CINXE.COM

Search results for: perforated plate

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: perforated plate</title> <meta name="description" content="Search results for: perforated plate"> <meta name="keywords" content="perforated plate"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="perforated plate" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="perforated plate"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 1011</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: perforated plate</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1011</span> A Numerical Study on the Flow in a Pipe with Perforated Plates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Myeong%20Hee%20Jeong">Myeong Hee Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of perforated plate and tubes is common in applications such as vehicle exhaust silencers, attenuators in air moving ducts and duct linings in jet engines. Also, perforated plate flow conditioners designed to improve flow distribution upstream of an orifice plate flow meter typically have 50–60% free area but these generally employ a non-uniform distribution of holes of several sizes to encourage the formation of a fully developed pipe flow velocity distribution. In this study, therefore, numerical investigations on the flow characteristics with the various perforated plates have been performed and then compared to the case without a perforated plate. Three different models are adopted such as a flat perforated plate, a convex perforated plate in the direction of the inlet, and a convex perforated plate in the direction of the outlet. Simulation results show that the pressure drop with and without perforated plates are similar each other. However, it can be found that that the different shaped perforated plates influence the velocity contour, flow uniformity index, and location of the fully developed fluid flow. These results can be used as a practical guide to the best design of pipe with the perforated plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perforated%20plate" title="perforated plate">perforated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=pipe%20turbulent%20flow" title=" pipe turbulent flow"> pipe turbulent flow</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD%20%28Computational%20Fluid%20Dynamics%29" title=" CFD (Computational Fluid Dynamics) "> CFD (Computational Fluid Dynamics) </a> </p> <a href="https://publications.waset.org/abstracts/23752/a-numerical-study-on-the-flow-in-a-pipe-with-perforated-plates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23752.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1010</span> Numerical Analysis of a Strainer Using Porous Media Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Hoon%20Byeon">Ji-Hoon Byeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwon-Hee%20Lee"> Kwon-Hee Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=strainer" title="strainer">strainer</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/66362/numerical-analysis-of-a-strainer-using-porous-media-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66362.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1009</span> Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Bayati%20Chaleshtari">Mohammad Hossein Bayati Chaleshtari</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadi%20Khoramishad"> Hadi Khoramishad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infinite%20perforated%20plate" title="infinite perforated plate">infinite perforated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=complex%20variable%20method" title=" complex variable method"> complex variable method</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20stress" title=" thermal stress"> thermal stress</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization%20method" title=" optimization method"> optimization method</a> </p> <a href="https://publications.waset.org/abstracts/121173/determination-of-optimum-parameters-for-thermal-stress-distribution-in-composite-plate-containing-a-triangular-cutout-by-optimization-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121173.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1008</span> Investigation of the Flow Characteristics in a Catalytic Muffler with Perforated Inlet Cone</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gyo%20Woo%20Lee">Gyo Woo Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Man%20Young%20Kim"> Man Young Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Emission regulations for diesel engines are being strengthened and it is impossible to meet the standards without exhaust after-treatment systems. Lack of the space in many diesel vehicles, however, make it difficult to design and install stand-alone catalytic converters such as DOC, DPF, and SCR in the vehicle exhaust systems. Accordingly, those have been installed inside the muffler to save the space, and referred to the catalytic muffler. However, that has complex internal structure with perforated plate and pipe for noise and monolithic catalyst for emission reduction. For this reason, flow uniformity and pressure drop, which affect efficiency of catalyst and engine performance, respectively, should be examined when the catalytic muffler is designed. In this work, therefore, the flow uniformity and pressure drop to improve the performance of the catalytic converter and the engine have been numerically investigated by changing various design parameters such as inlet shape, porosity, and outlet shape of the muffler using the three-dimensional turbulent flow of the incompressible, non-reacting, and steady state inside the catalytic muffler. Finally, it can be found that the shape, in which the muffler has perforated pipe inside the inlet part, has higher uniformity index and lower pressure drop than others considered in this work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20muffler" title="catalytic muffler">catalytic muffler</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20inlet%20cone" title=" perforated inlet cone"> perforated inlet cone</a>, <a href="https://publications.waset.org/abstracts/search?q=catalysts" title=" catalysts"> catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20pipe" title=" perforated pipe"> perforated pipe</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20uniformity" title=" flow uniformity"> flow uniformity</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20drop" title=" pressure drop"> pressure drop</a> </p> <a href="https://publications.waset.org/abstracts/8517/investigation-of-the-flow-characteristics-in-a-catalytic-muffler-with-perforated-inlet-cone" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8517.