CINXE.COM
Search results for: MICS
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: MICS</title> <meta name="description" content="Search results for: MICS"> <meta name="keywords" content="MICS"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="MICS" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="MICS"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 13</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: MICS</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Factors Affecting Cesarean Section among Women in Qatar Using Multiple Indicator Cluster Survey Database</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sahar%20Elsaleh">Sahar Elsaleh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghada%20Farhat"> Ghada Farhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaikha%20Al-Derham"> Shaikha Al-Derham</a>, <a href="https://publications.waset.org/abstracts/search?q=Fasih%20Alam"> Fasih Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Cesarean section (CS) delivery is one of the major concerns both in developing and developed countries. The rate of CS deliveries are on the rise globally, and especially in Qatar. Many socio-economic, demographic, clinical and institutional factors play an important role for cesarean sections. This study aims to investigate factors affecting the prevalence of CS among women in Qatar using the UNICEF’s Multiple Indicator Cluster Survey (MICS) 2012 database. Methods: The study has focused on the women’s questionnaire of the MICS, which was successfully distributed to 5699 participants. Following study inclusion and exclusion criteria, a final sample of 761 women aged 19- 49 years who had at least one delivery of giving birth in their lifetime before the survey were included. A number of socio-economic, demographic, clinical and institutional factors, identified through literature review and available in the data, were considered for the analyses. Bivariate and multivariate logistic regression models, along with a multi-level modeling to investigate clustering effect, were undertaken to identify the factors that affect CS prevalence in Qatar. Results: From the bivariate analyses the study has shown that, a number of categorical factors are statistically significantly associated with the dependent variable (CS). When identifying the factors from a multivariate logistic regression, the study found that only three categorical factors -‘age of women’, ‘place at delivery’ and ‘baby weight’ appeared to be significantly affecting the CS among women in Qatar. Although the MICS dataset is based on a cluster survey, an exploratory multi-level analysis did not show any clustering effect, i.e. no significant variation in results at higher level (households), suggesting that all analyses at lower level (individual respondent) are valid without any significant bias in results. Conclusion: The study found a statistically significant association between the dependent variable (CS delivery) and age of women, frequency of TV watching, assistance at birth and place of birth. These results need to be interpreted cautiously; however, it can be used as evidence-base for further research on cesarean section delivery in Qatar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cesarean%20section" title="cesarean section">cesarean section</a>, <a href="https://publications.waset.org/abstracts/search?q=factors" title=" factors"> factors</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20indicator%20cluster%20survey" title=" multiple indicator cluster survey"> multiple indicator cluster survey</a>, <a href="https://publications.waset.org/abstracts/search?q=MICS%20database" title=" MICS database"> MICS database</a>, <a href="https://publications.waset.org/abstracts/search?q=Qatar" title=" Qatar"> Qatar</a> </p> <a href="https://publications.waset.org/abstracts/121593/factors-affecting-cesarean-section-among-women-in-qatar-using-multiple-indicator-cluster-survey-database" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Biochemical Characterization of CTX-M-15 from Enterobacter cloacae and Designing a Novel Non-β-Lactam-β-Lactamase Inhibitor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Faheem">Mohammad Faheem</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tabish%20Rehman"> M. Tabish Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Danishuddin"> Mohd Danishuddin</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20U.