy products"> sales representatives’ dairy products</a>, <a href="https://publications.waset.org/abstracts/search?q=variance%20inflation%20factor%20%28VIF%29" title=" variance inflation factor (VIF)"> variance inflation factor (VIF)</a> </p> <a href="https://publications.waset.org/abstracts/35762/integrating-data-envelopment-analysis-and-variance-inflation-factor-to-measure-the-efficiency-of-decision-making-units" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35762.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6600</span> Parametric Influence and Optimization of Wire-EDM on Oil Hardened Non-Shrinking Steel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nixon%20Kuruvila">Nixon Kuruvila</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20V.%20Ravindra"> H. V. Ravindra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Material Removal Rate (MRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Pulse-off duration, Current, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for lower pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dimensional%20accuracy%20%28DA%29" title="dimensional accuracy (DA)">dimensional accuracy (DA)</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis%20%28RA%29" title=" regression analysis (RA)"> regression analysis (RA)</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method%20%28TM%29" title=" Taguchi method (TM)"> Taguchi method (TM)</a>, <a href="https://publications.waset.org/abstracts/search?q=volumetric%20material%20removal%20rate%20%28VMRR%29" title=" volumetric material removal rate (VMRR)"> volumetric material removal rate (VMRR)</a> </p> <a href="https://publications.waset.org/abstracts/24005/parametric-influence-and-optimization-of-wire-edm-on-oil-hardened-non-shrinking-steel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6599</span> Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juan%20Sep%C3%BAlveda">Juan Sepúlveda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=MCA" title=" MCA"> MCA</a>, <a href="https://publications.waset.org/abstracts/search?q=scientometric" title=" scientometric"> scientometric</a>, <a href="https://publications.waset.org/abstracts/search?q=trends" title=" trends"> trends</a> </p> <a href="https://publications.waset.org/abstracts/45537/evaluation-of-research-in-the-field-of-energy-efficiency-and-mca-methods-using-publications-databases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">370</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6598</span> Efficiency in Islamic Banks: Some Empirical Evidences in Indonesian Finance Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Sameer%20El%20Khatib">Ahmed Sameer El Khatib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the present paper is to examine the revenue efficiency of the Indonesian Islamic banking sector. The study also seeks to investigate the potential internal (bank specific) and external (macroeconomic) determinants that influence the revenue efficiency of Indonesian domestic Islamic banks. We employ the whole gamut of domestic and foreign Islamic banks operating in the Indonesian Islamic banking sector during the period of 2009 to 2018. The level of revenue efficiency is computed by using the Data Envelopment Analysis (DEA) method. Furthermore, we employ a panel regression analysis framework based on the Ordinary Least Square (OLS) method to examine the potential determinants of revenue efficiency. The results indicate that the level of revenue efficiency of Indonesian domestic Islamic banks is lower compared to their foreign Islamic bank counterparts. We find that bank market power, liquidity, and management quality significantly influence the improvement in revenue efficiency of the Indonesian domestic Islamic banks during the period under study. By calculating these efficiency concepts, we can observe the efficiency levels of the domestic and foreign Islamic banks. In addition, by comparing both cost and profit efficiency, we can identify the influence of the revenue efficiency on the banks’ profitability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Islamic%20Finance" title="Islamic Finance">Islamic Finance</a>, <a href="https://publications.waset.org/abstracts/search?q=Islamic%20Banks" title=" Islamic Banks"> Islamic Banks</a>, <a href="https://publications.waset.org/abstracts/search?q=Revenue%20Efficiency" title=" Revenue Efficiency"> Revenue Efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Data%20Envelopment%20Analysis" title=" Data Envelopment Analysis"> Data Envelopment Analysis</a> </p> <a href="https://publications.waset.org/abstracts/127147/efficiency-in-islamic-banks-some-empirical-evidences-in-indonesian-finance-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/127147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6597</span> Performance of Environmental Efficiency of Energy Iran and Other Middle East Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bahram%20Fathi">Bahram Fathi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Khodaparast%20Mashhadi"> Mahdi Khodaparast Mashhadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Masuod%20Homayounifar"> Masuod Homayounifar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> According to 1404 forecasting documentation, among the most fundamental ways of Iran’s success in competition with