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">326</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1007</span> Air Flows along Perforated Metal Plates with the Heat Transfer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Karel%20Frana">Karel Frana</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvio%20Simon"> Sylvio Simon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of the paper is a numerical study of heat transfer between perforated metal plates and the surrounding air flows. Different perforation structures can nowadays be found in various industrial products. Besides improving the mechanical properties, the perforations can intensify the heat transfer as well. The heat transfer coefficient depends on a wide range of parameters such as type of perforation, size, shape, flow properties of the surrounding air etc. The paper was focused on three different perforation structures which have been investigated from the point of the view of the production in the previous studies. To determine the heat coefficients and the Nusselt numbers, the numerical simulation approach was adopted. The calculations were performed using the OpenFOAM software. The three-dimensional, unstable, turbulent and incompressible air flow around the perforated surface metal plate was considered. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perforations" title="perforations">perforations</a>, <a href="https://publications.waset.org/abstracts/search?q=convective%20heat%20transfers" title=" convective heat transfers"> convective heat transfers</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20flows" title=" turbulent flows"> turbulent flows</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a> </p> <a href="https://publications.waset.org/abstracts/35110/air-flows-along-perforated-metal-plates-with-the-heat-transfer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35110.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1006</span> Development and Evaluation of Removable Shear Link with Perforated Web</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Y.%20Abebe">Daniel Y. Abebe</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaehyouk%20Choi"> Jaehyouk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of this paper is to investigate, through an analytical study, the behavior of both stiffened and un-stiffened removable shear link with perforated web considering different number and size of web openings. Removable shear link with perforated web is a novel shear link beam proposed to be used in eccentrically braced frame (EBF). The proposed link overcomes the difficulties during construction slab due to less cross-sectional areas of the link to control the plastic deformation on the conventional EBF with removable shear link. Finite element analyses were conducted under both cyclic and monotonic loading and from the results obtained design equations are developed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eccentrically%20braced%20frame" title="eccentrically braced frame">eccentrically braced frame</a>, <a href="https://publications.waset.org/abstracts/search?q=removable%20shear%20link" title=" removable shear link"> removable shear link</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20web" title=" perforated web"> perforated web</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20FE%20analysis" title=" non-linear FE analysis"> non-linear FE analysis</a> </p> <a href="https://publications.waset.org/abstracts/39370/development-and-evaluation-of-removable-shear-link-with-perforated-web" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">362</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1005</span> Comparison of ANN and Finite Element Model for the Prediction of Ultimate Load of Thin-Walled Steel Perforated Sections in Compression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhi-Jun%20Lu">Zhi-Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qi%20Lu"> Qi Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meng%20Wu"> Meng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Qian%20Xiang"> Qian Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Gu"> Jun Gu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The analysis of perforated steel members is a 3D problem in nature, therefore the traditional analytical expressions for the ultimate load of thin-walled steel sections cannot be used for the perforated steel member design. In this study, finite element method (FEM) and artificial neural network (ANN) were used to simulate the process of stub column tests based on specific codes. Results show that compared with those of the FEM model, the ultimate load predictions obtained from ANN technique were much closer to those obtained from the physical experiments. The ANN model for the solving the hard problem of complex steel perforated sections is very promising. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network%20%28ANN%29" title="artificial neural network (ANN)">artificial neural network (ANN)</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method%20%28FEM%29" title=" finite element method (FEM)"> finite element method (FEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sections" title=" perforated sections"> perforated sections</a>, <a href="https://publications.waset.org/abstracts/search?q=thin-walled%20Steel" title=" thin-walled Steel"> thin-walled Steel</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20load" title=" ultimate load"> ultimate load</a> </p> <a href="https://publications.waset.org/abstracts/71733/comparison-of-ann-and-finite-element-model-for-the-prediction-of-ultimate-load-of-thin-walled-steel-perforated-sections-in-compression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1004</span> Flexural Test of Diversing Foam Core Sandwich Composites </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Santhana%20Krishnan%20R">Santhana Krishnan R</a>, <a href="https://publications.waset.org/abstracts/search?q=Preetha%20C"> Preetha C</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandwich construction with strong and stiffness facing and light weight cores is increasingly cores being used in structures where the predominant loads are flexural. The objective of this study is to improve the flexural performances of foam core sandwich composite via structural core modifications considering the ease of application. The performances of single core perforated and divided core perforated sandwich composites are compared with each other. The future demands of sandwich composites in recent years on aeronautics and marine industries are being increasing in their research needs and these materials has their superior properties for upgrading engineering products. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sandwich%20composites" title="sandwich composites">sandwich composites</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20cores" title=" perforated cores"> perforated cores</a>, <a href="https://publications.waset.org/abstracts/search?q=flexural%20test" title=" flexural test"> flexural test</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20and%20divided%20core%20perforated" title=" single and divided core perforated"> single and divided core perforated</a> </p> <a href="https://publications.waset.org/abstracts/128162/flexural-test-of-diversing-foam-core-sandwich-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128162.