CINXE.COM

Search results for: enzymatic kinetic resolution

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: enzymatic kinetic resolution</title> <meta name="description" content="Search results for: enzymatic kinetic resolution"> <meta name="keywords" content="enzymatic kinetic resolution"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="enzymatic kinetic resolution" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="enzymatic kinetic resolution"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2498</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: enzymatic kinetic resolution</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> Candida antarctica Lipase-B Catalyzed Alkaline-Hydrolysis of Some Aryl-Alkyl Acetate in Non-Aqueous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Merabet-Khelassi">M. Merabet-Khelassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Houiene"> Z. Houiene</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Aribi-Zouioueche"> L. Aribi-Zouioueche</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Riant"> O. Riant</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lipases (EC.3.1.1.3) are efficient biotools widely used for their remarkable chemo-, regio- and enantio-selectivity, especially, in kinetic resolution of racemates. They offer access to a large panel of enantiopure building blocks, such as secondary benzylic alcohols, commonly used as synthetic intermediates in pharmaceutical and agrochemical industries. Due to the stability of lipases in both water and organic solvents poor in water, they are able to catalyze both transesterifications of arylalkylcarbinols and hydrolysis of their corresponding acetates. The use of enzymatic hydrolysis in aqueous media still limited. In this presentation, we expose a practical methodology for the preparation of optically enriched acetates using a Candida antarctica lipase B-catalyzed hydrolysis in non-aqueous media in the presence of alkaline carbonate salts. The influence of several parameters which can intervene on the enzymatic efficiency such as the impact of the introduction of the carbonates salts, its amount and the nature of the alkaline earth metal are discussed. The obtained results show that the use of sodium carbonate with CAL-B enhances drastically both reactivity and selectivity of this immobilized lipase. In all cases, the resulting alcohols and remaining acetates are obtained in high ee values (up to > 99 %), and the selectivities reach (E > 500). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alkaline-hydrolysis" title="alkaline-hydrolysis">alkaline-hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution" title=" enzymatic kinetic resolution"> enzymatic kinetic resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=lipases" title=" lipases"> lipases</a>, <a href="https://publications.waset.org/abstracts/search?q=arylalkylcarbinol" title=" arylalkylcarbinol"> arylalkylcarbinol</a>, <a href="https://publications.waset.org/abstracts/search?q=non-aqueous%20media" title=" non-aqueous media"> non-aqueous media</a> </p> <a href="https://publications.waset.org/abstracts/75965/candida-antarctica-lipase-b-catalyzed-alkaline-hydrolysis-of-some-aryl-alkyl-acetate-in-non-aqueous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> Optimization and Kinetic Analysis of the Enzymatic Hydrolysis of Oil Palm Empty Fruit Bunch To Xylose Using Crude Xylanase from Trichoderma Viride ITB CC L.67</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Efri%20%20Mardawati">Efri Mardawati</a>, <a href="https://publications.waset.org/abstracts/search?q=Ronny%20Purwadi"> Ronny Purwadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Made%20Tri%20Ari%20%20Penia%20Kresnowati"> Made Tri Ari Penia Kresnowati</a>, <a href="https://publications.waset.org/abstracts/search?q=Tjandra%20Setiadi"> Tjandra Setiadi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> EFB are mainly composed of cellulose (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). The palm oil empty fruit bunches (EFB) is the lignosellulosic waste from crude palm oil industries mainly compose of (≈ 43%), hemicellulose (≈ 23%) and lignin (≈20%). Xylan, a polymer made of pentose sugar xylose and the most abundant component of hemicellulose in plant cell wall. Further xylose can be used as a raw material for production of a wide variety of chemicals such as xylitol, which is extensively used in food, pharmaceutical and thin coating applications. Currently, xylose is mostly produced from xylan via chemical hydrolysis processes. However, these processes are normally conducted at a high temperature and pressure, which is costly, and the required downstream processes are relatively complex. As an alternative method, enzymatic hydrolysis of xylan to xylose offers an environmentally friendly biotechnological process, which is performed at ambient temperature and pressure with high specificity and at low cost. This process is catalysed by xylanolytic enzymes that can be produced by some fungal species such as Aspergillus niger, Penicillium crysogenum, Tricoderma reseei, etc. Fungal that will be used to produce crude xylanase enzyme in this study is T. Viride ITB CC L.67. It is the purposes of this research to study the influence of pretreatment of EFB for the enzymatic hydrolysis process, optimation of temperature and pH of the hydrolysis process, the influence of substrate and enzyme concentration to the enzymatic hydrolysis process, the dynamics of hydrolysis process and followingly to study the kinetics of this process. Xylose as the product of enzymatic hydrolysis process analyzed by HPLC. The results show that the thermal pretreatment of EFB enhance the enzymatic hydrolysis process. The enzymatic hydrolysis can be well approached by the Michaelis Menten kinetic model, and kinetic parameters are obtained from experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=oil%20palm%20empty%20fruit%20bunches%20%28EFB%29" title="oil palm empty fruit bunches (EFB)">oil palm empty fruit bunches (EFB)</a>, <a href="https://publications.waset.org/abstracts/search?q=xylose" title=" xylose"> xylose</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic%20modelling" title=" kinetic modelling"> kinetic modelling</a> </p> <a href="https://publications.waset.org/abstracts/3158/optimization-and-kinetic-analysis-of-the-enzymatic-hydrolysis-of-oil-palm-empty-fruit-bunch-to-xylose-using-crude-xylanase-from-trichoderma-viride-itb-cc-l67" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">389</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2496</span> Mathematical Modeling of Bi-Substrate Enzymatic Reactions in the Presence of Different Types of Inhibitors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rafayel%20Azizyan">Rafayel Azizyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeri%20Arakelyan"> Valeri Arakelyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Aram%20Gevorgyan"> Aram Gevorgyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Varduhi%20Balayan"> Varduhi Balayan</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Gevorgyan"> Emil Gevorgyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, mathematical and computer modeling are widely used in different biological studies to predict or assess behavior of such complex systems as biological ones. This study deals with mathematical and computer modeling of bi-substrate enzymatic reactions, which play an important role in different biochemical pathways. The main objective of this study is to represent the results from in silico investigation of bi-substrate enzymatic reactions in the presence of uncompetitive inhibitors, as well as to describe in details the inhibition effects. Four models of uncompetitive inhibition were designed using different software packages. Particularly, uncompetitive inhibitor to the first [ES1] and the second ([ES1S2]; [FS2]) enzyme-substrate complexes have been studied. The simulation, using the same kinetic parameters for all models allowed investigating the behavior of reactions as well as determined some interesting aspects concerning influence of different cases of uncompetitive inhibition. Besides that shown, that uncompetitive inhibitors exhibit specific selectivity depending on mechanism of bi-substrate enzymatic reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title="mathematical modeling">mathematical modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-substrate%20enzymatic%20reactions" title=" bi-substrate enzymatic reactions"> bi-substrate enzymatic reactions</a>, <a href="https://publications.waset.org/abstracts/search?q=reversible%20inhibition" title=" reversible inhibition"> reversible inhibition</a> </p> <a href="https://publications.waset.org/abstracts/10675/mathematical-modeling-of-bi-substrate-enzymatic-reactions-in-the-presence-of-different-types-of-inhibitors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10675.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">347</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2495</span> New Kinetic Approach to the Enzymatic Hydrolysis of Proteins: A Case of Thermolysin-Catalyzed Albumin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anna%20Trusek-Holownia">Anna Trusek-Holownia</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrzej%20Noworyta"> Andrzej Noworyta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using an enzyme of known specificity the hydrolysis of protein was carried out in a controlled manner. The aim was to obtain oligopeptides being the so-called active peptides or their direct precursors. An original way of expression of the protein hydrolysis kinetics was introduced. Peptide bonds contained in the protein were recognized as a diverse-quality substrate for hydrolysis by the applied protease. This assumption was positively verified taking as an example the hydrolysis of albumin by thermolysin. Peptide linkages for this system should be divided into at least four groups. One of them is a group of bonds non-hydrolyzable by this enzyme. These that are broken are hydrolyzed at a rate that differs even by tens of thousands of times. Designated kinetic constants were k'F = 10991.4 L/g.h, k'M = 14.83L/g.h, k'S about 10-1 L/g.h for fast, medium and slow bonds, respectively. Moreover, a procedure for unfolding of the protein, conducive to the improved susceptibility to enzymatic hydrolysis (approximately three-fold increase in the rate) was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=peptide%20bond%20hydrolysis" title="peptide bond hydrolysis">peptide bond hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=enzyme%20specificity" title=" enzyme specificity"> enzyme specificity</a>, <a href="https://publications.waset.org/abstracts/search?q=biologically%20active%20peptides" title=" biologically active peptides "> biologically active peptides </a> </p> <a href="https://publications.waset.org/abstracts/5523/new-kinetic-approach-to-the-enzymatic-hydrolysis-of-proteins-a-case-of-thermolysin-catalyzed-albumin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2494</span> Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Preshanthan%20Moodley">Preshanthan Moodley</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20B.%20Gueguim%20Kana"> E. B. Gueguim Kana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lignocellulosic%20bioethanol" title="lignocellulosic bioethanol">lignocellulosic bioethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20pretreatment" title=" microwave pretreatment"> microwave pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20leaves" title=" sugarcane leaves"> sugarcane leaves</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetics" title=" kinetics"> kinetics</a> </p> <a href="https://publications.waset.org/abstracts/110833/kinetic-studies-of-bioethanol-production-from-salt-pretreated-sugarcane-leaves" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2493</span> Symmetric Polymerization with Dynamical Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muddser%20Ghaffar">Muddser Ghaffar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In material science, synthetic chiral polymers are becoming increasingly significant due to their distinct properties that distinguish them from other polymer materials. One special technique for producing well-defined chiral polymers is asymmetric kinetic resolution polymerization (AKRP), which adds stereo regularity to a polymer chain by the kinetic resolution of a race mate preferentially polymerizing one enantiomer. Apart from making it possible to characterize chiral polymers enantioselective, AKRP can synthesize chiral polymers with high stereo selectivity. This review includes the literature on the use of enzymes, chiral metal complexes, and organ catalysts as AKRP promoters. One enantiomer reacts more quickly than the other in this kind of polymerisation, quickly entering the expanding polymer chain, while the kinetically less reactive enantiomer stays unreactive and is readily separated using straightforward purification techniques. The degree of chiral induction and overall chirality of the chiral polymers that are generated may be assessed using the enantiomeric excess (ee) of the initial monomer, which is frequently determined by chiral HPLC analysis, throughout the polymerisation process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=stereo%20regularity" title="stereo regularity">stereo regularity</a>, <a href="https://publications.waset.org/abstracts/search?q=polymers" title=" polymers"> polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamical" title=" dynamical"> dynamical</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric" title=" symmetric"> symmetric</a> </p> <a href="https://publications.waset.org/abstracts/193168/symmetric-polymerization-with-dynamical-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193168.