other regional countries are innovations, efficiency enhancements and domestic productivity. Therefore, in this study, the energy consumption efficiency of Iran and the neighbor countries has been measured in the period between 2007-2012 considering the simultaneous economic activities, CO2 emission, and consumption of energy through data envelopment analysis of undesirable output. The results of the study indicated that the energy efficiency changes in both Iran and the average neighbor countries has been on a descending trend and Iran’s energy efficiency status is not desirable compared to the other countries in the region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental" title=" environmental"> environmental</a>, <a href="https://publications.waset.org/abstracts/search?q=undesirable%20output" title=" undesirable output"> undesirable output</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20envelopment%20analysis" title=" data envelopment analysis"> data envelopment analysis</a> </p> <a href="https://publications.waset.org/abstracts/39885/performance-of-environmental-efficiency-of-energy-iran-and-other-middle-east-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39885.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6596</span> Productive Efficiency in Asean Banking</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suhartono%20Suhartono">Suhartono Suhartono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Issue of cost efficiency is then becoming pivotal point because public expect cost of banking operation reducing and benefited of consumers. This study examines the determinants of cost efficiency of banks operating in 8 member countries of the Association of Southeast Asian Nations (ASEAN). This study uses economics theory approach to examine the existence of economies of scale in the ASEAN Banking market especially on its impact on cost efficiency. We apply concept of average cost (AC) as a proxy for the cost efficiency. We find that economies of scale is existing in the banking market indicating scale and scope economies should be considered in the industrial policy. The stronger capital position is also positive to efficiency means stronger capitalized banks are more efficient. Bank that remunerates better tend to be more efficient as result economic capital effect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20efficiency" title="cost efficiency">cost efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=ASEAN" title=" ASEAN"> ASEAN</a>, <a href="https://publications.waset.org/abstracts/search?q=economies%20of%20scale" title=" economies of scale"> economies of scale</a>, <a href="https://publications.waset.org/abstracts/search?q=issue%20of%20cost" title=" issue of cost "> issue of cost </a> </p> <a href="https://publications.waset.org/abstracts/29902/productive-efficiency-in-asean-banking" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6595</span> Calculation of Detection Efficiency of Horizontal Large Volume Source Using Exvol Code</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Kang">M. Y. Kang</a>, <a href="https://publications.waset.org/abstracts/search?q=Euntaek%20Yoon"> Euntaek Yoon</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20D.%20Choi"> H. D. Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To calculate the full energy (FE) absorption peak efficiency for arbitrary volume sample, we developed and verified the EXVol (Efficiency calculator for EXtended Voluminous source) code which is based on effective solid angle method. EXVol is possible to describe the source area as a non-uniform three-dimensional (x, y, z) source. And decompose and set it into several sets of volume units. Users can equally divide (x, y, z) coordinate system to calculate the detection efficiency at a specific position of a cylindrical volume source. By determining the detection efficiency for differential volume units, the total radiative absolute distribution and the correction factor of the detection efficiency can be obtained from the nondestructive measurement of the source. In order to check the performance of the EXVol code, Si ingot of 20 cm in diameter and 50 cm in height were used as a source. The detector was moved at the collimation geometry to calculate the detection efficiency at a specific position and compared with the experimental values. In this study, the performance of the EXVol code was extended to obtain the detection efficiency distribution at a specific position in a large volume source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=attenuation" title="attenuation">attenuation</a>, <a href="https://publications.waset.org/abstracts/search?q=EXVol" title=" EXVol"> EXVol</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20efficiency" title=" detection efficiency"> detection efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=volume%20source" title=" volume source"> volume source</a> </p> <a href="https://publications.waset.org/abstracts/97158/calculation-of-detection-efficiency-of-horizontal-large-volume-source-using-exvol-code" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=220">220</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=221">221</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=flushing%20efficiency&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>