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1003</span> Biological Optimization following BM-MSC Seeding of Partially Demineralized and Partially Demineralized Laser-Perforated Structural Bone Allografts Implanted in Critical Femoral Defects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20AliReza%20Mirghasemi">S. AliReza Mirghasemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Zameer%20Hussain"> Zameer Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Saleh%20Sadeghi"> Mohammad Saleh Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Narges%20Rahimi%20Gabaran"> Narges Rahimi Gabaran</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamadreza%20Baghaban%20Eslaminejad"> Mohamadreza Baghaban Eslaminejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Despite promising results have shown by osteogenic cell-based demineralized bone matrix composites, they need to be optimized for grafts that act as structural frameworks in load-bearing defects. The purpose of this experiment is to determine the effect of bone-marrow-mesenchymal-stem-cells seeding on partially demineralized laser-perforated structural allografts that have been implanted in critical femoral defects. Materials and Methods: P3 stem cells were used for graft seeding. Laser perforation in four rows of three holes was achieved. Cell-seeded grafts were incubated for one hour until they were planted into the defect. We used four types of grafts: partially demineralized only (Donly), partially demineralized stem cell seeded (DST), partially demineralized laser-perforated (DLP), and partially demineralized laser-perforated stem cell seeded (DLPST). histologic and histomorphometric analysis were performed at 12 weeks. Results: Partially demineralized laser-perforated had the highest woven bone formation within graft limits, stem cell seeded demineralized laser-perforated remained intact, and the difference between partially demineralized only and partially demineralized stem cell seeded was insignificant. At interface, partially demineralized laser-perforated and partially demineralized only had comparable osteogenesis, but partially demineralized stem cell seeded was inferior. The interface in stem cell seeded demineralized laser-perforated was almost replaced by distinct endochondral osteogenesis with higher angiogenesis in the vicinity. Partially demineralized stem cell seeded and stem cell seeded demineralized laser-perforated graft surfaces had extra vessel-ingrowth-like porosities, a sign of delayed resorption. Conclusion: This demonstrates that simple cell-based composites are not optimal and necessitates the supplementation of synergistic stipulations and surface changes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20bone%20allograft" title="structural bone allograft">structural bone allograft</a>, <a href="https://publications.waset.org/abstracts/search?q=partial%20demineralization" title=" partial demineralization"> partial demineralization</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20perforation" title=" laser perforation"> laser perforation</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenchymal%20stem%20cell" title=" mesenchymal stem cell"> mesenchymal stem cell</a> </p> <a href="https://publications.waset.org/abstracts/34775/biological-optimization-following-bm-msc-seeding-of-partially-demineralized-and-partially-demineralized-laser-perforated-structural-bone-allografts-implanted-in-critical-femoral-defects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34775.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1002</span> Development of Locally Fabricated Honey Extracting Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Akinfiresoye%20W.%20A.">Akinfiresoye W. A.</a>, <a href="https://publications.waset.org/abstracts/search?q=Olarewaju%20O.%20O."> Olarewaju O. O.</a>, <a href="https://publications.waset.org/abstracts/search?q=Okunola"> Okunola</a>, <a href="https://publications.waset.org/abstracts/search?q=Okunola%20I.%20O."> Okunola I. O.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An indigenous honey-extracting machine was designed, fabricated and evaluated at the workshop of the department of Agricultural Technology, Federal Polytechnic, Ile-Oluji, Nigeria using locally available materials. It has the extraction unit, the presser, the honey collector and the frame. The harvested honeycomb is placed inside the cylindrical extraction unit with perforated holes. The press plate was then placed on the comb while the hydraulic press of 3 tons was placed on it, supported by the frame. The hydraulic press, which is manually operated, forces the oil out of the extraction chamber through the perforated holes into the honey collector positioned at the lowest part of the extraction chamber. The honey-extracting machine has an average throughput of 2.59 kg/min and an efficiency of about 91%. The cost of producing the honey extracting machine is NGN 31, 700: 00, thirty-one thousand and seven hundred nairas only or $70 at NGN 452.8 to a dollar. This cost is affordable to beekeepers and would-be honey entrepreneurs. The honey-extracting machine is easy to operate and maintain without any complex technical know-how. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honey" title="honey">honey</a>, <a href="https://publications.waset.org/abstracts/search?q=extractor" title=" extractor"> extractor</a>, <a href="https://publications.waset.org/abstracts/search?q=cost" title=" cost"> cost</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a> </p> <a href="https://publications.waset.org/abstracts/161922/development-of-locally-fabricated-honey-extracting-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161922.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1001</span> Experimental Study of the Sound Absorption of a Geopolymer Panel with a Textile Component Designed for a Railway Corridor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ludmila%20Fridrichov%C3%A1">Ludmila Fridrichová</a>, <a href="https://publications.waset.org/abstracts/search?q=Roman%20Kn%C3%AD%C5%BEek"> Roman Knížek</a>, <a href="https://publications.waset.org/abstracts/search?q=Pavel%20N%C4%9Bme%C4%8Dek"> Pavel Němeček</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Ewa%20Buczkowska"> Katarzyna Ewa Buczkowska</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The design of the sound absorption panel, which consists of three layers, is presented in this study. The first layer of the panel is perforated and provides sound transmission to the inner part of the panel. The second layer is composed of a bulk material whose purpose is to absorb as much noise as possible. The third layer of the panel has two functions: the first function is to ensure the strength of the panel, and the second function is to reflect the sound back into the bulk layer. Experimental results have shown that the size of the holes in the perforated panel affects the sound absorption of the required frequency. The percentage of filling of the perforated area affects the quantity of sound absorbed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption" title="sound absorption">sound absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=railway%20corridor" title=" railway corridor"> railway corridor</a>, <a href="https://publications.waset.org/abstracts/search?q=health" title=" health"> health</a>, <a href="https://publications.waset.org/abstracts/search?q=textile%20waste" title=" textile waste"> textile waste</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fibres" title=" natural fibres"> natural fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a> </p> <a href="https://publications.waset.org/abstracts/193093/experimental-study-of-the-sound-absorption-of-a-geopolymer-panel-with-a-textile-component-designed-for-a-railway-corridor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193093.