%20Khan"> Asad U. Khan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of blaCTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with blaCTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (Ki = 0.017 µM) and better acylation efficiency (k+2/K9 = 0.44 µM-1s-1). It forms an acyl-enzyme covalent complex, which is quite stable (k+3 = 0.0057 s-1). Since increasing resistance has been reported against conventional b-lactam antibiotic-inhibitor combinations, we aspire to design a non-b-lactam core containing b-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (Ki = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-b-lactam containing b-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ESBL" title="ESBL">ESBL</a>, <a href="https://publications.waset.org/abstracts/search?q=non-b-lactam-b-lactamase%20inhibitor" title=" non-b-lactam-b-lactamase inhibitor"> non-b-lactam-b-lactamase inhibitor</a>, <a href="https://publications.waset.org/abstracts/search?q=bioinformatics" title=" bioinformatics"> bioinformatics</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedicine" title=" biomedicine"> biomedicine</a> </p> <a href="https://publications.waset.org/abstracts/8157/biochemical-characterization-of-ctx-m-15-from-enterobacter-cloacae-and-designing-a-novel-non-v-lactam-v-lactamase-inhibitor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Global Evidence on the Seasonality of Enteric Infections, Malnutrition, and Livestock Ownership</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aishwarya%20Venkat">Aishwarya Venkat</a>, <a href="https://publications.waset.org/abstracts/search?q=Anastasia%20Marshak"> Anastasia Marshak</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryan%20B.%20Simpson"> Ryan B. Simpson</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20N.%20Naumova"> Elena N. Naumova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Livestock ownership is simultaneously linked to improved nutritional status through increased availability of animal-source protein, and increased risk of enteric infections through higher exposure to contaminated water sources. Agrarian and agro-pastoral households, especially those with cattle, goats, and sheep, are highly dependent on seasonally various environmental conditions, which directly impact nutrition and health. This study explores global spatiotemporally explicit evidence regarding the relationship between livestock ownership, enteric infections, and malnutrition. Seasonal and cyclical fluctuations, as well as mediating effects, are further examined to elucidate health and nutrition outcomes of individual and communal livestock ownership. The US Agency for International Development’s Demographic and Health Surveys (DHS) and the United Nations International Children's Emergency Fund’s Multi-Indicator Cluster Surveys (MICS) provide valuable sources of household-level information on anthropometry, asset ownership, and disease outcomes. These data are especially important in data-sparse regions, where surveys may only be conducted in the aftermath of emergencies. Child-level disease history, anthropometry, and household-level asset ownership information have been collected since DHS-V (2003-present) and MICS-III (2005-present). This analysis combines over 15 years of survey data from DHS and MICS to study 2,466,257 children under age five from 82 countries. Subnational (administrative level 1) measures of diarrhea prevalence, mean livestock ownership by type, mean and median anthropometric measures (height for age, weight for age, and weight for height) were investigated. Effects of several environmental, market, community, and household-level determinants were studied. Such covariates included precipitation, temperature, vegetation, the market price of staple cereals and animal source proteins, conflict events, livelihood zones, wealth indices and access to water, sanitation, hygiene, and public health services. Children aged 0 – 6 months, 6 months – 2 years, and 2 – 5 years of age were compared separately. All observations were standardized to interview day of year, and administrative units were harmonized for consistent comparisons over time. Geographically weighted regressions were constructed for each outcome and subnational unit. Preliminary results demonstrate the importance of accounting for seasonality in concurrent assessments of malnutrition and enteric infections. Household assets, including livestock, often determine the intensity of these outcomes. In many regions, livestock ownership affects seasonal fluxes in malnutrition and enteric infections, which are also directly affected by environmental and local factors. Regression analysis demonstrates the spatiotemporal variability in nutrition outcomes due to a variety of causal factors. This analysis presents a synthesis of evidence from global survey data on the interrelationship between enteric infections, malnutrition, and livestock. These results provide a starting point for locally appropriate interventions designed to address this nexus in a timely manner and simultaneously improve health, nutrition, and livelihoods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diarrhea" title="diarrhea">diarrhea</a>, <a href="https://publications.waset.org/abstracts/search?q=enteric%20infections" title=" enteric infections"> enteric infections</a>, <a href="https://publications.waset.org/abstracts/search?q=households" title=" households"> households</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=malnutrition" title=" malnutrition"> malnutrition</a>, <a href="https://publications.waset.org/abstracts/search?q=seasonality" title=" seasonality"> seasonality</a> </p> <a href="https://publications.waset.org/abstracts/103285/global-evidence-on-the-seasonality-of-enteric-infections-malnutrition-and-livestock-ownership" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103285.