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">15</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2492</span> The Gasoil Hydrofining Kinetics Constants Identification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Patrascioiu">C. Patrascioiu</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Matei"> V. Matei</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Nicolae"> N. Nicolae</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper describes the experiments and the kinetic parameters calculus of the gasoil hydrofining. They are presented experimental results of gasoil hidrofining using Mo and promoted with Ni on aluminum support catalyst. The authors have adapted a kinetic model gasoil hydrofining. Using this proposed kinetic model and the experimental data they have calculated the parameters of the model. The numerical calculus is based on minimizing the difference between the experimental sulf concentration and kinetic model estimation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrofining" title="hydrofining">hydrofining</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=modeling" title=" modeling"> modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/14522/the-gasoil-hydrofining-kinetics-constants-identification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14522.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2491</span> Design and Implementation of Image Super-Resolution for Myocardial Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Chidananda%20Murthy">M. V. Chidananda Murthy</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Z.%20Kurian"> M. Z. Kurian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20S.%20Guruprasad"> H. S. Guruprasad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=image%20dictionary%20creation" title="image dictionary creation">image dictionary creation</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20super-resolution" title=" image super-resolution"> image super-resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=LGE%20images" title=" LGE images"> LGE images</a>, <a href="https://publications.waset.org/abstracts/search?q=patch%20extraction" title=" patch extraction"> patch extraction</a> </p> <a href="https://publications.waset.org/abstracts/59494/design-and-implementation-of-image-super-resolution-for-myocardial-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2490</span> Enzymatic Esterification of Sardine Oil Processed in Morocco</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Kharroubi">M. Kharroubi</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Rady"> Y. Rady</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bellali"> F. Bellali</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Himmi"> S. Himmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The global objective of this study is to upgrade the sardine oil processed in Morocco by using enzymatic solutions. The specific objective of this part of study is to optimize the various parameters involved in enzymatic deacidification of fish oil processed in Morocco: pressure, ratio of oil/novozymes 435, ratio of oil/glycerol, temperature. The best deacidification yields were obtained with: -A temperature of 70 °C; -A ratio -Oil/Glycerol: 2% (% P); -A ratio -Oil/Novozyme 435: 1% (% P); -A pressure: 15 to 25 mbar. On the other hand, the study of the effect of initial oil acidity showed that whatever the acidity of the oil studied (very acidic, or low acidic), the final yields are high. Acidity does not reduce the reaction efficiency. From an industrial point of view, this represents a competitive advantage to consider. This eco-friend enzymatic solution may allows Moroccan fish oil producers to achieve acid number values that meet the standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sardine%20oil" title="sardine oil">sardine oil</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20esterfication" title=" enzymatic esterfication"> enzymatic esterfication</a>, <a href="https://publications.waset.org/abstracts/search?q=desacidification" title=" desacidification"> desacidification</a>, <a href="https://publications.waset.org/abstracts/search?q=acid%20number" title=" acid number"> acid number</a> </p> <a href="https://publications.waset.org/abstracts/17956/enzymatic-esterification-of-sardine-oil-processed-in-morocco" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17956.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2489</span> Improved Super-Resolution Using Deep Denoising Convolutional Neural Network </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pawan%20Kumar%20Mishra">Pawan Kumar Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Singh%20Bisht"> Ganesh Singh Bisht</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super-resolution is the technique that is being used in computer vision to construct high-resolution images from a single low-resolution image. It is used to increase the frequency component, recover the lost details and removing the down sampling and noises that caused by camera during image acquisition process. High-resolution images or videos are desired part of all image processing tasks and its analysis in most of digital imaging application. The target behind super-resolution is to combine non-repetition information inside single or multiple low-resolution frames to generate a high-resolution image. Many methods have been proposed where multiple images are used as low-resolution images of same scene with different variation in transformation. This is called multi-image super resolution. And another family of methods is single image super-resolution that tries to learn redundancy that presents in image and reconstruction the lost information from a single low-resolution image. Use of deep learning is one of state of art method at present for solving reconstruction high-resolution image. In this research, we proposed Deep Denoising Super Resolution (DDSR) that is a deep neural network for effectively reconstruct the high-resolution image from low-resolution image. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=resolution" title="resolution">resolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deep-learning" title=" deep-learning"> deep-learning</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=de-blurring" title=" de-blurring"> de-blurring</a> </p> <a href="https://publications.waset.org/abstracts/78802/improved-super-resolution-using-deep-denoising-convolutional-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78802.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2488</span> Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Kassim">M. A. Kassim</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Potumarthi"> R. Potumarthi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Tanksale"> A. Tanksale</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Srivatsa"> S. C. Srivatsa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharya"> S. Bhattacharya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microalgal%20biomass" title="microalgal biomass">microalgal biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20saccharification" title=" enzymatic saccharification"> enzymatic saccharification</a>, <a href="https://publications.waset.org/abstracts/search?q=biobutanol" title=" biobutanol"> biobutanol</a>, <a href="https://publications.waset.org/abstracts/search?q=fermentation" title=" fermentation"> fermentation</a> </p> <a href="https://publications.waset.org/abstracts/12717/enzymatic-saccharification-of-dilute-alkaline-pre-treated-microalgal-tetraselmis-suecica-biomass-for-biobutanol-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12717.