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">14</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1000</span> Finite Element Analysis of Thermally-Induced Bistable Plate Using Four Plate Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jixiao%20Tao">Jixiao Tao</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoqiao%20He"> Xiaoqiao He</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study deals with the finite element (FE) analysis of thermally-induced bistable plate using various plate elements. The quadrilateral plate elements include the 4-node conforming plate element based on the classical laminate plate theory (CLPT), the 4-node and 9-node Mindlin plate element based on the first-order shear deformation laminated plate theory (FSDT), and a displacement-based 4-node quadrilateral element (RDKQ-NL20). Using the von-Karman&rsquo;s large deflection theory and the total Lagrangian (TL) approach, the nonlinear FE governing equations for plate under thermal load are derived. Convergence analysis for four elements is first conducted. These elements are then used to predict the stable shapes of thermally-induced bistable plate. Numerical test shows that the plate element based on FSDT, namely the 4-node and 9-node Mindlin, and the RDKQ-NL20 plate element can predict two stable cylindrical shapes while the 4-node conforming plate predicts a saddles shape. Comparing the simulation results with ABAQUS, the RDKQ-NL20 element shows the best accuracy among all the elements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bistable" title="Bistable">Bistable</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometrical%20nonlinearity" title=" geometrical nonlinearity"> geometrical nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrilateral%20plate%20elements" title=" quadrilateral plate elements"> quadrilateral plate elements</a> </p> <a href="https://publications.waset.org/abstracts/124454/finite-element-analysis-of-thermally-induced-bistable-plate-using-four-plate-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/124454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">220</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">999</span> Numerical Analysis of Dynamic Responses of the Plate Subjected to Impulsive Loads</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Behzad%20Mohammadzadeh">Behzad Mohammadzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Huyk%20Chun%20Noh"> Huyk Chun Noh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The plate is one of the popular structural elements used in a wide range of industries and structures. They may be subjected to blast loads during explosion events, missile attacks or aircraft attacks. This study is to investigate dynamic responses of the rectangular plate subjected to explosive loads. The effects of material properties and plate thickness on responses of the plate are to be investigated. The compressive pressure is applied to the surface of the plate. Different amounts of thickness in the range from 10mm to 30mm are considered for the plate to evaluate the changes in responses of the plate with respect to the plate thickness. Two different properties are considered for the steel. First, the analysis is performed by considering only the elastic-plastic properties for the steel plate. Later on damping is considered to investigate its effects on the responses of the plate. To do analysis, the numerical method using a finite element based package ABAQUS is applied. Finally, dynamic responses and graphs showing the relation between maximum displacement of the plate and aim parameters are provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=impulsive%20loaded%20plates" title="impulsive loaded plates">impulsive loaded plates</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20analysis" title=" dynamic analysis"> dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ABAQUS" title=" ABAQUS"> ABAQUS</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/28535/numerical-analysis-of-dynamic-responses-of-the-plate-subjected-to-impulsive-loads" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">523</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">998</span> Performance Analysis of Solar Air Heater with Fins and Perforated Twisted Tape Insert</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajesh%20Kumar">Rajesh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prabha%20Chand"> Prabha Chand</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper deals with the analytical investigation on the thermal and thermo-hydraulic performance of the solar air collector fitted with fins and perforated twisted tapes (PTT) of twist ratio 2 with different axial pitch ratio. The mathematical models are presented, and the effect of mass flow rate and axial pitch ratios on the thermal and effective efficiency has been discussed. The results obtained are compared with the results of the solar air heater without fins and twisted tapes. Results conveyed that the collectors with fins and perforated twisted tape perform better but at the expense of increased pressure drop. Also, twisted tape with minimum axial pitch ratio is found to be more efficient than others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar%20air%20heater" title="solar air heater">solar air heater</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20efficiency" title=" thermal efficiency"> thermal efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=twisted%20tape" title=" twisted tape"> twisted tape</a>, <a href="https://publications.waset.org/abstracts/search?q=twist%20ratio" title=" twist ratio"> twist ratio</a> </p> <a href="https://publications.waset.org/abstracts/70391/performance-analysis-of-solar-air-heater-with-fins-and-perforated-twisted-tape-insert" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70391.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">997</span> Design and Simulation of MEMS-Based Capacitive Pressure Sensors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kirankumar%20B.%20Balavalad">Kirankumar B. Balavalad</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhagyashree%20Mudhol"> Bhagyashree Mudhol</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20G.%20Sheeparamatti"> B. G. Sheeparamatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> MEMS sensor have gained popularity in automotive, biomedical, and industrial applications. In this paper, the design and simulation of conventional, slotted, and perforated MEMS capacitive pressure sensor is proposed. Polysilicon material is used as diaphragm material that deflects due to applied pressure. Better sensitivity is the main advantage of conventional pressure sensor as compared with other two sensors and perforated pressure sensor achieves large operating pressure range. The proposed MEMS sensor demonstrated with diaphragm length 50um, gap depth 3um is being modelled. The simulation is carried out for different types of MEMS capacitive pressure sensor using COMSOL Multiphysics and Coventor ware. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MEMS" title="MEMS">MEMS</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20pressure%20sensor" title=" conventional pressure sensor"> conventional pressure sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=slotted%20and%20perforated%20diaphragm" title=" slotted and perforated diaphragm"> slotted and perforated diaphragm</a>, <a href="https://publications.waset.org/abstracts/search?q=COMSOL%20multiphysics" title=" COMSOL multiphysics"> COMSOL multiphysics</a>, <a href="https://publications.waset.org/abstracts/search?q=coventor%20ware" title=" coventor ware"> coventor ware</a> </p> <a href="https://publications.waset.org/abstracts/33090/design-and-simulation-of-mems-based-capacitive-pressure-sensors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33090.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">508</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">996</span> Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eray%20Ozbek">Eray Ozbek</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilker%20Kalkan"> Ilker Kalkan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Oguzhan%20Akbas"> S. Oguzhan Akbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabahattin%20Aykac"> Sabahattin Aykac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=infill%20wall" title="infill wall">infill wall</a>, <a href="https://publications.waset.org/abstracts/search?q=strengthening" title=" strengthening"> strengthening</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20plate" title=" external plate"> external plate</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20behavior" title=" earthquake behavior"> earthquake behavior</a> </p> <a href="https://publications.waset.org/abstracts/4948/influence-of-strengthening-with-perforated-steel-plates-on-the-behavior-of-infill-walls-and-rc-frame" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4948.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">450</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">995</span> Experimental Verification of Similarity Criteria for Sound Absorption of Perforated Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aleksandra%20Majchrzak">Aleksandra Majchrzak</a>, <a href="https://publications.waset.org/abstracts/search?q=Katarzyna%20Baruch"> Katarzyna Baruch</a>, <a href="https://publications.waset.org/abstracts/search?q=Monika%20Sobolewska"> Monika Sobolewska</a>, <a href="https://publications.waset.org/abstracts/search?q=Bartlomiej%20Chojnacki"> Bartlomiej Chojnacki</a>, <a href="https://publications.waset.org/abstracts/search?q=Adam%20Pilch"> Adam Pilch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Scaled modeling is very common in the areas of science such as aerodynamics or fluid mechanics, since defining characteristic numbers enables to determine relations between objects under test and their models. In acoustics, scaled modeling is aimed mainly at investigation of room acoustics, sound insulation and sound absorption phenomena. Despite such a range of application, there is no method developed that would enable scaling acoustical perforated panels freely, maintaining their sound absorption coefficient in a desired frequency range. However, conducted theoretical and numerical analyses have proven that it is not physically possible to obtain given sound absorption coefficient in a desired frequency range by directly scaling only all of the physical dimensions of a perforated panel, according to a defined characteristic number. This paper is a continuation of the research mentioned above and presents practical evaluation of theoretical and numerical analyses. The measurements of sound absorption coefficient of perforated panels were performed in order to verify previous analyses and as a result find the relations between full-scale perforated panels and their models which will enable to scale them properly. The measurements were conducted in a one-to-eight model of a reverberation chamber of Technical Acoustics Laboratory, AGH. Obtained results verify theses proposed after theoretical and numerical analyses. Finding the relations between full-scale and modeled perforated panels will allow to produce measurement samples equivalent to the original ones. As a consequence, it will make the process of designing acoustical perforated panels easier and will also lower the costs of prototypes production. Having this knowledge, it will be possible to emulate in a constructed model panels used, or to be used, in a full-scale room more precisely and as a result imitate or predict the acoustics of a modeled space more accurately. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=characteristic%20numbers" title="characteristic numbers">characteristic numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=dimensional%20analysis" title=" dimensional analysis"> dimensional analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=model%20study" title=" model study"> model study</a>, <a href="https://publications.waset.org/abstracts/search?q=scaled%20modeling" title=" scaled modeling"> scaled modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20absorption%20coefficient" title=" sound absorption coefficient"> sound absorption coefficient</a> </p> <a href="https://publications.waset.org/abstracts/78680/experimental-verification-of-similarity-criteria-for-sound-absorption-of-perforated-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78680.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">196</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">994</span> Aerodynamic Sound from a Sawtooth Plate with Different Thickness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Ruhliah%20Lizarose%20Samion">Siti Ruhliah Lizarose Samion</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Sukri%20Mat%20Ali"> Mohamed Sukri Mat Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of sawtooth plate thickness on the aerodynamic noise generated in flow at a Reynolds number of 150 is numerically investigated. Two types of plate thickness (hthick=0.2D and hthin=0.02D) are proposed. Flow simulations are carried out using Direct Numerical Simulation, whereas the calculation of aerodynamic noise radiated from the flow is solved using Curle’s equation. It is found that the flow behavior of thin sawtooth plate, consisting counter-rotating-vortices, is more complex than that of the thick plate. This then explains well the generated sound in both plates cases. Sound generated from thin plat is approximately 0.5 dB lower than the thick plate. Findings from current study provide better understanding of the flow and noise behavior in edge serrations via understanding the case of a sawtooth plate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20sound" title="aerodynamic sound">aerodynamic sound</a>, <a href="https://publications.waset.org/abstracts/search?q=bluff%20body" title=" bluff body"> bluff body</a>, <a href="https://publications.waset.org/abstracts/search?q=sawtooth%20plate" title=" sawtooth plate"> sawtooth plate</a>, <a href="https://publications.waset.org/abstracts/search?q=Curle%20analogy" title=" Curle analogy"> Curle analogy</a> </p> <a href="https://publications.waset.org/abstracts/62349/aerodynamic-sound-from-a-sawtooth-plate-with-different-thickness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62349.