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohd%20Adil">Mohd Adil</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosina%20Khan"> Rosina Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Asad%20U.%20Khan"> Asad U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Vasantha%20Rupasinghe%20HP"> Vasantha Rupasinghe HP</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biofilm" title="biofilm">biofilm</a>, <a href="https://publications.waset.org/abstracts/search?q=quorum%20sensing" title=" quorum sensing"> quorum sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=Streptococcus%20mutans" title=" Streptococcus mutans"> Streptococcus mutans</a>, <a href="https://publications.waset.org/abstracts/search?q=Syzygium%20aromaticum%20extract" title=" Syzygium aromaticum extract"> Syzygium aromaticum extract</a> </p> <a href="https://publications.waset.org/abstracts/63063/molecular-basis-of-anti-biofilm-and-anti-adherence-activity-of-syzygium-aromaticum-on-streptococcus-mutans-in-vitro-and-in-vivo-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63063.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Chemical Composition, Antioxidant and Antimicrobial Activities of the Essential Oils of Different Pinus Species from Kosovo</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatbardh%C3%AB%20%20Kurti">Fatbardhë Kurti</a>, <a href="https://publications.waset.org/abstracts/search?q=Giangiacomo%20%20Beretta"> Giangiacomo Beretta</a>, <a href="https://publications.waset.org/abstracts/search?q=Behxhet%20%20Mustafa"> Behxhet Mustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabrizio%20Gelmini"> Fabrizio Gelmini</a>, <a href="https://publications.waset.org/abstracts/search?q=Avni%20Hajdari"> Avni Hajdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chemical profile, antioxidant and antimicrobial activity of total and fractionated essential oils (EOs) (F1 – hexane, F2 – hexane/diethyl ether, F3 – diethyl ether) derived from five Pinus species (Pinus heldreichii, P. peuce, P. mugo, Pinus nigra, P. sylvestris), were investigated. The hydrodistilled EOs and their chromatographic fractions (direct solid phase extraction, SPE) were analysed by GC-MS and 112 compounds separated and identified. The main constituents were α-pinene, β-pinene, D-limonene, β-caryophyllene, germacrene D, bornyl acetate and 3-carene. The antioxidant activities of total EOs were lower than those of the corresponding fractions, with F2 the strongest in all cases. EOs and fractions showed different degrees of antibacterial efficacy against different microbial pathogens (moderately strong antimicrobial activity against C. albicans and C. krusei ,while low or no activity against E. faecalis and E. coli strains). The detected inhibition zones and MICs for the EOs and fractions were in the range of 14 -35 mm and 0.125 - 1% (v/v), respectively. The components responsible for the antioxidant and antimicrobial activity were oxygenated monoterpenes and sesquiterpenes recovered in the polar EO fractions. These activities seem to be regulated by reciprocal interactions among the different subclasses of phytochemical species present in the EOs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antagonism" title="antagonism">antagonism</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=fractions" title=" fractions"> fractions</a>, <a href="https://publications.waset.org/abstracts/search?q=GC-MS" title=" GC-MS"> GC-MS</a>, <a href="https://publications.waset.org/abstracts/search?q=pinus" title=" pinus"> pinus</a> </p> <a href="https://publications.waset.org/abstracts/79577/chemical-composition-antioxidant-and-antimicrobial-activities-of-the-essential-oils-of-different-pinus-species-from-kosovo" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79577.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">232</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Mechanism of Antimicrobial Activity and Antioxidant Effects of the Essential Oil and the Methanolic Extract of Carum montanum (Coss. et Dur.) Benth. Et Hook. Aerial Parts from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meriem%20El%20Kolli">Meriem El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Laouer"> Hocine Laouer</a>, <a href="https://publications.waset.org/abstracts/search?q=Hayet%20El%20Kolli"> Hayet El Kolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Salah%20Akkal"> Salah Akkal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The methanolic extract (ME) of C. montanum obtained by a hydo-alcoholic maceration and its polyphenol content was evaluated by Folin-Ciocalteu method. This extract and C. montanum essential oil were screened for antimicrobial activity against 21 microbial strains by