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2487</span> The Selective Reduction of a Morita-baylis-hillman Adduct-derived Ketones Using Various Ketoreductase Enzyme Preparations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nompumelelo%20P.%20Mathebula">Nompumelelo P. Mathebula</a>, <a href="https://publications.waset.org/abstracts/search?q=Roger%20A.%20Sheldon"> Roger A. Sheldon</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20P.%20Pienaar"> Daniel P. Pienaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Moira%20L.%20Bode"> Moira L. Bode</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preparation of enantiopure Morita-Baylis-Hillman (MBH) adducts remains a challenge in organic chemistry. MBH adducts are highly functionalised compounds which act as key intermediates in the preparation of compounds of medicinal importance. MBH adducts are prepared in racemic form by reacting various aldehydes and activated alkenes in the presence of DABCO. Enantiopure MBH adducts can be obtained by employing Enzymatic kinetic resolution (EKR). This technique has been successfully demonstrated in our group, amongst others, using lipases in either hydrolysis or transesterification reactions. As these methods only allow 50% of each enantiomer to be obtained, our interest grew in exploring other enzymatic methods for the synthesis of enantiopure MBH adducts where, theoretically, 100% of the desired enantiomer could be obtained.Dehydrogenase enzymes can be employed on prochiral substrates to obtain optically pure compounds by reducing carbon-carbon double bonds or carbonyl groups of ketones. Ketoreductases have been used historically to obtain enantiopure secondary alcohols on an industrial scale. Ketoreductases are NAD(P)H-dependent enzymes and thus require nicotinamide as a cofactor. This project focuses on employing ketoreductase enzymes to selectively reduce ketones derived from Morita-Baylis-Hillman (MBH) adducts in order to obtain these adducts in enantiopure form.Results obtained from this study will be reported. Good enantioselectivity was observed using a range of different ketoreductases, however, reactions were complicated by the formation of an unexpected by-product, which was characterised employing single crystal x-ray crystallography techniques. Methods to minimise by-product formation are currently being investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ketoreductase" title="ketoreductase">ketoreductase</a>, <a href="https://publications.waset.org/abstracts/search?q=morita-baylis-hillman" title=" morita-baylis-hillman"> morita-baylis-hillman</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20reduction" title=" selective reduction"> selective reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=x-ray%20crystallography" title=" x-ray crystallography"> x-ray crystallography</a> </p> <a href="https://publications.waset.org/abstracts/179204/the-selective-reduction-of-a-morita-baylis-hillman-adduct-derived-ketones-using-various-ketoreductase-enzyme-preparations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179204.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2486</span> A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Do-Jin%20Jang">Do-Jin Jang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Ah%20Kim"> Sung-Ah Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A kinetic fa&ccedil;ade responds to user requirements and environmental conditions. &nbsp;In designing a kinetic fa&ccedil;ade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic fa&ccedil;ade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomimicry" title="biomimicry">biomimicry</a>, <a href="https://publications.waset.org/abstracts/search?q=flocking%20algorithm" title=" flocking algorithm"> flocking algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20decentralized%20control" title=" autonomous decentralized control"> autonomous decentralized control</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-objective%20optimization" title=" multi-objective optimization"> multi-objective optimization</a> </p> <a href="https://publications.waset.org/abstracts/71381/a-biomimetic-approach-for-the-multi-objective-optimization-of-kinetic-facade-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2485</span> High Dissolution of ATC by pH Control and Its Enzymatic Conversion to L-Cysteine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Deokyeong%20Choe">Deokyeong Choe</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Hun%20Youn"> Sung Hun Youn</a>, <a href="https://publications.waset.org/abstracts/search?q=Younggon%20Kim"> Younggon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Chul%20Soo%20Shin"> Chul Soo Shin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> L-Cysteine is extensively used as a supplement of pharmaceuticals, cosmetics, food and feed additives. It has obtained industrially by hydrolysis of human hair and poultry feathers. However, there are some problems such as the restriction of using materials from animals and the intractable waste pollution. The enzymatic conversion has been regarded as an environmental-friendly method. Currently, the biggest bottle-neck of enzymatic conversion is the low yield of L-cysteine due to the low substrate solubility. In this study, the method of enhancing the solubility of the substrate D,L-2-amino-Δ2-thiazoline-4-carboxylicacid (ATC) was developed and the enzymatic reaction at high concentration levels was performed. A large amount of substrate in aqueous solutions was dissolved by pH control using salts. As the pH of the solution increased, the solubility of ATC increased. It was thought that a shift of ATC from acid form (-COOH) to dissociated carboxylic group (-COO-) would improve its hydrophilicity leading to solubility increase. The highest solubility of ATC was 610 mM at pH 10.5, whereas the maximum reaction rate was obtained at pH 8.3. As a result, a high L-cysteine yield of 250 mM was achieved at pH 9.1, which was obtained from a combination of optimum pH conditions for ATC solubility and enzymatic conversion. This yield corresponds to approximately 18 times of that in previous reports. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=D" title="D">D</a>, <a href="https://publications.waset.org/abstracts/search?q=L-2-amino-%CE%942-thiazoline-4-carboxylicacid" title="L-2-amino-Δ2-thiazoline-4-carboxylicacid">L-2-amino-Δ2-thiazoline-4-carboxylicacid</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20conversion" title=" enzymatic conversion"> enzymatic conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=high-substrate%20solubilization" title=" high-substrate solubilization"> high-substrate solubilization</a>, <a href="https://publications.waset.org/abstracts/search?q=L-Cysteine" title=" L-Cysteine"> L-Cysteine</a> </p> <a href="https://publications.waset.org/abstracts/4128/high-dissolution-of-atc-by-ph-control-and-its-enzymatic-conversion-to-l-cysteine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4128.