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">993</span> Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jinwooung%20Kim">Jinwooung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hwan%20Jung"> Jae-Hwan Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Seong-Jun%20Kim"> Seong-Jun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20metal" title=" perforated metal"> perforated metal</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-factor%20optimization" title=" multi-factor optimization"> multi-factor optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fa%C3%A7ade" title=" façade"> façade</a> </p> <a href="https://publications.waset.org/abstracts/81902/multi-factor-optimization-method-through-machine-learning-in-building-envelope-design-focusing-on-perforated-metal-facade" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81902.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">224</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">992</span> Comparison of Storage Facilities on Different Varieties of Orange Fleshed Sweet Potato Grown in Rwanda</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean%20Paul%20Hategekimana">Jean Paul Hategekimana</a>, <a href="https://publications.waset.org/abstracts/search?q=Dukuzumuremyi%20Yvonne"> Dukuzumuremyi Yvonne</a>, <a href="https://publications.waset.org/abstracts/search?q=Mukeshimana%20Marthe"> Mukeshimana Marthe</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexandre%20Niyonshima"> Alexandre Niyonshima</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sweet potato (Ipomoea batatas) is a very important staple food crop in Rwanda due to its high growth and consumption in all parts of the country. The effect of seven different storage conditions on the quality and nutritional composition of the three most grown and consumed varieties of orange-fleshed sweet potato (OFSP), namely Kabode, Terimbere, and Vita, were studied over a period of six weeks at Postharvest Service and Training Center of University Rwanda, Busogo Campus. The potato stored under the following conditions (zero energy cooling chamber, ground washed sweet potato, ground unwashed sweet potato, perforated washed sweet potato, perforated unwashed sweet potato, non-perforated washed sweet potato, and non-perforated unwashed sweet potato) were assessed in this study. These storage conditions are the modifications of existing methods currently used in Rwanda for suitable local climatic conditions. Hence, 30kgs of freshly harvested OFSP for each variety were bought from farmers of Gakenke and Rulindo districts and then transported to the postharvest training and service center UR-CAVM, Busogo Campus. 2.5kg of each potato sample was selected and stored under the above-mentioned storage conditions after pretreatment. Data were collected for six weeks on percent weight loss, shrinkability and the general appearance at interval of three days. The stored samples were also analyzed for moisture, crude ash, crude fiber, and reduced sugar levels during the entire storage period. Results showed the difference among the various storage conditions. It was shown that ZECC and non-perforated sacs (in the open air) storage techniques had good potential for storage of orange flesh sweet potato for up to six weeks without considerable change in physical and nutritional parameters compared to other considered conditions and, therefore, can be recommended as more useful for OSFP at farm level and during transport and market storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZECC" title="ZECC">ZECC</a>, <a href="https://publications.waset.org/abstracts/search?q=orange%20fleshed%20sweet%20potato" title=" orange fleshed sweet potato"> orange fleshed sweet potato</a>, <a href="https://publications.waset.org/abstracts/search?q=perforated%20sacs" title=" perforated sacs"> perforated sacs</a>, <a href="https://publications.waset.org/abstracts/search?q=storage%20conditions" title=" storage conditions"> storage conditions</a> </p> <a href="https://publications.waset.org/abstracts/182278/comparison-of-storage-facilities-on-different-varieties-of-orange-fleshed-sweet-potato-grown-in-rwanda" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">68</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">991</span> Thermal Performance of Plate-Fin Heat Sink with Lateral Perforation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sakkarin%20Chingulpitak">Sakkarin Chingulpitak</a>, <a href="https://publications.waset.org/abstracts/search?q=Somchai%20Wongwises"> Somchai Wongwises</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the past several decades, the development of electronic devices has led to higher performance. Therefore, an electronic cooling system is important for the electronic device. A heat sink which is a part of the electronic cooling system is continuously studied in the research field to enhance the heat transfer. To author’s best knowledge, there have been only a few articles which reported the thermal performance of plate-fin heat sink with perforation. This research aims to study on the flow and heat transfer characteristics of the solid-fin heat sink (SFHS) and laterally perforated plate-fin heat sink (LAP-PFHS). The SFHS and LAP-PFHSs are investigated on the same fin dimensions. The LAP-PFHSs are performed with a 27 perforation number and two different diameters of circular perforation (3 mm and 5 mm). The experimental study is conducted under various Reynolds numbers from 900 to 2,000 and the heat input of 50W. The experimental results show that the LAP-PFHS with perforation diameter of 5 mm gives the minimum thermal resistance about 25% lower than SFHS. The thermal performance factor which takes into account the ratio of the Nusselt number and ratio of friction factor is used to find the suitable design parameters. The experimental results show that the LAP-PFHS with the perforation diameter of 3 mm provides the thermal performance of 15% greater than SFHS. In addition, the simulation study is presented to investigate the effect of the air flow behavior inside the perforation on the thermal performance of LAP-PFHS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20sink" title="heat sink">heat sink</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20flow" title=" parallel flow"> parallel flow</a>, <a href="https://publications.waset.org/abstracts/search?q=circular%20perforation" title=" circular perforation"> circular perforation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-bypass%20flow" title=" non-bypass flow"> non-bypass flow</a> </p> <a href="https://publications.waset.org/abstracts/105150/thermal-performance-of-plate-fin-heat-sink-with-lateral-perforation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105150.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">990</span> Terminal Ballistic Analysis of Non-Filled and Water-Filled Tank</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Aziz">M. R. Aziz</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Kuntjoro"> W. Kuntjoro</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20V.