agar diffusion method. MICs of the EO were determined by the broth micro dilution method. The mechanism of action of the EO was determined on the susceptible strains by the time kill assay and the lysis experience. Antioxidant properties were studied by both free DPPH radical scavenging and reducing power techniques. The TPC in the ME showed a high level of 101.50 ± 5.33 mg GAE /mg. B. cereus was the most sensitive strain with MIC of 55.5 µg/ml , then K. pneumoniae (111 µg/ml). A remarkable decrease in a survival rate as well as in the absorbance at 260 nm were recorded, which suggest that the cytoplasm membrane is one of the targets of the EO. Antioxidant effects were concentration dependent and IC50 values were 1.09 ± 0.37 µg/ml for the EO and 65.04 ± 0.00 µg/ml for the ME by DPPH method and a reducing power dose-dependent. In conclusion, C. montanum extracts showed potent which could be exploited in the food industry for food preservation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20montanum" title="C. montanum">C. montanum</a>, <a href="https://publications.waset.org/abstracts/search?q=Apiaceae" title=" Apiaceae"> Apiaceae</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oils" title=" essential oils"> essential oils</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20activity" title=" antimicrobial activity"> antimicrobial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=reducing%20power" title=" reducing power"> reducing power</a> </p> <a href="https://publications.waset.org/abstracts/41814/the-mechanism-of-antimicrobial-activity-and-antioxidant-effects-of-the-essential-oil-and-the-methanolic-extract-of-carum-montanum-coss-et-dur-benth-et-hook-aerial-parts-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41814.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">237</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Antibacterial Activity of the Essential Oil of Origanum glandulosum on Bacterial Strains of Hospital Origin Most Implicated in Nosocomial Infections</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Lardjam">A. Lardjam</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Mazid"> R. Mazid</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Y.%20Boudghene"> S. Y. Boudghene</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Izarouken"> A. Izarouken</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Dali"> Y. Dali</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Djebli"> N. Djebli</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Toumi"> H. Toumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Origanum glandulosum is an aromatic plant, common in Algeria and widely used by local people for its medicinal properties. The essential oil from this plant, which grows in the west of Algeria, was studied to evaluate and determine its antibacterial activity. The extraction of the essential oil was performed by water steam distillation; the yield obtained from the aerial parts (1.78 %) is interesting, its chromatographic profile revealed by TLC showed the presence of phenolic compounds thymol and carvacrol. The evaluation of the activity of the essential oil of Origanum glandulosum on bacterial strains of hospital origin, ATCC, MRB, and HRB, most implicated in nosocomial infections (Staphylococcus aureus ATCC 25923, Staphylococcus aureus ATCC 43300, Enterococcus faecalis ATCC 29212, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus resistant to meticillin, Enterococcus faecium, VA R and R TEC, Acinetobacter baumanii, IMP R and R CAZ, Klebsiella pneumonia carbapenemase-producing) by the method of aromatogramme and micro atmosphere, shows that the antibacterial potency of this oil is very high, expressed by significant inhibition diameters on all strains except Pseudomonas aeruginosa, and low MICs and is characterized by a bactericidal action. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil" title=" essential oil"> essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=HRB" title=" HRB"> HRB</a>, <a href="https://publications.waset.org/abstracts/search?q=MBR" title=" MBR"> MBR</a>, <a href="https://publications.waset.org/abstracts/search?q=nosocomial%20infections" title=" nosocomial infections"> nosocomial infections</a>, <a href="https://publications.waset.org/abstracts/search?q=origanum%20glandulosum" title=" origanum glandulosum"> origanum glandulosum</a> </p> <a href="https://publications.waset.org/abstracts/12980/antibacterial-activity-of-the-essential-oil-of-origanum-glandulosum-on-bacterial-strains-of-hospital-origin-most-implicated-in-nosocomial-infections" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Synthesis, Crystallography and Anti-TB Activity of Substituted Benzothiazole Analogues</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Katharigatta%20N.%20Venugopala">Katharigatta N. Venugopala</a>, <a href="https://publications.waset.org/abstracts/search?q=Melendhran%20Pillay"> Melendhran Pillay</a>, <a href="https://publications.waset.org/abstracts/search?q=Bander%20E.