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">429</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2484</span> Graphen-Based Nanocomposites for Glucose and Ethanol Enzymatic Biosensor Fabrication</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Alamirew">Tesfaye Alamirew</a>, <a href="https://publications.waset.org/abstracts/search?q=Delele%20Worku"> Delele Worku</a>, <a href="https://publications.waset.org/abstracts/search?q=Solomon%20W.%20Fanta"> Solomon W. Fanta</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigus%20Gabbiye"> Nigus Gabbiye</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recently graphen based nanocomposites are become an emerging research areas for fabrication of enzymatic biosensors due to their property of large surface area, conductivity and biocompatibility. This review summarizes recent research reports of graphen based nanocomposites for the fabrication of glucose and ethanol enzymatic biosensors. The newly fabricated enzyme free microwave treated nitrogen doped graphen (MN-d-GR) had provided highest sensitivity towards glucose and GCE/rGO/AuNPs/ADH composite had provided far highest sensitivity towards ethanol compared to other reported graphen based nanocomposites. The MWCNT/GO/GOx and GCE/ErGO/PTH/ADH nanocomposites had also enhanced wide linear range for glucose and ethanol detection respectively. Generally, graphen based nanocomposite enzymatic biosensors had fast direct electron transfer rate, highest sensitivity and wide linear detection ranges during glucose and ethanol sensing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glucose" title="glucose">glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=ethanol" title=" ethanol"> ethanol</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20biosensor" title=" enzymatic biosensor"> enzymatic biosensor</a>, <a href="https://publications.waset.org/abstracts/search?q=graphen" title=" graphen"> graphen</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a> </p> <a href="https://publications.waset.org/abstracts/154291/graphen-based-nanocomposites-for-glucose-and-ethanol-enzymatic-biosensor-fabrication" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2483</span> Traditional Dyeing of Silk with Natural Dyes by Eco-Friendly Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samera%20Salimpour%20Abkenar">Samera Salimpour Abkenar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In traditional dyeing of natural fibers with natural dyes, metal salts are commonly used to increase color stability. This method always carries the risk of environmental pollution (contamination of arable soils and fresh groundwater) due to the release of dyeing effluents containing large amounts of metal. Therefore, researchers are always looking for new methods to obtain a green dyeing system. In this research, the use of the enzymatic dyeing method to prevent environmental pollution with metals and reduce production costs has been proposed. After degumming and bleaching, raw silk fabrics were dyed with natural dyes (Madder and Sumac) by three methods (pre-mordanting with a metal salt, one-step enzymatic dyeing, and two-step enzymatic dyeing). Results show that silk dyed with natural dyes by the enzymatic method has higher color strength and colorfastness than the pretreated with a metal salt. Also, the amount of remained dyes in the dyeing wastewater is significantly reduced by the enzymatic method. It is found that the enzymatic dyeing method leads to improvement of dye absorption, color strength, soft hand, no change in color shade, low production costs (due to low dyeing temperature), and a significant reduction in environmental pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=eco-friendly" title="eco-friendly">eco-friendly</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20dyes" title=" natural dyes"> natural dyes</a>, <a href="https://publications.waset.org/abstracts/search?q=silk" title=" silk"> silk</a>, <a href="https://publications.waset.org/abstracts/search?q=traditional%20dyeing" title=" traditional dyeing"> traditional dyeing</a> </p> <a href="https://publications.waset.org/abstracts/135825/traditional-dyeing-of-silk-with-natural-dyes-by-eco-friendly-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135825.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">190</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2482</span> Effect of Different Microbial Strains on Biological Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Achiraya%20Jiraprasertwong">Achiraya Jiraprasertwong</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Gulari"> Erdogan Gulari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among agricultural residues, sugarcane bagasse is one of the most convincing raw materials for the production of bioethanol due to its availability, and low cost through enzymatic hydrolysis and yeast fermentation. A pretreatment step is needed to enhance the enzymatic step. In this study, sugarcane bagasse (SCB), one of the most abundant agricultural residues in Thailand, was pretreated biologically with various microorganisms of white-rot fungus—Phanerochaete sordid (SK 7), Cellulomonas sp. (TISTR 784), and strain A 002 (Bacillus subtilis isolated from Thai higher termites). All samples with various microbial pretreatments were further hydrolyzed enzymatically by a commercial enzyme obtained from Aspergillus niger. The results showed that the pretreatment with the white-rot fungus gave the highest glucose concentration around two-fold higher when compared with the others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sugarcane%20bagasse" title="sugarcane bagasse">sugarcane bagasse</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=pretreatment" title=" pretreatment"> pretreatment</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a> </p> <a href="https://publications.waset.org/abstracts/12997/effect-of-different-microbial-strains-on-biological-pretreatment-of-sugarcane-bagasse-for-enzymatic-hydrolysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">443</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2481</span> Study of Individual Parameters on the Enzymatic Glycosidation of Betulinic Acid by Novozyme-435</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20U.%20Adamu">A. U. Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamisu%20Abdu"> Hamisu Abdu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20A.%20Saidu"> A. A. Saidu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The enzymatic synthesis of 3-O-β-D-glucopyranoside-betulinic acid using Novozyme-435 as a catalyst was studied. The effect of various parameters such as substrate molar ratio, reaction temperature, reaction time, re-used enzymes and amount of enzymes were investigated. The optimum rection conditions for the enzymatic glycosidation of betulinic acid in an organic solvent using Novozym-435 was found to be at 1:1.2 substrate molar ratio, 55oC, 24 h and 180 mg of enzymes with percentage conversion of 88.69 %. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=betulinic%20acid" title="betulinic acid">betulinic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=glycosidation" title=" glycosidation"> glycosidation</a>, <a href="https://publications.waset.org/abstracts/search?q=novozyme-435" title=" novozyme-435"> novozyme-435</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a> </p> <a href="https://publications.waset.org/abstracts/22008/study-of-individual-parameters-on-the-enzymatic-glycosidation-of-betulinic-acid-by-novozyme-435" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22008.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">426</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2480</span> Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Deepak">D. Deepak</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Yagnesh%20Sharma"> N. Yagnesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abrasive%20water%20jet%20machining" title="abrasive water jet machining">abrasive water jet machining</a>, <a href="https://publications.waset.org/abstracts/search?q=jet%20kinetic%20energy" title=" jet kinetic energy"> jet kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=operating%20pressure" title=" operating pressure"> operating pressure</a>, <a href="https://publications.waset.org/abstracts/search?q=wall%20shear%20stress" title=" wall shear stress"> wall shear stress</a>, <a href="https://publications.waset.org/abstracts/search?q=Garnet%20abrasive" title=" Garnet abrasive"> Garnet abrasive</a> </p> <a href="https://publications.waset.org/abstracts/27545/numerical-analysis-on-the-effect-of-abrasive-parameters-on-wall-shear-stress-and-jet-exit-kinetic-energy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27545.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2479</span> A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Song">Y. J. Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20S.%20Xu"> Q. S. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20C.%20Wang"> X. C. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Wang"> H. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Li"> C. Q. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20decomposition" title="catalytic decomposition">catalytic decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=CuO%2FHZSM-5" title=" CuO/HZSM-5"> CuO/HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrous%20oxide" title=" nitrous oxide"> nitrous oxide</a> </p> <a href="https://publications.waset.org/abstracts/130896/a-study-on-kinetic-of-nitrous-oxide-catalytic-decomposition-over-cuohzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2478</span> Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Soto-Arriaza">Marco Soto-Arriaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Cena-Ahumada"> Eduardo Cena-Ahumada</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Melendez-Rojel"> Jaime Melendez-Rojel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphipathic%20copolymers" title="amphipathic copolymers">amphipathic copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=calcein%20release" title=" calcein release"> calcein release</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPC%20liposome" title=" DPPC liposome"> DPPC liposome</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20A%E2%82%82" title=" phospholipase A₂"> phospholipase A₂</a> </p> <a href="https://publications.waset.org/abstracts/138744/calcein-release-from-liposomes-mediated-by-phospholipase-a2-activity-effect-of-cholesterol-and-amphipathic-di-and-tri-blocks-copolymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2477</span> Effects of Palm Kernel Expeller Processing on the Ileal Populations of Lactobacilli and Escherichia Coli in Broiler Chickens</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Navidshad">B. Navidshad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of this study was to examine the effects of enzymatic treatment and shell content of palm kernel expeller (PKE) on the ileal Lactobacilli and Escherichia coli populations in broiler chickens. At the finisher phase, one hundred male broiler chickens (Cobb-500) were fed a control diet or the diets containing 200 g/kg of normal PKE (70 g/kg shell), low shell PKE (30 g/kg shell), enzymatic treated PKE or low shell-enzymatic treated PKE. The quantitative real-time PCR were used to determine the ileal bacteria populations. The lowest ileal Lactobacilli population was found in the chickens fed the low shell PKE diet. Dietary normal PKE or low shell-enzymatic treated PKE decreased the Escherichia coli population compared to the control diet. The results suggested that PKE could be included up to 200 g/kg in the finisher diet, however, any screening practice to reduce the shell content of PKE without enzymatic degradation of β-mannan, decrease ileal Lactobacilli population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=palm%20kernel%20expeller" title="palm kernel expeller">palm kernel expeller</a>, <a href="https://publications.waset.org/abstracts/search?q=exogenous%20enzyme" title=" exogenous enzyme"> exogenous enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20content" title=" shell content"> shell content</a>, <a href="https://publications.waset.org/abstracts/search?q=ileum%20bacteria" title=" ileum bacteria"> ileum bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=broiler%20chickens" title=" broiler chickens"> broiler chickens</a> </p> <a href="https://publications.waset.org/abstracts/33444/effects-of-palm-kernel-expeller-processing-on-the-ileal-populations-of-lactobacilli-and-escherichia-coli-in-broiler-chickens" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33444.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">351</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2476</span> The Effect of Raindrop Kinetic Energy on Soil Erodibility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Moussouni">A. Moussouni</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Mouzai"> L. Mouzai</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Bouhadef"> M. Bouhadef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=erosion" title="erosion">erosion</a>, <a href="https://publications.waset.org/abstracts/search?q=runoff" title=" runoff"> runoff</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20kinetic%20energy" title=" raindrop kinetic energy"> raindrop kinetic energy</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erodibility" title=" soil erodibility"> soil erodibility</a>, <a href="https://publications.waset.org/abstracts/search?q=rainfall%20intensity" title=" rainfall intensity"> rainfall intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=raindrop%20fall%20velocity" title=" raindrop fall velocity"> raindrop fall velocity</a> </p> <a href="https://publications.waset.org/abstracts/19685/the-effect-of-raindrop-kinetic-energy-on-soil-erodibility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19685.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2475</span> Framework for Performance Measure of Super Resolution Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Varsha%20Hemant%20Patil">Varsha Hemant Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Swati%20A.%20Bhavsar"> Swati A. Bhavsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Abolee%20H.%20Patil"> Abolee H. Patil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image quality assessment plays an important role in image evaluation. This paper aims to present an investigation of classic techniques in use for image quality assessment, especially for super-resolution imaging. Researchers have contributed a lot towards the development of super-resolution imaging techniques. However, not much attention is paid to the development of metrics for testing the performance of developed techniques. In this paper, the study report of existing image quality measures is given. The paper classifies reviewed approaches according to functionality and suitability for super-resolution imaging. Probable modifications and improvements of these to suit super-resolution imaging are presented. The prime goal of the paper is to provide a comprehensive reference source for researchers working towards super-resolution imaging and suggest a better framework for measuring the performance of super-resolution imaging techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interpolation" title="interpolation">interpolation</a>, <a href="https://publications.waset.org/abstracts/search?q=MSE" title=" MSE"> MSE</a>, <a href="https://publications.waset.org/abstracts/search?q=PSNR" title=" PSNR"> PSNR</a>, <a href="https://publications.waset.org/abstracts/search?q=SSIM" title=" SSIM"> SSIM</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20resolution" title=" super resolution"> super resolution</a> </p> <a href="https://publications.waset.org/abstracts/159819/framework-for-performance-measure-of-super-resolution-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">98</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2474</span> Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Verma">K. Verma</a>, <a href="https://publications.waset.org/abstracts/search?q=v.%20S.%20Moholkar"> v. S. Moholkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kinetic" title="kinetic">kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=laccase%20enzyme" title=" laccase enzyme"> laccase enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=sonoenzymatic" title=" sonoenzymatic"> sonoenzymatic</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasound%20irradiation" title=" ultrasound irradiation"> ultrasound irradiation</a> </p> <a href="https://publications.waset.org/abstracts/170328/enhancing-industrial-wastewater-treatment-efficacy-and-optimization-of-ultrasound-assisted-laccase-immobilized-on-magnetic-fe3o4-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170328.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2473</span> Assessment of Kinetic Trajectory of the Median Nerve from Wrist Ultrasound Images Using Two Dimensional Baysian Speckle Tracking Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Li-Kai%20Kuo">Li-Kai Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyh-Hau%20Wang"> Shyh-Hau Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The kinetic trajectory of the median nerve (MN) in the wrist has shown to be capable of being applied to assess the carpal tunnel syndrome (CTS), and was found able to be detected by high-frequency ultrasound image via motion tracking technique. Yet, previous study may not quickly perform the measurement due to the use of a single element transducer for ultrasound image scanning. Therefore, previous system is not appropriate for being applied to clinical application. In the present study, B-mode ultrasound images of the wrist corresponding to movements of fingers from flexion to extension were acquired by clinical applicable real-time scanner. The kinetic trajectories of MN were off-line estimated utilizing two dimensional Baysian speckle tracking (TDBST) technique. The experiments were carried out from ten volunteers by ultrasound scanner at 12 MHz frequency. Results verified from phantom experiments have demonstrated that TDBST technique is able to detect the movement of MN based on signals of the past and present information and then to reduce the computational complications associated with the effect of such image quality as the resolution and contrast variations. Moreover, TDBST technique tended to be more accurate than that of the normalized cross correlation tracking (NCCT) technique used in previous study to detect movements of the MN in the wrist. In response to fingers’ flexion movement, the kinetic trajectory of the MN moved toward the ulnar-palmar direction, and then toward the radial-dorsal direction corresponding to the extensional movement. TDBST technique and the employed ultrasound image scanner have verified to be feasible to sensitively detect the kinetic trajectory and displacement of the MN. It thus could be further applied to diagnose CTS clinically and to improve the measurements to assess 3D trajectory of the MN. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=baysian%20speckle%20tracking" title="baysian speckle tracking">baysian speckle tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=carpal%20tunnel%20syndrome" title=" carpal tunnel syndrome"> carpal tunnel syndrome</a>, <a href="https://publications.waset.org/abstracts/search?q=median%20nerve" title=" median nerve"> median nerve</a>, <a href="https://publications.waset.org/abstracts/search?q=motion%20tracking" title=" motion tracking"> motion tracking</a> </p> <a href="https://publications.waset.org/abstracts/28816/assessment-of-kinetic-trajectory-of-the-median-nerve-from-wrist-ultrasound-images-using-two-dimensional-baysian-speckle-tracking-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">495</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2472</span> Study on Microbial Pretreatment for Enhancing Enzymatic Hydrolysis of Corncob</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kessara%20Seneesrisakul">Kessara Seneesrisakul</a>, <a href="https://publications.waset.org/abstracts/search?q=Erdogan%20Gulari"> Erdogan Gulari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumaeth%20Chavadej"> Sumaeth Chavadej</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The complex structure of lignocellulose leads to great difficulties in converting it to fermentable sugars for the ethanol production. The major hydrolysis impediments are the crystallinity of cellulose and the lignin content. To improve the efficiency of enzymatic hydrolysis, microbial pretreatment of corncob was investigated using two bacterial strains of Bacillus subtilis A 002 and Cellulomonas sp. TISTR 784 (expected to break open the crystalline part of cellulose) and lignin-degrading fungus, Phanerochaete sordida SK7 (expected to remove lignin from lignocellulose). The microbial pretreatment was carried out with each strain under its optimum conditions. The pretreated corncob samples were further hydrolyzed to produce reducing glucose with low amounts of commercial cellulase (25 U•g-1 corncob) from Aspergillus niger. The corncob samples were determined for composition change by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). According