%20David"> N. V. David</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the ballistic terminal study of the non-filled and water-filled aluminum tank. The objective was to determine the failure stages for both cases. The tank was impacted by fragment simulating projectile (FSP) with 260 m/s for non-filled and 972 m/s for water-filled. The aluminum tank was 3 mm thick, 150 mm wide and 750 mm long. The ends of the tank were closed with two polymethyl methacrylate (PMMA) windows. The test was conducted at the Science and Technology Research Institute for Defense (STRIDE) Batu Arang, Selangor, Malaysia. The results showed four main stages for non-filled tank, which were first contact between FSP and the tank, partially perforated, fully perforated with FSP and plug still intact and lastly fully perforated with FSP and plug separated. Meanwhile, for the water-filled tank, there were seven main stages, which were first contact between FSP and the tank, partial perforation, full perforation, drag phase, cavity phase, bounce wave event and the collapse of the cavity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fragment%20simulating%20projectile" title="fragment simulating projectile">fragment simulating projectile</a>, <a href="https://publications.waset.org/abstracts/search?q=high%20speed%20camera" title=" high speed camera"> high speed camera</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20test" title=" tensile test"> tensile test</a>, <a href="https://publications.waset.org/abstracts/search?q=terminal%20ballistic" title=" terminal ballistic"> terminal ballistic</a> </p> <a href="https://publications.waset.org/abstracts/4371/terminal-ballistic-analysis-of-non-filled-and-water-filled-tank" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4371.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">989</span> Device for Mechanical Fragmentation of Organic Substrates Before Methane Fermentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marcin%20Zieli%C5%84ski">Marcin Zieliński</a>, <a href="https://publications.waset.org/abstracts/search?q=Marcin%20D%C4%99bowski"> Marcin Dębowski</a>, <a href="https://publications.waset.org/abstracts/search?q=Miros%C5%82aw%20Krzemieniewski"> Mirosław Krzemieniewski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This publication presents a device designed for mechanical fragmentation of plant substrate before methane fermentation. The device is equipped with a perforated rotary cylindrical drum coated with a thermal layer, connected to a substrate feeder and driven by a motoreducer. The drum contains ball- or cylinder-shaped weights of different diameters, while its interior is mounted with lateral permanent magnets with an attractive force ranging from 100 kg to 2 tonnes per m2 of the surface. Over the perforated rotary drum, an infrared radiation generator is mounted, producing 0.2 kW to 1 kW of infrared radiation per 1 m2 of the perforated drum surface. This design reduces the energy consumption required for the biomass destruction process by 10-30% in comparison to the conventional ball mill. The magnetic field generated by the permanent magnets situated within the perforated rotary drum promotes this process through generation of free radicals that act as powerful oxidants, accelerating the decomposition rate. Plant substrate shows increased susceptibility to biodegradation when subjected to magnetic conditioning, reducing the time required for biomethanation by 25%. Additionally, the electromagnetic radiation generated by the radiator improves substrate destruction by 10% and the efficiency of the process. The magnetic field and the infrared radiation contribute synergically to the increased efficiency of destruction and conversion of the substrate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20pretreatment" title="biomass pretreatment">biomass pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20fragmentation" title=" mechanical fragmentation"> mechanical fragmentation</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20fermentation" title=" methane fermentation"> methane fermentation</a> </p> <a href="https://publications.waset.org/abstracts/3541/device-for-mechanical-fragmentation-of-organic-substrates-before-methane-fermentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3541.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">988</span> Stability of Square Plate with Concentric Cutout</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S.%20Jayashankarbabu">B. S. Jayashankarbabu</a>, <a href="https://publications.waset.org/abstracts/search?q=Karisiddappa"> Karisiddappa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The finite element method is used to obtain the elastic buckling load factor for square isotropic plate containing circular, square and rectangular cutouts. ANSYS commercial finite element software had been used in the study. The applied inplane loads considered are uniaxial and biaxial compressions. In all the cases the load is distributed uniformly along the plate outer edges. The effects of the size and shape of concentric cutouts with different plate thickness ratios and the influence of plate edge condition, such as SSSS, CCCC and mixed boundary condition SCSC on the plate buckling strength have been considered in the analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentric%20cutout" title="concentric cutout">concentric cutout</a>, <a href="https://publications.waset.org/abstracts/search?q=elastic%20buckling" title=" elastic buckling"> elastic buckling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=inplane%20loads" title=" inplane loads"> inplane loads</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness%20ratio" title=" thickness ratio"> thickness ratio</a> </p> <a href="https://publications.waset.org/abstracts/6297/stability-of-square-plate-with-concentric-cutout" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6297.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">987</span> Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Byung%20hyun%20Bae">Byung hyun Bae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=power%20transformer" title="power transformer">power transformer</a>, <a href="https://publications.waset.org/abstracts/search?q=steel%20plate" title=" steel plate"> steel plate</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20rise" title=" temperature rise"> temperature rise</a>, <a href="https://publications.waset.org/abstracts/search?q=experiment" title=" experiment"> experiment</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/12749/comparison-between-fem-simulation-and-experiment-of-temperature-rise-in-power-transformer-inner-steel-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12749.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">986</span> Repair of Cracked Aluminum Plate by Composite Patch</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Lecheb">S. Lecheb</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Nour"> A. Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Chellil"> A. Chellil</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mechakra"> H. Mechakra</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Zeggane"> A. Zeggane</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Kebir"> H. Kebir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, repaired crack in 6061-T6 aluminum plate with composite patches presented, firstly we determine the displacement, strain, and stress, also the first six mode shape of the plate, secondly we took the same model adding central crack initiation, which is located in the center of the plate, its size vary from 20 mm to 60 mm and we compare the first results with second. Thirdly, we repair various cracks with the composite patch (carbon/epoxy) and for (2 layers, 4 layers). Finally, the comparison of stress, strain, displacement and six first natural frequencies between un-cracked specimen, crack propagation and composite patch repair. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20patch%20repair" title="composite patch repair">composite patch repair</a>, <a href="https://publications.waset.org/abstracts/search?q=crack%20growth" title=" crack growth"> crack growth</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%20plate" title=" aluminum alloy plate"> aluminum alloy plate</a>, <a href="https://publications.waset.org/abstracts/search?q=stress" title=" stress"> stress</a> </p> <a href="https://publications.waset.org/abstracts/34073/repair-of-cracked-aluminum-plate-by-composite-patch" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">596</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">985</span> Mesenteric Vasculitis Causing Perforated Diverticulitis Mimicking Abdominal Sepsis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Leung">Christopher Leung</a>, <a href="https://publications.waset.org/abstracts/search?q=Assad%20Zahid"> Assad Zahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mesenteric vasculitis can often mimic abdominal sepsis in a postoperative setting leading to a predicament where steroids could improve mesenteric vasculitis whilst worsening abdominal sepsis. Here this study presents a unique and rare case of perforated sigmoid diverticulitis secondary to systemic vasculitis. A 68-year-old gentleman presented with perforated sigmoid diverticulitis requiring an emergency Hartmann’s procedure. Early in his postoperative course, he had painful and asymmetrical neuropathy that, after a careful history and examination, revealed a patient with mono neuritis multiplex on a background history of longstanding rheumatoid arthritis. On day seven of his postoperative course, he had rising inflammatory markers and a CT abdomen and pelvis showing fluid around the mesentery. Whilst contamination from sigmoid perforation was somewhat congruent with these signs, a diagnosis of polyarteritis nodosa, a common cause of mononeuritis multiplex, is also possible, although involvement of the large bowel in polyarteritis nodosa is extremely rare. The histopathology from the initial Hartmann’s procedure was re-examined, showing medium vessel disease vasculitis. Given his lack of fevers, absence of abdominal pain, and worsening neurology, he was given a provisional diagnosis of polyarteritis nodosa and was treated successfully, not on IV antibiotics but on steroids. Large bowel involvement of polyarteritis nodosa is extremely rare and this is the first case of polyarteritis nodosa causing perforated diverticulitis. The learning point here is to obtain a good clinical picture of a patient to identify mesenteric vasculitis as compared to abdominal sepsis as the treatment of one worsens the other. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abdominal%20sepsis" title="abdominal sepsis">abdominal sepsis</a>, <a href="https://publications.waset.org/abstracts/search?q=diverticulitis" title=" diverticulitis"> diverticulitis</a>, <a href="https://publications.waset.org/abstracts/search?q=mesenteric%20vasculitis" title=" mesenteric vasculitis"> mesenteric vasculitis</a>, <a href="https://publications.waset.org/abstracts/search?q=polyarteritis%20nodosa" title=" polyarteritis nodosa"> polyarteritis nodosa</a> </p> <a href="https://publications.waset.org/abstracts/140513/mesenteric-vasculitis-causing-perforated-diverticulitis-mimicking-abdominal-sepsis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140513.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">252</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">984</span> Parametric Study on Dynamic Analysis of Composite Laminated Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junaid%20Kameran%20Ahmed">Junaid Kameran Ahmed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1<sup>st</sup> order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laminated%20plate" title="laminated plate">laminated plate</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic%20plate" title=" orthotropic plate"> orthotropic plate</a>, <a href="https://publications.waset.org/abstracts/search?q=square%20plate" title=" square plate"> square plate</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20frequency%20%28free%20vibration%29" title=" natural frequency (free vibration)"> natural frequency (free vibration)</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20%28graphite%20%2F%20epoxy%29" title=" composite (graphite / epoxy)"> composite (graphite / epoxy)</a> </p> <a href="https://publications.waset.org/abstracts/63332/parametric-study-on-dynamic-analysis-of-composite-laminated-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">983</span> Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20K.%20Arya">Harish K. Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwant%20Singh"> Kulwant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K.%20Saxena"> R. K. Saxena</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title="submerged arc welding">submerged arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20thickness" title=" plate thickness"> plate thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a> </p> <a href="https://publications.waset.org/abstracts/33595/effect-of-welding-parameters-on-penetration-and-bead-width-for-variable-plate-thickness-in-submerged-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33595.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">982</span> Effect of Welding Parameters on Dilution and Bead Height for Variable Plate Thickness in Submerged Arc Welding</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Harish%20Kumar%20Arya">Harish Kumar Arya</a>, <a href="https://publications.waset.org/abstracts/search?q=Kulwant%20Singh"> Kulwant Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20K%20Saxena"> R. K Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Deepti%20Jaiswal"> Deepti Jaiswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on bead geometry and dilution. The penetration reduces with increase in plate thickness due to heat loss in thickness direction, while bead width and reinforcement increases for thicker plate due to faster cooling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=submerged%20arc%20welding" title="submerged arc welding">submerged arc welding</a>, <a href="https://publications.waset.org/abstracts/search?q=plate%20thickness" title=" plate thickness"> plate thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=bead%20geometry" title=" bead geometry"> bead geometry</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20rate" title=" cooling rate"> cooling rate</a> </p> <a href="https://publications.waset.org/abstracts/34968/effect-of-welding-parameters-on-dilution-and-bead-height-for-variable-plate-thickness-in-submerged-arc-welding" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=33">33</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=34">34</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=perforated%20plate&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10