%20Al-Dhubiab"> Bander E. Al-Dhubiab</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tuberculosis (TB) infection is caused mainly by Mycobacterium tuberculosis (MTB) and it is one of the most threatening and wide spread infectious diseases in the world. Benzothiazole derivatives are found to have diverse chemical reactivity and broad spectrum of pharmacological activity. Some of the important pharmacological activities shown by the benzothiazole analogues are antitumor, anti-inflammatory, antimicrobial, anti-tubercular, anti-leishmanial, anticonvulsant and anti-HIV properties. Keeping all these facts in mind in the present investigation it was envisaged to synthesize a series of novel {2-(benzo[d]-thiazol-2-yl-methoxy)-substitutedaryl}-(substitutedaryl)-methanones (4a-f) and characterize by IR, NMR (1H and 13C), HRMS and single crystal x-ray studies. The title compounds are investigated for in vitro anti-tubercular activity against two TB strains such as H37Rv (ATCC 25177) and MDR-MTB (multi drug resistant MTB resistant to Isoniazid, Rifampicin and Ethambutol) by agar diffusion method. Among the synthesized compounds in the series, test compound {2-(benzo[d]thiazol-2-yl-methoxy)-5-fluorophenyl}-(4-chlorophenyl)-methanone (2c) was found to exhibit significant activity with MICs of 1 µg/mL and 2 µg/mL against H37Rv and MDR-MTB, respectively when compared to standard drugs. Single crystal x-ray studies was used to study intra and intermolecular interactions, including polymorphism behavior of the test compounds, but none of the compounds exhibited polymorphism behavior. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=benzothiazole%20analogues" title="benzothiazole analogues">benzothiazole analogues</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=crystallography" title=" crystallography"> crystallography</a>, <a href="https://publications.waset.org/abstracts/search?q=anti-TB%20activity" title=" anti-TB activity"> anti-TB activity</a> </p> <a href="https://publications.waset.org/abstracts/41432/synthesis-crystallography-and-anti-tb-activity-of-substituted-benzothiazole-analogues" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/41432.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Comparison between Two Groups of Pathogenic Bacteria under Different Essential Oil Extract of Ocimum basilicum L.</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Daneshian%20Moghaddam">A. M. Daneshian Moghaddam</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Shayegh"> J. Shayegh</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Dolghari%20Sharaf"> J. Dolghari Sharaf </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study was conducted to assessment the antibacterial activities of different part of basil essential oil on the standard gram-negative bacteria include Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and gram-positive ones including Bacillus cereus, Staphylococcus aureus, and Listeria monocytogen. The basil essential oil was provided from two part of plant (leaf and herb) at the two different developmental stage. The antibacterial properties of basil essential oil was studied Also agar disk diffusion, minimal inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were detected. The results of agar disk diffusion tests showed the inhibition zones as follow: Listeria monocytogen 17.11-17.42 mm, St. aureus 29.20-30.56 mm, B. cereus 14.73-16.06 mm, E. coli 21.60-23.58 mm, Salmonella typhi 21.63-24.80 mm and for P. aeruginosa the maximum inhibition zones were seen on leaf essential oil. From the herb part of basil almost similar results were obtained: Listeria monocytogen 17.02-17.67 mm, St. aureus 29.60-30.41 mm, B. cereus 10.66-16.11 mm, E. coli 17.48-23.54 mm, Salmonella typhi 21.58-21.64 mm and for P. aeruginosa the maximum inhibition zones were seen. The MICs for gram-positive bacteria were as: B. cereus ranging 36-18 μg/mL, S. aureus 18 μg/mL, Listeria monocytogen 18-36 μg/mL and for gram-negative bacteria of E. coli, Salmonella typhi and P. aeruginosa were 18-9 μg/mL. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=basil%20%28Ocimum%20basilicum%29%20essential%20oil" title="basil (Ocimum basilicum) essential oil">basil (Ocimum basilicum) essential oil</a>, <a href="https://publications.waset.org/abstracts/search?q=gram-positive%20and%20gram%20negative%20bacteria" title=" gram-positive and gram negative bacteria"> gram-positive and gram negative bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title=" antibacterial activity"> antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=MIC" title=" MIC"> MIC</a>, <a href="https://publications.waset.org/abstracts/search?q=MBC" title=" MBC"> MBC</a> </p> <a href="https://publications.waset.org/abstracts/14819/comparison-between-two-groups-of-pathogenic-bacteria-under-different-essential-oil-extract-of-ocimum-basilicum-l" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">442</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Impact of Gamma