to the results, the microbial pretreatment with fungus, P. sordida SK7 was the most effective for enhancing enzymatic hydrolysis, approximately, 40% improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corncob" title="corncob">corncob</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20hydrolysis" title=" enzymatic hydrolysis"> enzymatic hydrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20pretreatment" title=" microbial pretreatment"> microbial pretreatment</a> </p> <a href="https://publications.waset.org/abstracts/12998/study-on-microbial-pretreatment-for-enhancing-enzymatic-hydrolysis-of-corncob" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">585</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2471</span> Explicable Enzymatic Mechanism of H-Ido to Oxidise Tryptophan by Employing Various Substrates</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Bahri%20Lubis">Ali Bahri Lubis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of dioxygenase enzymatic mechanism on tryptophan oxidation has been a wide interest since the reaction is rate-limiting step of kynurenine pathway. In this research, observation of tryptophan oxidation through h-IDO enzyme along with synthesis of enzyme products was conducted in order to comprehend how the enzyme works on distinct substrates. UV-vis spectrophotometry, LC-MS, H-NMR and HSQC measurement were carried out to characterise enzyme product. It is found that while tryptophan was oxidised to form Nformylkynurenine (NFK) as a major product and hydroxypyrroloindole amine carboxylic acid (HPIC) in cis and trans confirmed in HSQC, N-methyl tryptophan substrate was converted to NFK and trans HPIC only. Other intriguing results showed that 5-hydroxy- tryptophan and Stryptophan was degraded to become NFK and epoxide cyclic respectively. The formation of NFK was considered through dioxygenation pathway, however HPIC was formed via monooxygenation. The epoxide cyclic—considered as intermediate compound in the mechanism— from S-tryptophan was not able to cleave the epoxide ring since bond energy of epoxide was probably much stronger. This validates the enzymatic mechanism where the intermediate compound in the enzymatic mechanism is epoxide cyclic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tryptophan%20oxidation" title="tryptophan oxidation">tryptophan oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=heme-dioxygenases" title=" heme-dioxygenases"> heme-dioxygenases</a>, <a href="https://publications.waset.org/abstracts/search?q=N-formylkynurenine" title=" N-formylkynurenine"> N-formylkynurenine</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxypyrrroloindoleamine" title=" hydroxypyrrroloindoleamine"> hydroxypyrrroloindoleamine</a>, <a href="https://publications.waset.org/abstracts/search?q=monooxidation" title=" monooxidation"> monooxidation</a> </p> <a href="https://publications.waset.org/abstracts/170619/explicable-enzymatic-mechanism-of-h-ido-to-oxidise-tryptophan-by-employing-various-substrates" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170619.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2470</span> Unified Gas-Kinetic Scheme for Gas-Particle Flow in Shock-Induced Fluidization of Particles Bed</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhao%20Wang">Zhao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Yan"> Hong Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a unified-gas kinetic scheme (UGKS) for the gas-particle flow is constructed. UGKS is a direct modeling method for both continuum and rarefied flow computations. The dynamics of particle and gas are described as rarefied and continuum flow, respectively. Therefore, we use the Bhatnagar-Gross-Krook (BGK) equation for the particle distribution function. For the gas phase, the gas kinetic scheme for Navier-Stokes equation is solved. The momentum transfer between gas and particle is achieved by the acceleration term added to the BGK equation. The new scheme is tested by a 2cm-in-thickness dense bed comprised of glass particles with 1.5mm in diameter, and reasonable agreement is achieved. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gas-particle%20flow" title="gas-particle flow">gas-particle flow</a>, <a href="https://publications.waset.org/abstracts/search?q=unified%20gas-kinetic%20scheme" title=" unified gas-kinetic scheme"> unified gas-kinetic scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=momentum%20transfer" title=" momentum transfer"> momentum transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=shock-induced%20fluidization" title=" shock-induced fluidization"> shock-induced fluidization</a> </p> <a href="https://publications.waset.org/abstracts/94993/unified-gas-kinetic-scheme-for-gas-particle-flow-in-shock-induced-fluidization-of-particles-bed" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">262</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2469</span> Empirical Research on Preference for Conflict Resolution Styles of Owners and Contractors in China</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junqi%20Zhao">Junqi Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqiang%20Chen"> Yongqiang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The preference for different conflict resolution styles are influenced by cultural background and power distance of two parties involving in conflict. This research put forward 7 hypotheses and tested the preference differences of the five conflict resolution styles between Chinese owner and contractor as well as the preference differences concerning the same style between two parties. The research sample includes 202 practitioners from construction enterprises in mainland China. Research result found that theories concerning conflict resolution styles could be applied in the Chinese construction industry. Some results of this research were not in line with former research, and this research also gave explanation to the differences from the characteristics of construction projects. Based on the findings, certain suggestions were made to serve as a guidance for managers to choose appropriate conflict resolution styles for a better handling of conflict. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chinese%20owner%20and%20contractor" title="Chinese owner and contractor">Chinese owner and contractor</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict" title=" conflict"> conflict</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20project" title=" construction project"> construction project</a>, <a href="https://publications.waset.org/abstracts/search?q=conflict%20resolution%20styles" title=" conflict resolution styles"> conflict resolution styles</a> </p> <a href="https://publications.waset.org/abstracts/3663/empirical-research-on-preference-for-conflict-resolution-styles-of-owners-and-contractors-in-china" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">532</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=83">83</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=enzymatic%20kinetic%20resolution&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10