Irradiation on Biological Activities of Artemisia herba alba from Algeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abir%20Mohamed%20Mohamed%20Ibrahim">Abir Mohamed Mohamed Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Amina%20Titouche"> Amina Titouche</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Hazzit"> Mohamed Hazzit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytotherapy is based on use of plant natural products holding the main sources of drugs with healing properties for the treatment of human, animal or vegetable diseases. With these aims, and to replace chemical preservatives in natural products, we are interested to use essential oils from Algerian endemic plants belonging to the Asteraceae family: Artemisia herba alba Asso, which was undergoes a hydro-distillation after its irradiation by Gamma rays at frequencies: 10, 20, and 30 KGray which gave respectively the following essential oil yields: 1.087%, 1.087%, 1.085%, compared with that of the untreated sample giving a yield of 1.27 %. Evaluation of the antioxidant activity in vitro of essential oil for A. herba alba has been assessed by two different methods: inhibition of DPPH radical and measurement of reducing power. The first method has not revealed a very big difference regardless of the dose of irradiation, the IC50 is about 4000 mg/l, the maximum of inhibition was around 49.4%, likewise, the test of reducing power awarded us a maximum reducing capacity was of 0.76%; both of results were registered by the specimen irradiated at 20 KGy, it has a more better antioxidant power than no irradiated sample but slightly. To combat Fusarium culmorum, causing the wilts and rots, we are focused on the antifungal screening of this aromatic plant. The results obtained, followed by measurements of Minimal Inhibitory Concentrations (MIC); showed promising inhibitory effect against pathogen tested. With a yield superior to l%, the essential oil has shown a remarkable efficiency on the stump, mainly for sample irradiate at 30KGray (MICs= 625 µg/ml; MICc= 1250 µg/ml) with MIC of 2%. These results demonstrate a good antifungal activity, to limit and even to stop the development of the pathogenic microorganism and also the positive effect of dose of irradiation to upgrade this capacity as well, to uphold the antioxidant capacity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artemisia%20herba%20alba%20Asso" title="artemisia herba alba Asso">artemisia herba alba Asso</a>, <a href="https://publications.waset.org/abstracts/search?q=essential%20oil%20yield" title=" essential oil yield"> essential oil yield</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray" title=" gamma ray"> gamma ray</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antifungal%20activity" title=" antifungal activity"> antifungal activity</a> </p> <a href="https://publications.waset.org/abstracts/15284/impact-of-gamma-irradiation-on-biological-activities-of-artemisia-herba-alba-from-algeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15284.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">519</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Antimicrobial Effects and Phytochemical Analysis of Chrysophyllum Albidum Plant Parts (Leaves, Roots and Seeds) Extracts on Bacterial Isolates from Urinary Catheters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ebere%20Christian%20Ugochukwu">Ebere Christian Ugochukwu</a>, <a href="https://publications.waset.org/abstracts/search?q=Okafor%20Josephine"> Okafor Josephine</a>, <a href="https://publications.waset.org/abstracts/search?q=Oyawoye%20Tomisin"> Oyawoye Tomisin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The occurrence of multidrug resistance patterns that have been developed by bacteria has made it difficult to properly treat infections using standard clinical medications. Hence, the use of herbs as an alternative source of therapy is considered cheap and easily accessible to locals. This research explored the antimicrobial effects of aqueous and ethanolic extracts obtained from Chrysophyllum albidum (commonly called ‘Agbalumo’ in southwest Nigeria and ‘Udara’ in the eastern and southern parts of Nigeria) plant parts (leaves, roots and seeds) against bacteria isolated from urinary catheter tips. The following isolates were obtained; Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella aerogenes. The agar well diffusion method was used. The average percentages of antimicrobial resistance of the isolates to gentamycin were 45.5% for P. aeruginosa, 42.1% for E. coli, 46.9% for K. aerogenes, and ˃90% for other isolates. Qualitative phytochemical screening of the plant parts extracts was done using chemical test for the screening and identification of bioactive chemical constituents. The ethanolic extract mixtures (leaf, root and seed) had the greatest effect on all the isolates, with inhibition zones (IZs) ranging from 8-26 mm and MICs ranging from <16-32 mg/ml. The Potencies of the C. albidum extracts based on the IZ and MIC values were greater in the extract mixtures, followed by those in the roots. Phytochemical screening revealed that all the extracts contained phenol except for the seeds while tannins were present in all the extracts except the leaves. The activity of the ethanolic extracts of each part at high and low concentrations was greater than that of the aqueous extracts at the same concentrations (p<0.05). The acute toxicity results showed that the LD50 of the extracts was ˃5000 mg/body weight, indicating no toxicity. The antibacterial activities of the extract mixtures and roots on the isolates confirmed the use of C. albidum in folk medicine for the treatment of CAUTIs, hence indicating its antibacterial potential for use in novel antibiotic production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobials" title="antimicrobials">antimicrobials</a>, <a href="https://publications.waset.org/abstracts/search?q=susceptibility" title=" susceptibility"> susceptibility</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20inhibitory%20concentration" title=" minimum inhibitory concentration"> minimum inhibitory concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=extracts" title=" extracts"> extracts</a> </p> <a href="https://publications.waset.org/abstracts/189605/antimicrobial-effects-and-phytochemical-analysis-of-chrysophyllum-albidum-plant-parts-leaves-roots-and-seeds-extracts-on-bacterial-isolates-from-urinary-catheters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/189605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">29</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Application of Fatty Acid Salts for Antimicrobial Agents in Koji-Muro</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Tanaka">Aya Tanaka</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariko%20Era"> Mariko Era</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiho%20Sakai"> Shiho Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Takayoshi%20Kawahara"> Takayoshi Kawahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Takahide%20Kanyama"> Takahide Kanyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Hiroshi%20Morita"> Hiroshi Morita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Objectives: Aspergillus niger and Aspergillus oryzae are used as koji fungi in the spot of the brewing. Since koji-muro (room for making koji) was a low level of airtightness, microbial contamination has long been a concern to the alcoholic beverage production. Therefore, we focused on the fatty acid salt which is the main component of soap. Fatty acid salts have been reported to show some antibacterial and antifungal activity. So this study examined antimicrobial activities against Aspergillus and Bacillus spp. This study aimed to find the effectiveness of the fatty acid salt in koji-muro as antimicrobial agents. Materials & Methods: A. niger NBRC 31628, A. oryzae NBRC 5238, A. oryzae (Akita Konno store) and Bacillus subtilis NBRC 3335 were chosen as tested. Nine fatty acid salts including potassium butyrate (C4K), caproate (C6K), caprylate (C8K), caprate (C10K), laurate (C12K), myristate (C14K), oleate (C18:1K), linoleate (C18:2K) and linolenate (C18:3K) at 350 mM and pH 10.5 were used as antimicrobial activity. FASs and spore suspension were prepared in plastic tubes. The spore suspension of each fungus (3.0×104 spores/mL) or the bacterial suspension (3.0×105 CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). The mixtures were incubated at 25 ℃. Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 ℃. The MIC (minimum inhibitory concentration) is defined as the lowest concentration of drug sufficient for inhibiting visible growth of spore after 10 min of incubation. MICs against fungi and bacteria were determined using the two-fold dilution method. Each fatty acid salt was separately inoculated with 400 µL of Aspergillus spp. or B. subtilis NBRC 3335 at 3.0 × 104 spores/mL or 3.0 × 105 CFU/mL. Results: No obvious change was observed in tested fatty acid salts against A. niger and A. oryzae. However, C12K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. Thus, C12K suppressed 99.999 % of bacterial growth. Besides, C10K was the antibacterial effect of 5 log-unit incubated time for 180 min against B. subtilis. C18:1K, C18:2K and C18:3K was the antibacterial effect of 5 log-unit incubated time for 10 min against B. subtilis. However, compared to saturated fatty acid salts to unsaturated fatty acid salts, saturated fatty acid salts are lower cost. These results suggest C12K has potential in the field of koji-muro. It is necessary to evaluate the antimicrobial activity against other fungi and bacteria, in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aspergillus" title="Aspergillus">Aspergillus</a>, <a href="https://publications.waset.org/abstracts/search?q=antimicrobial" title=" antimicrobial"> antimicrobial</a>, <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20salts" title=" fatty acid salts"> fatty acid salts</a>, <a href="https://publications.waset.org/abstracts/search?q=koji-muro" title=" koji-muro"> koji-muro</a> </p> <a href="https://publications.waset.org/abstracts/33537/application-of-fatty-acid-salts-for-antimicrobial-agents-in-koji-muro" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33537.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">554</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Green Production of Chitosan Nanoparticles and their Potential as Antimicrobial Agents</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20P.%20Gomes">L. P. Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20F.%20Ara%C3%BAjo"> G. F. Araújo</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20M.%20L.%20Cordeiro"> Y. M. L. Cordeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Andrade"> C. T. Andrade</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20M.%20Del%20Aguila"> E. M. Del Aguila</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20M.%20F.%20Paschoalin"> V. M. F. Paschoalin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The application of nanoscale materials and nanostructures is an emerging area, these since materials may provide solutions to technological and environmental challenges in order to preserve the environment and natural resources. To reach this goal, the increasing demand must be accompanied by 'green' synthesis methods. Chitosan is a natural, nontoxic, biopolymer derived by the deacetylation of chitin and has great potential for a wide range of applications in the biological and biomedical areas, due to its biodegradability, biocompatibility, non-toxicity and versatile chemical and physical properties. Chitosan also presents high antimicrobial activities against a wide variety of pathogenic and spoilage microorganisms. Ultrasonication is a common tool for the preparation and processing of polymer nanoparticles. It is particularly effective in breaking up aggregates and in reducing the size and polydispersity of nanoparticles. High-intensity ultrasonication has the potential to modify chitosan molecular weight and, thus, alter or improve chitosan functional properties. The aim of this study was to evaluate the influence of sonication intensity and time on the changes of commercial chitosan characteristics, such as molecular weight and its potential antibacterial activity against Gram-negative bacteria. The nanoparticles (NPs) were produced from two commercial chitosans, of medium molecular weight (CS-MMW) and low molecular weight (CS-LMW) from Sigma-Aldrich®. These samples (2%) were solubilized in 100 mM sodium acetate pH 4.0, placed on ice and irradiated with an ultrasound SONIC ultrasonic probe (model 750 W), equipped with a 1/2" microtip during 30 min at 4°C. It was used on constant duty cycle and 40% amplitude with 1/1s intervals. The ultrasonic degradation of CS-MMW and CS-LMW were followed up by means of ζ-potential (Brookhaven Instruments, model 90Plus) and dynamic light scattering (DLS) measurements. After sonication, the concentrated samples were diluted 100 times and placed in fluorescence quartz cuvettes (Hellma 111-QS, 10 mm light path). The distributions of the colloidal particles were calculated from the DLS and ζ-potential are measurements taken for the CS-MMW and CS-LMW solutions before and after (CS-MMW30 and CS-LMW30) sonication for 30 min. Regarding the results for the chitosan sample, the major bands can be distinguished centered at Radius hydrodynamic (Rh), showed different distributions for CS-MMW (Rh=690.0 nm, ζ=26.52±2.4), CS-LMW (Rh=607.4 and 2805.4 nm, ζ=24.51±1.29), CS-MMW30 (Rh=201.5 and 1064.1 nm, ζ=24.78±2.4) and CS-LMW30 (Rh=492.5, ζ=26.12±0.85). The minimal inhibitory concentration (MIC) was determined using different chitosan samples concentrations. MIC values were determined against to E. coli (106 cells) harvested from an LB medium (Luria-Bertani BD™) after 18h growth at 37 ºC. Subsequently, the cell suspension was serially diluted in saline solution (0.8% NaCl) and plated on solid LB at 37°C for 18 h. Colony-forming units were counted. The samples showed different MICs against E. coli for CS-LMW (1.5mg), CS-MMW30 (1.5 mg/mL) and CS-LMW30 (1.0 mg/mL). The results demonstrate that the production of nanoparticles by modification of their molecular weight by ultrasonication is simple to be performed and dispense acid solvent addition. Molecular weight modifications are enough to provoke changes in the antimicrobial potential of the nanoparticles produced in this way. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antimicrobial%20agent" title="antimicrobial agent">antimicrobial agent</a>, <a href="https://publications.waset.org/abstracts/search?q=chitosan" title=" chitosan"> chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20production" title=" green production"> green production</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/34476/green-production-of-chitosan-nanoparticles-and-their-potential-as-antimicrobial-agents" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>